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I. INTRODUCTION

The unification of number theory with quantum mechanics has been the subject of many research investigations [1][2][3][4][5]. It has been proven that an infinitude of prime numbers exist [START_REF] Ribenboim | The little Book of Big Primes[END_REF]. In Ref. [START_REF] Bender | [END_REF], it was shown that the eigenvalues of a Bender-Brody-Müller (BBM) Hamiltonian operator correspond to the nontrivial zeros of the Riemann zeta function. If the Riemann Hypothesis is correct [START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF], the zeros of the Riemann zeta function can be considered as the spectrum of an operator R = Î/2 + i Ĥ, where Ĥ is a self-adjoint Hamiltonian operator [5,[START_REF] Faris | [END_REF], and Î is identity. Hilbert proposed the Riemann Hypothesis as the eighth problem on a list of significant mathematics problems [10]. Although the BBM Hamiltonian is pseudo-Hermitian [11], it is consistent with the Berry-Keating conjecture [START_REF] Berry | Supersymmetry and Trace Formulae[END_REF][START_REF] Berry | [END_REF][14], which states that when x and p commute, the Hamiltonian reduces to the classical H = 2xp. Berry, Keating and Connes proposed the classical Hamiltonian in an effort to map the Riemann zeros to the Hamiltonian spectrum. More recently, the classical Berry-Keating Hamiltonians were quantized, and were found to contain a smooth approximation of the Riemann zeros [15,16]. This reformulation was found to be physically equivalent to the Dirac equation in Rindler spacetime [17]. Herein, the eigenvalues of the BBM Hamiltonian are taken to be the imaginary parts of the nontrivial zeroes of the analytical continuation of the Riemann zeta function

ζ(s) = 1 1 -2 1-s • ∞ n=1 (-1) n-1 n s , (1) 
where the complex number s = σ + it, and (s) > 0. The idea that the imaginary parts of the zeros of Eq. ( 1) are given by a self-adjoint operator was conjectured by Hilbert and Pólya [18]. Hilbert and Pólya asserted that the nontrivial zeros of Eq. ( 1) can be considered as the spectrum of a self-adjoint operator in a suitable Hilbert space. The Hilbert-Pólya conjecture has also found applications in quantum field theories [19]. The Riemann Hypothesis states that the zeros of Eq. (1) on 0 ≤ σ < 1 have real part equal to 1/2 [START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF]20]. In Ref. [21], Hardy proved that infinitely many zeros are located at σ = 1/2. According to the Prime Number Theorem [22,23], no zeros of Eq. ( 1) can exist at σ = 1. In this paper we present a Schrödinger equation that maps to the nontrivial zeros of the Riemann zeta function in Sec. II, and evaluate the convergence of the expression by imposing a normalization constraint on the density. A self-adjoint Hamiltonian is derived from the BBM Hamiltonian, and a second quantization of the resulting Schrödinger equation is then performed to obtain the equations of motion. In Sec. II F, we study the holomorphic eigenvalues of the Riemann zeta function by taking the expectation values of the resulting Schrödinger equation to show that the real part of every nontrivial zero of the analytic continuation of the Riemann zeta function converges at σ = 1/2. Finally we obtain a general solution to the Riemann zeta Schrödinger equation by performing a similarity transformation in Sec. III, and make concluding remarks in Sec. IV.

II. RIEMANN ZETA SCHR ÖDINGER EQUATION

We consider the eigenvalues of the Hamiltonian

Ĥ = 1 1 -e -i p (xp + px)(1 -e -i p), (2) 
where p = -i ∂ x , = 1, and x = x. In Ref. [START_REF] Bender | [END_REF], it is conjectured that if the Riemann Hypothesis is correct, the eigenvalues of Eq. ( 2) are non-degenerate. Next, we let Ψ s (x) be an eigenfunction of Eq. ( 2) with an eigenvalue t = i(2s -1), such that

Ĥ |Ψ s (x) = t |Ψ s (x) , (3) 
and x ∈ R + , s ∈ C. Solutions to Eq. ( 3) are given by the analytic continuation of the Hurwitz zeta function

|Ψ s (x) = -ζ(s, x + 1) = -Γ(1 -s) 1 2πi C z s-1 e (x+1)z 1 -e z dz, (4) 
on the positive half line x ∈ R + with eigenvalues i(2s -1), s ∈ C, (s) ≤ 1, the contour C is a loop around the negative real axis, and Γ is the Euler gamma function for (s) > 0

Γ(s) = ∞ 0 x s-1 e -x dx. (5) 
As -|Ψ s (x = 1) is 1 -ζ(s * ), this implies that s belongs to the discrete set of zeros of the Riemann zeta function when s * = σ -it, and as -|Ψ s (x = -1) is ζ(s), this implies that s belongs to the discrete set of zeros of the Riemann zeta function when s = σ + it. From inserting Eq. ( 3) into Eq. ( 2), we have the relation

1 1 -e -i p (xp + px)(1 -e -i p) |Ψ s (x) = t |Ψ s (x) . (6) 
Given that Eq. ( 2) is not Hermitian, it is useful to symmetrize the system. This can be accomplished by letting

|φ s (x) = [1 -exp(-∂ x )] |Ψ s (x) , = ∆ |Ψ s (x) = |Ψ s (x) -|Ψ s (x -1) , (7) 
and defining a shift operator

∆ ≡ 1 -exp(-∂ x ). (8) 
For s > 0 the only singularity of ζ(s, x) in the range of 0 ≤ x ≤ 1 is located at x = 0, behaving as x -s . More specifically,

ζ(s, x + 1) = ζ(s, x) - 1 x s , (9) 
with ζ(s, x) finite for x ≥ 1 [START_REF] Espinosa | [END_REF]. As such, it can be seen from Eq. ( 7) that the eigenfunction

|φ s (x) = 1 x s . (10) 
Upon inserting Eq. ( 7) into Eq. ( 6) we obtain

-i[x∂ x + ∂ x x] |φ s (x) = t |φ s (x) . (11) 
Let H be a Hilbert space, and from Eq. (11) we have the Hamiltonian operator

Ĥ = -i x∂ x + ∂ x x = -i 2x∂ x + 1 , (12) 
for x ∈ R acting in H , such that Ĥf, g = f, Ĥg ∀ f, g ∈ D( Ĥ). (13) 
Restricting x ∈ R + , Eq. ( 12) is then written

Ĥ = -2i √ x∂ x √ x, (14) 
where s ∈ C, and x ∈ R + . For the Hamiltonian operator as given by Eq. ( 14), the Hilbert space is H = L p=2 (1, ∞) [26][27][28]. We then impose on Eq. ( 14) the following minimal requirements, such that its domain is not too artificially restricted.

i Ĥ is a symmetric (Hermitian) linear operator;

ii Ĥ can be applied on all functions of the form

g(x, s) = P (x, s) exp - x 2 2 , ( 15 
)
where P is a polynomial of x and s. Here, it should be pointed out that Ĥ = T + V , and from Eq. ( 12), it can be seen that T = -2i x∂ x , V = -i . From (ii), V g(x, s) must belong to the Hilbert space H = L 2 defined over the space x. This is guaranteed as

| -i |≤ , (16) 
where is the reduced Planck constant or Dirac constant. The domain D V of the potential energy V consists of all φ ∈ H for which V φ ∈ H . As such, V is self-adjoint. It is not necessary to specify the domain of Eq. ( 14), as it is only necessary to admit that Eq. ( 14) is defined on a certain D Ĥ such that (i) and (ii) are satisfied. If we denote by D 1 the set of all functions in Eq. (15), then (ii) implies that D Ĥ ⊇ D 1 . By letting Ĥ1 be the contraction of Ĥ with domain D 1 , i.e., Ĥ is an extension of Ĥ1 , and letting H1 be the closure of Ĥ, it can be seen that H1 is self-adjoint. Since Ĥ is symmetric and Ĥ ⊇ Ĥ1 , i.e., Ĥ is an extension of Ĥ1 , it follows that H = H1 and Ĥ is essentially self-adjoint, where H is the unique self-adjoint extension [29]. Other than eigenfunctions φ s (x) in configuration space as seen in Eq. (10), it is useful to represent eigenfunctions in momentum space Φ s (p). The transformation between configuration space eigenfunctions and momentum space eigenfunctions can be obtained via Plancherel transforms [30], where the one-to-one correspondence φ s (x) Φ s (p) is linear and isometric.

A. Preliminaries Definition 1. The complex valued function (eigenstate)

φ s (x) = φ σ (x) + iφ t (x) : X → C is measurable if E
is a measurable subset of the measure space X and for each real number r, the sets {x ∈ E : φ σ (x) > r} and {x ∈ E : φ t (x) > r} are measurable for σ, t ∈ R.

Definition 2. Let φ s be a complex-valued eigenstate on a measure space X, and φ s = φ σ + iφ t , with φ σ and φ t real. Therefore, φ s is measurable iff φ σ and φ t are measurable.

Suppose µ is a measure on the measure space X, and E is a measurable subset of the measure space X, and φ s is a complex-valued eigenstate on X. It follows that φ s ∈ (H = L (µ)) on E, and φ s is complex square-integrable, if φ s is measurable and

E | φ s | dµ < +∞. ( 17 
)
Definition 3. The complex valued function (eigenstate) φ s = φ σ + iφ t defined on the measurable subset E is said to be integrable if φ σ and φ t are integrable for σ, t ∈ R, where µ is a measure on the measure space X. The Lebesgue integral of φ s is defined by

E φ s dµ = E φ σ dµ + i E φ t dµ. (18) 
Definition 4. Let X be a measure space, and E be a measurable subset of X. Given the complex eigenstate φ s , then

φ s ∈ (H = L 2 (µ)) on E if φ s is Lebesgue measurable and if E | φ s | 2 dµ < +∞, ( 19 
)
such that φ s is square-integrable. For φ s ∈ (H = L 2 (µ)) we define the L 2 -norm of φ s as φ s 2 = E | φ s | 2 dµ 1/2 , ( 20 
)
where µ is the measure on the measure space X.

Definition 5. Let X be a measure space, and E be a measurable subset of X. Given the complex eigenstate φ s , then

φ s ∈ (H = L p (µ)) on E if φ s is Lebesgue measurable and if E | φ s | p dµ < +∞, ( 21 
)
such that φ s is p-integrable. For φ s ∈ (H = L p (µ)) we define the L p -norm of φ s as φ s p = E | φ s | p dµ 1/p , ( 22 
)
where µ is the measure on the measure space X.

B. Measure Theorem 1. The eigenstate φ s (x) = x -s : X → C is measurable. That is, φ s (x) = φ σ (x) + iφ t (x) where φ σ , φ t : E → (-∞, -1] ∪ [1, ∞) are measurable for s = σ + it and σ, t ∈ R.
Proof. Owing to the one-to-one correspondence obtained from Plancherel transforms between configuration space and momentum space eigenstates, it can be seen that

Φ s (p) = 1 2π 3/2 ∞ -∞ φ s (x) exp(-ipx)dx = 1 2π 3/2 exp - 1 2 iπs (sgn(p) + 1) sin(πs)Γ(1 -s) |p| s-1 , 0 < (s) < 1. (23) 
and

φ s (x) = 1 2π 3/2 ∞ -∞ Φ s (p) exp(ipx)dp. ( 24 
)
Since

φ s 1 ≡ -1 -∞ | φ s (x) | dx + ∞ 1 | φ s (x) | dx = -1 -∞ | Φ s (p) | dp + ∞ 1 | Φ s (p) | dp ≡ Φ s 1 , (25) 
from which

Φ s 1 = φ s 1 = - 1 sπ 3/2 exp 1 2 π (s) sin 2 (πs) Γ(1 -s) 2 . ( 26 
)
It then follows that φ s is complex square-integrable, i.e.,

φ s (x) ∈ H ⇐⇒ E |φ s (x)|dµ < +∞. ( 27 
)
Theorem 2. Let the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it, and let the measurable subset

E → (-∞, -1] ∪ [1, ∞). The H = L 2 -norm of the complex-valued eigenstate φ s = x -s is null, i.e., zero at σ = 1/2.
Proof. Owing to the one-to-one correspondence obtained from Plancherel transforms between configuration space and momentum space eigenstates, it can be seen that

Φ s (p) = 1 2π 3/2 ∞ -∞ φ s (x) exp(-ipx)dx = 1 2π 3/2 exp - 1 2 iπs (sgn(p) + 1) sin(πs)Γ(1 -s) |p| s-1 , 0 < (s) < 1. ( 28 
)
and

φ s (x) = 1 2π 3/2 ∞ -∞ Φ s (p) exp(ipx)dp. ( 29 
)
Since

φ s p = -1 -∞ | φ s (x) | p dx 1 p + ∞ 1 | φ s (x) | p dx 1 p , (30) 
and[36]

Φ s p = -1 -∞ | Φ s (p) | p dp 1 p + ∞ 1 | Φ s (p) | p dp 1 p , (31) from which 
Φ s p = φ s p = exp(πpt) pσ -1 1 p + 1 pσ -1 1 p . (32) 
It then follows that at σ = 1/2,

Φ s p = φ s p = exp(πpt) p 2 -1 1 p + 1 p 2 -1 1 p , (33) 
such that the L p=2 -norm of φ s is of indeterminant form. Furthermore, it can be seen from

lim p→2 exp(πpt) p 2 -1 1 p , (34) 
and letting

y = exp(πpt) p 2 -1 1 p , (35) 
that

ln(y) = 1 p ln exp(πpt) p 2 -1 = πt - 1 p ln p 2 -1 , (36) 
and using the projectively extended real line R ∪ {∞}

lim p→2 ln(y) = lim p→2 πt - 1 p ln p 2 -1 = L'Hôpital lim p→2 πt - 1 2 -p = πt -∞. ( 37 
)
Exponentiating both sides, we obtain 

and letting

z = 1 p 2 -1 1 p , (40) 
then

ln(z) = 1 p ln 1 p 2 -1 = 1 p ln(1) -ln p 2 -1 = - 1 p ln p 2 -1 , (41) 
and using the projectively extended real line R ∪ {∞}

lim p→2 ln(z) = lim p→2 - 1 p ln p 2 -1 = L'Hôpital lim p→2 - 1 2 -p = -∞. ( 42 
)
Exponentiating both sides, we obtain exp lim

p→2 ln(z) = lim p→2 exp ln(z) = lim p→2 z = exp(-∞) = 0, (43) such that 
Φ s p=2 = φ s p=2 = 0. (44) 
Eqs. ( 23) and ( 24) are two vector representations of the same Hilbert space H = L p=2 (1, ∞). From Eq. ( 12), it can be seen that

T = -2i x∂ x , (45) 
such that we define a multiplicative operator T0 in momentum space ( T0 Φ s )(p) = T0 (p)Φ s (p), where

T0 (p) = 2xp. ( 46 
)
Here, it should be pointed out that as x = i d/dp, Eq. ( 46) reduces to

T0 (p) = 2i , (47) 
and Eq. ( 12) is then rewritten in momentum space as Ĥ(p) = i . The domain D 0 of T0 is defined as the set of all functions Φ s (p) ∈ H such that T0 (p)Φ s (p) ∈ H . As such, T0 is definitively self-adjoint. From Eq. ( 15) we have defined the set D 1 of functions in configuration space. From the Plancherel transform [30] of Eq. ( 15), we obtain the set D 1 of functions in momentum space having the form

G(p, s) = P (p, s) exp - p 2 2 , ( 48 
)
where P is a polynomial of p and s. Eqs. ( 23) and ( 24) are true if φ s (x) ∈ D 1 or Φ s (p) ∈ D 1 and since Φ s (p) ∈ D 1 → 0 as p → ∞ then D 1 ⊆ D 0 . Moreover, for φ ∈ D 1 , T0 coincides with Eq. (45) [29]. Using Eq. ( 23) and Ĥ(p) = i , the eigenrelation

Ĥ(p) |Φ s (p) = λ |Φ s (p) (49) 
is obtained. In order to find the expectation value for Ĥ we take the complex conjugate of Eq. ( 49), set = 1, multiply by the eigenfunction Φ s (p), and then integrate over p to obtain

∞ -∞ i e -1 2 iπs (sgn(p) + 1) sin(πs)Γ(1 -s) |p| s-1 2π 3/2 * e -1 2 iπs (sgn(p) + 1) sin(πs)Γ(1 -s) |p| s-1 2π 3/2 dp = λ * Φ s p , ( 50 
)
where λ is the eigenvalue.

Theorem 3. Let the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it, and let the measurable

subset E → (-∞, -1] ∪ [1, ∞).
The following are equivalent for σ, t ∈ R:

1. For each real number r, the set {x ∈ E : φ σ (x) > r} is measurable.

2. For each real number r, the set {x ∈ E : φ t (x) > r} is measurable.

3. For each real number r, the set {x ∈ E : φ σ (x) ≥ r} is measurable.

4. For each real number r, the set {x ∈ E : φ t (x) ≥ r} is measurable.

5.

For each real number r, the set {x ∈ E : φ σ (x) < r} is measurable.

6. For each real number r, the set {x ∈ E : φ t (x) < r} is measurable.

7.

For each real number r, the set {x ∈ E : φ σ (x) ≤ r} is measurable.

8. For each real number r, the set {x ∈ E : φ t (x) ≤ r} is measurable.

Proof. Note that the intersection of sets,

{x ∈ E : φ σ (x) ≥ r} = ∞ n=1 {x ∈ E : φ σ (x) > r - 1 n }, (51) 
{x ∈ E :

φ t (x) ≥ r} = ∞ n=1 {x ∈ E : φ t (x) > r - 1 n }, (52) 
{x ∈ E :

φ σ (x) > r} = ∞ n=1 {x ∈ E : φ σ (x) ≥ r + 1 n }, ( 53 
) {x ∈ E : φ t (x) > r} = ∞ n=1 {x ∈ E : φ t (x) ≥ r + 1 n }, (54) 
where

φ σ (x) = (x 2 ) -σ/2 exp t • arg(x) cos σ • arg(x) + t 2 log(x 2 ) , (55) 
and

φ t (x) = -(x 2 ) -σ/2 exp t • arg(x) sin σ • arg(x) + t 2 log(x 2 ) . ( 56 
) Theorem 4. Let E → (-∞, -1] ∪ [1, ∞)
be a measurable subset of the measure space X. If the complex valued eigenstate φ s (x) = φ σ (x) + iφ t (x) = x -s where s = σ + it, and φ σ (x),and φ t are continuous a.e. on E, then φ s (x) is measurable for σ, t ∈ R.

Proof. Let D be the singleton {0} owing to the singularity at x = 0 of φ s (x) = x -s . Then µ(D) = 0 and all of its subsets are measurable. Let r ∈ R and note that

{x ∈ E : φ σ (x) > r} = {x ∈ E -D : φ σ (x) > r} ∪ {x ∈ D : φ σ (x) > r}, (57) 
where

φ σ (x) = (x 2 ) -σ/2 exp t • arg(x) cos σ • arg(x) + t 2 log(x 2 ) , (58) 
and

φ t (x) = -(x 2 ) -σ/2 exp t • arg(x) sin σ • arg(x) + t 2 log(x 2 ) . (59) 
Letting

C σ = {x ∈ E -D : φ σ (x) > r}, (60) 
for each x ∈ C σ , as φ σ (x) is continuous at x, we can find δ x > 0 such that if y ∈ V δx (x) then φ σ (y) > r. It be seen that φ σ (x) is measurable, since

C σ = (E -D) x∈Cσ V δx (x). (61) 
Similarly, noting that

{x ∈ E : φ t (x) > r} = {x ∈ E -D : φ t (x) > r} ∪ {x ∈ D : φ t (x) > r}, (62) 
and letting

C t = {x ∈ E -D : φ t (x) > r}, (63) 
for each x ∈ C t , as φ t (x) is continuous at x, we can find δ x > 0 such that if y ∈ V δx (x) then φ t (y) > r. It can be seen that φ t (x) is measurable since

C t = (E -D) x∈Ct V δx (x). (64) 
Let {φ s } = {φ σ } + i{φ t } be a sequence of functions defined on the measure space X → C. Denoting 

Theorem 5. Let the sequence of measurable eigenstates {φ s } = {φ σ } + i{φ t } be defined on the measure space X → C.

For the sequence of measurable eigenstates

{φ σ } : E → (-∞, -1] ∪ [1, ∞) g(x) = sup σ φ σ (x), (72) 
and

h(x) = lim sup σ φ σ (x), (73) 
such that g and h are measurable for x ∈ E.

Proof. For any r ∈ R, we obtain

{x ∈ E : g(x) > r} = σ {x ∈ E : φ σ (x) > r}. (74) 
From Eqs. ( 67) and ( 70)-( 71), this implies that h is also measurable.

Corollary 1. Let φ σ be a sequence of measurable eigenstates defined on the measure space X, and φ σ : E → (-∞, -1] ∪ [1, ∞). Since {φ σ } converges pointwise to φ σ a.e. on E, then φ σ is measurable.

Theorem 6. Let the sequence of measurable eigenstates {φ s } = {φ σ } + i{φ t } be defined on the measure space X → C.

For the sequence of measurable eigenstates

{φ t } : E → (-∞, -1] ∪ [1, ∞) g(x) = sup t φ t (x), (75) 
and

h(x) = lim sup t φ t (x), (76) 
such that g and h are measurable for x ∈ E.

Proof. For any r ∈ R, we obtain

{x ∈ E : g(x) > r} = t {x ∈ E : φ t (x) > r}. ( 77 
)
From Eqs. ( 67) and ( 70)-( 71), this implies that h is also measurable.

Corollary 2. Let φ t be a sequence of measurable eigenstates defined on the measure space X, and 

φ t : E → (-∞, -1] ∪ [1, ∞).
-∂ s |Ψ s (x) = i ∆-1 xp ∆ + ∆-1 px ∆ |Ψ s (x) , (78) 
where ∆ = 1 -exp(-∂ x ), x = x, p = -i ∂ x , = 1, x ∈ R + ≥ 1 owing to the difference operator ∆ |Ψ s (x) , and s ∈ C.

Upon inserting Eq. ( 7) into Eq. ( 78) for x ∈ R + , we obtain the symmetrized Riemann zeta Schrödinger equation, i.e.,

∂ s |φ s (x) = 1/2(∂ σ -i∂ t ) |φ s (x) = - 2 √ x∂ x √ x |φ s (x) . ( 79 
)
Theorem 7. Let the complex-valued eigenstate φ s (x) = φ σ (x)+iφ t (x) = x -s where s = σ+it and σ, t ∈ R, and let the measurable subset of the measure space

X be E → (-∞, -1]∪[1, ∞). For the Hamiltonian operator Ĥ = -2i √ x∂ x √
x, all of the eigenvalues t occur at | σ |= 1/2 with = 1.

Proof. Let |φ s (x) be an eigenstate of Ĥ with eigenvalue t, i.e., Ĥ |φ s (x) = t |φ s (x) .

(80)

In order to find the expectation value of Ĥ we multiply Ĥ by the eigenstate, take the complex conjugate, and then multiply the result by the eigenstate and integrate over E to obtain 2i

E √ x∂ x √ xφ s (x) * φ s (x)dx = t * E φ * s (x)φ s (x)dx = t * φ p=2 . (81) 
Integrating by parts on the LHS then gives

-2i φ p=2 + -1 -∞ φ * s (x)x d dx φ s (x)dx + ∞ 1 φ * s (x)x d dx φ s (x)dx = t * φ p=2 . ( 82 
)
Carrying out the integration on the LHS we obtain 2i(-1) -2σ (-1)

2σ + 1 (σ + it) = (2σ -1)(t * + 2i) φ p=2 . ( 83 
)
Upon inserting the L 2 -norm from Eq. ( 44) it can be seen that 

| σ |= 1 2 ∀ t. ( 84 
(x) = -2 √ x∂ x √
x |φ s (x) , the complex-valued eigenstate |φ s (x) = x -s where s = |σ| exp(it) and σ, t ∈ R normalizes at x = 1.

Proof. In order to obtain convergent solutions to the unsymmetric Riemann zeta Schrödinger Eq. (78), it can be seen that upon inserting Eq. ( 7) into the symmetric Eq. ( 79), we obtain + ⅈ t 

s = |σ| exp(it) = 1 2 - log(x) 2 . ( 85 
)

E. Second Quantization

Theorem 10. By representing the complex-valued eigenstate |φ s (x) = |φ σ (x) + i |φ t (x) = x -s where s = |σ| exp(it) and σ, t ∈ R as a linear combination of basis states, then the eigenspectrum of the Hamiltonian operator

-2i √ x∂ x √ x is not observable, i.e. zero, on the measure space E → (-∞, -1] ∪ [1, ∞) when |σ| = 1/2 and = 1.
Proof. In order to perform a second quantization [32], we can express the complex-valued eigenstate as a linear combination of basis states

|φ s (x) = n∈Z bn (s) |φ n (x) , (98) 
where s = |σ| exp(it) ∈ C, and σ, t ∈ R. As such, using Eq. ( 10) we can rewrite Eq. (98) as

|φ s (x) = n∈Z bn (s)x -n . (99) 
From using this second quantization in Eq. (79), we find

d ds bn (s) = -t n bn (s). (100) 
We now find a Hamiltonian that yields Eq. (100) as the equation of motion, hence, we take

φ s (x)| Ĥ |φ s (x) = -2 ∞ 1 φ s (x)| √ x∂ x √ x |φ s (x) dx -2 -1 -∞ φ s (x)| √ x∂ x √ x |φ s (x) dx, (101) 
as the expectation value. Upon substituting Eq. (99) into Eq. (101), we obtain the harmonic oscillator

φ s (x)| Ĥ |φ s (x) = -2 m∈Z n∈Z ∞ 1 x -m √ x∂ x √ x x -n dx -2 m∈Z n∈Z -1 -∞ x -m √ x∂ x √ x x -n dx = m∈Z n∈Z b † m (s) bn (s) m| (2m -1)(-1) -m-n m + n -1 + 2m -1 m + n -1 |n , (102) 
for (m + n) > 1, and where |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = 1 and

φ s (x)| Ĥ |φ s (x) = n∈Z | bn (s)| 2 (-1) -2n + 1 . (103) 
In accordance with Eq. (84) and Eq. ( 88), at |σ| = 1/2,

φ s (x)| Ĥ |φ s (x) = 0. (104) 
Taking bn (s) as an operator, and b † n (s) as the adjoint, we obtain the usual properties:

[ bn (s), bm (s)] = [ b † n (s), b † m (s)] = 0, [ bn (s), b † m (s)] = δ nm . (105) 
From the analogous Heisenberg equations of motion,

- d ds n∈Z bn (s) = [ bn (s), Ĥ] - = m∈Z E m bn (s) b † m (s) bm (s) -b † m (s) bm (s) bn (s) = m∈Z E m δ nm bm (s) -b † m (s) bn (s) bm (s) -b † m (s) bm (s) bn (s) = m∈Z E m δ nm bm (s) + b † m (s) bm (s) bn (s) -b † m (s) bm (s) bn (s) = n∈Z b † m (s) bn (s)t n . (106) 
The eigenvalues of Ĥ are then unobservable owing to the H = L 2 -norm, i.e.,

φ s (x)| Ĥ |φ s (x) = n∈Z 0 • t n |n = 0. ( 107 
)
From Eq. (106) it can be seen that

- d ds bn = 0 • t n bn , - d ds b † m = -0 • t m b † m . (108) 
Remark 1. Theorem 10 implies the Riemann hypothesis, as the spectrum of a Hermitian operator consists of real numbers as seen in Theorem 7, and 0 is a real number.

F. Holomorphicity

Theorem 11. The densely defined Hamiltonian operator Ĥ = -2 √ x∂ x √ x on the Hilbert space H = L 2 [1, ∞) is symmetric (Hermitian) [31], for the complex-valued eigenstate |φ s (x) = |φ σ (x) +i |φ t (x) = x -s where s = |σ| exp(it) and σ, t ∈ R when |σ| = 1/2 and = 1.

Proof. By expressing the complex-valued eigenstate as a linear combination of basis states such that

|φ s (x) = n∈Z bn (s) |φ n (x) , (109) 
where s = |σ| exp(it) ∈ C, and σ, t ∈ R, it can be seen that by using Eq. ( 10) we can rewrite Eq. (109) as

|φ s (x) = n∈Z bn (s)x -n . ( 110 
)
By taking the inner product

( Ĥφ * s , φ s ) = -2 m∈Z n∈Z ∞ 1 x -m √ x∂ x √ x x -n dx -2 m∈Z n∈Z -1 -∞ x -m √ x∂ x √ x x -n dx = m∈Z n∈Z b † m (s) bn (s) m| (2m -1)(-1) -m-n m + n -1 + 2m -1 m + n -1 |n , (111) 
for (m + n) > 1, and where |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = 1 and

φ s (x)| Ĥ |φ s (x) = n∈Z | bn (s)| 2 (-1) -2n + 1 . (112) 
In accordance with Eq. (84) and Eq. ( 88), at |σ| = 1/2,

φ s (x)| Ĥ |φ s (x) = 0. ( 113 
)
Furthermore, by taking the inner product

(φ * s , Ĥφ s ) = -2 m∈Z n∈Z ∞ 1 x -m √ x∂ x √ x x -n dx -2 m∈Z n∈Z -1 -∞ x -m √ x∂ x √ x x -n dx = m∈Z n∈Z b † m (s) bn (s) m| (2m -1)(-1) -m-n m + n -1 + 2m -1 m + n -1 |n , (114) 
for (m + n) > 1, and where |m , |n = 1, 2, 3, . . . , ∞. Hence at m = n, n|n = 1 and

φ s (x)| Ĥ |φ s (x) = n∈Z | bn (s)| 2 (-1) -2n + 1 . (115) 
In accordance with Eq. ( 84) and Eq. ( 88 3) are symmetric about the origin, i.e., x ∈ [1, ∞), [-1, -∞), and subject to the singularity at φ s (x = 0) = 0 [START_REF] Espinosa | [END_REF].

III. SIMILARITY SOLUTIONS

Since Eq. (79), the Riemann zeta Schrödinger equation (RZSE) possesses symmetry about the origin x = 0, we then seek a similarity solution [START_REF] Pakdemirli | [END_REF] of the form:

φ s (x) = x α f (η), (118) 
where η = s/x β , and the RZSE becomes an ordinary differential equation (ODE) for f . As such, we consider Eq. (79), and introduce the transformation ξ = a x, and τ = b s, so that

w(ξ, τ ) = c φ( -a ξ, -b τ ), (119) 
where ∈ R, and τ ∈ C.

From performing this change of variable we obtain

∂ ∂s φ = -c ∂w ∂τ ∂τ ∂s = b-c ∂w ∂τ , (120) 
and

-2 √ x ∂ ∂x √ xφ = -2 √ x ∂ √ x ∂x φ + √ x ∂φ ∂x = -2 √ x 1 2 √ x φ -2 √ x √ x ∂φ ∂x = -φ -2x ∂φ ∂x , (121) 
where

∂φ ∂x = -c ∂w ∂ξ ∂ξ ∂x = a-c ∂w ∂ξ . (122) 
By using Eqs. ( 120)-(122) in Eq. ( 79), the RZSE is then written

-c b ∂w ∂τ + w + 2ξ ∂w ∂ξ = 0, (123) 
and is invariant under the transformation

∀ if b = 2, i.e., -c b 2 ∂w ∂τ -i ∂w ∂τ + w + 2ξ ∂w ∂ξ = 0, (124) and b 
= log(2) + 2iπn log( ) , ∀ n ∈ Z. (125) 
Therefore, it can be seen that since φ solves the RZSE for x and s, then w = -c φ solves the RZSE at x = -a ξ, and s = -b τ . We now construct a group of independent variables such that

ξ τ a/b = a x ( b s) a/b = x s a/b = η(x, s), (126) 
and the similarity variable is then

η(x, s) = xs -a log( ) log(2)+2iπn . (127) Also, w τ c/b = c φ ( b s) c/b = φ s c/b = ν(η), (128) 
suggesting that we seek a solution of the RZSE with the form

φ s (x) = s c log( ) log(2)+2iπn ν(η). (129) 
Since the RZSE is invariant under the transformation, it is to be expected that the solution will also be invariant under the variable transformation. Taking a = c = log -1 ( ), the partial derivatives transform like

∂ ∂s φ s (x) = ∂ ∂s s 1 log(2)+2iπn ν(η) + s 1 log(2)+2iπn ν (η) ∂η ∂s = s -1+ 1 log(2)+2iπn log(2) + 2iπn ν(η) -ν (η) , (130) 
and

∂ ∂x φ s (x) = s 1 log(2)+2iπn ν (η) ∂η ∂x = ν (η), (131) 
where

∂η ∂s = - s -1 2iπn + log(2) , (132) 
and 2) .

∂η ∂x = s - 1 2iπn+log ( 
The RZSE then reduces to the ODE

s -1 + log(2) + 2iπn ν(η) + -s -1 + 2 log(2)η + 4iπnη ν (η) = 0, ∀ n ∈ Z. (134) 
A. General Solution

The homogenous linear differential Eq. ( 134) is separable [35], viz., (139)

IV. CONCLUSION

In this study, we have discussed the convergence of the real part of every nontrivial zero of the analytic continuation of the Riemann zeta function. This was accomplished by developing a Riemann zeta Schrödinger equation and comparing it with the Bender-Brody-Müller conjecture in both configuration space and momentum space. A symmetrization procedure was implemented to study the convergence of the system, and the expectation values were calculated from the resulting system to study the nontrivial zeros of the analytic continuation of the Riemann zeta function. It was found that the Hilbert space H = L 2 -norm is zero for the eigenstates along the critical line σ = 1/2, i.e., the expectation value of the Hamiltonian operator is also zero such that the nontrivial zeros of the Riemann zeta function are not observable. Moreover, a second quantization procedure was performed for the Riemann zeta Schrödinger equation to obtain the equations of motion and an analytical expression for the eigenvalues. It was also demonstrated that the eigenvalues are holomorphic across the measurable subspace of the measure space. A normalized convergent expression for the analytic continuation of the nontrivial zeros of the Riemann zeta function was obtained, and a convergence test for the expression was performed demonstrating that the real part of every nontrivial zero of the Riemann zeta function converges at σ = 1/2. Finally, a general solution to the Riemann zeta Schrödinger equation was found from performing an invariant similarity transformation.

φ

  s (x) = inf{φ s (x) : s ∈ C} (x) = -lim sup s -φ s (x) .

Figure 1 :

 1 Figure 1: Plot of the imaginary components of Eq. (1). Results are compared with Eq. (95) (color online).

Corollary 4 .

 4 ), at |σ| = 1/2, φ s (x)| Ĥ |φ s (x) s , φ s ) = (φ * s , Ĥφ s ) = 0 ∀ n ∈ Z. (117) The densely defined Hamiltonian operator Ĥ = -2 √ x∂ x √ x on the Hilbert space H = L 2 [1, ∞) is holomorphic for the complex-valued eigenstate |φ s (x) = |φ σ (x) + i |φ t (x) = x -s where s = |σ| exp(it) and σ, t ∈ R when |σ| = 1/2 and = 1.Remark 2. The Riemann Hypothesis states that the real part of all of the nontrivial zeros of the Riemann zeta function are located at σ = 1/2[START_REF] Riemann | On the Number of Prime Numbers less than a Given Quantity[END_REF].

Remark 3 .

 3 Solutions to Eq. (

,

  s -1 + log(2) s -1 -4iπnη -η log(4) dη.(135)Integrating on both sides, we obtainln |ν| = c 1 -2iπn + s -1 + log(2) log s -1 -4iπnη -η log(4) 4iπn + log(4) .(136)Exponentiating both sides,|ν| = exp(c 1 ) s -1 -4iπnη -η log(4) exp(c 1 ) = C and dropping the absolute value recovers the lost solution ν(η) = 0, giving the general solution to Eq. (134)ν n (η) = C s -1 -4iπnη -η log(4) ∀ n ∈ Z, ∀ C ∈ R. (138)By setting C = 1, and using Eqs. (127) and (129) in Eq. (138), we obtain the general solution to the RZSE Eq. (79), writtenφ s (x) = s 1 log(2)+2iπn 1 s + s - 1 log(2)+2iπn-x log(4) -4iπnx -2πns+is log(2)+i 4πns-is log(4) , ∀ n ∈ Z.

  Since {φ t } converges pointwise to φ t a.e. on E, then φ t is measurable.

Corollary 3. Let φ s = φ σ + iφ t be a sequence of measurable eigenstates defined on the measure space X → C. Since {φ σ } converges pointwise to φ σ a.e. on E → (-∞, -1] ∪ [1, ∞), and {φ t } converges pointwise to φ t a.e. on E → (-∞, -1] ∪ [1, ∞), then φ s is measurable.

C. Expectation Value of the Observable Definition 6. The Riemann zeta Schrödinger equation is

  ) For the symmetrized Riemann zeta Schrödinger equation, i.e., ∂ s |φ s

	D. Convergence
	Theorem 8.

Hence, at x = 1, t = -i log(2|σ|) + 2πn, (86) such that at |σ| = 1/2 in agreement with Eq. ( 84)

where n ∈ Z and t ∈ R. This condition is required such that the density is normalized in agreement with Eq. (44), i.e.,

Theorem 9. For the Bender-Brody-Müller equation [START_REF] Bender | [END_REF], i.e.,

the nontrivial zeros of the Riemann zeta function can be obtained from the analytic continuation of the Riemann zeta function, i.e.

Proof. At x = 1, the normalization constraint Eq. ( 88) is satisfied, σ = 1 2 -it, and Eq. ( 4) can be written

where the contour C is about R -. From the analytic continuation relations of Eq. ( 1)

Owing to t = 2πn at x = 1, i.e. Eq. ( 87), it can be seen that

2 .

(93) and

Owing to Eq. (84), at |σ| = 1/2 we obtain