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We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an

active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic

array of thin electrodes connected to inductive shunts. The application of periodic electrical

boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC

plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the

plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a

Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant

metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes)

with an electrical resonant mode whose dispersion can be effectively described through an

equivalent transmission line model. Published by AIP Publishing.
https://doi.org/10.1063/1.5016496

I. INTRODUCTION

During the last few years, phononic crystals (PCs) have

demonstrated their great ability to manipulate elastic waves.

Selective filtering,1 beamforming,2 super resolution imag-

ing,3 and acoustic resonators4 are, among many others, dif-

ferent applications that have emerged. Phononic crystals

derive their properties from the periodic arrangement of their

constitutive materials. This periodicity has to be of the order

of the wavelength of the propagating waves, which explains

why most of the experiments and practical applications have

been developed for ultrasonic waves for which the wave-

length remains small. Recently, the willingness to reduce the

size and weight of devices, for instance, for the audible

sound mitigation purpose or for electronic applications

where miniaturization is needed, has led to a strong interest

in locally resonant metamaterials (MMs) that enable the con-

trol of wave propagation at deep sub-wavelength scale. One

way to achieve a locally resonant material is to use the high

sound velocity contrast between the host matrix material and

embedded inclusions. Using metallic spheres coated with sil-

icone in an epoxy matrix, Liu et al. developed a sonic MM

with bandgap caused by negative effective elastic constants

with a lattice constant 300 times smaller than the wavelength

in epoxy.5 Brunet et al.6 exploited Mie resonances of soft

porous silicone rubber particles together with their surround-

ing fluid matrix to obtain a metafluid, exhibiting simulta-

neously negative effective mass density and bulk modulus.

However, this MM is difficult to use in practice for the reali-

zation of a super-resolution lens due to strong absorption

inside the porous inclusions.

The use of active materials such as piezoelectric materi-

als is another way to obtain local resonances within a MM.

Such mechanisms that couple mechanical vibrations to elec-

trical passive or active circuits have been extensively studied

in the low frequency range for their ability in vibration

damping and energy harvesting.7–13 In addition, the insertion

of piezoelectric materials in PCs offers a frequency agility

which can be easily controlled electrically and does not

require any geometry modification nor phase transition of

constitutive materials.8–10,13–15 For instance, a Bragg gap

can be shifted by switching from the open to the short circuit

the electrical boundary condition (EBC) of piezoelectric

inclusions in a PC.16 Electrical resonances can be easily

induced in a piezoelectric element by connecting an induc-

tive shunt. Several studies aim at the attenuation of structure

vibrations by sticking piezoelectric elements linked to an

independent inductive circuit. It was demonstrated theoreti-

cally and experimentally that these structures exhibit hybrid-

ization bandgaps (HBGs) at the electrical resonance

frequencies.17–21 This technique gives the opportunity to

tune the stiffness of the substrate as reported by Bergamini

et al.22 and to modify the wave dispersion in the medium by

tailoring the external electrical circuit. In their work, piezo-

electric discs are inserted between an aluminium substrate,

where guided waves propagate, and cylindrical stubs

arranged periodically on the surface. The implementation of

this kind of EBC is simple and can also be efficient at high

frequencies by implementing active circuits. However, these

resonators are isolated between each other and have inher-

ently narrow frequency band behavior, thus limiting the cou-

pling with the mechanical modes supported by the

waveguide. To overcome this limitation, some authors have

proposed a hybrid electric/mechanical medium:23–27 the spa-

tial periodicity of the mechanical part is settled by the

arrangement of the piezoelectric elements, whereas the elec-

trical part is composed of the lumped transmission line

achieved by combining inductive circuits with resistors and

the piezoelectric elements. This enables the propagation of
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energy in both the electrical line and the plate. Finally, the

interaction between the electrical and the mechanical modes

induces a locally resonance bandgap and allows us to

improve considerably the control performances of this class

of electro-mechanical structures.28,29

In this paper, we consider an electro-mechanical pho-

nonic crystal made of a homogeneous piezoelectric plate

covered by a 1D periodic array of thin electrodes.30 The con-

trol of the propagating elastic guided wave is achieved by

connecting inductive loads to the electrodes array. The appli-

cation of these EBCs at the piezoelectric plate generates

local resonances periodically distributed along the wave-

guide, giving rise to a dispersive electrical mode. A hybridi-

zation bandgap (HBG) originating from the coupling of this

dispersive electrical mode with the guided Lamb waves

inside the piezoelectric metamaterial plate is investigated

numerically and experimentally.

II. STRUCTURE PRESENTATION

We shall be concerned, in this study, with a piezoelec-

tric homogeneous plate polarized across its thickness h and

covered with a periodic array of conductive electrodes. In

the calculations, the electrodes are modeled as perfectly con-

ductive surfaces whose thickness will be neglected and the

mechanical effect due to added mass. For the experiments, a

PZT (Pz2631) finite square plate (80 mm� 80 mm) with

thickness h ¼ 2:2 mm was used. Two silver electrodes on

both sides were deposited by screen-printing on the full area

with a thickness of around 15 lm. Forty periodic rectangular

electrodes on each face were designed using a dicing saw to

remove the conductive material as schematically illustrated

in Fig. 1(a). Particular attention was paid to deliver face-to-

face electrodes on each side of the plate during this machin-

ing step. The width of each electrode is measured to be

a ¼ 1:7 mm, and the spacing between two neighboring elec-

trodes is b ¼ 0:3 mm. We will adopt the same values for the

numerical calculations as well.

The inherent electro-mechanical coupling of the piezo-

electric plate allows us to determine the effective elastic

properties of the plate by changing the electric boundary

conditions. By this way, it is possible to control the propaga-

tion of the elastic guided waves in the plate. In choosing dif-

ferent EBCs in adjacent electrodes, one can expand the unit

cell length from K ¼ aþ b to K0 ¼ 2K [see Figs. 1(a), 1(b),

1(c), and 1(d)]. Different electrical boundary conditions will

be considered, particularly the case of a connected inductor

load on the electrodes.

III. RESULTS AND DISCUSSION

A. Band structure calculations

To begin with, we perform 2D finite element calcula-

tions (we use the commercial software COMSOL

Multiphysics) to obtain the frequency band structure of the

PC plate described previously. An infinite plate (xy-plane

with the electrodes oriented along the y-axis) is considered,

and the Bloch-Floquet theorem is applied to compute the

wave dispersion. With the plate being piezoelectric, enabling

coupling of mechanical and electrical fields, periodic bound-

ary conditions have to be applied for both the displacements

uðxþ K; kxÞ ¼ uðx; kxÞe�ikxK and the electrical potentials

Vðxþ K; kxÞ ¼ Vðx; kxÞe�ikxK at the unit cell boundaries (see

Fig. 1). In these expressions, kx is the wavenumber along the

x direction of propagation.

The parameters used in the calculations can be found in

Ref. 31. An eigenvalue study is performed to evaluate the

band structure of Lamb-like modes along the highest sym-

metry C� X line of the Brillouin zone (BZ). Frequencies of

the propagating waves are then deduced for each real value

of the wavevector kx lying in the half first BZ ½0; p=K�.
First, the dispersion curves are computed in the case

where all the electrodes have a floating potential (FP) as

illustrated in Fig. 1(b). The band structure presented in Fig.

2(a) shows the folded dispersion curves of the first three

guided Lamb modes A0, S0, and A1. A and S denote waves

with antisymmetric motion and symmetric motion, respec-

tively, with respect to the middle plane of the plate.32 From a

practical point of view, the excitation of A and S waves

therefore depends on the symmetry of the electrical potential

FIG. 1. (a) Schematic representation of the piezoelectric phononic plate of

thickness h with a set of periodic electrode segments (electrode width a ¼
1:7 mm and separation distance b ¼ 0:3 mm) on both faces. Different EBC

configurations defining the representative unit cell of the periodic structure

(lattice constant K): (b) electrodes in floating potential (K ¼ 2 mm), (c)

inductance load L connected to each pair of electrodes (K ¼ 2 mm), and (d)

electrodes having alternatively a FP and an inductance load L (K0 ¼ 4 mm).

Bloch-Floquet conditions (BFCs) are applied at the boundaries denoted by

dash-dotted lines.
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applied on the plate. In addition, some mode conversions

could exist between symmetric and asymmetric modes if

asymmetric (mechanical or electrical) boundary conditions

with respect to the median plane of the plate are applied on

the plate. Several bandgaps (BGs) are also observed. These

bandgaps (BGs) originate from interference mechanisms

involving one mode (at the edge of the BZ) or two different

modes (inside the BZ). The green-shaded areas indicate the

BG involving the A0 modes, at about 450 kHz, or S0 modes

at about 660 kHz. These gaps are achieved by the periodicity

of the electrical boundary conditions, leading to periodic var-

iations of the effective elastic properties of the piezoelectric

medium.30 The other two, orange-shaded, areas in this plot

indicate a coupling between two different Lamb modes,

leading to the opening of partial bandgaps. The coupled

modes are counter-propagating, and as described by Mace

and Manconi, this leads to a locking of the dispersion

curves.33 The strength of these couplings depends on the

EBC symmetry of the unit cell with respect to the middle

plane of the plate. Here, the symmetry of the EBCs favors

the interaction between modes having the same symmetry

(see the coupling between A0 and A1 at about 690 kHz).

Next, an inductance load L is connected between the

two electrodes of the unit cell [Fig. 1(c)]. The shunt circuit is

implemented using the Global ODEs and DAEs interface of

COMSOL Multiphysics. A charge q is defined on the top

electrode of the unit cell, while the bottom electrode is

grounded. The charge q is linked to the voltage Up between

the electrodes following the Kirchhoff voltage law

Up � Lx2q ¼ 0; (1)

with x the angular frequency. Finally, an eigenvalue analysis

is performed to evaluate the band structure. We compute the

dispersion curves for two different values of the inductor

(L1 ¼ 470 lH; L2 ¼ 150 lH). The resulting band structures

are plotted in Fig. 2(b). The Bragg bandgaps of the S0 and A0

modes at the edge of the Brillouin zone are still open (green

areas). In this case, the asymmetry of the EBCs driven by the

grounded electrodes favors the coupling between modes

FIG. 2. Dispersion curves of the infinite phononic piezoelectric plate (a) with electrodes having floating potential (unit cell length K ¼ 2 mm), (b) with electro-

des connected to inductors L1 ¼ 470 lH (unit cell length K ¼ 2 mm), (c) with electrodes connected to inductors L2 ¼ 150 lH (unit cell length K ¼ 2 mm), and

(d) with electrodes connected alternatively to inductors L1 ¼ 470 lH and having a FP (unit cell length K0 ¼ 4 mm). (e) The same as (b) but without piezoelec-

tric effects. The green, orange, and gray areas indicate the Bragg BGs at the edge of the Brillouin zone, avoided-crossing BGs in the middle of the Brillouin

zone, and locally resonant BGs, respectively. The electrical mode (Elec) is represented in red and is generated between the frequencies fr and fl.
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with different symmetries. It is clear from Fig. 2(b) that the

opening of the gap resulting from the coupling of A0 and S0

modes and S0 and A1 modes has increased to reach relative

widths of 1.6% and 2.5%, respectively, while that of A0 and

A1 coupling has decreased to 1.5%.

In addition to these slight bandgap modifications, a sup-

plementary dispersion curve is observed. In the first case

(L1 ¼ 470 lH), the supplementary mode is present between

128 kHz and 286 kHz [see Fig. 2(b), red lines] and is strongly

coupled to the S0 mode, leading to the opening of an

avoided-crossing gap between 188 kHz and 264 kHz (indi-

cated with the gray area). The coupling with the fundamental

A0 mode is weaker, but a small bandgap between 156 kHz

and 170 kHz is also observed (gray area). As it is well-

known, a piezoelectric plate electrically behaves like a

capacitor C; by adding an inductance load L, we obtain an

electrical resonant circuit LC. Contrary to previous studied

metamaterials,26 the supplementary branch, originating from

the presence of electrical resonances LC, spreads over a

large frequency range and is not only localized around the

typical resonance frequency f0 ¼ 1=2p
ffiffiffiffiffiffi
LC
p

. The term

“Electric mode” used in Fig. 2 refers to the physical phenom-

enon underlying the presence of this supplementary mode.

As already described by Bergamini et al.,26 the associated

electric field across the thickness of the plate is uniform con-

trarily to the electric field induced by the propagation of the

Lamb modes in the piezoelectric plate. This distinctive fea-

ture is used to identify the part of the dispersion curves asso-

ciated with the electric mode (see the red line in Fig. 2).

It is worth noting that the bandgap originating from the

coupling between the electrical resonance and the S0 mode

opens up at f ¼ 200 kHz corresponding to a wavelength

k � 10K. The mechanism leading to this forbidden band is

no more linked to the periodicity of the PC but only to the

hybridization between the electrical resonance and the

guided Lamb mode. The former can be easily tuned by

changing the value of the inductor, as confirmed in Fig. 2(c).

For L2 ¼ 150 lH, the electrical mode is now shifted toward

higher frequencies (between 225 kHz and 493 kHz), thus

inducing a HBG with the S0 mode at also higher frequencies.

Moreover, a supplementary HBG opens up involving the A1

mode. Of course, an increase in the inductor value will shift

the HBG toward the lower frequency range.

We close this section by the case of an expanded unit

cell including two adjacent pairs of electrodes (K0 ¼ 4 mm)

in order to study how this affects the electrical mode. We

compute the band structure of a piezoelectric PC plate hav-

ing alternatively the first pair of electrodes in FP and the sec-

ond one connected to an inductor L ¼ 470 lH [see Fig. 1(c)].

The results shown in Fig. 2(d) point out that even if the

Bragg bandgaps are shifted toward lower frequencies (green

areas), the electrical mode and the relating HBGs are still

generated at the same frequency position as for the case of

the simplest unit cell (K ¼ 2 mm).

B. Electrical line model

In order to further investigate the dispersive electrical

mode, the dispersion curves of the PC under study are

computed numerically by canceling the piezoelectric cou-

pling coefficients. Electrical and mechanical modes are now

decoupled, and all frequency bandgaps are closed as shown

in Fig. 2(e). Indeed, the periodicity in the PC is only intro-

duced via the electric boundary conditions, and if the piezo-

electric coupling is suppressed, then mechanical waves

propagate in a homogeneous plate without any discontinuity

in the x direction. The folding of the dispersion curves is due

to the fact that the numerical computation is performed on a

unit cell of length K. The dispersion of the electrical mode

still exists, and this mode covers a frequency range which

extends from fr to fl. In Fig. 2(b), the supplementary electrical

mode is coupled with the classical Lamb type modes, leading

to the opening of a gap in the band structure. Of course, this

coupling affects the dispersion of both the electrical and

mechanical modes involved, and therefore, considering pie-

zoelectric effects, the cut-off frequencies fr and fl are shifted.

The proposed transmission line model does not take into

account the mode coupling and is therefore related to the

case without the piezoelectric effect [Fig. 2(e)]. This disper-

sive cos-like resonance band can be reproduced by making

use of a simple transmission line model, describing effec-

tively the behavior of the PC, as shown in Fig. 3. Each piezo-

electric unit cell is represented by a capacitor C connected in

parallel to an inductor L. The electrical coupling between

two adjacent electrodes is modeled by a shunt capacitor C0.
The potential difference between the cell N and its near-

est neighbors ðN � 1Þ and ðN þ 1Þ can be written as follows:

1

jC0x
Ie ¼ VN�1 � VN; (2a)

1

jC0x
Is ¼ VN � VNþ1; (2b)

where Ie et Is are the inward and outward current, respec-

tively, at the cell N,

Ip ¼ Ie � Is: (3)

In the cell N, the ratio of the voltage VN and the current

Ip is given by the characteristic impedance Zeq,

VN

Ip
¼ Zeq; (4)

with

Zeq ¼
1

jLx
þ jCx

� ��1

: (5)

FIG. 3. Equivalent electrical diagram of the transmission line. The unit cell

N is composed of capacitors C and C0 and inductor L.
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Electrical potentials must satisfy the Bloch-Floquet

conditions

VN�1 ¼ VNejkK; (6a)

VNþ1 ¼ VNe�jkK: (6b)

Substituting Eq. (6) into Eq. (2), we find the dispersion

relation for the electrical mode to be

kK
2p
¼ 1

p
arcsin

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC0x2
� C

C0

r !
: (7)

The study of the two extreme cases corresponding to

short (kK=2p ¼ 1=2; k ¼ 2p=k ¼ 2K) and long (kK=2p ¼ 0;
k� K) wavelengths can shed light to the dispersion of the

electrical mode described by Eq. (7). First [Fig. 4(a)], the elec-

trical charges of two adjacent electrodes are equal, and the

capacitor C0 can thus be neglected. The dispersion relation

gives the cut-off frequency fl,

fl ¼
1

2p
ffiffiffiffiffiffi
LC
p ¼ f0: (8)

As displayed in Fig. 4(a), the electrical mode is only

fixed by the capacitance of the piezoelectric element C corre-

sponding to the capacitor between the two electrodes of the

unit cell and the inductor L. The frequency of the line corre-

sponds to the resonance frequency of the LC circuit.

When the wavenumber is close to p=K, at the limit of

the BZ, k ¼ 2K, and there is a succession of positive and

negative charges on electrodes as shown in Fig. 4(b). The

effect of the capacitor C0 becomes important, and the cut-off

frequency of the mode is

fr ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lð4C0 þ CÞ

s
¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4C0=Cþ 1

s
: (9)

From the cut-off frequencies fr ¼ 161:8 kHz and fl

¼ 332:4 kHz in Fig. 2(e), the values of the capacitor C0

¼ 0:39 nF and C ¼ 0:48 nF are deduced, and the dispersion

relation (7) provides the real and imaginary parts of the

wavenumber plotted in Fig. 5.

The electrical mode originates from the electric reso-

nance of the interaction between the capacitor C between

two face-to-face electrodes and the inductors, but the disper-

sion relation describing this mode takes into account the cou-

pling between adjacent electrodes, effectively described by

the capacitor C0. Moreover, the variation of C0 with the sepa-

ration distance between two electrodes b presented in Fig. 6

points out that, as expected, the smaller the spacing between

adjacent electrodes, the stronger the C0 (the interaction

between unit cells becomes more important), and inversely,

C0 becomes negligible for long separation distances. The

results shown in Fig. 6 are obtained by computing the

numerical dispersion curves of the PC structures without pie-

zoelectric coupling [as in Fig. 2(e)], with the width of each

electrode kept at a ¼ 1:7 mm, for different values of the

parameter b ranging from 0:1 mm to 50 mm. From each dis-

persion curve, we evaluate the edge frequencies fr and fl that

we use in Eqs. (8) and (9) to obtain C0.

C. Experimental results

Scanning Laser Doppler Vibrometer measurements are

performed in order to validate the numerically predicted S0

HBG. A waveform generator is used to deliver a 10V electri-

cal tune burst (5 periods) centered at the frequency of

200 kHz. The electrical signal is applied to the first couple of

electrodes located at the edge of the plate. Due to the sym-

metric excitation, we expect to generate mainly symmetric

FIG. 4. Direction of the electrical field within the phononic piezoelectric

plate in the cases of (a) k� K and (b) k ¼ 2K.

FIG. 5. Dispersion curves computed from the line transmission model. The

frequency is represented as a function of (a) the real and (b) the imaginary

part of the wavenumber.

FIG. 6. Variation of capacitor C0 as a function of separation distance b
between two electrodes for a fixed width of electrodes a ¼ 1:7 mm.
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Lamb modes. The 1D scan using a Polytec laser vibrometer

is conducted along the x-direction of propagating Lamb

waves with a spatial resolution of 0:1 mm. At each position,

the signal is averaged 512 times to improve the signal-to-

noise ratio. The spatio-temporal signals obtained are then

windowed to remove the part corresponding to the reflected

waves arising from the end of the plate. Finally, temporal

and spatial Fourier transforms (FFTs) are successively

applied to the data to obtain the experimental dispersion

curves.

In order to observe the coupling of the electrical wave

with the propagating elastic waves and particularly with the

S0 Lamb mode as described in Sec. II, two configurations are

considered. The first one consists of electrodes with a float-

ing potential (open circuit). The unit cell is made of one pair

of electrodes and has a length equal to K as illustrated in Fig.

1(b). The resulting experimental dispersion curves are plot-

ted at a color level in Fig. 7 with numerically predicted

curves superimposed for a sake of comparison [Fig. 7(a)].

We observe the generation of the S0 wave around 200 kHz

without any conversion or reflection during the propagation

as illustrated in Fig. 7(b) where no signal is present in the

half-space of negative wavenumbers. The second configura-

tion described in Fig. 1(d) with a unit cell size equal to K0

¼ 2K and an electrode over two connected to an inductor.

Our measurements confirm in this case a significant attenua-

tion of the S0 mode, and the spot previously observed in the

theoretical S0 dispersion curve has almost completely disap-

peared in the frequency range lying within the HBG. Most of

the input energy is now converted into the A0 mode [see Fig.

7(b)] which is the only propagating mode present at this fre-

quency. These results clearly illustrate the coupling of the

electrical wave with the propagating elastic waves guided in

the plate and the efficiency of the HBG to stop the propaga-

tion of the guided S0 waves.

A quantitative estimation of the attenuation can be done

by evaluating the ratio aðf Þ of the amplitude of the S0 wave

in the PC without inductive shunt, AS0

FPðf Þ, over the ampli-

tude of the S0 wave in the PC with the inductive shunt,

AS0

L ðf Þ [Eq. (10)]. In order to observe a significant effect of

the HBG, the amplitudes are evaluated after a distance of

propagation corresponding to 5 periods of the PC,

aðf Þ ¼ 20 log
AS0

FPðf Þ
AS0

L ðf Þ

 !
: (10)

Amplitudes are extracted from 2D FFT performed on

the spatio-temporal signals acquired along the propagation

direction between x ¼ 20 mm and x ¼ 60 mm (x ¼ 0 mm is

related to the first edge of the plate where waves are

excited).

Figure 8 shows that the attenuation reaches a maximum

value of 50 dB around 200 kHz, which is located at the mid-

dle of the HBG. It can be observed that the attenuation mea-

sured in the close neighborhood of the bandgap remains

significant. This can be explained on the one hand by the fact

that the theoretical width of the bandgap is computed for an

infinite extended PC, while experiments are performed on a

finite one. It is well known that this leads to a widening of

the BG frequency range.32 On the other hand, the width and

the position of the HBG are strongly affected by the values

of the connected inductance L and capacitance C associated

with each element (unit cell) of the PC. There is a slight dis-

persion of the inductance values L used in experiments, and

the values of the capacitance C near the edges of the plate

differ from those measured in the middle of the plate. This

explains why the experimental attenuation is observed in a

wide frequency range greater than the theoretical width of

the HBG.

FIG. 7. Fourier transform modulus of the measured spatio-temporal signals

for (a) all electrodes having a floating potential and (b) one couple of elec-

trodes over two connected to inductor L ¼ 470 lH and the others having a

floating potential. The color map represents the amplitudes of the 2D

Fourier transform modulus, and the white curves represent the numerical

predictions. The first Brillouin zone is delimited by dotted red lines.

FIG. 8. Experimental attenuation coefficient as a function of frequency. The

numerically computed bandgap is shown in the gray-shaded region.
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IV. CONCLUSION

The piezoelectric metamaterial studied in this paper

shows not only classical properties linked to the periodicity

of the distributed electrodes on the plate, e.g., opening of

Bragg gaps at the limit of the Brillouin zone and coupling of

Lamb guided waves inside the BZ, but also more importantly

opening of HBG easily tuned electrically through a change

of inductor connected loads on the electrodes. The electrical

dispersive mode induced by the presence of the inductance

loads has been studied through a model of the electrical

transmission line. It is shown that the dispersive properties

of this mode are, as expected, related to the inductor value

and also depend on the size and the way the conductive elec-

trodes are distributed along the plate. The HBG induced by

the coupling between the fundamental symmetrical S0 mode

with the electrical mode opens up at a sub-wavelength scale,

with the lattice constant of the periodic array of electrodes

being more than ten times the wavelength of the wave. The

proposed active device opens up many perspectives, for

instance, with the use of active circuits to control the electri-

cal boundary conditions on the metamaterial. The implemen-

tation of dynamic loads could also offer some new

applications in the field of wave propagation control.
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