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Extremal index for a class of heavy-tailed
stochastic processes in risk theory

Charles Tillier

Abstract Extreme values for dependent data corresponding to high threshold ex-
ceedences may occur in clusters, i.e., in groups of observations of different sizes.
In the context of stationary sequences, the so-called extremal index measures the
strength of the dependence and may be useful to estimate the average length of such
clusters. This is of particular interest in risk theory where public institutions would
like to predict the replications of rare events, in other words, to understand the de-
pendence structure of extreme values. In this paper, we characterise the extremal
index for a class of stochastic processes that naturally appear in risk theory under
the assumption of heavy-tailed jumps. We focus on Shot Noise type-processes and
we weaken the usual assumptions required on the Shot functions. Precisely, they
may be possibly random with not necessarily compact support and we do not make
any assumption regarding the monotonicity. We bring to the fore the applicability of
the result on the Kinetic Dietary Exposure Model introduced in [6] used in modeling
pharmacokinetics of contaminants.

1 Motivations and framework

The assessment of major risks in our technological society has become vital be-
cause of the economic, environmental and human impacts of recent industrial dis-
asters. Hence, risk analysis has received an increasing attention the last past years
in the scientific literature in various areas, e.g., in dietary risk, hydrology, finance
and insurance; see [7], [1], [14] for instance. By nature, risk theory concerns the
probability of occurrence of rare events which are functions - sums or products - of
heavy-tailed random variables. Hence, stochastic processes provide an appropriate
framework for modeling such phenomena through time. For instance, non-life insur-
ance mathematics deal with particular types of Shot Noise Processes (SNP) defined
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as

S1(t) =
N(t)

∑
i=0

Wih(t−Ti), t ≥ 0, (1)

where usually (Wi)i≥0 are independent and identically distributed (i.i.d.) random
variables (r.v.’s), h is a nonincreasing measurable function and N is a homogeneous
Poisson process. In this insurance context, S1 may be used to represent the amount
of aggregate claims that an insurer has to cope with; see [21] for an complete review
of non-life insurance mathematics. More generally, this kind of jump processes are
useful in many applications to model time series for which sudden jumps occur such
as in dietary risk assessment, finance, hydrology or as reference models for intermit-
tent fluctuation in physical systems; see [10] and [27] for instance. The study of the
extremal behavior of these stochastic processes leads to risk indicators such as the
expected time over a threshold or the expected shorfall, which supply information
about the exceedences that give rise to hazardous situations; see [26] for instance.

Besides, since extremal events may occur in clusters, the study of the dependence
structure of rare events is a major issue, for example to predict potential replications
of earthquakes in environmental sciences. This dependence structure may be cap-
tured by the extremal index defined in the seminal contribution [18]. Recall that a
stationary sequence (Zi)i∈Z has an extremal index θ ∈ [0,1] if for all τ > 0 and all
sequence un(τ) such that limn→∞P(Z1 ≥ un(τ)) = τ, it holds that

lim
n→∞

P
(

max
i=1,...,n

Zi ≤ un(τ)

)
= e−θτ . (2)

Less formally, the extremal index indicates somehow, how many times in average
an extremal event will reproduce. The case θ = 1 (respectively θ = 0) corresponds
to independent data, i.e., to extreme values occuring in an isolated fashion (respec-
tively to potentially infinite size clusters).
Authors in [11], [16] and [19] characterise the extremal index in several particular
configurations of (1) and study the extremal properties of the process. More recently,
[20] compute the extremal index when the jumps (Wi)i≥0 form a chain-dependent se-
quence (the cumulative distribution function (c.d.f.) is linked to a secondary Markov
chain) and they assume that h is a bounded positive strictly decreasing function sup-
ported on a finite interval.

In this paper, we continue the investigation of the extremal index for such
stochastic processes relaxing the conditions required on h. We focus on an extension
of such SNP on the form

S(t) =
∞

∑
i=0

Wihi(t−Ti), t ≥ 0, (3)

where t → hi(t) is a random function. Throughout the paper, we work under the
following three conditions (C1)-(C3).
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(C1) Jumps (Wi)i∈N are nonnegative r.v.’s with c.d.f. H such that H = 1−H is
regularly varying at infinity with index −α , α > 0, that is

H(wx)
H(x)

−→
x→∞

w−α , ∀ w > 0.

(C2) Jumps instants (Ti)i∈N are defined for i≥ 1 by Ti = ∑
i
k=1 ∆Tk and T0 = 0 while

the inter-jumps (∆Ti)i∈N∗ are i.i.d. positive r.v.’s with finite expectation.
(C3) For all i≥ 0, the random functions hi are positive, stationary and independent

of Ti.

The condition (C1) is the heavy-tailed distribution assumption on the jumps. We
refer to [24] for an exhaustive review of the univariate regular variation theory. The
condition (C2) means that (T0,T1, . . .) forms a renewal sequence so that one may
define the associated renewal process {N(t)}t≥0 by N(t) := #{i ≥ 0 : Ti ≤ t} for
t ≥ 0. The remaining part of the manuscript is organized as follows. In Section 2,
we present the main result regarding the extremal index of the process (3) while an
illustrative application is given in Section 3. In the Appendix, we recall the main
notions involved in the proof of the theorem.

2 The extremal index

The extremal index defined in Equation (2) holds for discrete-time series. The pur-
pose of this work is to investigate the dependence structure of the extreme values
of the continuous-time stochastic processes S defined in Equation (3). Depending
on the context, it means that we are either interested in the dependence structure of
its maxima or of its minima. In dietary risk assessment, S aims at representing the
evolution of a contaminant in the human body through time; see Section 3 for more
details. Toxicologists determine thresholds from which the exceedence may have
some adverse effect for the health of an individual and we are therefore interested in
the maxima of S. Similarly, in hydrology, (3) may be used to describe the flow of a
river and a hazardous situation - seen as a rare event - arises when the flow exceeds
a critical threshold; see [9]. On the other the hand, in most of the applications, the
random functions hi are in essence monotonic for each i ≥ 0 when t grows. To be
convinced, let us go back to the dietary risk assessment. In this context, hi models
the elimination of the contamination and is thus a decreasing function for each i≥ 0.
For instance, hi(t)≡ e−t , t ≥ 0 has been proposed in [6] and is also used in non-life
insurance mathematics; see [21].

Assuming that the random function hi are monotonic for each i≥ 0, it is straigth-
forward to see that the extreme values - the maxima or the minima - occur on the
embedded chain, i.e., the process {S(t)}t≥0 sampled at the jump arrivals T1,T2 . . ..
As a consequence, the dependence structure of the continuous-time stochastic pro-
cess S may be deduced from the analysis of the dependence structure of the under-
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lying sequence (S(T1),S(T2), . . .).

This is the purpose of this section: to compute the extremal index of the em-
bedded chain of the jump process (3). This means that we focus on the following
discrete-time risk process

S(Tk) =
k

∑
i=1

Wihi(Tk−Ti), k > 0. (4)

Hereinafter, for i ≥ 1, define −T−i (respectively W−i and h−i) as an independent
copie of Ti (respectively of Wi and hi) so that under (C1) and (C3), (Wi)

∞
i=−∞

and
(hi)

∞
i=−∞

form respectively an i.i.d. and a stationary sequence of positive r.v.’s. Fac-
ing with the issue of non stationarity of the embedded chain (4) - required for the
computation of the extremal index - we study a stationary version/modification de-
noted (Sk)k∈Z and defined by

Sk =
k

∑
i=−∞

Wihi(Tk−Ti), k > 0. (5)

We now introduce the condition (D1), under which the stationary sequence (5) is
well defined.

(D1) The random function hi satisfy

• ∑
∞
i=0E[h1(Ti)]< ∞, α < 1.

• There exists ε > 0 such that ∑
∞
i=0E[hα−ε

1 (Ti)]< ∞, α ≤ 2.
• ∑

∞
i=0E[h2

1(Ti)]< ∞, α > 2.

Theorem 1. Assume Model (4) holds. Under Conditions (C1)-(C3) and (D1), the
extremal index θ is given by

θ =
E [maxi≥0 hα

i (Ti)]

∑
∞
i=0E[hα

i (Ti)]
. (6)

We do not raise the question of the estimation of the extremal index in this work. In
many cases, the jump process (3) is a PDMP (Piecewise-Determinsitic Markov Pro-
cess) and [5] propose a robust estimator for the extremal index; see the application
in Section 3 for an illustrative example.

2.1 Proof of Theorem 1

For reader’s convenience, the definitions of the main notions, namely the tail index,
the anti-clustering and the strong mixing conditions are postponed in the Appendix.
Let us first define the intermediate stationary sequences {S(m)

k ,k ≥ 0}m≥0 such that
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S(m)
k =

k

∑
i=k−m

Wihi(Tk−Ti). (7)

The extremal index θ of the stationary sequence {Sk}k≥0 will be deduced from the
extremal index θm of {S(m)

k ,k ≥ 0}m≥0 in the following way. In [3], Theorem 4.5,
the authors show that if a jointly regularly varying (see the definition of ”jointly
regularly varying” in Definition 1 in the Appendix) stationary sequence (Zi)i∈Z is
strongly mixing and satisfies the anti-clustering condition, then (Zi)i∈Z admits an
extremal index θ̃ given by

θ̃ = P
(

max
k≥1

Yk ≤ 1
)
, (8)

where (Yi)i∈N is the tail process of (Zi)i∈Z. Using this result, we obtain the extremal
index θm for each m ≥ 1. Next, we show that the assumptions of Proposition 1.4
in [11] hold to conclude that limm→∞ θm = θ . We start by characterizing the tail
process of sequence {S(m)

k }k∈N in the following lemma.

Lemma 1. Assume that Conditions (C1)-(C3) and (D1) hold. For each m ≥ 1, the
tail process of {S(m)

k }k∈N denoted by {Y (m)
k }k∈N is defined by

Y (m)
n =

{
hNm (Tn+Nm )

hNm (TNm ) Y (m)
0 , 0≤ n≤ m,

0 for n > m,

with P
(

Y (m)
0 > y

)
= y−α and Nm is an integer-valued random variable such that

P(Nm = n) =
E[hα

n (Tn)]

∑
m
i=1E[hα

i (Ti)]
, 0≤ n≤ m.

Besides, for any random variable U measurable with respect to (h j,Tj) j∈Z, we have

E[U | Nm = i] =
E[hα

i (Ti)U ]

E[hα
i (Ti)]

, 0≤ i≤ m.

Proof (Proof of Lemma 1). For clarity of notation, we omit the superscript (m) and

we assume that hk ≡ 0 if k > m and we denote X1
d
= X2 when two random variables

X1,X2 share the same distribution. Then, for a fixed n, we have

P
(

max
i=0,...,n

Si/yi ≤ x | S0 > x
)

= 1−P
(

max
i=0,...,n

Si/yi > x | S0 > x
)

= 1−
P((maxi=0,...,n Si/yi)∧S0 > x)

P(S0 > x)
.
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Under the two conditions (C1) and (C2), (Wk)k∈Z is a i.i.d. sequence and Ti−Tk
d
=

Ti−k for i≥ 0 and k ≤ 0. It follows that

lim
x→∞

P
(

max
i=0,...,n

Si/yi > x,S0 > x
)
∼

x→∞

∞

∑
k=0

P
(

Wk

(
max

i=0,...,n
hk(Ti−Tk)/yi

)
∧hk(−Tk)> x

)

∼
x→∞

∞

∑
k=0

E

[
n∨

i=0

hα
k (Tk+i)

yi
∧hα

k (Tk)

]
P(W1 > x),

and

S0 =
0

∑
i=−∞

Wihi(T0−Ti)
d
=

∞

∑
i=0

Wihi(Ti),

under (C3). Moreover, since the two sequences (hi)i∈Z and (Ti)i∈Z are mutually
independent, the results in Section 3 of [17] imply that the series S0 is almost surely
convergent under Condition (D1) and we have

lim
x→∞

P(S0 > x)
H(x)

=
∞

∑
i=0

E [hα
1 (Ti)]< ∞. (9)

From Equation (9), we have proved that S0 is regularly varying at infinty with the
same index α than the jumps (Wi)i≥0. It also follows that

lim
x→∞

P
(

max
i=0,...,n

Si/yi ≤ x | S0 > x
)
= 1−

E
[∨n

i=0
hα

k (Tk+i)

yi
∧hα

k (Tk)
]

∑
∞
k=0E[hα

k (Tk)]
.

Setting

pk =
E[hα

k (Tk)]

∑
∞
j=0E[hα

j (Tj)]
,

we obtain

lim
x→∞

P
(

max
i=0,...,n

Si/yi ≤ x | S0 > x
)

= 1−
∞

∑
k=0

pk
E
[∨n

i=0 hα
k (Tk+i)/yi∧hα

k (Tk)
]

E[hα
k (Tk)]

= 1−
∞

∑
k=0

pkE

[
n∨

i=0

hα
N(TN+i)

yihα
N(TN)

∧1 | N = k

]

= 1−E

[
n∨

i=0

hα
N(TN+i)

yihα
N(TN)

∧1

]

= 1−P

(
Y0

n∨
i=0

hα
N(TN+i)

yihα
N(TN)

> 1

)
,

where Y0 is a Pareto random variable independent of {hi,Ti}i∈Z. This proves our
claim.
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For each m≥ 1, the strong mixing condition holds for each sequence {S(m)
k ,k ≥ 0}

since it is m-dependent. Indeed, by independence αh = 0 for all h≥m+1. Likewise,
since {S(m)

k ,k ≥ 0} is m-dependent, the anti-clustering condition is satisfied with
rnP(Z1 > an) = o(1); see Section 4.1 in [2]. As a first consequence, we obtain in
the following lemma the expression of the extremal index θm of the intermediate
sequence {S(m)

k }k≥0.

Lemma 2. Assume that Conditions (C1)-(C3) and (D1) hold. For each m ≥ 1, the
extremal index θm of the intermediate sequence {S(m)

k ,k ≥ 0} defined in (7) is given
by

θm =
E
[∨m

j=0 hα
j (Tj)

]
∑

m
i=0E[hα

1 (Ti)]
. (10)

Proof (Proof of Lemma 2). Fix m≥ 1 throughout the proof. By Equation (8), since
P(Y0 > x) = x−α , we have

θm = P
(

max
k≥1

Y (m)
k ≤ 1

)
= P

(
max
k≥1

Y0Θ
(m)
k ≤ 1

)
= 1−P

(
max
k≥1

Y0Θ
(m)
k ≥ 1

)
= 1−E

[
max
k≥1

(
Θ

(m)
k

)α

∧1
]
,

where
(

Θ
(m)
k

)
k≥0

refers to the spectral tail process of the intermediate sequence

{S(m)
k ,k ≥ 0} defined in [3]. Applying Lemma 1, we obtain

θm = P
(

Y0 max
1≤k≤m

hk+N(Tk+N)

hN(TN)
≤ 1
)

= 1−E
[

max
1≤k≤m

hα
k+N(Tk+N)

hα
N(TN)

∧
1
]

= 1−
m

∑
n=0

E
[

max
1≤k≤m

hα
k+N(Tk+N)

hα
N(TN)

∧
1 | N = n

]
P(N = n)

= 1−
∑

m
n=0E

[
(max1≤k≤m hα

n+k(Tn+k))∧hα
n (Tn)

]
∑

m
j=0E[hα

j (Tj)]

=
∑

m
n=0E

[
hα

n (Tn)− (max1≤k≤m hα
n+k(Tn+k))∧hα

n (Tn)
]

∑
m
j=0E[hα

j (Tj)]
. (11)

Observe that using the identity max(a,b) = a+ b−min(a,b) for any a, b in R+,
one can show that for any sequence (an)n∈N of nonnegative real numbers such that
∑

∞
n=0 an < ∞, we have
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max
n∈N

an = ∑
n∈N

(
an−max

k≥1
an+k ∧an

)
. (12)

Under (D1), from Equation (9), ∑
∞
n=0E[hα

n (Tn)] < ∞ and we can apply the relation
(12) to the last equality (11). This proves Lemma 2.

Up to now, we have characterised the extremal index θm from the tail process of
{S(m)

k }k∈N. To conclude, it remains to prove that the extremal index of (Sk)k∈Z is
given by limm→∞ θm = θ . For this purpose, we apply Proposition 1.4 of [11]. We
must check the following two conditions: for all sequence un such that

nP(S0 > un)→ β ∈ (0,∞),

we have
lim
ε→0

limsup
n→∞

nP((1− ε)un < S0 ≤ (1+ ε)un) = 0 (13)

and
lim

m→∞
limsup

n→∞

nP(|S0−S(m)
0 |> εun) = 0. (14)

Since we have already proved in Equation (9) that S0 is regularly varying with index
−α , α > 0, we have

limsup
n→∞

nP((1− ε)un < S0 ≤ (1+ ε)un) = β ((1− ε)−α − (1+ ε)−α).

Letting ε → 0 proves Equation (13). Moreover, by the same arguments which lead
to the expression for the tail behavior of S0, we have

lim
n→∞

nP(|S0−S(m)
0 |> unε) = ε

−α
β

∑
∞
n=m+1E[hα

1 (Tn)]

∑
∞
n=0E[hα

1 (Tn)]
.

Letting m→ ∞ proves Equation (14). We finally have

θ = lim
m→∞

θm =
E [
∨

∞
i=0 hα

i (Ti)]

∑
∞
i=0E[hα

1 (Ti)]
,

which concludes the proof of Theorem 1.

3 Application

For the sake of application of Theorem 1, we consider a specific dietary risk assess-
ment model introduced in [6] called KDEM for Kinetic Dietary Exposure Model;
see also [7] for the statistical analysis of the model and for more details on dynamic
dietary risk processes. For each i ≥ 0, we assume that the intakes (Wi)i≥0 are pure
Pareto distributed with tail index α > 0 and we set hi(t) = e−ωitI[0,∞[(t), where I[·](·)
is the indicator function. Besides, we consider that (ωi)i∈N is an i.i.d. sequence of
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nonnegative r.v.’s with finite expectation. In this context, for each i≥ 0, hi is a non-
increasing random elimination function that governs the elimination process of the
the i-th intake Wi ingered at time Ti up to time t. Then (ωi)i∈N is a random elimi-
nation parameter, which permits to take into account fluctuations in the assimilation
process. The model may be written as

S(t) =
N(t)

∑
i=1

Wie−ωi(t−Ti), t > 0, (15)

where t→ N(t) := #{i≥ 0 : Ti ≤ t} is a renewal process that counts the numbers of
intakes that occured until time t > 0. Figure 1 shows how the process (15) evolves
through time. To get an explicit result, we consider that the intakes arise regarding a

0 20 40 60 80 100 120

0
4

8
12

time

gl
ob

al
 e

xp
os

ur
e

Fig. 1 The elimination driven by the random variable (ωi)i may vary between two intakes. Observe
the PDMP-type trajectory. Due to the heavy-tailed distribution of the intakes (Wi)i, some jumps are
rather large.

homogeneous Poisson process meaning that the duration between intakes are inde-
pendent and exponentially distributed. Applying Theorem 1, we get the following
explicit formulae of the extremal index.

Proposition 1. Assume that Model (15) holds with positive i.i.d. (ωi)i∈N satisfying
E[ω1] < ∞. Assume moreover that H(x) = x−α ,α > 0 for all x > 0 and N is a
Poisson process with intensity λ > 0. Then we have

θ =
α

α +λE[ω−1]
. (16)

Proof. Note first that in this setup, this is straightforward that for all α > 0, Assump-
tions (C1)-(C3) as well as (D1) hold. Indeed, the Pareto distribution is a particular
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case of such regularly varying random variables so that (C1) is satisfied. (C2) holds
as a sum of i.i.d. r.v.’s whose distribution is exponential with mean 1/λ , λ > 0. Fi-
nally, (C3) is satisfied since the random variables (ωi)i∈N are i.i.d., then the random
functions (hi)i∈N are positive i.i.d. r.v.’s with 0 < E[ω1] < ∞ implying (D1). Now,
observe first that for the numerator, we have

E
[

max
i≥0
{hα

i (Ti)}
]
= E

[
max
i≥0
{e−αωiTiI[0,∞[(Ti)}

]
≤ 1.

Besides, since T0 = 0 under (C2), we have

E [hα
0 (T0)] = E

[
e−αω0]= 1,

leading to E [maxi≥0{hα
i (Ti)}] = 1. It also follows that the denominator may be

written as
∞

∑
i=0

E [hα
i (Ti)] = 1+

∞

∑
i=1

E [hα
i (Ti)]

with

∞

∑
i=1

E [hα
i (Ti)] =

∞

∑
i=1

∫
∞

0

(∫
∞

0
e−αωtdF∗i∆T (t)

)
dFW (ω)

=
∫

∞

0

(
∞

∑
i=1

E
[
e−αω∆T

]i
)

dFW (ω)

=
∫

∞

0

E
[
e−αω∆T

]
1−E [e−αω∆T ]

dFW (ω)

=
∫

∞

0

λ

αω
dFW (ω)

=
λ

α
E[ω−1],

where ”∗ ” refers to the convolution operator. This concludes the proof.

To conlude this part, we breifly discuss the veracity of Proposition 1. In this regard,
assume Model (15) holds with the assumptions of Proposition 1. Assume moreover
that the elimination parameter ω > 0 is constant. Observe now that its embedded
chain, namely

S(Tk) =
k

∑
i=1

Wie−ω(Tk−Ti), k > 0

may be expressed as

S(Tk) = e−∆Tk S(Tk−1)+Wk, k > 0. (17)

The latest equation is nothing else than a particular case of the so-called SDE for
Stochatic Differential Equation. It has been studied for a while. In particular, [22]
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showed that its extremal index is given by θ = 1−E[e−∆T1 ]. In the specific setup of
Proposition 1 where the (∆Ti)i∈N∗ are exponentially distributed, the Laplace trans-
form E[e−∆T1 ] is explicit. It follows that the extremal index is given by

θ =
α

α +λω
.

We retreive the result of Proposition 1 with constant ω > 0.

4 Appendix

For reader’s convenience, we recall in this part important notions involved in the
proof of Theorem 1. We start by the definition of the so-called ”tail process” intro-
duced recently by [3].

Definition 1 (The tail process). Let (Zi)i∈Z be a stationary process in R+ and let
α ∈ (0,∞). If (Zi)i∈Z is jointly regularly varying with index−α , that is, all vectors of
the form (Xk, . . . ,Xl),k ≤ l ∈ Z are multivariate regularly varying, then there exists
a process (Yi)i∈Z in R+, called the tail process such that P(Y0 > y) = y−α , y≥ 1 and
for all (n,m) ∈ Z2, n≥ m

lim
z→∞

P((z−1Zn, · · · ,z−1Zm) ∈ · | Z0 > z) = P((Yn, · · · ,Ym) ∈ ·).

We recall now the strong mixing and anti-clustering conditions.

Definition 2 (Strong mixing condition). A stationary sequence (Zk)k∈Z is said to
be strongly mixing with rate function αh if

sup |P(A∩B)−P(A)P(B)|= αh→ 0, h→ ∞, (18)

where the supremum is taken over all sets A∈σ(· · · ,Z−1,Z0) and B∈σ(Zh,Zh+1, · · ·)

Definition 3 (Anti-clustering condition). A positive stationary sequence (Zk)k∈Z
is said to satisfy the anti-clustering condition if for all u ∈ (0,∞),

lim
k→∞

limsup
n→∞

P
(

max
k≤|i|≤rn

Zi > anu | Z0 > anu
)
= 0. (19)
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