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CONSENSUS AND DISAGREEMENT: THE ROLE OF QUANTIZED

BEHAVIOURS IN OPINION DYNAMICS∗

FRANCESCA CERAGIOLI† AND PAOLO FRASCA‡

Abstract. This paper deals with continuous-time opinion dynamics that feature the interplay
of continuous opinions and discrete behaviours. In our model, the opinion of one individual is only
influenced by the behaviours of fellow individuals. The key technical difficulty in the study of these
dynamics is that the right-hand sides of the equations are discontinuous and thus their solutions
must be intended in some generalized sense: in our analysis, we consider both Carathéodory and
Krasovskii solutions. We first prove existence and completeness of Carathéodory solutions from
every initial condition and we highlight a pathological behavior of Carathéodory solutions, which can
converge to points that are not (Carathéodory) equilibria. Notably, such points can be arbitrarily
far from consensus and indeed simulations show that convergence to non-consensus configurations
is common. In order to cope with these pathological attractors, we study Krasovskii solutions. We
give an estimate of the asymptotic distance of all Krasovskii solutions from consensus and we prove
its tightness by an example of equilibrium such that this distance is quadratic in the number of
agents. This fact implies that quantization can drastically destroy consensus. However, consensus
is guaranteed in some special cases, for instance when the communication among the individuals is
described by either a complete or a complete bipartite graph.

Keywords. Opinion dynamics, quantized consensus, disagreement, discontinuous
differential equations.

1. Introduction. A fundamental assumption in opinion dynamics is that one’s
opinion is attracted by others’, as supported by a substantial literature [31, 33, 15, 37].
If we assume that the opinion of each individual i is described by a variable xi ∈ R,
we can describe this attraction by a linear law and thus describe the evolution of the
opinions by the following set of differential equations:

(1) ẋi(t) =
∑

j

aij [xj(t)− xi(t)] i ∈ I = {1, ..., N}

where aij ∈ R≥0 and aij > 0 means that the opinion of the individual i is directly
influenced by the opinion of the individual j. As long as there is at least one in-
dividual who can influence (albeit indirectly) all others, then it can be proved that
consensus is asymptotically achieved, namely there exists α ∈ R such that xi(t) → α
as t → +∞ for all i ∈ I. However, experience suggests that in reality consensus is
not always achieved, but disagreement persists: clearly, the opinion dynamics model
should include some additional feature.

In this paper, we postulate that individuals can not directly perceive the private
opinions of the others, but only observe their displayed behaviours. Indeed, in some
situations individuals may not be able to express their opinions precisely, but only
through a limited number of behaviours or actions: let us think of consumers’ choices,
electoral votes, or stereotyped interactions in online social media. Even though we
are assuming that the opinions are real-valued, behaviours are better described as
elements of a finite or discrete set: hence, the behaviour of an individual shall be a
suitable quantization of his/her opinion. If we assume to represent discrete behaviours
as integers and that the relation between opinion and behavior is the same for all
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individuals, equations (1) can be replaced by

(2) ẋi(t) =
∑

j

aij [q(xj(t)) − xi(t)], i ∈ I,

where we choose the quantizer map q : R → Z to be the “uniform” quantizer q(s) =
⌊s+ 1

2⌋. This new model is a very simple modification of (1), which has no pretension
to describe social dynamics precisely, but has the aim to make the role of quantization
evident. As we shall see in this paper, the main feature that distinguishes it from (1) is
that consensus is not achieved in general. From the point of view of opinion dynamics,
this observation allows us to explain the persistence of disagreement as an effect of
the limited number of behaviours allowed.
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Fig. 1. The uniform quantizer q : R → Z.

The aim of this paper is to study the effect of quantization of others’ states in
a consensus model. This is done by undertaking a rigorous mathematical analysis
of (2). The key technical difficulty in the study of this model is that the right-hand
sides of the equations are discontinuous and their solutions must be intended in some
generalized sense. We describe our mathematical contribution as fourfold. As the first
contribution, we prove existence and completeness of Carathéodory solutions from
every initial condition. This is a relevant fact because most discontinuous systems,
including well-known models of opinion dynamics, do not have complete Carathéodory
solutions [13]: even proving existence for most initial conditions can be a difficult
task [7, 6].

As the second contribution, we highlight a pathological behavior of Carathéodo-
ry solutions, which can converge to points that are not (Carathéodory) equilibria.
The presence of these pathological attractors motivates us to consider also Krasovskii
solutions, which have two important advantages. Firstly, Krasovskii’s definition is
more general than Carathéodory’s, meaning that Carathéodory solutions are particu-
lar Krasovskii solutions. Hence, results that are established for Krasovskii also apply
to Carathéodory. Secondly, Krasovskii solutions can not converge to points that are
not (Krasovskii) equilibria, thus solving the mentioned pathological convergence.

As the third contribution, assuming weight-balanced interactions, we derive an
estimate of the distance of Krasovskii solutions from consensus for large times and we
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prove that its tightness by means of an example of equilibria. In this example, the
distance from consensus is quadratically increasing in the number of agents, implying
that quantization can drastically destroy consensus. Actually, not only we explicitly
construct equilibria that are arbitrarily far from consensus, but also show by simula-
tions that most graphs imply convergence to non-consensus configurations. However,
consensus can be reached in some special cases. Indeed, as the fourth contribution,
we prove convergence to consensus when communication among the individuals is
described either by a complete graph or by a complete bipartite graph.

Relations with the literature. This paper relates to various bodies of work in con-
trol theory and in mathematical sociology. In the last ten years, control theorists have
widely studied quantized versions of consensus algorithms. Since giving a complete
overview would be impossible here, we just mention some papers whose approaches are
particularly close to ours. First of all, in [10] the authors consider a discrete-time ver-
sion of (2): their analysis is limited to observing that the algorithm may not converge
to consensus and then abandoned. The poor perfomance of the dynamics in terms
of approaching consensus explains the scarcity1 of known results about (2). Instead,
papers like [12, 22, 20, 25, 29] have considered other possible quantizations of (1):
in [12, 22] all states are quantized in the right-hand side, while in [20, 25] distances
between couples of states are seen through the quantizer. In these papers convergence
to consensus is proved under appropriate but generally mild assumptions [38].

Surveys of the opinion dynamics literature can be found in [11, 23, 34]: all of these
bring forward the need for theories that can explain both agreement and disagreement,
as recognized since [28, 1]. Different explanations of persistence of disagreement have
been proposed: among them, we recall in [24] the persisting influence of the initial
opinions; in [27] the bounded confidence of the individuals; in [32, 2] the presence
of stubborn individuals; and in [3] the occurrence of antagonistic interactions. Here,
we support the claim that quantization can be a source of disagreement. The fact
that others’ opinion are materialized by means of discrete behaviours is a natural
observation, which has been made by social scientists [24, Chapter 10] and has been
addressed in several models including [36, 30, 16]. Discrete behaviours can result as
consequences of limited verbalization capabilities, as postulated in [36], or represent
actions taken by the individuals (CODA models), as in [30, 16]. These papers feature
dynamics that may not reach consensus and that involve quantization together with
other nonlinearities. In comparison, our proposed model (2) can be understood as an
effort to single out the effects of quantization only. We consider the case of multiple
quantization levels, but two-level quantization as in [16] can be easily obtained as a
particular case.

Outline of the paper. In Section 2 we present some alternative forms of (2), intro-
duce Carathéodory and Krasovskii solutions, and prove some of their basic properties.
Section 3 is devoted to equilibria, providing the relevant definitions and examples. In
Section 4 we prove the asymptotic estimate of the distance of solutions from consensus
and show that it is sharp. In Section 5 we study the special cases of all-to-all and
bipartite communication and prove that in these cases consensus is achieved. Finally,
Section 6 presents some simulations on random graphs and Section 7 concludes the
paper.

2. Fundamental properties of the dynamics. We begin this section by
rewriting equations (2) in some alternative forms that allow us to see the model

1A preliminary and incomplete study of dynamics (2), where only all-to-all communication was
considered, was published in the Proceedings of the European Control Conference as [14].
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from different points of view.
First of all, we can think that communication among individuals is described by

a weighted directed graph whose vertices are individuals. The numbers aij ≥ 0 are
the entries of the weighted adjaciency matrix A of the graph, namely aij > 0 if the
agents i and j are linked, aij = 0 if they are not linked and aii = 0. We can then
observe that

ẋi(t) =
∑

j 6=i

aij
(

q(xj(t)) − xj(t) + xj(t)− xi(t)
)

=
∑

j 6=i

aij
(

xj(t))− xi(t)
)

+
∑

j 6=i

aij
(

q(xj(t)) − xj(t)
)

.

If we denote by di :=
∑

j aij the weighted degree of the i-th vertex, by D = diag(di),

and by q(x) = (q(x1), . . . , q(xN ))⊤, then we can define the Laplacian matrix of the
graph L = D −A and write

ẋ =− Lx+A(q(x) − x)(3)

=− L(x− xa1) +A(q(x) − x),

where for the second equality we have used 1⊤ = (1, ..., 1) and xa(t) = 1
N
1⊤x(t),

together with the fact that L1 = 0. System (3) can be seen as the classical consen-
sus system perturbed by others’ states quantization errors. This interpretation will
become useful in Section 4. Clearly, we can also write (3) as

(4) ẋ = −Dx+Aq(x),

which prompts a connection with the theory of neural networks.

Remark 1 (Neural networks). By adding a constant term I ∈ R
N in (4) we get

(5) ẋ = −Dx+Aq(x) + I,

which is the typical system used in order to describe Hopfield neural networks. In this
context, individuals represent neurons and the function q is called activation function.
In the basic models q is assumed to be smooth and increasing, but the literature has
also considered weaker assumptions. In particular, in [21] q can be discontinuous but
must be increasing and bounded, and the matrix A is assumed invertible. A major
difference between our model and the one in [21] is that we have multiple equilibria
(Section 3), whereas [21] assumes a single equilibrium point.

When we look at system (4), we observe that for every k ∈ Z
N the vector q is

constant on each set

Sk = {x ∈ R
N : ki −

1

2
≤ xi < ki +

1

2
, i = 1, . . . , N}.

This fact makes it evident that the system is affine if restricted to each set Sk. More-
over its right-hand side is discontinuous on the set ∆ =

⋃

k∈ZN ∂Sk, where ∂Sk is the
boundary of Sk. In general, existence of solutions of equations with discontinuous
right-hand side is not guaranteed. For this reason different types of solutions have
been introduced in the literature. The notion of solution nearest to the classical one
is that of Carathéodory solution. The main problem in using Carathéodory solutions
is that, often, they do not exist or can not be extended to infinity. Here we prove
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that Carathéodory solutions do exists and are complete. Nevertheless the disconti-
nuity causes the strange phenomenon of solutions converging to points which are not
equilibria. In order to better understand this phenomenon we also study Krasovskii
solutions: such points are in fact Krasovskii equilibria.

We now formally introduce Carathéodory and Krasovskii solutions and study
their basic properties. We refer the reader to [26, 5, 17] for overviews on generalized
solutions of discontinuous differential equations. System (2) can be cast in the general
form

(6) ẋ = f(x),

provided f : RN → R
N is the vector field given by fi(x) =

∑

j aij [q(xj) − xi]. Let

I ⊂ R be an interval of the form (0, T ). An absolutely continuous function x : I → R
N

is a Carathéodory solution of (6) if it satisfies (6) for almost all t ∈ I or, equivalently,
if it is a solution of the integral equation

x(t) = x0 +

∫ t

0

f(x(s))ds.

An absolutely continuous function x : I → R
N is a Krasovskii solution of (6) if for

almost every t ∈ I, it satisfies

(7) ẋ(t) ∈ Kf(x(t)),

where
Kf(x) =

⋂

δ>0

co({f(y) : y such that ‖x− y‖ < δ}).

We recall that in general any Carathéodory solution is also a Krasovskii solution
and we observe that, for the specific dynamics (2), Krasovskii solutions coincide with
Filippov solutions that are often adopted for discontinuous systems. The following
result states the basic properties of the solutions of (2).

Theorem 2.1 (Properties of solutions).
(i) (Existence) For any initial condition there exist a Carathéodory solution and

a Krasovskii solution of (2).
(ii) (Boundedness) Any Carathéodory or Krasovskii solution of (2) is bounded on

its domain.
(iii) (Completeness) Any Carathéodory or Krasovskii solution starting at t0 ∈ R

is defined on the set [t0,+∞).

Proof. (i-C) First of all, we remark that the right-hand side of (2) is continuous
at any point in the interior of Sk for any k ∈ Z

N , then local solutions with initial
conditions in R

N \ ∆ do exist. Then, we consider initial conditions in ∆. For any
x0 ∈ R

N we denote by I(x0) the subset of {1, . . . , N} of the indices i such that
x0i = ki +

1
2 for some ki ∈ Z and by M the cardinality of I(x0).

We first consider initial conditions x0 such that M = 1 and I(x0) = {i}, i.e.
x0i = ki +

1
2 for some ki ∈ Z and x0j 6= h + 1

2 for any j 6= i and any h ∈ Z. Let us
denote

si(x) = xi − ki −
1

2
,

S+
i = {x ∈ R

N : xi − ki −
1

2
≥ 0},
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S−
i = {x ∈ R

N : xi − ki −
1

2
< 0},

f |S−

i
(x0) = lim

x∈S
−

i ,x→x0

f(x).

We have that ∇si(x0) = ei (the i-th vector of the canonical basis) and, if we define
a(x) = ∇si(x) · f(x), then

a(x0) = ∇si(x0) · f |S+

i
(x0) = ∇si(x0) · f |S−

i
(x0)

=
∑

j 6=i aij(q(x0j)− ki − 1
2 ).

If a(x0) < 0, the vector field f |S−

i
points towards the half-space si(x) < 0 and then

there is a solution starting at x0 which satisfies the equations ẋ = f |S−

i
(x) and stays

in S−
i in an interval of the form (t0, t0+ǫ) for some ǫ > 0. This fact is proved in [35, 8].

Analogously, if a(x0) ≥ 0, then there is a solution starting at x0 which satisfies the
equation ẋ = f |S+

i
(x) and stays in S+

i in an interval of the form (t0, t0 + ǫ) for some

ǫ > 0. Note in particular that if a(x0) = 0, then the vector field f |S+

i
is tangent to

discontinuity surface xi = ki +
1
2 , namely a hyperplane, not only at x0 but also in a

neighborhood of x0 intersecated with the discontinuity surface. Indeed there exists a
neighbourhood N(x0) of x0 such that for all x ∈ N(x0) one has q(xj) = q(x0j) for
all j 6= i. Moreover if xi = ki + 1/2 one gets a(x) = a(x0), and then there exists a
solution starting on the hyperplane which lays on it.

We now consider initial conditions x0 such that 1 < M ≤ N . The vector field f
has 2M limit values at x0 corresponding to the 2M sectors defined by the inequalities
xi − ki − 1

2 ≥ 0 and xi − ki − 1
2 < 0, i ∈ I(x0). We describe these sectors by means

of vectors B ∈ {0, 1}N . Let H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0. We define Bi =
H(xi−ki− 1

2 ) if i ∈ I(x0) and Bi = 0 if i /∈ I(x0). Let fB(x0) = limx→x0,x∈Sk+B
f(x).

In the following we denote fB(x0) = fB. We want to prove that there exists B such
that H((fB)i) = Bi for all i ∈ I(x0). This means that the vector field fB points
inside the sector Sk+B at x0.

Preliminarily, note that as x0 ∈ Sk, then q(x0j ) = kj . If x ∈ Sk+B from the
definition of B it follows that q(xj) = kj + Bj for all j = 1, ..., n. Then the ith
component of fB can be written as

(8) (fB)i =
∑

j aij(kj +Bj)− di(ki +
1
2 ) =

∑

j aijkj − di(ki +
1
2 ) +

∑

j aijBj

Now, we start by considering the sector B1 such that (B1)i = 0 for all i ∈ I(x0).
If H((fB1)i) = 0 for all i ∈ I(x0), we have finished. Otherwise, there exists i ∈
I(x0) such that H((fB1)i) = 1. Assume without loss of generality that i = 1, i.e.
H((fB1)1) = 1. Then for all B 6= B1 we have H((fB)1) = 1. In fact if (fB1)1 > 0
then also (fB)1 = (fB1)1 +

∑

j a1jBj > 0.
We then examine only those B such that B1 = 1. In particular the next B

we consider, which we call B2, is such that (B2)1 = 1 and (B2)i = 0 for all other
i ∈ I(x0). If H((fB2)i) = 0 for all i ∈ I(x0) \ {1}, then we have finished. Otherwise,
there exists j ∈ I(x0) \ {1} such that H((fB1)j) = 1. Assume that such j = 2, i.e.
H((fB2)2) = 1. Then for all B 6∈ {B1, B2} we have H((fB)2) = 1. We can then
restrict our attention to those B such that B1 = B2 = 1, and so forth. By proceeding
in this way, in M step at most we find the sector B with the desired property.

As already mentioned, the meaning of the condition H((fB)i) = Bi for all i is
that the vector field fB is directed inside Sk+B and local existence is a consequence
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of the results in [35, 8]. More precisely, if fB points strictly inside B, i.e. (fB)i 6= 0
for all i, then there is a solution that enters the sector. If instead some components of
fB are null, fB is tangent to the boundary of Sk+B, and, more precisely, to ∂Sk+B ∩
[∩i∈Ĩ(x0)

{x : xi = ki + 1/2}], where Ĩ(x0) is the subset of I(x0) such that (fB)i = 0

if i ∈ Ĩ(x0).
In fact we observe that there exists a solution issuing from x0 which lies on the

set ∂Sk+B ∩ [∩i∈Ĩ(x0)
{x : xi = ki + 1/2}]. Let us consider x ∈ ∂Sk+B ∩ [∩i∈Ĩ(x0)

{x :

xi = ki + 1/2}] and let us compute (fB(x))i.

(fB(x))i =
∑

j

aijq(xj)− dixi

=
∑

j 6∈I(x0)

aijq(xj) +
∑

j∈I(x0)\Ĩ(x0)

aijq(xj) +
∑

j∈Ĩ(x0)

aijq(xj)− di

(

ki +
1

2

)

.

Note that if j ∈ Ĩ(x0) then q(xj) = q((x0)j) = kj + Bj as x ∈ ∂Sk+B ∩ [∩i∈Ĩ(x0)
{x :

xi = ki + 1/2}]. If j 6∈ I(x0) then also q(xj) = q((x0)j) = kj + Bj , provided that
x is sufficiently near x0 so that the quantity xj − kj − 1/2 does not change sign.

Finally, if j ∈ I(x0)\Ĩ(x0) then xj = kj + 1/2 and (fB(x0))j > 0 as H((fB))j = Bj .
Let NB(x0) = {x ∈ ∂Sk+B ∩ [∩i∈Ĩ(x0)

{x : xi = ki + 1/2}] : xj > kj + 1/2}. In a

neighborhood of x0 intersecated with NB(x0) also q(xj) remains constant and so does

(fB(x))i for all i ∈ Ĩ(x0). This means that the vector field fB(x) is tangent to the
set NB(x0) in a neighbourhood of x0 and thus there exists a solution issuing from x0

and lying on this set.
We conclude that there exist a solution ϕ of (2), t0 ∈ R and ǫ > 0 such that

ϕ(t0) = x0 and ϕ̇(t) = fB(ϕ(t)) for almost every t ∈ (t0, t0 + ǫ).
(i-K) Since the function q is locally bounded, then the Krasovskii set-valued func-

tion Kf(x) is upper semi-continuous with compact and convex values and local ex-
istence of Krasovskii solutions is a consequence of the existence theorem in [4], page
98, Theorem 3.

(ii-C) Let x(t) be a Carathéodory solution and let m be any index in I such that
xm(t) = min{xi(t), i ∈ I}. For i ∈ I, xi(t) ≥ xm(t). Let q(xm(t)) = qm(t).
If xm(t) ∈

[

qm(t)− 1
2 , qm(t)

]

, one has q(xi(t)) ≥ xm(t) for all i ∈ I and then

ẋm(t) =
∑

j amj [q(xj(t)) − xm(t)] ≥ 0. When xm(t) ∈
(

qm(t), qm(t) + 1
2

)

, instead,
xm(t) may be decreasing as there may be other indices i such that q(xi(t)) = qm(t).
Nevertheless as already remarked ẋm(t) ≥ 0 when xm(t) = qm(t) and then xm(t)
is lower bounded by min{xm(0), qm(0)}. Analogously, if M is any index such that
xM (t) = max{xi(t), i ∈ I}, q(xM (t)) = qM (0), we get that xM (t) is upper bounded
by max{xM (0), qM (0)}, and the function qM (t) is nonincreasing.

(ii-K) Let now x(t) be a Krasovskii solution and m,M, xm, xM , qm, qM be defined
as in (ii-C). We have to distinguish three cases. If xm(t) ∈

(

qm(t), qm(t) + 1
2

)

, then (as
for Carathéodory solutions) ẋm(t) may be negative, but xm(t) remains lower bounded
by min{xm(0), qm(0)}. If xm(t) ∈

(

qm(t)− 1
2 , qm(t)

]

, then (as for Carathéodory so-
lutions) ẋm(t) ≥ 0. The remaining case when xm(t) = qm(t) − 1

2 is more delicate
and specific to Krasovskii solutions. Indeed, there can exist an index ℓ such that
xℓ(t) = xm(t) but q(y) = qm(t)−1 for some points y in the neighborhood of xℓ, which
makes the (set-valued) right-hand side include negative values. In such a case, xm(t)
would be allowed to decrease, but this fact would in turn lead to the situation of the
first case. In conclusion, xm(t) is lower bounded by qm(0)− 1 and similarly xM (t) is
upper bounded by qM (0) + 1.
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Fig. 2. A pair of distinct trajectories issuing from the point (1/2, 1/2), as discussed in Example 1.

(iii-C-K) Carathéodory solutions can be continued up to +∞ thanks to local
existence and boundedness of solutions (the proof is perfectly analogous to the classical
one). Completeness of Krasovskii solutions can either be deduced as for Carathéodory
solutions or obtained as a consequence of Lemma 5.1 page 53 in [19].

The following example shows that in general uniqueness of solutions is not guar-
anteed.

Example 1 (Multiple Carathéodory solutions). Consider the dynamics

ẋ1 =q(x2)− x1

ẋ2 =q(x1)− x2

and let f(x1, x2) = (q(x2) − x1, q(x1) − x2)
⊤. Note that the vector field f restricted

to the line x2 = x1 is parallel to this line. Then if we take initial conditions on this
line, there exist Carathéodory solutions which lie it. In particular if (x1(0), x2(0))

⊤ =
(1/2, 1/2)⊤, there are two solutions issuing from this point which correspond to the
limit values of f when restricted to the two sets S(0,0) = {x ∈ R

2 : − 1
2 ≤ xi < + 1

2 , i =

1, 2} and S(1,1) = {x ∈ R
2 : 1

2 ≤ xi <
3
2 , i = 1, 2}. These solutions converge to (0, 0)⊤

and (1, 1)⊤, respectively. Their trajectories are the line segments joining the initial
condition with the points (0, 0)⊤ and (1, 1)⊤; see Figure 2.

Many consensus-seeking dynamics enjoy a monotonicity property, such that the
smallest (largest) component is nondecreasing (nonincreasing). This fact is not true
for system (2). Nevertheless in the next proposition we prove monotonicity of max-
imum and minimum quantization level in the case of Carathéodory solutions. This
monotonicity of the extremal quantization levels does not hold for Krasovskii solu-
tions, as can be seen from Example 4 in the next section.

Proposition 2.2 (Monotonicity and limit of minimum and maximum quantiza-
tion level for Carathéodory solutions). Let x be a Carathéodory solution and de-
fine xm(t) = min{xi(t), i ∈ I}, qm(t) = q(xm(t)), xM (t) = max{xi(t), i ∈ I} and
qM (t) = q(xM (t)). Then, function qm is nondecreasing, function qM is nonincreasing
and they both are definitively constant.

Proof. We have shown in the proof of Theorem 2.1 (iiC) that, for Carathéodory
solutions, xm(t) ≥ min{xm(0), qm(0)} for all t ≥ 0. This means that xm(t) can
not leave the quantization interval

[

qm(0)− 1
2 , qm(0) + 1

2

)

from below but only from
above. Consequently, the smallest level qm(t) is nondecreasing. Since it is bounded
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and take values in Z, it follows that it is definitively constant, i.e. for any Carathéodory
solution x(t) of (2) there exist T ∗ ∈ R and q∗m ∈ Z such that for any t ≥ T ∗

min{q(xi(t)), i = 1, . . . , N} = q∗m. Analogous considerations can be repeated for
qM (t).

We observe that the function q takes values in Z, and this means that we a
priori admit infinite types of behaviours. Nevertheless a consequence of the previous
remark is that the number of quantization levels actually assumed in the evolution
of the system is finite, once the initial condition is fixed. In particular, if the initial
values of all the components are in the interval (0, 1), the quantizer only takes on the
values 0 and 1 and opinions remain in (0, 1): in this way we get the case of binary
behaviours.

3. Equilibria and lack of consensus. Generally speaking, a point x∗ is said
to be an equilibrium of (6) if the function x(t) = x∗ is a solution of (6). Since we
have different types of solution, we distinguish between different types of equilibria.

We call x∗ a Carathéodory equilibrium of (6) if the function x(t) = x∗ is a
Carathédodory solution of (6), and we call x∗ a Krasovskii equilibrium of (6) if the
function x(t) = x∗ is a Krasovskii solution of (6). Carathéodory equilibria are found
by looking for solutions of the equation f(x∗) = 0, whereas Krasovskii equilibria are
points x∗ such that 0 ∈ Kf(x∗). If we denote by EC the set of Carathéodory equilibria
of (6) and byEK the set of Krasovskii equilibria, it is evident that EC ⊂ EK . As an ex-
ample of a Krasovskii equilibrium that is not a Carathéodory equilibrium we can take
the point (1/2, 1/2)⊤ in Example 1. Actually points of the form (h+1/2, ..., h+1/2)⊤

are always Krasovskii equilibria of (2).

Let us call consensus point a point x ∈ R
N such that xi = xj for all i, j = 1, ..., N .

Clearly, integer consensus points like x∗ = k1 with k ∈ Z are Carathéodory equilibria
of (2) because f(k1) = 0. Such a point k1 belongs to the interior of Sk1 and,
consequently, is locally asymptotically stable. However, Carathéodory equilibria are
not necessarily consensus points and may belong to the discontinuity set.

Example 2 (Non-consensus Carathéodory equilibrium). Consider the system

ẋ1 =q(x3)− x1

ẋ2 =q(x3)− x2

ẋ3 =q(x1) + q(x2) + q(x4)− 3x3

ẋ4 =q(x3) + q(x5)− 2x4

ẋ5 =q(x4)− x5

The point x̄ = (0, 0, 1/3, 1/2, 1)⊤ is a Carathéodory equilibrium point which lies on
the boundary of S(0,0,0,1,1) as x̄4 = 1/2. The intersection of a neighborhood of x̄ with
set S(0,0,0,1,1) is contained in the attraction region of x̄, but x̄ is not Lyapunov stable.
Indeed, we recall the an equilibrium point x∗ is said to be Lyapunov stable if for all
ǫ > 0 there exists δ > 0 such that for all initial conditions x0 with ‖x0 − x∗‖ < δ
all corresponding (Carathéodory) solutions x(t;x0) are such that ‖x(t;x0) − x∗‖ < ǫ
for all t ≥ 0. In our case x̄ is not Lyapunov stable as for small values of α > 0
solutions starting from points of the form x̄ = (0, 0, 1/3, 1/2−α, 1)⊤ follow the vector
field (−x1,−x2,−3x3, 1− 2x4,−x5)

⊤ towards the point (0, 0, 0, 1/2, 0)⊤.

This example also shows that solutions can converge to points that are not consensus
points.
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For smooth systems, if a (classical) solution converges to a point, then such point is
a (classical) equilibrium. This property does not hold true for Carathéodory solutions
of systems with discontinuous right-hand side, and, in particular, in the case of systems
of the form (4). This motivates the following definition of extended equilibrium. Let
k ∈ Z and fk the vector field whose components are

(fk)i(x) =
∑

j 6=i

aij(kj − xi).

Clearly fk coincides with f on the set Sk. We call extended equilibrium of (2) a point
x∗ ∈ R

N such that there exists k ∈ Z
N such that fk(x

∗) = 0 and x∗ ∈ Sk. We denote
by Ee the set of extended equilibria of (2). It is evident that EC ⊂ Ee ⊂ EK . The
following example shows that these inclusions are strict in general.

Example 3 (4-path graph: equilibria). Let us consider (2) on a 4-node line
graph:

ẋ1 = q(x2)− x1

ẋ2 = q(x1) + q(x3)− 2x2(9)

ẋ3 = q(x2) + q(x4)− 2x3

ẋ4 = q(x3)− x4

Then,
• The point xA = (0, 12 ,

1
2 , 1)

⊤ is an extended equilibrium, because xA ∈ S(0,0,1,1)

and f(0,0,1,1)(x
A) = 0. However, xA can not be a Carathéodory equilibrium,

because q(xA
2 ) = 1 6= xA

1 = 0.
• The point xB = (12 ,

1
2 ,

1
2 ,

1
2 )

⊤ is a Krasovskii equilibrium, as it can be com-
puted that 0 ∈ Kf(xB). However, xB can not be an extended equilibrium,
because xB

1 = 1
2 can not be equal to any quantizer value, so that the first

component of the vector field can not be zero in any neighbourhood of the
point.

This example shows that extended equilibria include points, like xA, that are not con-
sensus points. Interestingly, there exist Carathéodory solutions that asymptotically
converge to xA: it is enough to take the solution issuing from an initial condition
in S(0,0,1,1). In spite of being attractive, xA is not a Carathéodory equilibrium and

actually Carathéodory solutions originating from xA converge to (1, 1, 1, 1)⊤. This
pathological behaviour might appear surprising, but is allowed by the discontinuity
of the vector field.

In the previous example one can find a Krasovskii solution that is not a Carathéo-
dory solution: it slides on the discontinuity set and connects two equilibria.

Example 4 (4-path graph: Krasovskii trajectories). Let us consider again the
dynamics (9) on the 4-node path graph. Consider the parametrized segment xa =
(a, 1

2 ,
1
2 , 1 − a)⊤ for a ∈ [0, 12 ], which interpolates between the Krasovskii equilibria

x0 = xA and x 1
2
= xB . For every a ∈ (0, 12 ) it holds true that

Kf(xa) = co {( 1−a, 0, 1, a)⊤, (−a, 0, 0, a)⊤, (−a,−1, 0, a−1)⊤, (1−a,−1, 1, a−1)⊤}.

Then, there is a Krasovskii solution ϕ(t) such that
• ϕ(0) = xB = (1/2, 1/2, 1/2, 1/2);
• for any t > 0, there exists a ∈ (0, 1/2) such that ϕ(t) = xa;
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• if ϕ(t) = xa, then ϕ̇(t) = (−a, 0, 0, a);
• limt→+∞ ϕ(t) = xA = (0, 1/2, 1/2, 1).

Note that ϕ(t) can not be a Carathéodory solution as f(xa) = (1− a, 0, 1, a).

This example also shows that the minimum quantizer level qm(t) assumed along
Krasovskii solutions may be decreasing. In fact, if we compute qm(t) for the Krasovskii
solution showed above, then qm(0) = 1 whereas qm(t) = 0 if t > 0. This fact should
be contrasted with the monotonicity of Carathéodory solutions established in Propo-
sition 2.2.

3.1. Path graph: equilibria. We now show, by means of an example, that
equilibria can be significantly far from consensus: in the case the communication graph
is a path, such distance can be proportional to the square of number of individuals.

If the graph is a path, equations (2) read

ẋ1 =q(x2)− x1

ẋi =q(xi−1) + q(xi+1)− 2xi, i = 2, . . . , N − 1(10)

ẋN =q(xN−1)− xN

Proposition 3.1. If x∗ is an extended equilibrium, then

max
{

|x∗
j − x∗

i | : i, j = 1, . . . , N
}

≤ (N − 2)2

4
.

Furthermore, there exists an extended equilibrium x̄∗ such that

x̄∗
N − x̄∗

1 =

{

(N−2)2

4 if N is even
(N−1)(N−3)

4 if N is odd.

Proof. Let us characterize extended equilibria of (10). Let k ∈ Z
N . If x∗ is such

that fk(x
∗) = 0 then

x∗
1 =k2

x∗
i =

ki−1 + ki+1

2
, i = 2, . . . , N − 1

x∗
N =kN−1.

Then, x∗ ∈ Sk if and only if the following inequalities are satisfied

k1 −
1

2
≤k2 ≤ k1 +

1

2

ki −
1

2
≤ki−1 + ki+1

2
≤ ki +

1

2
, i ∈ {2, . . . , N}

kN − 1

2
≤kN−1 ≤ kN +

1

2

Since ki ∈ Z, from the first inequality it follows that k1 = k2 and from the last one
it follows that kN = kN−1. Moreover the inequalities with i = 2, . . . , N − 1 can be
written in the form

ki − ki−1 − 1 ≤ ki+1 − ki ≤ ki − ki−1 + 1

that implies

|ki+1 − ki| − |ki − ki−1| ≤ |(ki+1 − ki)− (ki − ki−1)| ≤ 1
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i.e.
|ki+1 − ki| ≤ |ki − ki−1|+ 1 and |ki − ki−1| ≥ |ki+1 − ki| − 1.

From the left inequality we deduce that

|ki − ki−1| ≤ i − 2, i ∈ {2, . . . , N}

and from the right inequality

|ki − ki−1| ≤ N − i, i ∈ {2, . . . , N}.

These two inequalities imply that

|ki − ki−1| ≤ min{i− 2, N − i}, i ∈ {2, . . . , N},

that can be written as

|ki − ki−1| ≤ i− 2, i ∈ {2, . . . , N}, i ≤ N + 2

2

and

|ki − ki−1| ≤ N − i, i ∈ {2, . . . , N}, i > N + 2

2
.

Assuming without loss of generality that j ≥ i, we can deduce that

|kj −ki| ≤ |kj −kj−1|+ |kj−1 −kj−2|+ . . .+ |ki+1−ki| ≤ |kN −kN−1|+ . . .+ |k2−k1|

and also
|xj − xi| ≤ |kN − kN−1|+ . . .+ |k2 − k1|

Let us distinguish the cases N is even and N is odd. If N is even, N = 2n, n ∈ N,
and N+2

2 = n+ 1. We have

|kN − kN−1|+ |kN−1 − kN−2|+ . . .+ |kn+1 − kn|+ . . .+ |k2 − k1|
≤

(

0 + 1 + 2 + . . .+ (2n− n− 2)
)

+
(

(n+ 1− 2) + (n− 2) + . . .+ 1 + 0
)

≤ (n− 2)(n− 1)

2
+

(n− 1)n

2
= (n− 1)2 =

(N − 2)2

4
.

If N is odd, N = 2m+ 1,m ∈ N, and N+2
2 = m+ 3

2 . We have

|kN − kN−1|+ |kN−1 − kN−2|+ . . . |kn+1 − kn|+ . . . .+ |k2 − k1|
≤

(

0 + 1 + 2 + . . .+ (2m+ 1−m− 2)
)

+
(

m+ 1− 2) + (m− 2) + . . .+ 1 + 0
)

≤ 2
(m− 1)m

2
= (m− 1)m =

(N − 1)(N − 3)

4
.

The first statement then follows from the fact (N − 1)(N − 3) ≤ (N − 2)2.
In order to prove the second statement, if we select k such that k1 = 0 and

ki − ki−1 =

{

i− 2, i ∈ {2, . . . , N}, i ≤ N+2
2

N − i, i ∈ {2, . . . , N}, i > N+2
2 ,

we do obtain an extended equilibrium x̄∗ that achieves the above bounds.

Point x̄∗ in the previous proposition shows that the system has extended equilibria
that, provided N is large enough, are arbitrarily far from consensus. We shall come
back to this point in Example 6. Figure 3 shows convergence to a non-consensus state.
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Fig. 3. Simulation via explicit Euler method of (10) for N = 20 from random initial conditions
in [0, 30], showing convergence to a non-consensus state.

4. Quantization as disturbance. A classical approach to obtain (conserva-
tive) results about quantized systems is to see the quantized dynamics as the per-
turbation of a “nominal” system, where the perturbation is due to the quantization
error q(x) − x. This idea is also useful for our problem. In this section we get an
asymptotic estimate of the distance of solutions from consensus. In order to prove it
we need to assume the graph to be weight balanced. Below, we recall a few concepts
of graph theory needed to make use of this assumption.

We have already defined di =
∑N

j=1 aij . Let di =
∑N

k=1 aki. The (directed

weighted) graph with adjacency matrix A is said to be weight-balanced if di = di for
all i = 1, ..., N . Note that L1 = 0 and 1⊤L = 0 if and only if the graph is weight-
balanced. Given an edge (i, j), we shall refer to i and to j as the tail and the head of
the edge, respectively. A path is an ordered list of edges such that the head of each
edge is equal to the tail of the following one. The graph is said to be

1. strongly connected if for any i, j there is an path from i to j;
2. connected if there exists one node j such that for any i there is path from i

to j;
3. weakly connected if for each pair of nodes i, j, one can construct a path which

connects i and j by possibly reverting the direction of some edges.
These three notions of connectedness coincide when the graph is symmetric, that is
when aij > 0 if and only if aji > 0. On the contrary, weakly connected weight-
balanced graphs are strongly connected [18, Proposition 2]. We recall the following
result, which can be derived from [9, Theorem 1.37] and [18, Formula (1) and Sec-
tion 2.2].

Lemma 4.1. Let L be the Laplacian matrix of a weight-balanced and weakly con-
nected graph. Then:

(i) The matrix Sym(L) = L+L⊤

2 is positive semi-definite.
(ii) Denoted by λ∗ the smallest non-zero eigenvalue of Sym(L),

x⊤Lx ≥ λ∗‖x− xa1‖2 ,

for all x ∈ R
N .
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Theorem 4.2 (Convergence to a set). Assume that the graph with adjacency
matrix A is weight balanced and weakly connected. If x(t) is any Carathéodory or
Krasovskii solution of (2) and

M =

{

x ∈ R
N : inf

α∈R

‖x− α1‖ ≤ ||A||
λ∗

√
N

2

}

,

then dist(x(t),M) → 0 as t → +∞.

Proof. We prove the statement for Krasovskii solutions, as Carathéodory solutions
are a special case. Let y(t) = x(t)− xa(t)1. Then ẏ(t) = ẋ(t) − ẋa(t)1. Consider the
function V (y) = 1

2y
⊤y. We have that

∇V (y) · ẏ =y⊤ẏ(t)

=(x− xa1)
⊤[ẋ− ẋa1]

=(x− xa1)
⊤ẋ− x⊤ẋa1+ xa1

⊤ẋa1

=(x− xa1)
⊤ẋ− ẋax

⊤1+ ẋaNxa

=(x− xa1)
⊤ẋ− ẋaNxa + ẋaNxa

=(x− xa1)
⊤ẋ.

From (3) we get

ẋ ∈ −L(x− xa1) +AK(q(x) − x) ⊆ −L(x− xa1) +A(Kq(x) − x).

For any v ∈ Kq(x) − x, it holds ‖v‖ ≤
√
N
2 . Then, if v ∈ Kq(x) − x is such that

ẏ = −L(x− xa1) +Av, we have

∇V (y) · ẏ =(x− xa1)
⊤[−L(x− xa1) +Av]

=− (x− xa1)
⊤L(x− xa1) + (x− xa1)

⊤Av

=− (x− xa1)
⊤Sym(L)(x− xa1) + (x− xa1)

⊤Av

≤− λ∗‖x− xa1‖2 + ‖x− xa1‖‖A‖
√
N

2

≤‖x− xa1‖
[

−λ∗‖x− xa1‖+ ‖A‖
√
N

2

]

.

We conclude that dist(x(t),M) → 0 as t → +∞, because otherwise V would decrease
unboundedly along solutions, which is forbidden by V being nonnegative.

Note that the infimum infα∈R ‖x − α1‖ is in fact achieved for α = 1
N

∑N
i=1 xi.

Then we can further elaborate that

M =

{

x ∈ R
N :

1√
N

‖x− 1

N

N
∑

i=1

xi1‖ ≤ ||A||
2λ∗

}

.

In order to better understand the interest of this overapproximation of the limit set,
we specialize it to two families of graphs with uniform weights: complete and path
graphs with aij = 1 if i and j are connected and aij = 0 if they are not.
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Example 5 (Complete graph). On complete graphs, we have

ẋi =
∑

j 6=i

(

q(xj)− xi

)

for all i,

while ||A|| = N − 1 and λ∗ = N , so that asymptotically

1√
N

‖x− 1

N

N
∑

i=1

xi1‖ ≤ 1

2
.

This bound implies that the limit points are close to consensus. In fact, we shall prove
below (Theorem 5.3) that in this case limit points are precisely consensus points.

Example 6 (Path graph). On path graphs with N nodes, λ∗ = 1− cos( π
N
) and

||A|| ≤ 2, because it always holds by Gershgorin’s disk lemma that ||A|| ≤ dmax. Then,
an overapproximation of set M can be defined by

1√
N

‖x− 1

N

N
∑

i=1

xi1‖ ≤ 2

2(1− cos π
N
)

=
1

π2

2N2 − π4

4N4 + o( 1
N4 )

=
2

π2

N2

1− π2

2N2 + o( 1
N2 )

=
2

π2
N2 +O(1) as N → ∞.

Let us now consider the following equilibrium x∗ ∈ Ee for odd N = 2m+1, which was
constructed in the proof of Proposition 3.1: the point x∗ is symmetric with respect to
the median value x∗

m+1 and such that

x∗
1 = 0

x∗
i =

i2 − 3i+ 3

2
if 2 ≤ i ≤ m

x∗
m+1 =

m(m− 1)

2
.

For instance, for N = 9 we have k = (0, 0, 1, 3, 6, 9, 11, 12, 12)⊤ and correspondingly
x∗ = (0, 1

2 ,
3
2 ,

7
2 , 6,

17
2 ,

21
2 ,

23
2 , 12)

⊤. Consequently, x∗
a = x∗

m+1 and

‖x∗ − x∗
a‖2 =2

m
∑

i=1

(x∗
i − x∗

m+1)
2

=2

m
∑

i=1

(

i2 − 3i+ 3

2
− m(m− 1)

2

)2

=
1

2

m
∑

i=1

(

i4 − 6i3 − (2m2 − 2m− 15)i2 + 6(m2 −m− 3)i

+m4 − 2m3 − 5m2 + 6m+ 9
)

.

By recalling that for all a ∈ N, it holds
∑n

i=1 i
a = 1

a+1n
a+1 + o(na+1)as n → ∞ and

identifying the highest order terms in the above expression, we finally observe that

1√
N

‖x∗ − x∗
a‖ =

1√
120

N2 + o(N2) as N → ∞.
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This example shows that the result in Proposition 4.2 can not be significantly improved
in general, as the estimate on the limit set is asymptotically tight for large networks in
the sense of the Euclidean distance from the consensus. Nevertheless, stronger results
can be obtained for specific topologies, as we do in the following section.

5. Convergence to consensus on special graphs. The previous sections em-
phasize the fact that in general we can not expect consensus for a system of the
form (2). Nevertheless we can prove that consensus is achieved when the communi-
cation graph has some particular form, namely if it is complete or complete bipartite,
and weights are uniform.

5.1. Complete graph. System (2) in the case of the complete graph with uni-
form weights reads

(11) ẋ = f(x)

where f : RN → R
N is given by fi(x) =

∑

j 6=i[q(xj)− xi]. We define

q̂(x) =
(

∑

j 6=1

q(xj), . . . ,
∑

j 6=N

q(xj)
)⊤

=
(

N
∑

j=1

q(xj)− q(x1), . . . ,

N
∑

j=1

q(xj)− q(xN )
)⊤

,

and we observe that for every k ∈ Z
N the function q̂ is constant on each set Sk. The

discontinuous vector field can be written as

(12) f(x) = q̂(x) − (N − 1)x.

This form makes evident that in each set Sk trajectories are line segments.
We now prove that the set Ee of extended equilibria reduces to quantized consen-

sus points which actually are Carathéodory equilibria as they belong to the interior
of some Sk.

Proposition 5.1 (Extended equilibria for complete graph). The sets of Cara-
théodory and extended equilibria of (11) coincide and are equal to

EC = Ee = {x ∈ Z
N : ∃h ∈ Z such that xi = h ∀i = 1, . . . , N}.

Proof. Clearly, any point of Ee is a Carathéodory equilibrium of (11). On the
other hand x∗ is an extended equilibrium if there exists k ∈ Z

N such that fk(x
∗) = 0

and x∗ belongs to Sk. IfK =
∑N

j=1 kj , x
∗ is a partial equilibrium if for all i = 1, . . . , N

x∗
i =

K − ki
N − 1

and

ki −
1

2
≤ x∗

i ≤ ki +
1

2

By multiplying these bounds by N − 1, we get

(N − 1)

(

ki −
1

2

)

≤ K − ki ≤ (N − 1)

(

ki +
1

2

)
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that implies, for all i = 1, . . . , N ,

K

N
− N − 1

2N
≤ ki ≤

K

N
+

N − 1

2N
.

Since ki ∈ Z interval
[

K
N

− N−1
2N , K

N
+ N−1

2N

]

, and these bounds imply that k1 = . . . =
kn. We conclude that if x∗ is an extended equilibrium then x∗ ∈ S(h,...,h) for some
h ∈ Z. In this case f(x∗)i = (N − 1)h − (N − 1)x∗

i for all i = 1, . . . , N , and finally
x∗
i = h for all i = 1, . . . , N .

We remark that also for (11) there may be Krasovskii equilibria which are not
extended equilibria: see, for instance, the initial condition in Example 1 or, more
generally, any point x∗ = (k + 1

2 )1 with integer k. Actually, our convergence result
below will imply that all Krasovskii equilibria are consensus points. Before it, we
provide the reader with three statements that describe qualitative properties of the
solutions.

Remark 2 (Local stability). Note that extended equilibria of (11) are Lyapunov
stable and locally asymptotically stable. In fact for any equilibrium x∗ there exists a
neighborhood where the vector field can be written as f(x) = −(N − 1)(x− x∗).

Remark 3 (Finite-time exit for Carathéodory solutions). From the proof of
Proposition 5.1 it follows that in each Sk with k 6= (h, . . . , h)⊤ for any h ∈ Z, trajec-
tories are line segments that are generated by Carathéodory solutions corresponding
to a vector field whose equilibrium is out of Sk. This consideration implies that all
solutions to (2) escape from every set Sk with k 6= (h, . . . , h)⊤ in finite time. On the
other hand, once inside some S(h,h,...,h), the equilibrium is reached asymptotically.

Lemma 5.2 (Invariance properties). Let x(t) be a Carathéodory or Krasovskii
solution of (11) and let sij(x) = xi − xj and Sij = {x ∈ R

N : sij(x) = 0}.
(A) (Invariant manifolds) If x(t0) ∈ Sij, then x(t) ∈ Sij for all t ≥ t0.
(B) (Order preservation) If xi(t0) ≤ xj(t0) for some t0 ∈ R then xi(t) ≤ xj(t) for

all t ≥ t0.

Proof. We prove the statements for Krasovskii solutions. (A) Let x(t) be a
Krasovskii solution such that x(t0) = x0 ∈ Sij . We prove that x(t) can not leave
Sij . If x0 ∈ Sij\∆, f(x0) is parallel to Sij in fact ∇sij(x0) = ei − ej and

∇sij(x0) · f(x0) =fi(x0)− fj(x0)

=
∑

h 6=i

[q(x0h)− x0i]−
∑

h 6=j

[q(x0h)− x0j ]

=q(x0j)− q(x0i)− (N − 1)(x0i − x0j) = 0.

Let now x0 ∈ Sij ∩∆, i.e. x0h = kh + 1
2 for h ∈ I ′ ⊂ I and some kh ∈ Z. We first

consider the case i, j 6∈ I ′. In this case for any limit value f l(x0) of f(x0) at x0 one
has

∇sij(x0) · f l(x0) = f l
i (x0)− f l

j(x0) = q(x0j)− q(x0i)− (N − 1)(x0i − x0j) = 0.

meaning that all f l(x0) are parallel to Sij .
Then we consider the case x0i = x0j = k + 1

2 for some k ∈ Z. We consider four

limit values f (i)(x0), f
(ii)(x0), f

(iii)(x), f (iv)(x) of vector the field f(x0), depending
on the fact that x0 is approached from the following sectors:

(i) xi > k + 1
2 , xj < k + 1

2
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(ii) xi > k + 1
2 , xj > k + 1

2
(iii) xi < k + 1

2 , xj > k + 1
2

(iv) xi < k + 1
2 , xj < k + 1

2 .
Note that

∇sij(x0) · f (ii)(x0) = ∇sij(x0) · f (iv)(x0) = 0,

meaning that f (ii)(x0) and f (iv)(x0) are parallel to Sij at x0. In sector (i) one has
sij(x) = xi − xj > 0 and

∇sij(x0) · f (i)(x0) = −1.

This means that f (i)(x0) points towards Sij and the solution can not move towards
the sector (i). In fact assume by contradiction that there exists T > 0 such that the
solution x(t) belongs to the sector (i) when t ∈ (0, T ). The fact that x(t) belongs
to the sector (i) means that xi(t) − xj(t) > 0 when t ∈ (0, T ). On the other hand
xi(t) − xj(t) = sij(t) and

d
dt
sij(x(t)) = ∇sij(x(t)) · ẋ(t) = ∇sij(x(t)) · f (i)(x(t)) < 0

meaning that sij(x(t)) is decreasing in (0, T ) so that xi(t)−xj(t) < xi(0)−xj(0) = 0,
contradiction. Analogously in (iii) one has sij(x) = xi − xj < 0 and ∇sij(x0) ·
f (iii)(x0) = 1. This means that f (iii)(x0) points towards Sij and the solution cannot
move towards sector (iii).
(B) This is an immediate consequence of the previous statement. Assume first that
xi(t0) < xj(t0) and xi(t

∗) > xj(t
∗) for some t∗ > t0. Then there exist t̄ ∈ (t0, t

∗) such
that xi(t̄) = xj(t̄) and t∗ > t0 such that xi(t

∗) > xj(t
∗), which contradicts (A). In

the case xi(t0) = xj(t0) and xi(t
∗) > xj(t

∗) for some t∗ > t0 the contradiction with
(A) is immediate.

We now state the main result of this section: any Carathéodory or Krasovskii
solution converges to a consensus point. The convergence is illustrated in Figure 4.
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Fig. 4. Simulations of (11) and (14) (respectively, left and right plot) for N = 20 from
random initial conditions in [0, 30], obtained via the explicit Euler method with step size 10−2. Both
simulations show convergence of the states to the integer consensus value h = 15. System (11) also
exhibits order preservation as per Lemma 5.2.

Theorem 5.3 (Convergence–Complete graph). Any Carathéodory or Krasovskii
solution x(t) of (11) converges to a consensus point. Furthermore, if x(t) is Carathéo-
dory, then the limit point is necessarily of the form (h, . . . , h)⊤ with integer h. If
instead x(t) is Krasovskii, then the limit may be of the form (h+ 1

2 , . . . , h+ 1
2 )

⊤.

Proof. As in the proof of Lemma 5.2 we prove convergence for the more general
case of Krasovskii solutions. Let x(t) be any Krasovskii solution of (11). Thanks to
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the previous lemma, we can assume without loss of generality that x1(t0) ≤ · · · ≤
xN (t0). Indeed, by order preservation we have x1(t) ≤ . . . ≤ xN (t) for all t ≥ t0 and
xN (t)−x1(t) ≥ 0 for all t ≥ t0. We prove that xN (t)−x1(t) → 0 as t → +∞. If there
exists T such that xN (T ) = x1(T ), then, thanks to Lemma 5.2, xN (t) − x1(t) = 0
with t ≥ T . If instead xN (t) > x1(t) for all t ≥ t0, then we can recall that ẋ(t) ∈
−Dx(t) + AKq(x(t)), where aij = 1 if i 6= j and aij = 0 if i = j, and there exists a
measurable function v(t) ∈ Kq(x(t)) such that ẋ(t) = −Dx(t) +Av(t). We can then
write

d

dt
(xN (t)− x1(t)) =

∑

j 6=N

vj(t)− (N − 1)xN (t)−
∑

j 6=1

vj(t) + (N − 1)x1(t)

=− (N − 1)(xN (t)− x1(t)) − (vN (t)− v1(t))

As xN (t) > x1(t) we have that vN (t) ≥ v1(t), i.e. vN (t)− v1(t) ≥ 0 and then

d

dt
(xN (t)− x1(t)) =− (N − 1)(xN (t)− x1(t)) − (vN (t)− v1(t))

≤− (N − 1)(xN (t)− x1(t)),(13)

which implies that xN (t)− x1(t) → 0 as t → +∞.
We now distinguish two cases. If x(t) is in the interior of S(h,...,h) for some t and

some h ∈ Z, then

ẋ(t) = f(x(t)) = −(N − 1)(x(t) − (h, . . . , h)⊤)

and x(t) → (h, . . . , h)⊤ as t → +∞. Otherwise, the only way for x(t) to converge to
consensus without entering the interior of any S(m,...,m) for any m ∈ Z is that x(t)

converges to (h + 1
2 , . . . , h + 1

2 )
⊤ for some h ∈ Z. In this case, Remark 3 implies

that x(t) actually reaches (h + 1
2 , . . . , h+ 1

2 )
⊤ in finite time. Afterwards, if x(t) is a

Carathéodory solution, then it cannot stay there (because of Proposition 5.1), nor it
can leave the consensus manifold (because of the differential inequality (13)): thus, it
necessarily converges to (h, . . . , h) or to (h+1, . . . , h+1). If instead x(t) is a Krasovskii
solution, it may stay at (h+ 1

2 , . . . , h+ 1
2 ), which is Krasovskii equilibrium.

5.2. Complete bipartite graph. In the case the graph is complete bipartite,
equations (2) read

ẋi =
∑

h∈Q
[q(xh)− xi] ẋh =

∑

i∈P
[q(xi)− xh](14)

where P = {1, . . . , p} and Q = {p+ 1, . . . , N}.
Theorem 5.4 (Convergence–Complete bipartite). Any Carathéodory or Krasov-

skii solution to (14) converges to a consensus point.

Proof. Let x(t) be any Krasovskii solution of (14). First of all we prove that
xi(t) − xj(t) → 0 as t → +∞ for i, j ∈ P and xh(t) − xk(t) → 0 as t → +∞ for
h, k ∈ Q. We recall that x(t) is such that

ẋ(t) ∈ −Dx(t) +K(Aq(x(t)))

and that there exists a measurable function v(t) such that ẋ(t) = v(t) −Dx(t) with
v(t) ∈ K(Aq(x(t))). In the case of the bipartite graph dii = N−p, dhh = p, (Aq(x))i =
∑

h∈Q q(xh), (Aq(x))h =
∑

i∈P q(xi) with i = 1, . . . , p and h = p+ 1, . . . , N .
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We denote by vi(t) the i-th component of v(t) and prove that vi(t) = vj(t) for
i, j ∈ P . Clearly if xh(t) 6= k + 1/2, k ∈ Z, for all h ∈ Q, then vi(t) =

∑

h∈Q q(xh(t))
for all i ∈ P . If xh(t) = kh+1/2, for some kh ∈ Z and for some h ∈ Q′ ⊂ Q, there exist
2|Q

′| = M limit values Q1, . . . , QM for q(x) at x(t), and v(t) ∈ K(Aq(x(t)) can be
written v(t) = α1AQ

1+ . . . αMAQM , with α1, . . . , αM ∈ [0, 1] and α1+ . . .+αM = 1.
As (Aq(x))i =

∑

h∈Q q(xh) for any i = 1, . . . , p we get that vi(t) = vj(t) for any
i, j ∈ P . Analogously, one has vh(t) = vk(t) for h, k ∈ Q.

For any i, j ∈ P we thus get

d

dt
(xi(t)− xj(t)) = vi(t)− pxi(t)− vj(t) + pxj(t) = −p(xi(t)− xj(t))

which implies that xi(t) − xj(t) → 0 as t → +∞. Moreover if there exists τ such
that xi(τ) = xj(τ) for i, j ∈ P , then xi(t) = xj(t) for all t ≥ τ . Analogously one
has xh(t) − xk(t) → 0 as t → +∞ for any h, k ∈ Q and if there exists τ ′ such
that xh(τ

′) = xk(τ
′) for i, j ∈ P , then xh(t) = xk(t) for all t ≥ τ ′. The fact that

xi(t)−xj(t) → 0 and xh(t)−xk(t) → 0 as t → +∞ also implies that either there exists
T such that xi(t) ≤ xh(t) for all i ∈ P , h ∈ Q and for all t ≥ T or xi(t) − xh(t) → 0
for all i ∈ P , h ∈ Q.

Let m(t) ∈ {1, . . . , N} be such that xm(t)(t) = min{xi(t), i = 1, . . . , N} and
M(t) ∈ {1, . . . , N} be such that xM(t)(t) = max{xi(t), i = 1, . . . , N}. We will simply
denote xm(t)(t) = xm(t) and xM(t)(t) = xM (t). Thanks to the previous remark we
can assume that m(t) ∈ P and M(t) ∈ Q definitively. We first assume that there
exist T ′ ∈ R and q ∈ Z such that xm(T ′), xM (T ′) ∈ (q − 1/2, q + 1/2). In this case,
from (14) we get that xm(t), xM (t) ∈ (q − 1/2, q + 1/2) for all t ≥ T ′ and xi(t) → q
for all i ∈ P , xh(t) → q for all h ∈ Q.

We then prove that there exist T and q ∈ Z such that either xm(T ), xM (T ) ∈
(q − 1/2, q + 1/2) or xm(t) = xM (t) = q + 1/2 for all t ≥ T .

Note that as far as xm(t) ∈ [q− 1/2, q+1/2) and xM (t) > q+1/2, for almost all
t one has

d

dt
(xM (t)− xm(t)) ∈ K

(

∑

i∈P
[q(xi)− xM ]−

∑

h∈Q
[q(xh)− xm]

)

and if v ∈ K(
∑

i∈P [q(xi)−xM ]−
∑

h∈Q[q(xh)−xm]), then v ≤ −1. This fact implies
that xM (t)− xm(t) decreases until one of the following cases is reached:

• q − 1/2 < xm(t′) < q + 1/2, xM (t′) = q + 1/2,
• xm(t′) = q − 1/2, xM (t′) = q + 1/2,
• xm(t′) = xM (t′) = q + 1/2.

In the first case, q(xi(t
′)) = q. Since q− (q + 1/2) = −1/2 < 0, we get that there

exists t′′ > t such that xM (t) decreases in (t′, t′′) and xm(T ), xM (T ) ∈ (q−1/2, q+1/2)
at some time T ∈ (t′, t′′).

The second case is analogous to the first one with xm(t) increasing and xM (t)
decreasing in a right neighbourhood (t′, t′′) of t′, so that xm(T ), xM (T ) ∈ (q−1/2, q+
1/2) at some time T ∈ (t′, t′′).

Finally in the third case it is sufficient to recall that if xi(t
′) = xj(t

′) and
xh(t

′) = xk(t
′) then xi(t) = xj(t) and xh(t) = xk(t) for all t ≥ t′. This implies

that xi(t), xh(t) → q or xi(t), xh(t) → q + 1 or xi(t) = xh(t) = q + 1/2 for all i ∈ P ,
h ∈ Q.

By exhausting the cases, we have proved the claim and consequently completed
the proof.
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6. Simulations on general graphs. We now present some simulations in order
to illustrate and explore the convergence properties of (2) on general graphs. The
simulations show that convergence to non-consensus equilibria is very common on
non-structured graphs: two examples are shown in Figures 5 and 6.

We have constructed our numerical solutions, issuing from random initial condi-
tions, by applying the explicit Euler method with a fixed step. Numerical solutions
constructed in this way are approximations of certain Krasovskii solutions, which in-
clude attractive Krasovskii solutions sliding on the discontinuity set. However, we
are unable to observe in the simulations any chattering phenomenon that would in-
dicate the presence of solutions with this feature. It thus remains an open problem
determining whether there exists any non-Carathéodory non-constant solutions with
non-negligible basin of attraction. Instead, our numerical solutions cannot approxi-
mate any unstable Krasovskii solutions sliding on the discontinuity set. Nevertheless,
we know that there exist some, because an example of those has been constructed
analytically in Example 3.
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Fig. 5. Evolution of x and q(x(t)) on a connected graph with N = 20 generated as an instance
of random geometric graph with connectivity radius 0.2. The size of Euler method step is 0.01.
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Fig. 6. Evolution of x and q(x(t)) on a connected directed graph with N = 20, randomly
generated by connecting each ordered pair of nodes with probability 0.1. The size of Euler method
step is 0.01.
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7. Conclusion. In this article we have addressed the problem of opinions for-
mation in a group where opinions are continuous variables that are communicated
to other individuals by means of discrete variables, which may represent behaviours,
choices, or verbal expressions. We have shown that in general we can not expect
consensus and that unexpected equilibria may appear. We think that these features
are relevant from the point of view of opinion dynamics, as a good model should be
able to justify both agreement and disagreement. Our positive results consist in an
asymptotic estimate of the distance from consensus depending on the communication
graph and in the proof of consensus for some special cases, when the communication
graph is either complete or complete bipartite. Two main questions remain open:
proving (or disproving) that solutions converge to equilibria, and finding necessary
and sufficient conditions for consensus.
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