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ABSTRACT
The skyline plot is a graphical representation of historical effective population sizes
as a function of time. Past population sizes for these plots are estimated from genetic
data, without a priori assumptions on the mathematical function defining the shape
of the demographic trajectory. Because of this flexibility in shape, skyline plots can,
in principle, provide realistic descriptions of the complex demographic scenarios that
occur in natural populations. Currently, demographic estimates needed for skyline
plots are estimated using coalescent samplers or a composite likelihood approach.
Here, we provide a way to estimate historical effective population sizes using an
Approximate Bayesian Computation (ABC) framework. We assess its performance
using simulated and actual microsatellite datasets. Our method correctly retrieves the
signal of contracting, constant and expanding populations, although the graphical
shape of the plot is not always an accurate representation of the true demographic
trajectory, particularly for recent changes in size and contracting populations. Because
of the flexibility of ABC, similar approaches can be extended to other types of data, to
multiple populations, or to other parameters that can change through time, such as the
migration rate.

Subjects Computational Biology, Evolutionary Studies, Genetics, Statistics
Keywords Microsatellites, Population genetics, Population size change, Generalized stepwise
mutation model, Approximate Bayesian computation

INTRODUCTION
Inferring the historical demography of populations by means of genetic data is key to
many studies addressing the ecological and evolutionary dynamics of natural populations.
Population genetics inference, with appropriate dating, can identify the likely factors
(such as climatic events) determining the demography of a species. With enough research
resources, this can be done with outstanding detail (e.g., in humans, reviewed in Nielsen et
al., 2017). Demographic inference can also be used to generate null models for the detection
of loci under selection (as discussed in Hoban et al., 2016).

At present, most of the methods to estimate demography from genetic data are based on
the coalescent. The coalescent (see Wakeley, 2008, for a review) is a mathematical model
that describes the rate at which genetic lineages coalesce (i.e., join in a common ancestor)
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towards the past, forming the genealogy of the sample. The coalescence probability depends
on the effective population size at each time in the past; that is, the demographic history of
the population. Given a genealogy, the coalescent enables a calculation of the likelihood of
the demographic model. Demographic inference is obtained by calculating the likelihood
of the model given the data, which requires integrating over all possible genealogies for
the data. This is approximated by means of Monte Carlo algorithms known as coalescent
samplers (see review by Kuhner, 2009).

Alternatively, the coalescent can be used to calculate the likelihood of the number
of genetic differences for a pair of gene copies under a given demographic model. The
likelihood for all pairs in a sample can be combined to obtain a composite-likelihood
(which is not a true likelihood because pairs are not independent and they are related by
their genealogy). The composite-likelihood score can be used as a criterion to estimate the
parameters of the model with faster algorithms than the coalescent samplers although with
lower performance, particularly regarding confidence intervals (e.g., Navascués, Hardy &
Burgarella, 2009; Nikolic & Chevalet, 2014).

Coalescent models can also be used in the likelihood-free framework known as
Approximate Bayesian Computation (ABC, Tavaré et al., 1997; Beaumont, Zhang &
Balding, 2002). In this approach, the likelihood is substituted by the similarity between
the observed data and simulated data generated from a given model. Similarity is usually
evaluated by means of a distance between observed and simulated summary statistics. This
distance allows one to select the simulations close to the observed data and reject those too
far away. Posterior probability distributions are estimated from the collection of parameter
values used in the selected simulations (see Beaumont, 2010 for a review on ABC).

A classical way to address the estimation of past population size changes by thesemethods
is to assume simple parametric models, such as exponential, logistic or instantaneous
demographic change. However, these are sometimes considered too simple to describe the
dynamics of real populations. In the skyline plot methods, the underlying demographic
model is a piecewise constant population size model, i.e., the demographic history consists
of several periods of constant size, with instantaneous changes of sizes between consecutive
periods. The aim of this model is to provide a more flexible framework that could capture
the complex demography expected in natural populations. Skyline plots were introduced
by Pybus, Rambaut & Harvey (2000) who estimated the effective population size in the
time intervals defined by the coalescent events of a given genealogy (which was considered
as known) from the expected waiting time between coalescent events. The graphical
representation of those estimates suggests the skyline of a city, giving the name to the
method. Such models have been implemented in a Markov chain Monte Carlo coalescent
sampler (BEAST software; Drummond et al., 2005; Minin, Bloomquist & Suchard, 2008;
Heled & Drummond, 2008), and in an importance sampling coalescent sampler (Ait
Kaci Azzou, Larribe & Froda, 2015) for the analysis of sequence data. The addition of
microsatellite mutation models to BEAST (Wu, Drummond & Uyenoyama 2011) made it
possible to infer skyline plots from this type of data (e.g., Allen et al., 2012; Molfetti et al.,
2013; Minhós et al., 2016). Also for microsatellite data, a composite-likelihood approach
has been developed (R package VarEff, Nikolic & Chevalet, 2014).

Navascués et al. (2017), PeerJ, DOI 10.7717/peerj.3530 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.3530


Similar piecewise models to infer historical population sizes through time have been
proposed in the context of population genomics (e.g., Li & Durbin, 2011; Terhorst, Kamm
& Song, 2016). The methods discussed above assume a set of independent (unlinked)
genetic markers. However, if a large proportion of the genome has been sequenced,
the studied polymorphism are in linkage disequilibrium. Methods such as the Pairwise
Sequentially Markovian Coalescent (PSMC, Li & Durbin, 2011) and its successors profit
from the additional information of linkage disequilibrium for the inference. We will not
further discuss this family of methods, as our focus here is on datasets of independent
molecular markers, such as microsatellites, which remain reliable markers for low-budget
projects. Note, however, the PSMC-like implementation on ABC by Boitard et al. (2016).

The use of the skyline plot in the ABC framework was first proposed in Burgarella
et al. (2012). Here, we provide a suite of R scripts (DIYABCskylineplot) to produce
approximate-Bayesian-computation skyline plots from microsatellite data and evaluate its
performance on simulated pseudo-data. We show the method to be useful for detecting
population decline and expansion and discuss its limits. ABC skyline plots are then built
for four study cases (whale shark, leatherback turtle, Western black-and-white colobus and
Temminck’s red colobus) and compared with the demographic inference obtained by an
alternative full likelihood method.

METHODS
ABC skyline plot
For a demographic skyline plot analysis within the ABC framework, our model consisted
of a single population with constant size that instantaneously changes to a new size n times
through time. The parameters (from present to past, as in the coalescent model) are the
present scaled population size θ0 = 4N0µ (where N0 is the effective population size in
number of diploid individuals and µis the mutation rate per generation) which changes to
θ1 at time τ1=T1µ (where T is the time measured in generations), remains at θ1 and then
it changes to θ2 at τ2, and so on, until the last change to θn at τn. Note that other models
and parametrization could have been used for our purpose, as in the alternative model that
we present in Section S1.2.

The objective of a standard ABC analysis would be to estimate the posterior distribution
for each parameter of the model. In our case, the parameters {(θi,τi);i∈ [0,n]} have been
treated as nuisance parameters and we focused on inferring from them the trajectory of the
scaled effective population size along time, θ(t ), as in Drummond et al. (2005). In order to
approximate θ(t ) we select m times of interest, {tj;j ∈ [1,m]}. Given a simulation k with
parameters {(θk,i,τk,i);i ∈ [0,nk]}, derived parameters {θk(tj);j ∈ [1,m]} are obtained as
follows: θk(tj)= θk,i for i satisfying the condition τk,i ≤ tj < τk,i+1 (see Fig. S1 for some
examples). For each tj , inference of the derived parameters θ(tj) were obtained following
standard ABC procedures as described elsewhere (e.g., Beaumont, Zhang & Balding, 2002).
Median and 95% highest posterior density (HPD) intervals of derived parameters θ(tj)
were used to draw ABC skyline plots.

Simulations with different numbers of population size changes can be used for inference
because of the use of derived parameters θ(tj), which are common to all models. We set
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the prior probability on the number of constant size periods to be Poisson distributed
with λ= ln(2) as in Heled & Drummond (2008). This gives equal prior probability to
stable populations (a single period of constant size) and changing populations (two or
more periods). Thus, posterior probability on the number of periods may be used to
discriminate between stable and changing demographies by estimating the Bayes factor
of one period (constant population size) versus several demographic periods (variable
population size). Posterior probabilities of contrasting models can be obtained by logistic
regression as described elsewhere (Beaumont, 2008).

We implemented this approach in a suite of R scripts (R Core Team, 2017) that we named
DIYABCskylineplot (Navascués, 2017). For each simulation the number of population size
changes is sampled using the prior probabilities. Through a command line version of
DIYABC (v2.0, Cornuet et al., 2014), parameter values {(θk,i,τk,i);i∈ [0,nk]} are sampled
from the prior distribution, coalescent simulations are performed and summary statistics
are calculated (mean across loci of the number of alleles, Na; heterozygosity, He ; variance
of allele size, Va, and Garza & Williamson (2001) statistic, M ). In addition, the Bottleneck
statistic (1H ; Cornuet & Luikart, 1996), which compares the expected heterozygosity given
the allele frequencies with the expected heterozygosity given the observed number of alleles,
is calculated in R from the summary statistics provided by DIYABC. Derived parameter
values, {θk(tj);j ∈ [1,m]}, are calculated from the reference table (i.e., table of original
parameters and summary statistics values for all simulations) produced by DIYABC and
their posterior probability distributions are estimated in R using the abc package (Csilléry,
François & Blum, 2012).

Simulations
The method described above was evaluated on simulated data (pseudo observed data-set,
POD) of contracting and expanding populations. Declining populations had a present
effective size of N0 = 100 diploid individuals that changed exponentially until time T ,
which had a value of 10, 50, 100 or 500 generations in the past, reaching an ancestral
population sizes ofNA, which had a value of 1,000, 10,000 or 100,000 individuals. Expanding
populations had a present population size of N0 with a value of 1,000, 10,000 or 100,000
diploid individuals, which changed exponentially until reaching the size of the ancestral
population NA = 100 at time T , which had a value of 10, 50, 100 or 500 generations in
the past. For times older than T , the population size is constant at NA for all scenarios.
In addition, we simulated three constant population size scenarios with N taking a
value of 1,000, 10,000 or 100,000. Equivalent scenarios were also evaluated in Girod et al.
(2011) and Leblois et al. (2014). PODs were generated for 50 individuals genotyped at 30
microsatellite loci evolving under a generalised stepwise mutation model (GSM, Slatkin,
1995). Additional PODs varying in number of loci (7, 15 or 60 loci) and sample size (6,
12, 25 or 100 diploid individuals) were produced to evaluate the influence of the amount
of data in the detection of demographic change. Mutation rate was set to µ= 10−3 and
PGSM to 0, 0.22 or 0.74 (PGSM is the parameter of a geometric distribution determining
the mutation size in number of repeats). One hundred replicates (i.e., PODs) were run for
each scenario. Therefore, the mutation scaled parameter values are for θ = 4Nµ: 0.4, 4,
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40 or 400 and for τ =Tµ: 0.01, 0.05, 0.1 or 0.5. PODs were obtained using the coalescent
simulator fastsimcoal (Excoffier & Foll, 2011).

Every POD was analysed with the same set of prior probability distributions that largely
includes all parameter values of simulations. Scaled effective size parameters, θi, were taken
from a log-uniform distribution in the range (10−3 , 104) and scaled times, τi, from a
log-uniform distribution in the range (2.5×10−4,4). A uniform prior in the range (0, 1)
was used for mutational parameter PGSM . For each replicate of each scenario, we obtained
the skyline plot (median and 95% HPD intervals of the θ(tj) posterior distributions) and
estimated the Bayes factor between constant size and variable demography by using logistic
regression. Estimates of the mutational parameter PGSM were also obtained for each POD.
For each scenario, mean absolute error, bias and proportion of times the true value falls
outside the credibility interval were estimated.

Data sets
In addition to PODs, four real data-sets from the literature were re-analysed with the ABC
skyline plot described above. The first data-set comes from the whale shark (Rhincodon
typus), the largest extant fish. Whale sharks inhabit all tropical and warm temperate
seas and are considered an endangered species with a global population decline of more
than 50% in the last three generations (Pierce & Norman, 2016). We have re-analysed a
data-set of 478 individuals genotyped at 14 microsatellite loci from Vignaud et al. (2014).
The second example is the leatherback turtle (Dermochelys coriacea), the most widely
distributed sea turtle found from tropical to sub-polar waters. The global population
has been reduced in about 40% in the last three generations. As species, the leatherback
turtle is classified as vulnerable, mainly because of the Northwest Atlantic population
that shows an increase in number of nests. However, other populations are critically
endangered (Wallace, Tiwari & Girondot, 2013). The data-set re-analysed (215 individuals
genotyped at 10mocrosatellite loci;Molfetti et al., 2013) comes from theNorthwest Atlantic
population. Last, we re-analysed the data from the populations of two colobus monkeys
at the Cantanhez National Park in Guinea Bissau (Minhós et al., 2016). The Western
black-and-white colobus (Colobus polykomos, 22 individuals genotyped at 14 loci) and the
Temminck’s red colobus (Procolobus badius ssp. temminckii, 23 individuals genotyped at
13 loci) are two sympatric species from the Western African rainforest considered to be
vulnerable and endangered respectively (Oates, Gippoliti & Groves, 2008;Galat-Luong et al.,
2016). Data were analysed with the same prior distributions as PODs except for the colobus
monkeys datasets, which consist of tetranucleotide markers. Previous evidence suggests
that tetranucleotide microsatellite mutations are mainly of only one repeat unit (e.g.,
Leopoldino & Pena, 2003; Sun et al., 2012). In order to incorporate this prior knowledge,
half of the simulations had PGSM = 0 (i.e., a strict stepwise mutation model, SMM) and the
other half had the parameter sampled from a uniform distribution in the range (0, 1).

For comparison, demographic history of the four real data sets was also explored using
theMIGRAINE software (Rousset & Leblois, 2016, http://kimura.univ-montp2.fr/~rousset/
Migraine.htm ) under the model of a single panmictic population with an exponential
change in population size. To infer model parameters, MIGRAINE uses coalescence-based
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importance sampling algorithms under a maximum likelihood framework (Leblois et
al., 2014) using OnePopVarSize model. In this model, MIGRAINE estimates present
and ancestral scaled population sizes (θ0 = 4N0µ and θA = 4NAµ) and the scaled time
of occurrence of the past change in population size (D= T/4N , going backward from
sampling time, when the population size change began). The past change in population
size is deterministic and modelled using an exponential growth or decline that starts at
time D. Before time D, scaled population size is stable and equal to θA. MIGRAINE allows
departure from the strict SMM by using a GSM with parameter PGSM for the geometric
distribution of mutation sizes. Finally, detection of significant past change in population
size is based on the ratio of population size (θratio = θ0/θA). θratio > 1 corresponds to a
population expansion and θratio< 1 to a bottleneck. If no significant demographic change
is obtained, MIGRAINE is run again under a model of stable demography (a single value of
θ) for parameter estimation. For the whale shark data set, MIGRAINE analysis was already
done in Vignaud et al. (2014). For the leatherback turtle, MIGRAINE was run using 20,000
trees, 200 points at each iteration and a total of 16 iterations. For the colobus monkeys, we
considered 2,000 trees, 400 points at each iteration and a total of 8 iterations.

RESULTS
Simulations
The general behavior of the method can be described from three example scenarios
(contraction with θ0 = 0.4, θ1 = 40, τ = 0.1, expansion with θ0 = 40, θ1 = 0.4, τ = 0.1
and constant size with θ = 40; mutational model with PGSM = 0.22). These examples
correspond to intermediate parameter values. Results for all simulations are available in
Supplementary Information 1.

The main output of the analysis is the graphical representation (i.e., the skyline plot) of
the inferred demographic trajectory. It consists of a plot with three curves, representing the
point estimates (median) and 95%HPD intervals of θ through time. Skyline plots obtained
from PODs are congruent with the true underlying demography simulated (Fig. 1), except
in the less favorable scenarios with very recent or very small changes in population size
(Figs. S2–S8). Although the trajectory of the posterior median of θ and the true trajectory
share the same trend (declining, increasing or constant), they sometimes differ inmagnitude
or time-scale. This disparity is more prominent for bottleneck scenarios.

For a quantitative criterion to assert demographic change we explored the value of
posterior probabilities for constant and variable population size models, similar to the
scheme proposed by Heled & Drummond (2008). These probabilities (summarised as
Bayes factors in Fig. 2) proved to be useful for distinguishing bottleneck and expansion
scenarios from demographic stability, although with lower performance for less favorable
scenarios (Figs. S9–S15). Constant size scenarios show no evidence for size change. The
power to detect demographic change reduces with smaller sample size and lower number
of loci (Fig. 2) because summary statistics are estimated with lower precision.

Changes in population size were co-estimated with the mutational model parameter
PGSM . Mean absolute error, bias and proportion of replicates for which the true value was
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Figure 1 ABC Skyline plots: simulations. Superimposed skyline plots (median in black, and 95% HPD
interval in grey of the posterior probability distribution for θ(t )) from 100 replicates for example (A) con-
traction (θ0 = 0.4, θ1 = 40, τ = 0.1), (B) expansion (θ0 = 40, θ1 = 0.4, τ = 0.1) and (C) constant size (θ =
40) scenarios with mutational model PGSM = 0.22. Simulation of 30 loci sampled at 50 diploid individuals.
True demography is shown in orange. Note that present is at τ = 0 (left).
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Figure 2 Evidence for variable population size.Distribution of Bayes factor values (boxplot) from 100
replicates for example (A, D) contraction (θ0 = 0.4, θ1 = 40, τ = 0.1), (B, E) expansion (θ0 = 40, θ1 = 0.4,
τ = 0.1) and (C, F) constant size (θ = 40) scenarios with mutational model PGSM = 0.22. Different sized
data sets (number of individuals and loci) are presented, with simulation of 30 loci (A–C) and simulation
with 50 diploid individuals (D–F). For reference, Jeffreys (1961) scale is given for the evidence against con-
stant size.

Table 1 Estimation of mutational parameter PGSM .

Model θ0 θ1 τ PGSM MAE Bias Out of CI

Contraction 0.4 40 0.1 0.22 0.14 0.13 0.01
Expansion 40 0.4 0.1 0.22 0.05 −0.04 0.05
Constant size 40 0.22 0.06 −0.03 0.00

Notes.
MAE, mean absolute error; out of CI, proportion outside credibility interval (95% HPD).
Estimates from 100 replicates.

outside the 95% HPD interval are reported in Table 1 for the three example scenarios
and in Table 1 for all simulations. Estimates from expanding and stable populations show
a relatively low error and bias and a good coverage of the credibility interval (except in
the strict SMM case). However, estimates from declining populations show higher error
and bias.
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Figure 3 ABC Skyline plots: real data. Skyline plots (median in black, and 95% HPD interval in grey of
the posterior probability distribution for θ(t )) for whale shark (A), leatherback turtle (B), Western black-
and-white colobus (C) and Temminck’s red colobus (D). Bayes Factors (BF) are reported for the vari-
able versus constant size model. Demographic trajectories based on parameters point estimates from MI-
GRAINE analysis are shown with a green line for reference. Note that present is τ = 0 (left).

Real data
The ABC analyses show evidence of population expansion for the whale shark (BF = 59.62)
and the leatherback turtle (BF = 16.65); no evidence for population size changes in the
black-and-white colobus (BF = 0.58) and some evidence for a bottleneck in the red colobus
(BF = 2.63). Respective skyline plots reflect such trends (Fig. 3). Results from MIGRAINE
support the same trends, with θratio significantly larger than one for the whale shark and the
leatherback turtle, significantly smaller than one for the red colobus and not significantly
different from one for the black-and-white colobus (Table S3). Scaled population size
estimates through time are also in agreement, except for the leatherback turtle, where the
MIGRAINE result suggests a more ancestral expansion of much greater magnitude.
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Regarding the mutational model, a large proportion of multi-step mutations seems to be
present in all datasets, with PGSM estimates: P̂GSM = 0.55 (95% HPD = 0.46–0.62) for the
whale shark; P̂GSM = 0.50 (95% HPD = 0.38–0.60) for the leatherback turtle; P̂GSM = 0.43
(95% HPD = 4.05 ×10−3–0.53) for the black-and-white colobus; and P̂GSM = 0.18 (95%
HPD = 0.02–0.75) for the red colobus (see also Fig. S16). Although very small values
of PGSM are included in the credibility interval from the colobus analyses, the GSM is
favoured over the SMM when an ABC model choice analysis is performed (BF = 57.50
for the black-and-white colobus and BF = 10.01 for the red colobus). These results are
congruent with estimates of PGSM by MIGRAINE (Table S3).

DISCUSSION
The ability of the ABC skyline plot to detect changes in population size varies largely across
the different scenarios evaluated. The evidence for demographic change was often strong
(even very strong) in declining and expanding populations. However, demographic changes
of small magnitude and close to the present were the hardest to detect. Recent or small
magnitude events leave a weak signal in the genetic data and are also hard to identify for
alternative methods (see Girod et al., 2011; Leblois et al., 2014; Nikolic & Chevalet, 2014).
In any case, the method is conservative, since most analyses of stable populations yielded
negative or little evidence for demographic change.

The main appeal of skyline plots is to depict demographic trajectories not bounded by
a mathematical function, thus potentially reflecting more realistically the demography of
natural populations. However, our results show that plotted trajectories only loosely reflect
the true demography, particularly for contracting populations. The match between the true
and inferred demographic trajectory was good for constant size populations and for some
expanding populations. Ancestral and current population sizes (the extremes of the skyline
plot) were also retrieved accurately for favourable scenarios. Nevertheless, the shape of the
curve representing the transition between population sizes was a poor representation of
the true demographic trajectory in many cases. While this conclusion is specific for the
implementation presented in this work, it calls to caution for the interpretation of results
from other methods yielding smooth skyline plots (e.g., Heled & Drummond, 2008; Gill et
al., 2013; Nikolic & Chevalet, 2014). The key for a smooth skyline plot is the prior on the
effective-size autocorrelation through time. The demographic history consists of several
demographic periods. Within each period the effective size at consecutive generations is
correlated through some mathematical function (often a constant). Between consecutive
periods, population size can be independent (our approach) or correlated by different sets
of priors.Drummond et al. (2005) proposed using an exponential prior for the effective size
( θi) at period i with mean equal to the previous period effective size (θi−1). In the Bayesian
skyride and skygrid (Minin, Bloomquist & Suchard, 2008;Gill et al., 2013) the correlation of
effective size through time is modelled with a Gaussian Markov random field that penalizes
differences in effective size across periods in function of the temporal distance among
them. A superficial comparison with the VarEff method (Nikolic & Chevalet, 2014) and
the extended Bayesian skyline plot (Heled & Drummond, 2008) seems to indicate that their
inferences suffer from problems of performance (see Fig. S19).
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Bottlenecked populations, which show the greatest discrepancy between the skyline plot
and the true demographic curve, are also the scenarios for which the mutational parameter
PGSM was inferred with largest bias. Similar patterns of summary statistics are produced
with large PGSM values and with a bottleneck (e.g., large allele size variance, see Table S2),
which make accurate joint inference of demography and mutational models difficult. This
difficulty of distinguishing between scenarios with frequent multi-step mutations and
contracting populations also explains the low power to detect some bottleneck cases, such
as those with large PGSM values and strong declines in population size (see Fig. S11). A
negative effect on demographic inference due to mutational model misspecification has
been also reported for alternativemethods (seeGirod et al., 2011; Leblois et al., 2014;Nikolic
& Chevalet, 2014).

Globally, our results highlight the interest of using complementary data and inference
methods. In the four real-data populations, their demographies have been previously
studied in the original publications. In addition to theMIGRAINE analysis of microsatellite
data, Vignaud et al. (2014) inferred a population expansion for the whale shark by using
Bayesian skyline plot analysis on mitochondrial DNA sequence data, corroborating the
signal of expansion for this species. In the case of the leatherback turtle, the previous
analyses were less conclusive (Molfetti et al., 2013). An extended Bayesian skyline plot on
microsatellite data suggested an expansion, but it was not significant, and the skyline plot
on mitochondrial DNA data did not show any demographic change. In contrast, analysis
of microsatellite data with MSVAR (a coalescent sampler approach, Beaumont, 1999; Storz
& Beaumont, 2002) suggested a strong population decline. However, it must be noted that
MSVAR assumes a strict SMM, which can lead to biases in the demographic estimates
when microsatellite mutations include a substantial proportion of multi-step changes
(Girod et al., 2011; Faurby & Pertoldi, 2012). Our estimates of the PGSM parameter and the
two-phase model used in BEAST suggest a strong departure from the SMM and lead us
to favour the hypothesis of population expansion. Finally, the original analysis of the two
colobus species found significant evidence of population decline for both of them (Minhós
et al., 2016). Again, this evidence was obtained from MSVAR and the extended Bayesian
skyline plot implemented in BEAST assuming a SMM. Despite the prior results suggesting
that tetranucleotide microsatellite mutations add or remove a single repeat, our analyses
(ABC skyline plot and MIGRAINE) rejected the SMM for the black-and-white colobus.
This explains the difference between their results and our demographic inference, which
supports a constant size for this population.

Results from demographic inferences have been reported in the form of the scaled
parameters θ and τ throughout this work. This is because rescaling to natural parameters
(effective population size in number of individuals and time in number of generations or
years) requires independent knowledge of mutation rates, which is unavailable for most
species (including our four study cases). If such knowledge exists, a prior can be used in
DIYABC to incorporate this information in the analysis and make inferences on natural
scale parameters. Otherwise, we advocate reporting coalescent scaled parameters as results
of the analysis. This allows the discussion of the result considering different mutation rates
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and reinterpretation of results if information on mutation rates is obtained in the future
for the focal species.

A common problem for the inference of population size changes is the presence
of population structure or gene flow. Most methods aiming to detect population size
change often assume the analysis of a single, independent population, but violation of this
assumption usually leads to false detection of bottlenecks (e.g.,Heller, Chikhi & Siegismund,
2013; Nikolic & Chevalet, 2014, for skyline plot approaches). We expect the same effect in
the implementation of the skyline plot analysis we present here. However, distinguishing
between population structure and population decline in the ABC framework is possible
under some circumstances with the appropriate summary statistics (Peter, Wegmann &
Excoffier, 2010) that can be included in future implementations of the ABC skyline plot.

Indeed, the ease of incorporating new summary statistics and models is of prime
interest for implementing the skyline plot in the ABC framework. Multiple samples of
the same population at different times (as in experimental or monitored populations
and ancient DNA studies) can easily be simulated allowing for better estimates of the
effective population size (Waples, 1989;Navascués, Depaulis & Emerson, 2010).Models with
multiple populations can also be simulated and skyline plots for each of the populations
estimated. Extensions to other molecular markers will be straightforward to develop
and already exist for genomic data (e.g., Boitard et al., 2016). Finally, other demographic
parameters, such as the migration rate (Pool & Nielsen, 2009), could be subject to variation
with time and they, too, could be inferred with a similar scheme. To sum up, there is
potential to develop this approach in different directions, to address new questions in
future research.

In this work we presented a detailed description of how to compute an approximate-
Bayesian-computation skyline plot and assessed its performance on stable and changing
simulated populations characterized with microsatellite markers. Its power to detect the
signal of demographic change is similar to alternative methods. However, its potential
ability to depict the demography of natural populations more realistically must not be
overrated. Still it offers an analysis complementary to other methods and there is great
potential to develop it to cover other models and types of genetic data.
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