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Abstract—This paper uses second-order sliding mode observers
to build up an estimation scheme allowing to identify the tire
longitudinal equivalent stiffness and the effective wheel radius
using the existing ABS angular sensors. This estimation strategy,
based on use of the proposed observer could be used with
data acquired experimentally to identify the longitudinal stiffness
and effective radius of vehicle tires. The actual results show
effectiveness and robustness of the proposed method.

Index Terms—Sliding modes, nonlinear observers, robust state
and stiffness estimation, wheel slip estimation.

I. INTRODUCTION

Car accidents occur for several reasons which may involve
the driver or components of the vehicle or environment.
Such situations appears when the vehicle is driven beyond
the adherence or stability limits. However new active safety
systems are developed, improved, and installed on vehicles
for real-time monitoring and controlling the dynamic stability
(Electronic Braking Systems (EBS), Anti-lock Braking Sys-
tems (ABS), Electronic Stability Program (ESP)). The active
safety becomes more important in recent research on Intelli-
gent Transportation Systems (ITS) technology. Nevertheless,
the possibility of rectifying an unstable condition can be
compromised by physical limits. Therefore, it is extremely
important to detect (on time) a tendency towards instability.
This has to be done without adding expensive sensors, so it
requires quite robust observers looking forward based on the
physics of interacting systems (the vehicle, the driver and the
road).

The tire forces properties affect the vehicle dynamic perfor-
mance. The control of ground - vehicle interactions becomes
important due to research efforts on intelligent transportation
systems, and specially, on automated highway systems. The
design of traction controller is based on the assumption that ve-
hicle and wheel angular velocities are both available on-line by
direct measurements and/or estimations. Thus the knowledge
of tire parameters and variables (stiffness, forces, velocities,
wheel slip and radius) is essential to advanced vehicle control
systems such as ABS, Traction Control Systems (TCS) and
ESP [1]–[3]. However, tire forces and road friction are dif-
ficult to measure directly and to represent precisely by some
deterministic model equations. In the literature, their values are

often deduced by some experimentally approximated models
[4]–[10]. This work is focused to the on-line estimation of
the tires sleep, adherence, stiffness and effective radius. The
vehicle state is estimated and the tire forces are identified[3].
The main contribution is the robust on-line estimation of the
tire effective radius, wheel sleep and velocities, needed for a
control, by using only simple low cost sensors (ABS sensors).

Recently, many analytical and experimental studies have
been performed on estimation of the frictions and contact
forces between tires and road [11], [12], [6]. Tire forces
can be represented by the nonlinear (stochastic) functions
of wheel slip. The deterministic tire models encountered
are complicated and depend on several factors (as load,
tire pressure, environmental characteristics, etc.) [10],[13]–
[17]. This makes on-line estimation of forces and parameters
difficult for vehicle control applications and detection and
diagnosis for driving monitoring and surveillance [18]. In [19],
[20], [18], application of sliding mode control is proposed.
Observers based on the sliding mode approach have been also
used in [22]. In [11] an estimation based on least squares
method and Kalman filtering is applied for estimation of
contact forces. In [6] presented a tire/road friction estimation
method based on Kalman filter to give a relevant estimates of
the slope of µ versus slip (λ), that is, the relative difference
in wheel velocity. The paper [21] presented an estimator for
longitudinal stiffness and wheel effective radius using vehicle
sensors and Global Positioning System (GPS) for low values
of slip.

Observers robust to unknown inputs are efficient for esti-
mation of road profile and the contact forces [18], [22]. Ac-
celeration and braking maneuvers modify the wheel slip. This
phenomenon could be controlled by means of its regulation
while using sliding mode approach [2], [22]. This methods
enhances the road safety leading better vehicle adherence
and maneuvers ability but the vehicle controllability in its
environment along the road admissible trajectories still remain
an important open problem.

¿From the other hand, it is necessary to remark that ob-
servers for mechanical systems with unknown inputs based
on standard first order sliding mode approach (as for example
[23], [24], [25]) has the following disadvantages:
•for observation of the velocity a filtering is needed cor-



rupting the results;
•the need of filtering in the observation process destroys the

finite time convergence property, and the separation principle
must be taken into account to design a control;
•for the uncertainties and parameters identification a second

filtering is necessary. This leads to a bigger corruption of
results.

A robust exact differentiator [30] based on super twisting
algorithm ([27]) ensures a finite time convergence to the values
of the corresponding derivatives and provides the best possible
accuracy of the derivatives for the given value even considering
deterministic noise, sampling step and in the case of discrete
measurements.

In this paper, a nominal model of the vehicle is considered
and the the super-twisting based robust exact observer [26] is
applied for estimation of rotational velocities. The stiffness and
effective radius are identified by application of a dynamical
identification algorithm. The robust exact observer [26] used
in this paper allows
•to make the velocity observation without filtering;
•to provide finite time convergence to the exact value of the

rotational velocity, ensuring separation principle;
•to identify the uncertainties with only just one filtering;
•to apply a continuous time parameter identification algo-

rithm for system parameters identification.
This work deals with a simple vehicle model coupled

with wheel - road contact. It is proposed a vehicle model
for the online estimation using robust observers. The main
characteristics of the vehicle longitudinal dynamics were taken
into account in the developed model. The obtained dynamics
equations may be written in a state space allowing to define an
observer based on the sliding mode approach (as presented in
[18], [2],[22]). The observer has been used to reconstruct the
global system state components and then to estimate the tires
forces [2], [22]. The use of sliding mode approach has been
motivated by its robustness with respect to the parameters and
modeling errors and has been shown to cope well with this
problem.

Fig. 1. Wheel dynamics and the ABS system

It is presented, a method to estimate the wheel angular
velocities by considering the wheel angular position measure-
ments (produced by an ABS variable reluctance sensor as

shown in figure 1). As a second step, we estimate the lon-
gitudinal stiffness and wheel effective radius using additional
sensors for the accelerating torque and the linear velocity of
the vehicle. The proposed method of estimation is verified
through one-wheel simulation model with a ”Magic formula”
tire model and then application results (on a Peugeot 406)
show an excellent reconstruction of the velocities, tire forces
and radius estimation.

The developed estimations can be used to detect critical
driving situations and then improve the security. It can be used
also in several vehicle control systems such as ABS, TCS,
diagnosis systems, etc...

II. PROBLEM STATEMENT

Consider the simplified motion dynamics of a quarter-
vehicle model, capturing only nominal behavior. This model
retains the main characteristics of the longitudinal dynamic.
For a global application, this method can be easily extended
to the complete vehicle and involve the four wheels.

Applying Newton’s law to wheel and vehicle dynamics, the
equations of nominal motion is given by

θ̇ = ω (1)

Jω̇ = Jθ̈ = Tf −ReFx (2)
mv̇x = Fx (3)

where m is the vehicle mass and J ,Re are the inertia and
effective radius of the tire, respectively. vx is the linear velocity
of the vehicle, θ is the angular position of the considered
wheel, ω is the angular velocity of the considered wheel,
Tf is the accelerating (or braking) torque, and Fx is the
tire/road friction force. The tractive (respectively braking)
force, produced at the tire/road interface when a driving
(braking) torque is applied to a pneumatic tire, has an opposed
direction to relative motion between the tire and road surface.
This relative motion determines the tire slip properties. The
wheel - slip is due to deflection in the contact patch. The
longitudinal wheel-slip λ is generally called the slip ratio and
can be described by a kinematic relation like [13]:{

λ = Refω
vx
− 1 if vx > Refω (braking)

λ = 1− Refω
vx

if vx < Refω (traction)
(4)

Fig. 2. Wheel slip - forces steady state characteristics

During ordinary driving, however, the tire slip rarely ex-
ceeds 5%. By linearizing the model in a small region (around
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origin), the force slip relation can be characterized as follows

Fx = Cx(
vx −Reω

vx
) (5)

Where Fx and Cx are, respectively, the force and the
longitudinal stiffness of the tire(s). The dynamic equation of
the whole system can be written in state space form by defining
the following state variables. The angular position x1 = θ is
measured by the ABS sensor. The angular velocity x2 = θ̇ = ω
is not measured and can be obtained by observer application.
The vehicle velocity x3 = vx, and the accelerating torque
u = Tf are assumed measurable. Note that these expressions
assume that velocity is non zero by definition. We can write
the system model

ẋ1 = x2 (6)

ẋ2 =
u

J
− ReCx

J
+
R2
eCx
J

x2

x3

ẋ3 =
Cx
m
− CxRe

m

x2

x3

y =
[
x1 0
0 x3

]
The task is to reconstruct the angular velocity (x2) of the

system by using x1 and u. The equivalent output injection
will be used for parameters identification. An auxiliary system
will be introduced for the variable x3 in order to obtain an
equivalent output injection for this variable.

III. STATE OBSERVATION

A. States x1, x2

Consider the subsystem with state variables x1 = θ, x2 =
θ̇ = ω, and the control input u = Tf (may be computed in
function of the system states or their estimates), this submodel
of (6) can be rewritten in the state space form as follows:

ẋ1 = x2,
ẋ2 = f1(t, x1, x2, u) + ξ1(t, x1, x2, u)
y = x1,

(7)

where the nominal part of the system dynamics is repre-
sented by f1(t, x1, x2, u) = u

J containing the known nominal
functions, while uncertainties are concentrated in the term
ξ1(t, x1, x2, u) = −ReCx

J + R2
eCx

J . The system (7), understood
in Filippov’s sense [31] is assumed such that the func-
tions f1(t, x1, x2, u) and the perturbation ξ1(t, x1, x2, u) are
Lebesgue-measurable and uniformly bounded in any compact
region of the state space.

Our task is then to design a finite-time convergent observer
of the angular velocity x2 = θ̇ = ω assuming that the position
x1 = θ, the torque u, and the nominal model are available.
Only the scalar case x1, x2 ∈ R is considered for simplicity.
In general case the observers are constructed in exactly the
same way for each wheel position variable x1j in parallel.

The proposed super-twisting observer for the system (7)
takes the form [26]

˙̂x1 = x̂2 + z1

˙̂x2 = f1(t, x1, x̂2, u) + z2
(8)

where x̂1 and x̂2 are the state estimations, and the correc-
tion variables z1 and z2 are calculated by the super-twisting
algorithm

z1 = λ|x1 − x̂1|1/2 sign(x1 − x̂1)
z2 = α sign(x1 − x̂1).

(9)

It is taken for ensures observer convergence that at the initial
moment x̂1 = x1 and x̂2 = 0.

Taking x̃1 = x1− x̂1 and x̃2 = x2− x̂2 we obtain the error
equations

˙̃x1 = x̃2 − λ|x̃1|1/2 sign(x̃1)
˙̃x2 = F (t, x1, x2, x̂2)− α sign(x̃1)

(10)

where F (t, x1, x2, x̂2) = f1(t, x1, x2, u) − f1(t, x1, x̂2, u) +
ξ1(t, x1, x2, u). In our case, the system states are bounded,
then the existence of a constant f+ is ensured such that

|F (t, x1, x2, x̂2)| < f+ (11)

holds for any possible t, x1, x2 and |x̂2| ≤ 2 sup |x2|. The
state boundedness is true, because the system (7) is BIBS
(Boundary Input - Boundary State) stable, and the control
input u = Tf is bounded. The maximal possible acceleration
in the system is a priori known and it coincides with the bound
f+. Let α and λ satisfy the following inequalities, where p is
some chosen constant, 0 < p < 1.

α > f+,

λ >
√

2
α−f+

(α+f+)(1+p)
(1−p) ,

(12)

Theorem 1: ([26]). Suppose that condition (11) holds for
system (7), and the parameters of the observer (8) are selected
according to (12). Then, the observer (8) guarantees the
convergence of the estimated states (x̂, ˙̂x) to the real value of
the states (x, ẋ) after a finite time transient, and there exists a
time constant t0 such that for all t ≥ t0, (x̂1, x̂2) = (x1, x2).
The proof of this theorem is presented in the work [26].

Let f1, x, z1, z2 be measured at discrete times with the
time interval δ, and let ti, ti+1 be successive measurement
times. Consider a discrete modification of the observer (the
Euler scheme)

x̂1(ti+1) = x̂1(ti) + (x̂2(ti) + λ|x1(ti)− x̂1(ti)|1/2 sign(x1(ti)− x̂1(ti)))δ,
x̂2(ti+1) = x̂2(ti) + (f1(ti, x1(ti), x̂2(ti), u(ti)) + α sign(x1(ti)− x̂1(ti)))δ,

(13)
where x̂1(ti), x̂2(ti) are the estimated variables.

Theorem 2: ([26]). Suppose that the function f1 is uni-
formly bounded and condition (11) holds. Then the obser-
vation algorithm (13) with parameters (12) ensures the con-
vergence of the estimation errors to the domain |x̃1| ≤ γ1δ

2,
|x̃2| ≤ γ2δ where γ1, γ2 are some constants, depending on the
observer parameters.
This theorem is proved in [26].

B. State x3

Consider the subsystem with state variable x3 = vf , in
this case an observer will be introduced in order to obtain an
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equivalent output injection, in the same form that the states
x1 and x2, the dynamic equation of x3 could be written as

ẋ3 = f2(t, x3, u) + ξ2(t, x2, x3, u)
y2 = x3,

(14)

in this case, the dynamic of the system is considered as
unknown ξ2(t, x2, x3, u) = Cx

m −
CxRe

m
x2
x3

in consequence
f2(t, x3, u) = 0. The system (14), understood in Filippov’s
sense [31] is assumed such that the perturbation ξ(t, x1, x2, u)
is Lebesgue-measurable and uniformly bounded in any com-
pact region of the state space.

Our task is then to design a finite-time convergent observer
of the linear velocity x3. The proposed sliding mode observer
is given by

˙̂x3 = z3 (15)

where z3 = βsign(x3 − x̂3). Defining x̃3 = x3 − x̂3, the
dynamic of the error for x3 becomes

˙̃x3 = ξ2(t, x2, x3, u)− β sign(x̃3) (16)

where β is chosen such that β > max(Cx

m −
CxRe

m
x2
x3

) = η.
Theorem 3: Suppose that |ẋ3| ≤ η, and the parameter β

is chosen such that β > η. The observer (15) guarantees the
convergence of the estimated state (x̂3) to the real value of
the states (x3) after a finite time transient, and there exists a
time constant t1 such that for all t ≥ t1, x̂3 = x3.

Proof: Consider the Lyapunov function

V (x̃3) =
1
2
x̃2

3

its time derivative

V̇ (x̃3) = x̃3
˙̃x3 = x̃3(ξ2(t, x2, x3, u)− β sign(x̃3)) (17)

If β is chosen as was given in the theorem (3), then V̇ (x̃3) < 0.
This shows that x̃3 goes to zero in a finite time, then, there
exist a constant t1 such that for all t ≥ t1 holds x̃3 = 0

IV. EQUIVALENT OUTPUT INJECTION ANALYSIS

For the time t2 where t2 = max(t0, t1) and for all t ≥ t2
the error dynamics (10) and (16) holds

˙̃x2 = 0 = F (t, x1, x2, x̂2)− α sign(x̃1) (18)
˙̃x3 = 0 = ξ2(t, x2, x3, u)− β sign(x̃3) (19)

Notice in (18) that at this time x̂2 = x2 and
f1(t, x1, x2, u) ≡ f1(t, x1, x̂2, u) in consequence
F (t, x1, x2, x̂2) = ξ1(t, x1, x2, u).

It was assumed that the terms z2, z3 change at a high
(infinite) frequency. However, in reality, various imperfections
make the state oscillate in some vicinity of the intersection
and components of z2, z3 are switched at finite frequency, this
oscillations have high and slow frequency components.

The high frequency terms z2, z3 are filtered out and the mo-
tion in the sliding mode is determined by the slow components
[32]. It is reasonable to assume that the equivalent control is
close to the slow component of the real control which may be
derived by filtering out the high-frequency component using
low pass filter.

The filter time constant should be sufficiently small to
preserve the slow components undistorted but large enough
to eliminate the high frequency component.

Thus the conditions τ → 0 where τ is the filter time
constant, and δ/τ → 0, where δ is the sample interval, fulfilled
to extract the slow component equal to the equivalent control
and to filter out the high frequency component.

The above reasons allows us to write the equivalent output
injection as

z̄2 = ξ1(t, x2, x3, u) (20)
z̄3 = ξ2(t, x2, x3, u) (21)

where z̄2 and z̄3 are the filtered versions of z2 and z3

respectively.

V. SYSTEM IDENTIFICATION

Assuming that J and m are known, and defining a1 = 1
J ,

it is possible to write the system (6) as follows

ẋ1 = x2

ẋ2 = a1u+ ϑ1ϕ1

ẋ3 = ϑ2ϕ2

y =
[
x1 0
0 x3

] (22)

with

ϕ1(x) =
[ −1

J
x2
Jx3

]
and ϕ2(x) =

[
1
m
− x2
mx3

]
ϑ1=

[
ReCx R2

eCx
]

and ϑ2=
[
Cx ReCx

]
(23)

Notice (22) is in a regression form with regressor vectors
ϕ1(x), ϕ2(x) in (23), and parameters vectors ϑ1, ϑ2 in (23).

Using the regression notation of (22) the observer (8) could
be written as

˙̂x1 = x̂2 + z1

˙̂x2 = a1u+ ϑ̄1ϕ(t, x1, x2, u) + z2
(24)

where ϑ̄1 is a parameters vector with nominal values of ϑ1.
For all t ≥ t2 equations (20), (21) become

z̄2 = ∆ϑ1ϕ1(t, x1, x2, u) (25)
z̄3 = ϑ2ϕ2(t, x2, x3, u) (26)

where ∆ϑ1 = ϑ1 − ϑ̄1.
To proceed we will consider, for clarity of presentation only,

the estimation procedures in two steps, one for x2 and one for
x3 in order to estimate respectively ϑ1 and then ϑ2.

A. Identification of ϑ1

It is possible to apply a dynamic form of the Least Square
identification algorithm to estimate the parameter vector with
the knowledge of z̄2 the regression vector deduced from the
measurements and observations of ϕ1.

The model structure for the linear regression [35],[36],[26]
can be written as in equation (25) where z̄2 is a measurable
quantity, ϕ1(t) is a regression vector made of known quantities
and ∆ϑ is the unknown parameters vector (difference to the
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nominal parameters). The application of linear regression algo-
rithms like the Least Squares parameter estimation algorithm
can be written as

z̄2 = ∆̂ϑϕ1(t, x1, x2, u) (27)

ε(t) = h(t)− ĥ(t) = ∆̃ϑϕ1(t, x1, x2, u) (28)
˙̂∆ϑ =

σ

γt
Γtϕ1(t, x1, x2, u)ε(t) = Γtϕ1ϕ

T
1 ∆̃ϑ (29)

Γ̇t = − σ
γt

ΓtϕT1 (t)ϕ1(t)Γt (30)

where ∆̂ϑ is the estimation of ∆ϑ the parameters vector
and ĥ(t) the prediction of the signal h(t). In general γt is a
normalization term γt = 1 + ϕ1(t)ΓtϕT1 (t) and σ ∈ [0.9, 1] a
forgetting factor. The initial conditions of the RLS algorithm
are Γ0 = ρ−1I initial gain matrix and ∆̂ϑ = ∆̂ϑ0 initial
parameters values.

Theorem 1: for the system (27) using the RLS algorithm
(27) ensures the following properties:

(i) ∆̃ϑ
T

Γ−1
t ∆̃ϑ is a non increasing function and we have∥∥∥∆̃ϑt
∥∥∥2

≤ λmin(ΓO)
λmax(Γt)

∥∥∥∆̃ϑ0

∥∥∥2

(ii) ε̃(t) = ( σγt
)1/2(h(t)− ĥ(t)) ∈ L2

Remark 2: The use of equations (27) ensures the asymp-
totic convergence of ∆̂ϑ to ∆ϑ under the persistent excitation
condition [36],[35].

Remark 3: In application, we have considered the delta
operator for approximation of the derivation [35].

B. Identification of ϑ2

The low frequency components of the signal z3 satisfies
(26), using the notation in (22) takes the form

z̄3 = βsign(x̃3) = ϑ2ϕ2 =
ϑ21

m
− ϑ22

1
m

x2

x3

Remark 4: In the same way ϑ21, assuming ϑ22 known or
already estimated, can be identified using the Least Squares
algorithm.

Remark 5: Note also that both parameters in ϑ2 can be
estimated by the Least Square Algorithm at this step. This
correspond to estimating twice ϑ22, assuming at this step as
previous estimation the value produced by the previous step.

Remark 6: Note also that depending on the expression
formulated for the forces and wheel slip in (5), (4) several
ther variables can be estimated like adherence or longitudinal
forces.

VI. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
validate our approach. Several trials have been done with a
vehicle (P406 of LCPC) equipped with sensors for wheels
angular position measurement.

Measures have been acquired with the vehicle rolling at
several speeds. The experimental data used here are those of
the rear wheel drive. The installed sensors at each wheel are
the variable reluctance ones of the Antilock Braking System
(ABS see figure ). Their resolution is 29 dot per revolution

Fig. 3. Vehicle used for experiments

(ie θ(i) = 2πn(i)
29 rad). An additional encoder (with 1000dot

by turn ie θ(i) = 2πn(i)
1000 rad) have been installed for angular

position measurements control and validation.
The Fig. 5 shows the installed laser sensor used for measure-

ment of the wheel radius. Data are sampled at 1kHz frequency
and several trials have been considered a different running
speeds (40 Km/h, 60 Km/h, 80 Km/h, 100 Km/h and varying
velocity) with and without using the ABS system.

Fig. 4. 4 Sensors used by ABS 29dot/2π

Fig. 5. Sensor for wheel radius measurement

The Fig. 6 shows the measured displacement using the
(high and low resolution) sensors installed on the vehicle and
the observed one. We can remark that the curve are well
superposed despite resolution.

The velocities can be deduced by several ways from the
displacement measurements. Here we compare three of them,
two standard computation of derivatives and the proposed
observer:

5



Fig. 6. Measured angular displacements

θ̇(i) =
θ(i)− θ(i− 1)

T
(31)

θ̇(i) =
θ(i+ 1)− θ(i− 1)

2T
(32)

x̂2 = observed(θ̇) (33)

In the upper left and right Fig. (7) we can see that estimation
of velocity signal derivation, using (31) and (32) respectively,
needs a filter to reduce the noise effect. In Fig. (8) corre-
sponding to low resolution encoders the problem is worse and
amplitude of noise has a higher level. Filtering this data will
affect the measurement precision.

Fig. 7. Estimated velocities using the high sensors (1000dot/t)

We remark that when using the proposed observer (bottom
left curve in the two figures) that the estimation remain precise
despite the bad resolution of the sensors used by ABS. The
observed and reconstructed velocities are compared to the
measure provided by a high resolution encoder.

These curves show the robustness of our observer based
on second order sliding modes and super twisting algorithm
versus measurement noise and additional perturbations. Recall
that the term ξ(t, x1, x2, u) = ϕ1(z)ϑ1 is not known and
correspond to a perturbation to be rejected in a first step;

Fig. 8. Estimated velocities using the ABS sensors (29dot/t)

Fig. 9. Estimated velocity using the ABS sensors

thank to the finite time convergence. In a second step (after
the convergence time) this perturbation is retrieved by use
of a low pass filtering and them the parameters ϑ1 can be
estimated. The second step estimations are the wheel radius
and its longitudinal equivalent stiffness. The estimations are
shown in Fig.(10), Fig.(9)

Fig. 10. Estimated wheel Stiffness and Radius using the ABS sensors and
observations

The estimated parameters are quite good and the algorithm
is very easy to apply and is not difficult to tune its parameters.
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VII. CONCLUSION

The super-twisting second-order sliding-mode algorithm is
modified in order to design a velocity observer for vehicle
using only the ABS sensors already placed in standard vehi-
cles nowadays. The finite time convergence of the observer
is proved and consequently the separation principle can be
considered as avoided. The gains of the proposed observer
are chosen very easily ignoring the system parameters. This
observer is compared, using experimental data, to classical
derivation methods and is proven robust despite the bad reso-
lution of the encoders. Its robustness combined with a sliding
mode estimation of the vehicle velocity allow us to reconstruct
the wheel sleep. In this way, the observability problems are
avoided by means of cascaded finite time converging observer
instead of additional sensors. It can be shown that contact
forces can also be estimated by this way.

The finite time convergence of state observations in the same
time as robustness and perturbation rejection allows to solve
the problem of parameter identification using the equivalent
control method (by retrieval of the rejected signal). The use
of the equivalent control, which provides a linear regression
model, allows to apply the classical parameter identification
methods (RLS) to estimate the systems dynamic parameters
like the tire longitudinal equivalent stiffness and the effective
wheel radius.

The estimation scheme build up using a Second Order
Sliding Mode observers and a Sliding Mode velocity estimator
has been tested on experimental data (acquired with a P406
vehicle) and shown to be very efficient using only standard
sensors. The actual results prove effectiveness and robustness
of the proposed method. In our further investigations we
consider also the case of complete vehicle in a road with
changing adherence. The estimations produced on-line will be
used to define a predictive control to enhance the safety.
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