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This paper uses second-order sliding mode observers to build up an estimation scheme allowing to identify the tire longitudinal equivalent stiffness and the effective wheel radius using the existing ABS angular sensors. This estimation strategy, based on use of the proposed observer could be used with data acquired experimentally to identify the longitudinal stiffness and effective radius of vehicle tires. The actual results show effectiveness and robustness of the proposed method.

I. INTRODUCTION

Car accidents occur for several reasons which may involve the driver or components of the vehicle or environment. Such situations appears when the vehicle is driven beyond the adherence or stability limits. However new active safety systems are developed, improved, and installed on vehicles for real-time monitoring and controlling the dynamic stability (Electronic Braking Systems (EBS), Anti-lock Braking Systems (ABS), Electronic Stability Program (ESP)). The active safety becomes more important in recent research on Intelligent Transportation Systems (ITS) technology. Nevertheless, the possibility of rectifying an unstable condition can be compromised by physical limits. Therefore, it is extremely important to detect (on time) a tendency towards instability. This has to be done without adding expensive sensors, so it requires quite robust observers looking forward based on the physics of interacting systems (the vehicle, the driver and the road).

The tire forces properties affect the vehicle dynamic performance. The control of ground -vehicle interactions becomes important due to research efforts on intelligent transportation systems, and specially, on automated highway systems. The design of traction controller is based on the assumption that vehicle and wheel angular velocities are both available on-line by direct measurements and/or estimations. Thus the knowledge of tire parameters and variables (stiffness, forces, velocities, wheel slip and radius) is essential to advanced vehicle control systems such as ABS, Traction Control Systems (TCS) and ESP [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]- [START_REF] Nacer | Observateurs robustes et estimateurs pour l'estimation de la dynamique des véhicules et du contact pneu -route[END_REF]. However, tire forces and road friction are difficult to measure directly and to represent precisely by some deterministic model equations. In the literature, their values are often deduced by some experimentally approximated models [START_REF] Samadi | A sliding mode controller for wheel slip control[END_REF]- [START_REF] Dugoff | An analysis of tire traction properties and their influence on vehicle dynamic performance[END_REF]. This work is focused to the on-line estimation of the tires sleep, adherence, stiffness and effective radius. The vehicle state is estimated and the tire forces are identified [START_REF] Nacer | Observateurs robustes et estimateurs pour l'estimation de la dynamique des véhicules et du contact pneu -route[END_REF]. The main contribution is the robust on-line estimation of the tire effective radius, wheel sleep and velocities, needed for a control, by using only simple low cost sensors (ABS sensors).

Recently, many analytical and experimental studies have been performed on estimation of the frictions and contact forces between tires and road [START_REF] Ray | Nonlinear state and tire force estimation for advanced vehicle control[END_REF], [START_REF] Rabhi | Modélisation pour l'estimation de l'état et des forces d'Interaction Véhicule-Route[END_REF], [START_REF] Gustafsson | Slip-based tire-road friction estimation[END_REF]. Tire forces can be represented by the nonlinear (stochastic) functions of wheel slip. The deterministic tire models encountered are complicated and depend on several factors (as load, tire pressure, environmental characteristics, etc.) [START_REF] Dugoff | An analysis of tire traction properties and their influence on vehicle dynamic performance[END_REF], [START_REF] Pacejka | Magic Formula Tyre Modelwith Transient Properties. 2nd International Tyre Colloquium on Tyre Models for Vehicle Dynamic Analysis[END_REF]- [START_REF] Clover | Longitudinal Tire Dynamics[END_REF]. This makes on-line estimation of forces and parameters difficult for vehicle control applications and detection and diagnosis for driving monitoring and surveillance [START_REF] Rabhi | Modélisation des Forces de Contact Véhicule-Chaussée[END_REF]. In [START_REF] Drakunov | ABS control using optimum search via sliding modes[END_REF], [START_REF] Canudas De Wit | Dynamic Friction Models for Road/Tire Longitudinal Interaction[END_REF], [START_REF] Rabhi | Modélisation des Forces de Contact Véhicule-Chaussée[END_REF], application of sliding mode control is proposed. Observers based on the sliding mode approach have been also used in [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]. In [START_REF] Ray | Nonlinear state and tire force estimation for advanced vehicle control[END_REF] an estimation based on least squares method and Kalman filtering is applied for estimation of contact forces. In [START_REF] Gustafsson | Slip-based tire-road friction estimation[END_REF] presented a tire/road friction estimation method based on Kalman filter to give a relevant estimates of the slope of µ versus slip (λ), that is, the relative difference in wheel velocity. The paper [START_REF] Carlson | Nonlinear estimation of longitudinal tire slip under several driving conditions[END_REF] presented an estimator for longitudinal stiffness and wheel effective radius using vehicle sensors and Global Positioning System (GPS) for low values of slip.

Observers robust to unknown inputs are efficient for estimation of road profile and the contact forces [START_REF] Rabhi | Modélisation des Forces de Contact Véhicule-Chaussée[END_REF], [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]. Acceleration and braking maneuvers modify the wheel slip. This phenomenon could be controlled by means of its regulation while using sliding mode approach [START_REF] Rabhi | VRIM: Vehicle Road Interaction Modelling for Estimation of Contact Forces[END_REF], [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]. This methods enhances the road safety leading better vehicle adherence and maneuvers ability but the vehicle controllability in its environment along the road admissible trajectories still remain an important open problem.

¿From the other hand, it is necessary to remark that observers for mechanical systems with unknown inputs based on standard first order sliding mode approach (as for example [START_REF] Barbot | Sliding Mode Observers[END_REF], [START_REF] Bartolini | A survey of applications of second-order sliding mode control to mechanical systems[END_REF], [START_REF] Pisano | Output-feedback control of an underwater vehicle prototype by higher-order sliding modes[END_REF]) has the following disadvantages:

•for observation of the velocity a filtering is needed cor-rupting the results;

•the need of filtering in the observation process destroys the finite time convergence property, and the separation principle must be taken into account to design a control;

•for the uncertainties and parameters identification a second filtering is necessary. This leads to a bigger corruption of results.

A robust exact differentiator [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] based on super twisting algorithm ( [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]) ensures a finite time convergence to the values of the corresponding derivatives and provides the best possible accuracy of the derivatives for the given value even considering deterministic noise, sampling step and in the case of discrete measurements.

In this paper, a nominal model of the vehicle is considered and the the super-twisting based robust exact observer [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] is applied for estimation of rotational velocities. The stiffness and effective radius are identified by application of a dynamical identification algorithm. The robust exact observer [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] used in this paper allows

•to make the velocity observation without filtering;

•to provide finite time convergence to the exact value of the rotational velocity, ensuring separation principle;

•to identify the uncertainties with only just one filtering;

•to apply a continuous time parameter identification algorithm for system parameters identification.

This work deals with a simple vehicle model coupled with wheel -road contact. It is proposed a vehicle model for the online estimation using robust observers. The main characteristics of the vehicle longitudinal dynamics were taken into account in the developed model. The obtained dynamics equations may be written in a state space allowing to define an observer based on the sliding mode approach (as presented in [START_REF] Rabhi | Modélisation des Forces de Contact Véhicule-Chaussée[END_REF], [START_REF] Rabhi | VRIM: Vehicle Road Interaction Modelling for Estimation of Contact Forces[END_REF], [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]). The observer has been used to reconstruct the global system state components and then to estimate the tires forces [START_REF] Rabhi | VRIM: Vehicle Road Interaction Modelling for Estimation of Contact Forces[END_REF], [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF]. The use of sliding mode approach has been motivated by its robustness with respect to the parameters and modeling errors and has been shown to cope well with this problem. It is presented, a method to estimate the wheel angular velocities by considering the wheel angular position measurements (produced by an ABS variable reluctance sensor as shown in figure 1). As a second step, we estimate the longitudinal stiffness and wheel effective radius using additional sensors for the accelerating torque and the linear velocity of the vehicle. The proposed method of estimation is verified through one-wheel simulation model with a "Magic formula" tire model and then application results (on a Peugeot 406) show an excellent reconstruction of the velocities, tire forces and radius estimation.

The developed estimations can be used to detect critical driving situations and then improve the security. It can be used also in several vehicle control systems such as ABS, TCS, diagnosis systems, etc...

II. PROBLEM STATEMENT

Consider the simplified motion dynamics of a quartervehicle model, capturing only nominal behavior. This model retains the main characteristics of the longitudinal dynamic. For a global application, this method can be easily extended to the complete vehicle and involve the four wheels.

Applying Newton's law to wheel and vehicle dynamics, the equations of nominal motion is given by

θ = ω (1) 
J ω = J θ = T f -R e F x (2) m vx = F x ( 3 
)
where m is the vehicle mass and J,R e are the inertia and effective radius of the tire, respectively. v x is the linear velocity of the vehicle, θ is the angular position of the considered wheel, ω is the angular velocity of the considered wheel, T f is the accelerating (or braking) torque, and F x is the tire/road friction force. The tractive (respectively braking) force, produced at the tire/road interface when a driving (braking) torque is applied to a pneumatic tire, has an opposed direction to relative motion between the tire and road surface. This relative motion determines the tire slip properties. The wheel -slip is due to deflection in the contact patch. The longitudinal wheel-slip λ is generally called the slip ratio and can be described by a kinematic relation like [START_REF] Pacejka | Magic Formula Tyre Modelwith Transient Properties. 2nd International Tyre Colloquium on Tyre Models for Vehicle Dynamic Analysis[END_REF]: During ordinary driving, however, the tire slip rarely exceeds 5%. By linearizing the model in a small region (around origin), the force slip relation can be characterized as follows

λ = R ef ω vx -1 if v x > R ef ω (braking) λ = 1 - R ef ω vx if v x < R ef ω (traction) (4) 
F x = C x ( v x -R e ω v x ) (5) 
Where F x and C x are, respectively, the force and the longitudinal stiffness of the tire(s). The dynamic equation of the whole system can be written in state space form by defining the following state variables. The angular position x 1 = θ is measured by the ABS sensor. The angular velocity x 2 = θ = ω is not measured and can be obtained by observer application. The vehicle velocity x 3 = v x , and the accelerating torque u = T f are assumed measurable. Note that these expressions assume that velocity is non zero by definition. We can write the system model

ẋ1 = x 2 (6) ẋ2 = u J - R e C x J + R 2 e C x J x 2 x 3 ẋ3 = C x m - C x R e m x 2 x 3 y = x 1 0 0 x 3
The task is to reconstruct the angular velocity (x 2 ) of the system by using x 1 and u. The equivalent output injection will be used for parameters identification. An auxiliary system will be introduced the variable x 3 in order to obtain an equivalent output injection for this variable.

III. STATE OBSERVATION

A. States x 1 , x 2

Consider the subsystem with state variables x 1 = θ, x 2 = θ = ω, and the control input u = T f (may be computed in function of the system states or their estimates), this submodel of ( 6) can be rewritten in the state space form as follows:

ẋ1 = x 2 , ẋ2 = f 1 (t, x 1 , x 2 , u) + ξ 1 (t, x 1 , x 2 , u) y = x 1 , (7) 
where the nominal part of the system dynamics is represented by f 1 (t, x 1 , x 2 , u) = u J containing the known nominal functions, while uncertainties are concentrated in the term

ξ 1 (t, x 1 , x 2 , u) = -ReCx J + R 2 e Cx J .
The system [START_REF] Ackermann | Robust control prevents car skidding[END_REF], understood in Filippov's sense [START_REF] Filippov | Differential Equations with Discontinuous Right-hand Sides[END_REF] is assumed such that the functions f 1 (t, x 1 , x 2 , u) and the perturbation ξ 1 (t, x 1 , x 2 , u) are Lebesgue-measurable and uniformly bounded in any compact region of the state space.

Our task is then to design a finite-time convergent observer of the angular velocity x 2 = θ = ω assuming that the position x 1 = θ, the torque u, and the nominal model are available. Only the scalar case x 1 , x 2 ∈ R is considered for simplicity. In general case the observers are constructed in exactly the same way for each wheel position variable x 1j in parallel.

The proposed super-twisting observer for the system (7) takes the form [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] 

ẋ1 = x2 + z 1 ẋ2 = f 1 (t, x 1 , x2 , u) + z 2 (8) 
where x1 and x2 are the state estimations, and the correction variables z 1 and z 2 are calculated by the super-twisting algorithm

z 1 = λ|x 1 -x1 | 1/2 sign(x 1 -x1 ) z 2 = α sign(x 1 -x1 ). (9) 
It is taken for ensures observer convergence that at the initial moment x1 = x 1 and x2 = 0. Taking x1 = x 1 -x1 and x2 = x 2 -x2 we obtain the error equations

ẋ1 = x2 -λ|x 1 | 1/2 sign(x 1 ) ẋ2 = F (t, x 1 , x 2 , x2 ) -α sign(x 1 ) (10) 
where

F (t, x 1 , x 2 , x2 ) = f 1 (t, x 1 , x 2 , u) -f 1 (t, x 1 , x2 , u) + ξ 1 (t, x 1 , x 2 , u).
In our case, the system states are bounded, then the existence of a constant f + is ensured such that

|F (t, x 1 , x 2 , x2 )| < f + (11) 
holds for any possible t, x 1 , x 2 and |x 2 | ≤ 2 sup |x 2 |. The state boundedness is true, because the system ( 7) is BIBS (Boundary Input -Boundary State) stable, and the control input u = T f is bounded. The maximal possible acceleration in the system is a priori known and it coincides with the bound f + . Let α and λ satisfy the following inequalities, where p is some chosen constant, 0 < p < 1.

α > f + , λ > 2 α-f + (α+f + )(1+p) (1-p) , (12) 
Theorem 1: ( [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF]). Suppose that condition (11) holds for system [START_REF] Ackermann | Robust control prevents car skidding[END_REF], and the parameters of the observer (8) are selected according to [START_REF] Rabhi | Modélisation pour l'estimation de l'état et des forces d'Interaction Véhicule-Route[END_REF]. Then, the observer (8) guarantees the convergence of the estimated states (x, ẋ) to the real value of the states (x, ẋ) after a finite time transient, and there exists a time constant t 0 such that for all t ≥ t 0 , (x 1 , x2 ) = (x 1 , x 2 ). The proof of this theorem is presented in the work [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF].

Let f 1 , x, z 1 , z 2 be measured at discrete times with the time interval δ, and let t i , t i+1 be successive measurement times. Consider a discrete modification of the observer (the Euler scheme)

x1 (t i+1 ) = x1 (t i ) + (x 2 (t i ) + λ|x 1 (t i ) -x1 (t i )| 1/2 sign(x 1 (t i ) -x1 (t i ) x2 (t i+1 ) = x2 (t i ) + (f 1 (t i , x 1 (t i ), x2 (t i ), u(t i )) + α sign(x 1 (t i ) -x1 (t i (13 
) where x1 (t i ), x2 (t i ) are the estimated variables.

Theorem 2: ( [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF]). Suppose that the function f 1 is uniformly bounded and condition [START_REF] Ray | Nonlinear state and tire force estimation for advanced vehicle control[END_REF] holds. Then the observation algorithm [START_REF] Pacejka | Magic Formula Tyre Modelwith Transient Properties. 2nd International Tyre Colloquium on Tyre Models for Vehicle Dynamic Analysis[END_REF] with parameters (12) ensures the convergence of the estimation errors to the domain |x 1 | ≤ γ 1 δ 2 , |x 2 | ≤ γ 2 δ where γ 1 , γ 2 are some constants, depending on the observer parameters. This theorem is proved in [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF].

B. State x 3

Consider the subsystem with state variable x 3 = v f , in this case an observer will be introduced in order to obtain an equivalent output injection, in the same form that the states x 1 and x 2 , the dynamic equation of x 3 could be written as

ẋ3 = f 2 (t, x 3 , u) + ξ 2 (t, x 2 , x 3 , u) y 2 = x 3 , (14) 
in this case, the dynamic of the system is considered as unknown ξ 2 (t,

x 2 , x 3 , u) = Cx m -CxRe m x2
x3 in consequence f 2 (t, x 3 , u) = 0. The system [START_REF] Gim | Analytical model of pneumatic tyres for vehicle dynamic simulations part1: Pure slips[END_REF], understood in Filippov's sense [START_REF] Filippov | Differential Equations with Discontinuous Right-hand Sides[END_REF] is assumed such that the perturbation ξ(t, x 1 , x 2 , u) is Lebesgue-measurable and uniformly bounded in any compact region of the state space.

Our task is then to design a finite-time convergent observer of the linear velocity x 3 . The proposed sliding mode observer is given by ẋ3 = z 3 [START_REF] Livingston | Physics of the Slipping Wheel,II: Slip under Both Travtive and Lateral Forces[END_REF] where z 3 = βsign(x 3 -x3 ). Defining x3 = x 3 -x3 , the dynamic of the error for x 3 becomes

ẋ3 = ξ 2 (t, x 2 , x 3 , u) -β sign(x 3 ) ( 16 
)
where

β is chosen such that β > max( Cx m -CxRe m x2 x3 ) = η. Theorem 3: Suppose that | ẋ3 | ≤ η,
and the parameter β is chosen such that β > η. The observer [START_REF] Livingston | Physics of the Slipping Wheel,II: Slip under Both Travtive and Lateral Forces[END_REF] guarantees the convergence of the estimated state (x 3 ) to the real value of the states (x 3 ) after a finite time transient, and there exists a time constant t 1 such that for all t ≥ t 1 , x3 = x 3 .

Proof: Consider the Lyapunov function

V (x 3 ) = 1 2 x2
3 its time derivative

V (x 3 ) = x3 ẋ3 = x3 (ξ 2 (t, x 2 , x 3 , u) -β sign(x 3 )) ( 17 
)
If β is chosen as was given in the theorem (3), then V (x 3 ) < 0. This shows that x3 goes to zero in a finite time, then, there exist a constant t 1 such that for all t ≥ t 1 holds x3 = 0

IV. EQUIVALENT OUTPUT INJECTION ANALYSIS

For the time t 2 where t 2 = max(t 0 , t 1 ) and for all t ≥ t 2 the error dynamics ( 10) and ( 16) holds

ẋ2 = 0 = F (t, x 1 , x 2 , x2 ) -α sign(x 1 ) (18) ẋ3 = 0 = ξ 2 (t, x 2 , x 3 , u) -β sign(x 3 ) (19) 
Notice in [START_REF] Rabhi | Modélisation des Forces de Contact Véhicule-Chaussée[END_REF] that at this time x2 = x 2 and

f 1 (t, x 1 , x 2 , u) ≡ f 1 (t, x 1 , x2 , u) in consequence F (t, x 1 , x 2 , x2 ) = ξ 1 (t, x 1 , x 2 , u).
It was assumed that the terms z 2 , z 3 change at a high (infinite) frequency. However, in reality, various imperfections make the state oscillate in some vicinity of the intersection and components of z 2 , z 3 are switched at finite frequency, this oscillations have high and slow frequency components.

The high frequency terms z 2 , z 3 are filtered out and the motion in the sliding mode is determined by the slow components [START_REF] Utkin | Sliding Mode Control in Electromechanical Systems[END_REF]. It is reasonable to assume that the equivalent control is close to the slow component of the real control which may be derived by filtering out the high-frequency component using low pass filter.

The filter time constant should be sufficiently small to preserve the slow components undistorted but large enough to eliminate the high frequency component.

Thus the conditions τ → 0 where τ is the filter time constant, and δ/τ → 0, where δ is the sample interval, fulfilled to extract the slow component equal to the equivalent control and to filter out the high frequency component.

The above reasons allows us to write the equivalent output injection as

z2 = ξ 1 (t, x 2 , x 3 , u) (20) z3 = ξ 2 (t, x 2 , x 3 , u) (21) 
where z2 and z3 are the filtered versions of z 2 and z 3 respectively.

V. SYSTEM IDENTIFICATION

Assuming that J and m are known, and defining a 1 = 1 J , it is possible to write the system (6) as follows

ẋ1 = x 2 ẋ2 = a 1 u + ϑ 1 ϕ 1 ẋ3 = ϑ 2 ϕ 2 y = x 1 0 0 x 3 (22) 
with

ϕ 1 (x) = -1 J x2 Jx3 and ϕ 2 (x) = 1 m -x2 mx3 ϑ 1 = R e C x R 2 e C x and ϑ 2 = C x R e C x (23) 
Notice ( 22) is in a regression form with regressor vectors ϕ 1 (x), ϕ 2 (x) in [START_REF] Barbot | Sliding Mode Observers[END_REF], and parameters vectors ϑ 1 , ϑ 2 in [START_REF] Barbot | Sliding Mode Observers[END_REF].

Using the regression notation of [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF] the observer (8) could be written as

ẋ1 = x2 + z 1 ẋ2 = a 1 u + θ1 ϕ(t, x 1 , x 2 , u) + z 2 (24) 
where θ1 is a parameters vector with nominal values of ϑ 1 . For all t ≥ t 2 equations ( 20), ( 21) become

z2 = ∆ϑ 1 ϕ 1 (t, x 1 , x 2 , u) (25) z3 = ϑ 2 ϕ 2 (t, x 2 , x 3 , u) (26) 
where ∆ϑ 1 = ϑ 1 -θ1 .

To proceed we will consider, for clarity of presentation only, the estimation procedures in two steps, one for x 2 and one for x 3 in order to estimate respectively ϑ 1 and then ϑ 2 .

A. Identification of ϑ 1

It is possible to apply a dynamic form of the Least Square identification algorithm to estimate the parameter vector with the knowledge of z2 the regression vector deduced from the measurements and observations of ϕ 1 .

The model structure for the linear regression [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF], [START_REF] Soderstrom | System Identification[END_REF], [START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF] can be written as in equation [START_REF] Pisano | Output-feedback control of an underwater vehicle prototype by higher-order sliding modes[END_REF] where z2 is a measurable quantity, ϕ 1 (t) is a regression vector made of known quantities and ∆ϑ is the unknown parameters vector (difference to the nominal parameters). The application of linear regression algorithms like the Least Squares parameter estimation algorithm can be written as

z2 = ∆ϑϕ 1 (t, x 1 , x 2 , u) (27) 
ε(t) = h(t) -ĥ(t) = ∆ϑϕ 1 (t, x 1 , x 2 , u) (28) ˙ ∆ϑ = σ γ t Γ t ϕ 1 (t, x 1 , x 2 , u)ε(t) = Γ t ϕ 1 ϕ T 1 ∆ϑ (29) Γt = - σ γ t Γ t ϕ T 1 (t)ϕ 1 (t)Γ t ( 30 
)
where ∆ϑ is the estimation of ∆ϑ the parameters vector and ĥ(t) the prediction of the signal h(t). In general γ t is a normalization term γ t = 1 + ϕ 1 (t)Γ t ϕ T 1 (t) and σ ∈ [0.9, 1] a forgetting factor. The initial conditions of the RLS algorithm are Γ 0 = ρ -1 I initial gain matrix and ∆ϑ = ∆ϑ 0 initial parameters values.

Theorem 1: for the system (27) using the RLS algorithm ( 27) ensures the following properties:

(i) ∆ϑ T Γ -1
t ∆ϑ is a non increasing function and we have

∆ϑ t 2 ≤ λ min(Γ O ) λ max(Γt) ∆ϑ 0 2 (ii) ε(t) = ( σ γt ) 1/2 (h(t) -ĥ(t)) ∈ L 2 Remark 2:
The use of equations ( 27) ensures the asymptotic convergence of ∆ϑ to ∆ϑ under the persistent excitation condition [START_REF] Soderstrom | System Identification[END_REF], [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF].

Remark 3: In application, we have considered the delta operator for approximation of the derivation [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF].

B. Identification of ϑ 2

The low frequency components of the signal z 3 satisfies (26), using the notation in [START_REF] Rabhi | Observers With Unknown Inputs to Estimate Contact Forces and Road Profile[END_REF] takes the form

z3 = βsign(x 3 ) = ϑ 2 ϕ 2 = ϑ 21 m -ϑ 22 1 m x 2
x 3 Remark 4: In the same way ϑ 21 , assuming ϑ 22 known or already estimated, can be identified using the Least Squares algorithm.

Remark 5: Note also that both parameters in ϑ 2 can be estimated by the Least Square Algorithm at this step. This correspond to estimating twice ϑ 22 , assuming at this step as previous estimation the value produced by the previous step.

Remark 6: Note also that depending on the expression formulated for the forces and wheel slip in ( 5), (4) several ther variables can be estimated like adherence or longitudinal forces.

VI. EXPERIMENTAL RESULTS

In this section, we present some experimental results to validate our approach. Several trials have been done with a vehicle (P406 of LCPC) equipped with sensors for wheels angular position measurement.

Measures have been acquired with the vehicle rolling at several speeds. The experimental data used here are those of the rear wheel drive. The installed sensors at each wheel are the variable reluctance ones of the Antilock Braking System (ABS see figure ). Their resolution is 29 dot per revolution The Fig. 5 shows the installed laser sensor used for measurement of the wheel radius. Data are sampled at 1kHz frequency and several trials have been considered a different running speeds (40 Km/h, 60 Km/h, 80 Km/h, 100 Km/h and varying velocity) with and without using the ABS system. The Fig. 6 shows the measured displacement using the (high and low resolution) sensors installed on the vehicle and the observed one. We can remark that the curve are well superposed despite resolution.

The velocities can be deduced by several ways from the displacement measurements. Here we compare three of them, two standard computation of derivatives and the proposed observer: 

(i) = θ(i) -θ(i -1) T (31) 
θ(i) = θ(i + 1) -θ(i -1) 2T (32) x2 = observed( θ) (33) 
In the upper left and right Fig. [START_REF] Ackermann | Robust control prevents car skidding[END_REF] we can see that estimation of velocity signal derivation, using ( 31) and ( 32) respectively, needs a filter to reduce the noise effect. In Fig. [START_REF] Lee | Adaptative vehicle traction force control for intelligent vehicle highway systems[END_REF] corresponding to low resolution encoders the problem is worse and amplitude of noise has a higher level. Filtering this data will affect the measurement precision. We remark that when using the proposed observer (bottom left curve in the two figures) that the estimation remain precise despite the bad resolution of the sensors used by ABS. The observed and reconstructed velocities are compared to the measure provided by a high resolution encoder.

These curves show the robustness of our observer based on second order sliding modes and super twisting algorithm versus measurement noise and additional perturbations. Recall that the term ξ(t, x 1 , x 2 , u) = ϕ 1 (z)ϑ 1 is not known and correspond to a perturbation to be rejected in a first step; The estimated parameters are quite good and the algorithm is very easy to apply and is not difficult to tune its parameters.

VII. CONCLUSION

The super-twisting second-order sliding-mode algorithm is modified in order to design a velocity observer for vehicle using only the ABS sensors already placed in standard vehicles nowadays. The finite time convergence of the observer is proved and consequently the separation principle can be considered as avoided. The gains of the proposed observer are chosen very easily ignoring the system parameters. This observer is compared, using experimental data, to classical derivation methods and is proven robust despite the bad resolution of the encoders. Its robustness combined with a sliding mode estimation of the vehicle velocity allow us to reconstruct the wheel sleep. In this way, the observability problems are avoided by means of cascaded finite time converging observer instead of additional sensors. It can be shown that contact forces can also be estimated by this way.

The finite time convergence of state observations in the same time as robustness and perturbation rejection allows to solve the problem of parameter identification using the equivalent control method (by retrieval of the rejected signal). The use of the equivalent control, which provides a linear regression model, allows to apply the classical parameter identification methods (RLS) to estimate the systems dynamic parameters like the tire longitudinal equivalent stiffness and the effective wheel radius.

The estimation scheme build up using a Second Order Sliding Mode observers and a Sliding Mode velocity estimator has been tested on experimental data (acquired with a P406 vehicle) and shown to be very efficient using only standard sensors. The actual results prove effectiveness and robustness of the proposed method. In our further investigations we consider also the case of complete vehicle in a road with changing adherence. The estimations produced on-line will be used to define a predictive control to enhance the safety.
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