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ABSTRACT
Discussion forums are an important source of information. They

are often used to answer specific questions a user might have and

to discover more about a topic of interest. Discussions in these

forums may evolve in intricate ways, making it difficult for users

to follow the flow of ideas. We propose a novel approach for auto-

matically identifying the underlying thread structure of a forum

discussion. Our approach is based on a neural model that computes

coherence scores of possible reconstructions and then selects the

highest scoring, i.e., the most coherent one. Preliminary experi-

ments demonstrate promising results outperforming a number of

strong baseline methods.

KEYWORDS
Thread reconstruction; Coherence model; Convolutional neural

network

1 INTRODUCTION
Discussion forums are an important source of information, both

to help a user answer specific information needs they might have

and to help users who want to explore a topic without having a

specific question in mind. Discussions in these forums are typically

composed of multiple inter-woven threads, regardless of whether

that threaded structure is made explicit in the representation and

presentation of the conversational data [19]. Recovering the under-

lying thread structure is helpful for users of discussion forums as

it makes possible to disentangle discussions related to subtopics

and/or to particular conversational goals [20].

More precisely, the thread reconstruction task is defined as fol-

lows. Given a discussion stream in which messages are sorted by

posting time, the thread reconstruction task is to construct the

thread tree. The edges in the tread tree identify which of the pre-

viously contributed posts the current post replies to. For example,
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consider the example thread from CNET forum site
1
in Figure 1,

where we have five (p)osts. The thread has a tree structure with

three branches: p1 ← p2, p1 ← p3 and p1 ← p4 ← p5. Given
the posts {p1,p2, . . . ,p5}, our goal in thread reconstruction is to

recover the underlying tree structure of the thread.

Several methods have been proposed for the thread reconstruc-

tion task [19–21]. These methods learn an edge-level classifier to

decide for a possible connection using features like distance in posi-

tion/time, cosine similarity between comments, etc. However, these

models suffer from the limitation that they consider one edge at a

time rather than the global tree structure of the thread. Modeling

edges locally disregards interactions between all possible edges

and can lead to suboptimal solutions. In contrast, in this paper we

propose to model an entire thread for the reconstruction task. We

propose to use a neural coherence model [15] from natural language

processing (NLP) for scoring candidate tree hypotheses.

Coherence models [2, 7] were originally proposed for coherence

assessment of monologues (e.g., news articles, books). However,

forum conversations are different frommonologues in the sense that

information flow in these conversations are not sequential; topics in

these conversations are often interleaved in the temporal order of

the comments [10, 13]. For example, in the thread in Figure 1, there

are three possible subconversations each corresponding to a branch.

The branch p1 ← p2 suggests using regedit, the branch p1 ← p3
suggests ccleaner, and the third branch suggests regseeker. Beacause
of these differences, when applied directly to these conversations,

the coherence models may not perform as we expect. Furthermore,

these models are not specifically trained for the reconstruction task.

In this paper, we make the following contributions. First, we

hypothesize that coherence models should consider the thread

structure of a conversation and we extend the original grid repre-

sentation proposed by Barzilay and Lapata [2] to encode the thread

structure of a forum conversation. Then we train a convolutional

neural network (CNN) model with pairwise ranking using the grid

representation for the thread reconstruction task. Our method con-

siders the whole thread structure at once, and computes coherence

scores for all possible candidate trees. The highest scoring tree

corresponds to the predicted tree structure for the given thread.

We evaluated our approach on discussion threads from CNET.

The results show that our method is quite promising outperforming

several strong baselines on this dataset.

1
https://www.cnet.com/
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Author: barspinboy Post ID: 1
s0: im having troubles since i uninstall some of my

apps, then when i checked my system registry bunch of

junks were left behind by the apps i already uninstall.

s1: is there any way i could clean my registry aside

from expensive registry cleaners.

Author: kees bakker Post ID: 2
s2: use regedit to delete the ‘bunch of junks’ you found.

s3: regedit is free, but depending on which applications

it were ..

s4: it’s somewhat doubtful there will be less crashes and

faster setup.

Author: willy Post ID: 3

s5: i tend to use ccleaner (google for it) as a registry

(and system) cleaner.

s6: using its defaults does pretty well.

s7: in no way will it cure any hardcore problems as you

mentioned, “crashes”, but it should clean some of the

junk out.

s8: i further suggest, ..

Author: caktus Post ID: 4
s9: try regseeker.

s10: it’s free and pretty safe to use automatic.

s11: then clean out temp files (don’t compress any files

or use indexing.)

s12: if the c drive is compressed, then uncompress it.

Author: barspinboy Post ID: 5
s13: thanks guyz!
s14: i tried all those suggestions you mentioned cclean-

ers regedit defragmentation and uninstalling process.

s15: it all worked out and i suffer no more from crashes

and ..

Figure 1: A truncated forum thread from CNET with five
comments by temporal order. Reply-to links between posts
are denoted by arrowed edges.

2 COHERENCE MODELS
In this section, we give a brief overview of the coherence models

that were originally proposed for monologues (e.g., news articles)

and that are related to our work. In the next section, we propose

extensions to these models for forum-like conversations that we

use for thread reconstruction.

2.1 Entity Grid and Its Extensions
Barzilay and Lapata [2] proposed an entity-based model for repre-

senting and assessing text coherence. Their model represents a text

by a matrix called entity grid that captures transitions of entities

(i.e., noun phrases) across sentences. As shown in Table 1, the rows

of the grid correspond to sentences, and the columns correspond

to entities appearing in the text. Each entryGi, j in the entity grid

represents the syntactic role that entity ej plays in sentence si ,
which can be one of: subject (S), object (O), or other (X). Entities
not appearing in a sentence are marked by a special symbol (-).

To represent the grid using a feature vector, Barzilay and Lapata

[2] compute probability for each local entity transition of length

k (i.e., {S,O,X ,−}k ), and represent each grid by a vector of 4
k

transitions probabilities. Coherence assessment is then formulated

as a ranking task in an SVM preference ranking framework [9].

A number of extensions of the basic entity grid model have

been proposed. Elsner and Charniak [7] extended the basic grid

to distinguish between entities of different types by incorporating

entity-specific features like named entity, noun class, modifiers,

etc. Feng and Hirst [8] used the basic grid representation, but im-

proved its learning to rank scheme. Their model learns not only

from original document and its permutations but also from ranking

preferences among the permutations themselves.

2.2 Neural Entity Grid Model
Although the entity grid and its extensions have been successfully

applied to many downstream applications including coherence rat-

ing [2], readability assessment [2, 16], essay scoring [4], and story

generation [14], they have some limitations. First, they use discrete

representation for grammatical roles and features, which leads to

the so-called curse of dimensionality problem [3]. In particular,

to model transitions of length k with C different grammatical roles,

the basic entity grid model needs to compute Ck transition prob-

abilities from a single grid. The estimated distribution becomes

sparse as k increases, which prevents the model from considering

longer transitions – existing models typically use k ≤ 3. Second,

these models compute feature representations from entity grids in

a task-agnostic way. Decoupling feature extraction from the target

task can limit the model’s capacity to learn task-specific features.

To deal with the above issues of entity grid models, we [15]

recently proposed a neural extension to the grid models. As shown

in Figure 2, the neural model takes an extracted entity grid as

input, and transforms each grammatical role in the grid into a dis-

tributed representation by looking up a shared embedding matrix

E ∈ R |V |×d , where V = {S,O,X ,−} is a set of grammatical roles,

and d is the embedding dimensions. The embedding vectors pro-

duced by the lookup layer are combined by subsequent layers of

the network to generate a coherence score for the document. The

network uses a convolutional layer, which applies N filters to get N
different feature maps. The abstract features in each feature map

are then pooled using amax-pooling operation. The pooled features
are then used for coherence scoring at the final layer of the model.

Convolution learns to compose local transitions of a grid into

higher-level representations, while max-pooling captures the most

salient local features from each feature map. Since the convolution-

pooling operates over the distributed representation of grid entries,

compared to traditional grid models, the transition length k can

be sufficiently large to capture long-range dependencies without

overfitting on the training data. Also, the embedding vectors and

the convolutional filters are learned from all training documents



Figure 2: Neural model for coherence scoring and the pairwise training method [taken from our previous work [15]].

as opposed to a single document in traditional grid models, which

helps the neural model to obtain better generalization and robust-

ness. The evaluation on three different coherence assessment tasks

demonstrates the superiority of the neural model yielding state of

the art results. In this work, we therefore extend the neural model

for forum-like conversations and use it for thread reconstruction.

3 NEURAL COHERENCE MODEL FOR FORUM
THREADS

The main difference between forum conversations and monologues

is that the information flow in forum conversations is often not

sequential as in monologue. As a result, the coherence models

that are originally developed for monologues may not perform as

expected when they are directly applied to threaded conversations

[10]. We hypothesize that the coherence models should consider the

conversational structure in the form of “reply-to” relations between

comments as shown by a tree structure in Figure 1. In the following

subsections, we describe how we extend the neural entity grid

model to incorporate the tree structure of a thread.

3.1 Entity Grid for Forum Threads
The thread structure in Figure 1 has a tree structure, where nodes

represent comments and edges represent “reply-to” links between

comments. Since entity grid models operate at the sentence level,

we construct the conversational thread at the sentence level. We

do this by linking the boundary sentences across comments and

by linking sentences in the same comment chronologically; i.e., we

connect the first sentence of comment c j to the last sentence of

comment ci if c j is a reply to ci , and sentence st+1 is linked to st if
both st and st+1 are in the same comment.

To encode a sentence-level conversation tree into an entity grid,

we propose couple of modifications to the original entity grid rep-

resentation. In the modified representation as shown in Table 1,

rows represent depth levels of the conversation tree as opposed to

sentences in the original grid. An entry Gi, j in our conversational

entity grid represents the sequence of grammatical roles (left to

right) that the entity ej plays in the sentences occurring at the j-th
level of the conversation tree. For instance, our example tree has

three sentences s3, s6 and s10 at depth level 3. The entity REGEDIT
has the role of a Subject, a not present and a not present, respectively,
in these three sentences, thus encoded as ‘S--’ in the entity grid.

3.2 Thread Reconstruction
The conversational entity grid captures transition of entities in

terms of their grammatical roles in a conversation tree. We believe

this representation can be quite useful for thread reconstruction –

i.e., discovering the latent structure of a forum thread.

We train a convolutional neural network (we refer to our model

as Grid-CNN for the rest of this paper) using the conversational

entity grid representation for the thread reconstruction task. The

CNN model has the same structure as described in Section 2.2.

We use a pairwise ranking approach [5] to train the Grid-CNN

model. For a given number of comments in a gold tree, we first

construct a set of valid candidate trees. A valid tree is one that

respects the chronological order of the comments in a thread –

for example, a comment can only reply to a comment that comes

before in the temporal order. The training set comprises ordered
pairs (Ti ,Tj ), where thread Ti is a true (gold) tree and Tj is a valid
but false tree. We seek to find model parameters that assign a higher

score to Ti than to Tj . We minimize the following ranking loss:

J (θ ) = max{0, 1 − ϕ(Gi |θ ) + ϕ(G j |θ )} (1)

where Gi and G j are the conversational entity grids corresponding

to threads Ti and Tj , respectively, and θ defines the model parame-

ters including the embedding matrix and the weight vectors.

During testing, our Grid-CNN model predicts coherence scores

for all the possible candidate trees given the posts in a thread, and

the tree with the highest score is considered to be the underlying

structure of the thread.



Table 1: Transition of some entities across tree structure of the thread example. Legend: S stands for subject, O for object, X
for a role other than subject or object, and – means that an entity does not appear in the sentence.

Tree structure depth C
L
E
A
N
E
R

R
E
G
E
D
I
T

T
R
O
U
B
L
E
S

S
Y
S
T
E
M

J
U
N
K
S

A
P
P
S

R
E
G
I
S
T
R
Y

B
U
N
C
H

s0 0 − − − O X X O O
s1 1 O − − − − − O −

s2 s5 s9 2 −O− O−− − − − − − − X−− − − − −O− O−−
s3 s6 s10 3 − − − S−− − − − − − − − − − − − − − − − − − −
s4 s7 s11 4 − − − − − − − − − − − − −X− − − − − − − − − −

s8 s12 5 −− −− −− −− −− −− −− −−

4 EXPERIMENT
Our main research question is to determine whether text coherence

can benefit thread reconstruction; we want to assess at two levels,

the level of trees (“did we reconstruct the discourse correctly”) and

the level of edges (“did we identify individual replies correctly”).

4.1 Experimental setup
As a preliminary experiment, we collect 2,200 threads from the

CNET dataset made available in previous research [11] that have

less than 6 posts. We remove from the raw data some meta informa-

tion and keep the temporal order (post ID) of the dataset. We leave

1,500 threads for training, 200 threads as our development set and

the rest for testing. See Table 2 for further details about the corpus.

Table 2: Corpus statistics. Non-trivial replies are posts that
reply to other posts except the first post.

# Threads Avg. # Posts Avg. # Sent Non-trivial replies

2,200 3.6 27.64 57%

We train the Grid-CNN model by optimizing the pairwise rank-

ing loss in Equation 1 using the gradient-based online learning

algorithm RMSprop[18].
2
We use up to 25 epochs. We use dropout

[17] of hidden units to avoid overfitting, and do early stopping
by observing accuracy on the dev set – if the performance (ac-

curacy score) does not increase for 10 consecutive epochs, we

stop training and pick the best model recorded so far. We search

for optimal minibatch size in {16, 32, 64, 128}, embedding size in
{50, 80, 100, 200}, dropout rate in {0.2, 0.3, 0.5}, filter number in

{100, 150, 200, 300}, window size in {3, 4, 5, 6, 7, 8}, and pooling
length in {4, 5, 6, 7}. The best model (see Table 3) on the develop-

ment set is then used for the final evaluation on the test set.

For comparison, we use a number of simple but well performing

baselines:

All-previous Create thread structure by linking a comment

to its previous comment.

All-first Create thread structure by linking all the comments

to the first comment.

COS-sim Create thread structure by linking a comment to one

of the previous comments with which it has the highest

cosine similarity.

2
Other adaptive algorithms, e.g., ADAM [12], ADADELTA [22] gave similar results.

Batch Emb. Dropout Filter Win. Pool

Grid-CNN 64 100 0.5 150 6 6

Table 3: Optimal hyper-parameter setting for our neural
models based on development set accuracy.

We consider two variations of the thread reconstruction task:

tree-level and edge-level. For the tree-level version of the thread

reconstruction task, the model predicted tree should match entirely

the original structure of the thread. For the edge-level version, we

measure the post-level (the link between two posts) classification

performance. If a link appears in the predicted tree and the original

one, we count as a true prediction; otherwise it is a false case.

4.2 Results and discussion
Table 4 presents the results for the baselines and our method, Grid-

CNN. The COS-sim gets the lowest score on both reconstruction

tasks. This means reply structure between two posts does not rely

only on their term matching patterns. The other two baselines All-
previous and All-first perform quite well on our dataset. This is

not surprising since it is very common in this kind of forums that

most participants reply either to the previous post or to the first

post that asks the question.

Our neural method gets promising results, yielding substantial

improvements over the baselines in all cases. TheGrid-CNNmodel

delivers relative improvements from 32% to 57% in accuracy for the

tree-level reconstruction task. It also outperforms the baselines in

the edge-level prediction task with improvements from 4% to 13%

in F1-score and from 1% to 12% in accuracy.

We further manually inspected the false prediction cases for

our method. We observed that most of the false trees fall into the

trivial structures (All-previous or All-first). This could be due to

the dominance of these cases in our training data – 40.07% of the

posts reply to the first post and 76.29% reply to the previous post.

5 RELATEDWORK
Several previous studies treat thread reconstruction as an edge-

level classification problem. Wang et al. [21] use cosine similarity

between posts and exploit temporal order information (e.g., time

distance, post distance) to recover the thread structure. Aumayr et al.

[1] consider thread reconstruction as a classification problem. They



Table 4: Performance on the thread reconstruction task.

Tree-level Edge-level

Acc F1 Acc

All-previous 20.00 58.45 65.62

All-first 17.60 54.90 60.27

COS-sim 16.80 53.58 58.75

Grid-CNN 26.40 60.55 66.12

train a decision tree classifier based on some basic features such as

reply distance in number of posts, time distance, cosine similarity

and thread lengths, etc. Their model takes a pair of posts as input

and predicts the link between them. A jointmodel using dependency

parsing and conditional random fields was proposed to predict links

between two posts and their dialogue acts [19]. Dehghani et al. [6]

works on reconstructing tree structure of conversation threads in

email data.

In contrast to previous approaches, we treat thread reconstruc-

tion as a ranking problem and use a neural coherence model to

rank all possible candidate trees. We show that modeling coher-

ence of threaded conversations is an effective approach to thread

reconstruction.

6 CONCLUSIONS
This paper introduces a novel approach to solve thread reconstruc-

tion problem in discussion forums. Our method uses a neural co-

herence model based on an entity grid representation and a convo-

lutional neural network (CNN). First, we extend the original grid

representation to encode the thread structure of a forum conversa-

tion. Then we train a CNN model with pairwise ranking using the

grid representation for the thread reconstruction task. Our method

considers the whole thread structure at once, and computes coher-

ence scores for all possible candidate trees. The highest scoring tree

is returned as the predicted tree structure.

We evaluated our approach on discussion threads from CNET

forum site. The result shows that our method is very promising.

It significantly improves performance over trivial baselines, par-

ticularly for the tree-level accuracy. In the future, we would like

to experiment with larger datasets containing threads with many

posts. We also plan to integrate other discourse structures like

dialogue acts into our model to get further improvements.
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