
HAL Id: hal-01741395
https://hal.science/hal-01741395

Submitted on 23 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model reduction in geometric tolerancing by polytopes
Vincent Delos, Santiago Arroyave-Tobón, Denis Teissandier

To cite this version:
Vincent Delos, Santiago Arroyave-Tobón, Denis Teissandier. Model reduction in geometric tolerancing
by polytopes. Computer-Aided Design, 2018. �hal-01741395�

https://hal.science/hal-01741395
https://hal.archives-ouvertes.fr


Model reduction in geometric tolerancing by polytopes

Vincent Delos, Santiago Arroyave-Tobón, Denis Teissandier

Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France

Abstract

There are several models used in mechanical design to study the behavior of mechanical systems involving geometric
variations. By simulating defects with sets of constraints it is possible to study simultaneously all the configurations of
mechanisms, whether over-constrained or not. Using this method, the accumulation of defects is calculated by summing sets
of constraints derived from features (toleranced surfaces and joints) in the tolerance chain. These sets are usually unbounded
objects (R6-polyhedra, 3 parameters for the small rotation, 3 for the small translation), due to the unbounded displacements
associated with the degrees of freedom of features. For computational and algorithmic reasons, cap facets are introduced into
the operand polyhedra to obtain bounded objects (R6-polytopes) and facilitate computations. However, the consequence is
an increase in the complexity of the models due to the multiplication of caps during the computations. In response to this
situation, we formalized and tested a method for controlling the effects of cap facets. Based on the combinatorial properties
of polytopes, we propose to trace the operand faces during the different operations. An industrial case is solved and discussed
in order to show the significant gain in computational time when applying the new method. This example has been chosen to
be as general as possible to illustrate the genericity of the method.
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1. Introduction

In mechanical design, a tolerance zone represents the
limits of manufacturing defects for a given surface. When
the surface is considered as a discrete set of points, this re-
striction is transferred from each point to a given 3D point
M. This point is assumed rigidly linked to the toleranced
surface. Considering manufacturing defects as small dis-
placements [1], each constraint can be modelled as a half-
space in the 6-dimensional space of deviations [2]:

H̄+
k =

{
x ∈ R6 : bk + ak1 x1 + ... + ak6 x6 ≥ 0

}
(1)

where x1, x2, x3 are the rotation variables, x4, x5, x6 are
the translation variables, the second member bk is related to
the size of tolerance zone and ak j (1 ≤ j ≤ 6) are scalar pa-
rameters dependent on the geometry of the toleranced fea-
ture and the location of the point M where the constraints
are defined.

When a set of m points is considered, a set of kmax = 2m
half-spaces is obtained. They, in turn, define a convex H-
polyhedron (whereH stands for half-space) in R6 [2]:

Γ =

kmax⋂
k=1

H̄+
k (2)

Let us take, for example, the toleranced surface depicted
at the left-hand side in Figure 1. For illustrative purposes,
let us consider it as a 2D model: only the rotation along
the z-axis and the translations along the x-axis and the y-
axis (hereafter rz, tx and ty respectively) are taken into ac-
count. The restriction on position imposed by the tolerance

Figure 1: From a toleranced feature in the CAD reference system (left)
to its respective polytope in the deviations space (right) considering the
constraints expressed at point M.

zone on the toleranced feature can be modelled with four
half-spaces. For point q1, the half-spaces {H̄+

1sup, H̄+
1in f } are

obtained. Similarly, {H̄+
2sup, H̄+

2in f } are derived from the re-
striction of q2. These constraints are expressed at point M
(see Figure 1). In the space spanned by [rz, ty] the inter-
section of these half-spaces defines a bounded polyhedron,
i.e. a polytope (see right-hand side of Figure 1). As the tol-
erance zone does not impose limits on tx, the intersection
of the half-spaces generates an unbounded object in the 3D
space defined by [rz, tx, ty].

Similarly, the displacements of a couple of surfaces po-
tentially in contact can be modelled with a polyhedron.
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When a unilateral contact (e.g. a planar contact) is consid-
ered, just one half-space is obtained for each point on the
nominal surface, i.e. kmax = m in Eq. 2. For further details
about the definition of geometric constraints the reader can
refer to [2, 3, 4]. Similar models for geometric toleranc-
ing based on sets of constraints are presented in [5, 6]. The
main difference between these models is the type of ma-
nipulated constraints. While polytopes handle only linear
constraints, the other models handle quadratic constraints.
A review of some of these methods is presented in [7, 8] and
a comparison with the parametric approaches is presented
in [9].

In short, a polyhedron represents all the possible relative
displacements between two features of a mechanical sys-
tem. It may be a feature regarding its nominal definition
(geometric constraint), two features of two distinct parts
sharing a mating condition (contact constraint).

Figure 2: Equivalence of theH andV-representations. We can map each
half-space with a facet as none of the half-spaces is redundant.

The vertices of a polyhedron represent the extreme po-
sitions of the respective toleranced feature inside the tol-
erance zone or between two parts potentially in contact.
While the native input data used for defining polyhedra
in geometric tolerancing is the H-representation, the V-
representation (where V stands for vertex) is also required
for computing some operations. The Minkowski-Weyl the-
orem states that both definitions are equivalent [10] and this
is illustrated in Figure 2.

Fleming [11] established the correlation between cumu-
lative defect limits on parts in contact and the Minkowski
sum of sets of constraints. In other words, if several parts
are mated in a serial configuration, the stack-up of geomet-
rical deviations can be calculated by summing the geomet-
ric and contact polyhedra involved in the toleranced chain
(see Figure 3).

Similarly, the interaction of the deviations when parts
are mated in parallel, i.e. sharing multiple contacts, can
be modelled as the intersection of their respective sets of
constraints (see Figure 4). It can be verified that the func-
tional requirements of a mechanical system have been sat-
isfied by checking the inclusion of a calculated polytope
(the one representing the whole stack-up of deviations) in a
functional one. A functional polytope can be created with
the same procedure that defines a geometric specification
between any two surfaces of the mechanism.

Among the operations required in tolerance analysis with
sets of constraints, the Minkowski sum is the most expen-
sive. Several studies have been published on the subject
(not limited to tolerance analysis), but most of them focus
on 3D polytopes [13, 14, 15, 16]. The algorithms described
in [17, 18, 19] work in any n-dimensional space. How-

Figure 3: Modelling stack-up of deviations as the sum of polytopes

Figure 4: Modelling stack-up of deviations as the intersection of polytopes
[12]

ever, they do not provide the H-description of the calcu-
lated polytope, required in tolerance analysis for computing
subsequent intersections. In [20] and [21] algorithms are
presented for summing HV-polytopes (i.e. polytopes de-
fined by both theirH-representation andV-representation)
in Rn taking advantage of the dual property of polytopes.

Generally, sets of constraints derived from toleranced
features or joints (Eq. (2)) define unbounded sets in R6.
Only in the very rare case of complex surfaces the obtained
sets are bounded. This is a consequence of the degrees of
invariance of the toleranced features or the degrees of free-
dom of the joints which define unbounded displacements
[22, 23]. For this reason, the algorithms for summing poly-
topes discussed previously are not directly applicable.

In the case of Minkowski sums of polyhedra, only a few
studies have been published in a n-dimensional space, a
lot of examples in the literature mention algorithms specifi-
cally 2D or 3D which are not portable in higher dimensional
spaces. Fukuda [18] presented an algorithm to compute
Minkowski sums of Rn-polytopes, mentioning the possibil-
ity of applying the same procedure to the case of polyhedra
with at least one vertex (pointed polyhedra) by treating infi-
nite rays as points at infinity. However, most of the polyhe-
dra manipulated in tolerancing do not have vertices. Homri
et al. [3] suggested turning polyhedra into polytopes by in-
troducing virtual boundaries, called cap half-spaces. This
strategy has to cope with the multiplication of cap half-
spaces during the computation of Minkowski sums. As a
consequence, the time taken for computing caps is in gen-
eral far greater than that needed for computing facets repre-
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Figure 5: From a polytope P in the primal space (left) to its normal fan N(P) in the dual space (right)

senting real limits of bounded displacements.
In response to this situation, this paper proposes to re-

duce the complexity of the models by tracing the cap half-
spaces during tolerance simulations to limit the genera-
tion of new ones. The main algorithm presented here can
be used to sum Rn-polyhedra. The idea is to compute it
through the sum of their underlying Rn-polytopes, provided
that we can store the double description of the polytopes i.e.
the complete lists of both vertices and facets. The size of
a polytope defined as n(k + l), where k is the number of
vertices and l the number of facets, is the space required to
store the whole polytope. As an example, Rn-tetrahedrons
have (n + 1) vertices and (n + 1) facets, however Rn-cubes
have 2n facets but 2n vertices, which makes the last ones un-
fit for such an algorithm due to the exponential. For more
details on families of polytopes in the frame of Rn computa-
tional methods see [24]. The concepts briefly introduced in
[25], are here formalized and demonstrated through the use
of combinatorial representations and also extended to oper-
ations like intersections and inclusion checking which are
mandatory to perform a full tolerance analysis. The start-
ing point is the tolerance analysis method based on poly-
topes, summarized in section 2. When the initial sets of
constraints are defined, the caps are identified among the
whole set of half-spaces and labeled. Traceability is formal-
ized for intersections, sums and inclusion checking (section
3). The advantages of the proposed method are illustrated
later in section 4 by means of a real industrial application.
The strengths, limitations and future prospects of our con-
tribution are discussed in section 5.

2. Overview: sum of polyhedra as the sum of associated
polytopes (cap-based method)

For algorithmic and computational reasons the manipula-
tion of unbounded objects, i.e. polyhedra, is challenging in
computational geometry. Among the operations commonly
required in geometric tolerancing, summation is the most
critical when dealing with this kind of operands.

Thanks to its capability of dealing with HV-polytopes,
the approach for summing polytopes based on dual cones is
of interest in geometric tolerancing [20, 21]. This method
is based on the property proposed by Ziegler [10], which
states that the normal fan of a Minkowski sum is the com-
mon refinement of the normal fans of its summands. Next,
we present a summary of this method as it is the starting
point of this work.

Definition 2.1. Let Γ be a polytope or a polyhedron, h be a
vector of Rn. A face of Γ is defined with respect to a vector
h as f aceh(Γ) = {x ∈ Γ, x · h ≤ y · h,∀y ∈ Γ}. It is the
intersection of Γ with the hyperplane H̄ = {x ∈ Rn, x · h =

min(y · h),∀y ∈ Γ} whose normal is the vector h.
The dimension of a face is the dimension of its affine hull:

a 0-face is called a vertex, a 1-face is an edge and in Rn a
(n-1)-face is a facet.

The faces of a polyhedron can be identified as a simple
intersection between Γ and a hyperplane H̄ such that Γ is
on one side of H̄ i.e. Γ is not separated by H̄. Now let
us consider the normal of H̄ pointing outwards to Γ. For a
given face F, we want to study the set described by all the
normals to the hyperplanes identifying F.

Definition 2.2. Let F be a face of polyhedron Γ, the normal
cone of Γ at F is CD(F) = {h ∈ Rn, f aceh(Γ) = F}.

The rays of the dual cone CD(F) are the outward normals
to the facets containing F. Figure 5 provides an example of
such cones. Let us write as LΓ the list of all the faces of
Γ and as L j

Γ
the list of faces of dimension j only. Then

L0
Γ

= VΓ is the list of vertices of Γ, L1
Γ

its list of edges and

Ln−1
Γ

its list of facets. LΓ =
n⋃

j=0
L

j
Γ

Definition 2.3. The normal fan of Γ is the collection of all
the normal cones of Γ

N(P) =
{
CD(F),∀F ∈ LΓ

}
In the particular case of a polytope, the fan is complete

and it forms a partition of the whole space Rn.

An example of the construction of a normal fan of a 2D
polytope is presented in Figure 5.

Definition 2.4. Let PA and PB be two full-dimensional
polytopes in Rn, LA and LB their respective lists of faces
and N(PA) and N(PB) their normal fans. The common
refinement of N(PA) and N(PB) can be defined as [10]:

N(PA) ∧ N(PB) =


CD(FA) ∩CD(FB) :
CD(FA) ∈ N(PA) ∀FA ∈ LA,
CD(FB) ∈ N(PB) ∀FB ∈ LB


Definition 2.5. The Minkowski sum of two sets is defined
as:

PA ⊕ PB =
{
a + b, a ∈ PA, b ∈ PB

}
3



Theorem 2.6. The normal fan of a Minkowski sum is the
common refinement of the individual fans (proof in [10]):

N(PA ⊕ PB) = N(PA) ∧ N(PB)

An example of a Minkowski sum of two polytopes is pre-
sented in Figure 6a. As they are full-dimensional polytopes,
their normal fans CPA and CPB partition R2. In turn, their in-
tersection CPA ∩CPB is also a complete fan, which is in fact
the normal fan of the sum PA ⊕ PB.

Figure 6b presents an example of a polytope derived from
a polyhedron ΓA bounded by a couple of cap half-spaces
H̄+

C1
and H̄+

C2
. In geometric tolerancing, these half-spaces

virtually limit the unbounded displacements of the related
feature or joint. Therefore, the required number and their
placement are determined according to the joint type or the
class of the surface. The idea behind this strategy is to gen-
erate an initial set of operand polytopes belonging to R6 and
introducing the required set of cap half-spaces to the set of
geometric constraints. Moreover, Homri et al. [3] demon-
strated that the sum of two polyhedra can be calculated as
the sum of two associated polytopes, as depicted in Figure
6c.

Bounding polyhedra into polytopes avoids the manipula-
tion of vertices placed at infinity. In addition, the normal
fans of the operands are complete, and thus the calculation
of the common refinement implies only full-dimensional in-
tersections. As can be seen in Figure 6b, the unbounded
sides of the calculated polytope are limited by three cap
half-spaces when just one would suffice. We usually call
this situation the multiplication of caps. This problem is
worst when the dimension of the space increases due to the
new connection facets that are generated (this phenomenon
does not occur in 2D). The consequences of this multiplica-
tion are felt when a calculated polytope is used recursively
as an operand in a subsequent sum. This implies that the
time for computing cap facets is in general far greater than
that for computing significant facets.

3. Proposed approach: traceability of half-spaces

3.1. Defining cap half-spaces
When summing two polyhedra using the sum of two as-

sociated polytopes, we have to ensure that the main char-
acteristics of the polyhedra are preserved. This means en-
suring that the topological structure of each polyhedron Γ

is included inside that of its associated polytope P. To do
this, we employ the notion of combinatorial representation,
introduced by Fukuda in [26]. He describes an algorithm
that computes the list of all the faces LP of a polytope P
given the list of its facets Ln−1

P = {F1, ..., FM}. The com-
binatorial representation of a given face F of P, is the set
of facet indices j of Ln−1

P such that F is a subface of F j.
This notion is interesting in the sense that it can identify the
same topological objects whether they belong to a polytope
or an unbounded polyhedron such as that depicted in Figure
7. Let us note as CR(F) the combinatorial representation of
F. Based on this approach, we propose the following defi-
nition:

Definition 3.1. Let Γ be a polyhedron with the current list
of facets Ln−1

Γ
= {F1, ..., Fw}, Hcap = {H̄+

u , u = 1, ...,w′} is
a list of cap half-spaces for Γ if and only if:

• P = Γ ∩ (∩uH̄+
u ) is a polytope with the current facet

numbering for Ln−1
P , {1, ...,w} for the numbers of the

polyhedron facets and {w + 1, · · · ,w + w′} for the cap
facets

• the combinatorial representations of the faces of Γ are
also combinatorial representations of faces of P.

Finding the half-spaces ofHcap = {H̄+
u } to build the poly-

tope P should not be a problem in tolerancing analysis as
we work in the space S of small displacements. We choose
the set {H̄+

u } to make sure they include this space and do not
interfere with it and that each half-space in Hcap provides
a facet in P. We usually use a box bounding S, for more
details see [3].

3.2. Tracing caps in sums
The definition 3.1 is able to handle efficiently the addi-

tion of sets of constraints as we compute the facets of a sum
of polyhedra through a sum of polytopes. The question now
is: can we recover all the facets of Γ = Γ1 + Γ2 computing
P = P1 + P2 with P1 = Γ1∩ (∩uH̄+

u ) and P2 = Γ2∩ (∩uH̄+
u )?

3.2.1. Basic properties
The traceability of cap facets in Minkowski sums is based

on a property demonstrated by Fukuda [18]: in a sum of
polytopes, every face of the result can be decomposed into
a sum of faces from the different summands and such a de-
composition is unique. We apply this to a facet FP of the
polytope P = P1 + P2 where FP = FP1 + FP2 . Note that
although FP is a facet, FP1 and FP2 might not be. In most
cases in R6, FP, FP1 and FP2 have different dimensions. For
example, in R2, a facet FP is a 1-face and we have 3 cases:

• FP1 is a vertex (0-face) and FP2 is a facet (1-face)

• FP1 is a facet (1-face) and FP2 is a vertex (0-face)

• FP1 is a facet (1-face) and FP2 is a facet (1-face)

The last case occurs when FP1 and FP2 are parallel. We are
going to identify FP1 and FP2 with their vertices.

Let FΓ ∈ L
n−1
Γ

, then the decomposition of FΓ = FΓ1 +FΓ2

in faces of Γ1 and Γ2 is unique. Moreover FΓ1 and FΓ2

have corresponding faces in P1 and P2 such that CR(FΓ1 ) =

CR(FP1 ) and CR(FΓ2 ) = CR(FP2 ). The dual cones asso-
ciated to the faces FΓ1 and FP1 are the same, because the
rays of these cones are the outer normals of the facets that
contain FΓ1 and FP1 . So we have CD(FΓ1 ) = CD(FP1 ) and
CD(FΓ2 ) = CD(FP2 ).

If γ is the vector orthogonal to the hyperplane of FΓ then
γ = CD(FΓ1 ) ∩CD(FΓ2 ) = CD(FP1 ) ∩CD(FP2 ). This proves
that for each facet FΓ ∈ L

n−1
Γ

, there is a corresponding facet
FP in P = P1 + P2 such that FP ‖ FΓ. We can therefore
obtain all the facets of Γ through the polytope P, which
justifies the definition 3.1.

We trace the facets and vertices of the operands through
the different operations to know if they are caps or not. The
fact that we work on polytopes, i.e. bounded objects, en-
ables us to identify each face, whatever its dimension, with
its vertices. For example, in R3, each 0-face or vertex can
be identified by a single vertex, each 1-face or edge by two
vertices, each 2-face or facet by at least three vertices, and
the 3-face or polytope by the whole set of vertices.
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(a) Sum of polytopes: 1) compute the normal fans 2) intersect all the dual cones 3) build the sum in the primal space

(b) Sum of capped polyhedra

(c) Sum of polyhedra

Figure 6: Sum of polyhedra through the sum of associated polytopes
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Figure 7: CR(v) = {1, 2, 3}, CR(e) = {1, 2}, CR(e′) = {1, 2}. The com-
binatorial representations of the 2 edges are the same, whether they are in
the polytope (left) or the unbounded polyhedron (right).

Theorem 3.2. Let Γ1, Γ2 be two polyhedra and P1, P2 their
corresponding capped polytopes. Let FP be a facet of P1 ⊕

P2 and FP1 + FP2 its decomposition into faces of P1 and P2.
FP has a matching facet FΓ ∈ L

n−1
Γ1+Γ2

such that CR(FP) =

CR(FΓ) if and only if the combinatorial representation of
FP1 and FP2 does not contain any cap facet.

Proof. We have FP ∈ L
n−1
P1⊕P2

such that FP = FP1 +FP2 with
no cap facets in FP1 and FP2 combinatorial representations.
It means that ∃FΓ1 ∈ LΓ1 ,∃FΓ2 ∈ LΓ2 such that{

CR(FP1 ) = CR(FΓ1 ) and CD(FΓ1 ) = CD(FP1 )
CR(FP2 ) = CR(FΓ2 ) and CD(FΓ2 ) = CD(FP2 )

with FP1 + FP2 ∈ L
n−1
P1⊕P2

. So if γ is the normal to the
hyperplane supporting FP1 +FP2 , γ = CD(FP1 )∩CD(FP2 ) =

CD(FΓ1 ) ∩ CD(FΓ2 ). As a consequence, FΓ1 + FΓ2 ∈ L
n−1
Γ1⊕Γ2

and FΓ1 + FΓ2 is the matching facet of FP = FP1 + FP2 .
The reciprocal is straightforward: let us assume FP has a

matching facet in Γ1 + Γ2, as a consequence ∃FΓ ∈ L
n−1
Γ1+Γ2

such that FP ‖ FΓ. Let us decompose the last facet, ∃FΓ1 ∈

LΓ1 ,∃FΓ2 ∈ LΓ2 such that FΓ = FΓ1 + FΓ2 . From definition
3.1, ∃FP1 ∈ LP1 ,∃FP2 ∈ LP2 such that{

CR(FP1 ) = CR(FΓ1 ) and CD(FΓ1 ) = CD(FP1 )
CR(FP2 ) = CR(FΓ2 ) and CD(FΓ2 ) = CD(FP2 )

If γ is the normal to the hyperplane supporting FΓ we
knew that γ = CD(FΓ1 ) ∩ CD(FΓ2 ), now we can write γ =

CD(FP1 ) ∩ CD(FP2 ). So FP = FP1 + FP2 and no half-space
in the combinatorial representation of FP1 or FP2 is capped
as CR(FP1 ) = CR(FΓ1 ) and CR(FP2 ) = CR(FΓ2 ).

The theorem 3.2 can explain why the number of cap
facets soars when we sum polytopes: when FP = FP1 +FP2 ,
having only one cap facet in the combinatorial representa-
tion of FP1 or FP2 is enough to transfer this property to the
sum FP. Moreover, we can use the previous theorem to
trace the attributes attached to the topology of the operands.
Then, after a Minkowski sum of polytopes, the facets still
representing real limits in the associated tolerancing prob-
lem can be distinguished. Similarly, the set of facets gener-
ated from cap half-spaces can be identified.

In response to this, we propose to ’clean’ the polytope
resulting from a sum of its cap facets. This can be done by
removing from the whole list of half-spaces those labeled
as caps and then bounding it again. After this procedure, a
minimum set of half-spaces is reestablished.

3.2.2. The algorithm

With the help of theorem 3.2, we can build FP1 and FP2

using the relation FP = FP1 +FP2 . We first want to compute
V(P1) andV(P2), the lists of vertices identifying both FP1

and FP2 . For all of these vertices, we then have the list
of their supporting half-spaces. From these we decide the
combinatorial representation of FP1 and FP2 . The final step
checks whether we can find at least one cap facet in the
combinatorial representation of FP1 or FP2 . If this is the
case, FP is marked as a cap facet, if not, FP can be matched
directly with a facet of Γ. This process is detailed in Figure
8: from the facet F we get {c1, c2, c3, c4}, then {a1, a2} and
{b1, b2} to check if one half-space H̄+

i i = 1, .., 4 is capped.

Let Pi be polytopes ∀i, instead of computing directly∑
i Pi causing a strong increment of the number of cap half-

spaces we propose to follow the scheme:

• Compute P1 + P2

• Remove the cap half-spaces from the last sum, inter-
sect the remaining half-spaces to get Γ1,2

• Bound Γ1,2 with a new bounding box to get the poly-
tope P1,2

• Compute P1,2 + P3

• Remove the cap half-spaces from the last sum, inter-
sect the remaining half-spaces to get Γ1,2,3

• Bound Γ1,2,3 with a new bounding box to get the poly-
tope P1,2,3

• Compute P1,2,3 + P4

• ...
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Figure 8: Tracing the facets of a sum

Algorithm 1 Cap facets identification in a sum

Require: V(P1),V(P2),V(P),Ln−1
P1
,Ln−1

P2
,Ln−1

P
Require: The list of cap half-spaces in P1 and P2
Ensure: The list of cap half-spaces in P

1: for each FP ∈ L
n−1
P do

2: // Compute FP1 and FP2 such that FP = FP1 + FP2

3: // GetV(FP1 ) the vertices of FP1

4: V(FP1 ) =

5: {a ∈ V(P1)/∃b ∈ V(P2)⇒ a + b ∈ V(FP)}
6: // GetV(FP2 ) the vertices of FP2

7: V(FP2 ) =

8: {b ∈ V(P2)/∃a ∈ V(P1)⇒ b + a ∈ V(FP)}
9: // For each vertex collect its half-space numbers

10: for each a ∈ V(FP1 ) do
11: GetHa = {u, a ∈ H̄u}

12: end for
13: // Get the combinatorial representation of FP1

14: Compute CR(FP1 ) = {∩Ha,∀a ∈ V(FP1 )}
15: if No cap half-space in CR(FP1 ) then
16: // For each vertex collect its half-space numbers
17: for each b ∈ V(FP2 ) do
18: GetHb = {v, b ∈ H̄v}

19: end for
20: // Get the combinatorial representation of FP2

21: Compute CR(FP2 ) = {∩Hb,∀b ∈ V(FP2 )}
22: if No cap half-space in CR(FP2 ) then
23: FP is not a cap half-space
24: else
25: FP is a cap half-space
26: end if
27: else
28: FP is a cap half-space
29: end if
30: end for

3.3. Tracing caps in intersections
Even if intersections are not the most computationally

expensive operations in geometric tolerancing with poly-
topes, they are usually present in the simulations. Hence,
the recognition of cap facets during intersections allows us
to maintain the traceability of the attributes throughout the
entire simulation.

The intersection of two polytopes can be calculated by
combining the list of half-spaces of both operands and re-
moving the redundant ones. A half-space labeled as cap
before an intersection just keeps its attribute if it is not re-
moved because of redundancy. From the algorithmic point
of view, this is not a complicated task. It simply involves
implementing label management.

3.4. Tracing caps in inclusion checking
The objective of a tolerance analysis is to determine

whether a functional condition is satisfied. In the method
based on polytopes, this can be done by checking the in-
clusion of the polytope representing the whole stack-up of
deviations in the functional polytope [4].

When the cap half-spaces are not placed far enough from
the origin (even if it is not advisable [3]), the inclusion of a
calculated polytope in a functional one can be influenced in
some instances. This situation could lead to the misleading
conclusion that the design requirements are satisfied.

In order to avoid this, the inclusion of the calculated
polytope must not depend on cap half-spaces. If this is the
case, then the functional condition cannot be guaranteed.
This can be done by tracing the labels of the half-spaces
until the final operation, as described previously.

4. Industrial application

In order to show the advantages of cap traceability in
geometric tolerancing, we solved an industrial application.
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The same tolerance chain was simulated with and without
the control of cap facets to show the gain in computational
time and the reduction in complexity of the manipulated
models.

The mechanism we studied is a sub-assembly of a cut-
ting machine by Lectra c© (https://www.lectra.com/).
More specifically, it is the sharpening system of the ma-
chine. Control of the geometric variations for this system
is important as the sharpening of the cutting blade has to be
sufficiently precise.

For the simulation we considered only three parts: the
supporting arm, represented by the number 1,0, is consid-
ered as the same part as the pin that blocks the rotation of
the tension arm. The assembly of the tension arm with its
axis is considered as a single part (numbered 2,0). The bear-
ings are modelled as spherical joints, with clearance the tol-
erance provided by the manufacturer cb. The last part is the
pulley 3,0.

The functional condition (FC) requires control of the rel-
ative position of the pulley axis with respect to the tension
arm axis (see FC in Figure 9). Using polytopes, we simu-
lated the tolerance zones defined by the ISO specifications
of the individual parts to calculate the maximal deviations
of the assembly. For parts 1,0 and 2,0, a position specifica-
tion was considered (Figures 10a and 10b respectively). A
coaxiality specification was considered for part 3,0 (Figure
10c).

The topological model of the mechanism is shown in the
contact graph in Figure 11. A node designated by two inte-
gers α, β represents the nominal model of a part when β = 0,
and the substitute surface when β , 0. Each edge of the
graph represents some deviations. These may be geometric
deviations, in the case of inner edges, or deviations due to
contacts, in the case of edges connecting two nodes from
different parts. These deviations can be represented by ge-
ometric and contact polytopes respectively [3].

According to the assembly topology, the set of operations
required to simulate the relative position of the surfaces in-
volved by the functional condition can be determined:

P1,1/3,2 =P1,1/1,0 ⊕
(
(P1,0/1,2 ⊕ P1,2/2,2 ⊕ P2,2/2,0)∩

(P1,0/1,3 ⊕ P1,3/2,3 ⊕ P2,3/2,0)
)
⊕ P2,0/3,2 (3)

where P f /g is the polytope describing the relative posi-
tion of surface f with respect to surface g (according to the
numbering in Figure 11).

In Eq. (3) some polytopes are defined over the same sur-
face and consequently they are homothetic. This is the case
for operands P2,0/2,1, P2,1/3,1 and P3,1/3,0. The sum of homo-
thetic polyhedra can be performed directly by homothetic
transformations and no numerical computation is needed.
Datum surfaces are considered to be equal to their respec-
tive nominal surfaces, then their derived polytopes are neu-
tral elements in a Minkowski sum (P1,0/1,3, P1,3/2,3, P2,3/2,0
and P3,0/3,2). Finally, Eq. (3) can be simplified as:

P1,1/3,2 = P1,1/1,0 ⊕
(
P1,0/2,0−a ∩ P1,0/2,0−b

)
⊕ P2,0/3,2 (4)

with:
P1,0/2,0−a = P1,0/1,2 ⊕ P1,2/2,2 ⊕ P2,2/2,0

P1,0/2,0−b = P1,0/1,3 ⊕ P1,3/2,3 ⊕ P2,3/2,0

Figure 9: Case study: sharpening system

Operand polytopes were created according to the toler-
ances and lengths values presented in table 2. As shown
in table 1, a couple of geometric half-spaces is created per
each discretization point (DP). The final objective of the
simulation is to check if P1,1/3,2 ⊆? PFC , where PFC is the
polytope representing the functional condition.

4.1. Simulation with 6D polytopes without caps control

To perform the operations declared in Eq. (4), the
operands must be bounded and belong to the same space,
i.e. R6. To do this, some cap half-spaces were introduced
into the operands. Polytopes P1,1/1,0 and P2,0/3,2 (from CAD
cylindrical surfaces oriented along the z-axis) required two
pairs of cap facets to virtually limit rz and tz. Two pairs of
cap half-spaces were introduced to P1,0/2,0−b (derived from
a cylindrical surface oriented along the x-axis). As the con-
tact between surfaces 1,2 and 2,2 was modelled as a ball-
and-plane pair, five pairs of caps were required to bound
the set. As shown in Table 1, the number of cap half-spaces
was set at the strict minimum: two caps for each degree of
freedom (DOF).

Figure 12 shows a 3D representation of the operands of
the simulation. It is worth mentioning that some of the
figures showing 3D polytopes in this paper are just partial
representations since they were originally 6D objects. A
projection into a three-dimensional subspace was therefore

8



Table 1: Details of the operands in R6 (HS: half-space)

Operand polytope Feature type Second member bk DOF Num Cap HS DP Num non-cap HS Num vertices
P1,1/1,0 Cylindrical t1,1/2 2 4 8 16 256
P1,0/2,0−a Cylindrical (d1,3 + d2,3)/2 2 4 8 16 256
P1,0/2,0−b Ball-and-plane (d1,2 + d2,2)/2 5 10 1 2 64
P2,0/3,2 Cylindrical (t2,1 + cb + t3,2)/2 2 4 8 16 256

(a) ISO specifications for part 1,0

(b) ISO specifications for part 2,0

(c) ISO specifications for part 3,0

Figure 10: Features and contacts considered in the simulation

carried out. For this case, the operands were calculated at
the centroid of surface 3,2 and were then projected to the
subspace spanned by [rx, ry, rz] for visualization purposes.

The actual approach for performing the operations sug-
gests directly intersecting and summing the initial set of
operands. Table 3 summarizes the results of these oper-
ations. The computations were performed with the open
source library, politopix: http://i2m.u-bordeaux.fr/

politopix.html. Due to the propagation of the DOFs
we can observe a large increase in the number of cap half-
spaces after each sum. Having a pair of caps for each DOF
is no longer guaranteed. This problem worsens when the

Figure 11: Surfaces numbering and contact graph

Table 2: Tolerances, clearances and lengths used for the simulation

Tolerance Magnitude [mm]
t1,1 0.2
d1,2 0.2
d1,3 0.2
d2,3 0.2
d2,2 0.2
t2,1 0.2
cb 0.2
t3,2 0.2

Length Magnitude [mm]
L11 27
L12 5.5
L21 21.6
L32 21.6
L23 16.5

9



Figure 12: 3D representation of the 6D operands. Cap faces are shown in
red.

calculated polytope, highly ‘contaminated’ with caps, is
used again as an operand for a subsequent sum. This is ac-
tually the scenario of the final operation of the simulation.
During this operation, 99.93% of the calculated facets come
from cap half-spaces, and they therefore have no meaning
in the related tolerancing problem.

4.2. Simulation with 6D polytopes with caps control
With the strategy proposed in this article, our aim is to

keep the number of cap half-spaces of the operands to a
minimum. After each sum we take the calculated polytope
and filter meaningful half-spaces to restore a minimum set
of caps. This implies a reduction in the complexity of the
operands which is translated afterwards into a reduction in
computational time when subsequent operations are calcu-
lated. This situation is illustrated in Table 4, summarizing
the results of the simulation, following the proposed strat-
egy. Although the first sum took approximately twice the
time to compute, the complexity of the polytope we ob-
tained was notably reduced. The increase in calculation
time is due to the filtering process launched after the reg-
ular summation. The advantages of this can be clearly seen
in the next operation: the final sum took just 3% of the
computational time required for the first simulation. We
conclude from this that the rest of the computational time
in the first simulation was spent in calculating cap faces.
This phenomenon is shown in Figure 13, where the final
polytope calculated without controlling cap facets presents

a complex set of faces to bound the rz-axis, while only two
appear in the calculated polytope when the trace and the
control of caps was performed. It is worth mentioning that
no information was lost by applying the new method. We
are simply avoiding the calculation of meaningless infor-
mation.

Figure 13: Calculated polytopes: without caps control at the left and with
caps control at the right. Cap facets shown in red

4.3. Validation of results

The simulation described above was validated using the
commercial tool MECAmaster [27]. The same CAD model
was imported into the GUI and contacts between parts
were created following the same assumptions. The same
ISO specifications presented in Figure 10 were considered.
Figure 14 shows the kinematic constraints that were cre-
ated (magenta marks) and the functional condition (blue ar-
rows).

The results of the MECAmaster simulation are repre-
sented as two pairs of points superimposed on the polytope
in Figure 15. One simulation was carried out to obtain the
deviations in ry and another was required to obtain the devi-
ations in rx. In fact, each simulation provides just a couple
of values (a maximal and a minimal deviation) related to
just one extreme configuration of the mechanism. There-
fore, several simulations are usually required to study the
behavior of the assembly under different extreme positions.
In contrast, just one simulation with a set of constraints con-
siders all possible configurations simultaneously.

As shown in Figure 15, the difference in the values of ry

when rx = 0 between the two methods is 10−6 rad, which is
insignificant in the small displacements field. We attribute
this difference to numerical approximations.
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Table 3: Simulation of tolerances for the sharpening system without caps control (HS: half-space)

Operand polytope DOF Num Cap HS Num non-cap HS Num vertices Time [s]
P1,0/2,0−a ∩ P1,0/2,0−b 1 2 18 256 0.01
P1,1/1,0 ⊕

(
P1,0/2,0−a ∩ P1,0/2,0−b

)
3 2928 116 10728 34

P1,1/1,0 ⊕
(
P1,0/2,0−a ∩ P1,0/2,0−b

)
⊕ P2,0/3,2 4 23932 16 60944 1641

Table 4: Simulation of tolerances for the sharpening system tracing and controlling caps (HS: half-space)

Operand polytope DOF Num Cap HS Num non-cap HS Num vertices Time [s]
P1,0/2,0−a ∩ P1,0/2,0−b 1 2 18 256 0.02
P1,1/1,0 ⊕

(
P1,0/2,0−a ∩ P1,0/2,0−b

)
3 6 116 1152 64

P1,1/1,0 ⊕
(
P1,0/2,0−a ∩ P1,0/2,0−b

)
⊕ P2,0/3,2 4 8 16 256 57

Figure 14: Kinematic model of the tolerance simulation with MECAmas-
ter

Figure 15: Comparison of the results from PolitoCAT and MECAmaster

5. Discussion and future work

We found that tracing the cap half-spaces along the dif-
ferent operations in geometric tolerancing with polytopes is
able to reduce the complexity of the calculated sets during
a simulation. This reduction leads to a decrease in com-
putational time. This was demonstrated by means of an
industrial application.

Cap half-spaces are initially required to bound the poly-
hedra to generate bounded objects, i.e. polytopes. The fact
of having unbounded sets is due to the degrees of freedom
of joints or the degrees of invariance of toleranced features.
In order to be able to distinguish the cap half-spaces from
those representing real limits in the tolerancing problem,
traceability is the key concept. It has to be done throughout
all the operations: sums, intersections, inclusion checking,
and is based on the combinatorial properties of the poly-
topes demonstrated in theorem 3.2. The main contribu-
tion of the present work is the limitation of the impact of
the cap facets during the computations but the principle of
traceability, which identifies the contributors among a list of
candidates, is general enough to be applied to other kinds
of scientific problems whether they are related or not to tol-
erancing.

The strategy of labeling and tracing half-spaces is an im-
portant step towards tolerance synthesis. Future work is
therefore required to develop a strategy for linking the topo-
logical elements of a calculated polytope with our input
data: the initial set of ISO geometric specifications. With
this information, the most influential features in the toler-
ance chain can be determined. This enables tolerances to
be allocated in an optimal way, in order to reduce produc-
tion costs.

The ideal scenario is when no cap half-spaces are used
at all in the computations. This implies that the opera-
tions have to be performed directly with unbounded sets,
i.e. polyhedra. However, the Minkowski sum of unbounded
objects is still a challenging matter.
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