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Abstract. Security properties of cryptographic protocols are typically expressed as reachability or
equivalence properties. Secrecy and authentication are examples of reachability properties while
privacy properties such as untraceability, vote secrecy, or anonymity are generally expressed as
behavioural equivalence in a process algebra that models security protocols.

Our main contribution is to reduce the search space for attacks for reachability as well as equiva-
lence properties. Specifically, we show that if there is an attack then there is one that is well-typed.
Our result holds for a large class of typing systems, a family of equational theories that encom-
passes all standard primitives, and a large class of deterministic security protocols. For many stan-
dard protocols, we deduce that it is sufficient to look for attacks that follow the format of the
messages expected in an honest execution, therefore considerably reducing the search space.

1 INTRODUCTION

Formal methods have been very successful for the analysis of security protocols and many decision
procedures and tools (e.g. [24, 35, 36]) have been proposed. Two main families of security prop-
erties are typically considered: trace or accessibility properties, as well as equivalence properties.
The former are used to express the most standard properties such as secrecy and authentication:
for any execution of the protocol, an attacker should not learn the secret nor get authenticated
without the server having accepted her request. The later model privacy properties such as un-
traceability, vote secrecy, or anonymity (e.g. [8, 15]). For example, the anonymity of Bob is typi-
cally expressed by the fact that an adversary should not distinguish between the situation where
Bob is present and the situation where Alice is present. Formally, the behaviour of a protocol can
be modelled through a process algebra such as CSP or the pi calculus, enriched with terms to
represent cryptographic messages. Then indistinguishability can be modelled through various be-
havioral equivalences. In contrast, secrecy or authentication are typically expressed by requesting
that some bad event never occurs or that some event (e.g. Bob is logged) is always preceded by
another one (e.g. the server granted access to Bob). Then checking for privacy amounts into check-
ing for trace equivalence between processes, while checking for secrecy amounts into checking
that a process never reaches a certain state. Both properties are undecidable in general [29]. Many
results have been developed in the context of reachability properties. For an unbounded number of
sessions, several decidable classes have been identified (e.g. bounding the size of messages [29] or
the number of variables [23]). Tools like ProVerif [11] or Tamarin [38] do not try to decide security:
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instead they propose sound procedures, incomplete but that work well in practice. Tamarin also
supports user guidance through lemmas and direct interactions. The case of a bounded number of
sessions is known to be (co)-NP-complete [37] and several tools aim at developing efficient decision
procedures in practice, like AVISPA [7], or Scyther [27] (that can also handle an unbounded num-
ber of sessions). Results for equivalence properties are more rare. Even in the case of a bounded
number of sessions, there are few decidability results and the associated decision procedures are
complex [10, 17, 39].

Our contribution. We consider here a different approach. Instead of trying directly to decide secu-
rity, we develop a simplification result. Our main contribution reduces the search space for attacks:
if there is an attack, then there exists a well-typed attack. More formally, we show that if there
is a witness (i.e. a trace) that P # Q then there exists a witness which is well-typed w.r.t. P or Q,
provided that P and Q are deterministic processes (intuitively, at any time, no two messages may
be emitted or received on the same channel). Similarly for reachability, for any trace of P, we show
that there is a well-typed trace of P that follows the same sequence of inputs and outputs, on the
same channels, hence preserving secrecy or authentication violations. We can consider arbitrary
processes and a large family of equational theories that can express most standard primitives: ran-
domized and deterministic asymmetric and symmetric encryptions, signatures, hash, MACs, and
even some form of threshold encryption (1 out of n keys or n out of n). These results hold for any
typing system provided that any two unifiable encrypted subterms of P (or Q) are of the same
type. It is then up to the user to adjust the typing system such that this hypothesis holds for the
protocols under consideration. The finer the typing system is, the more our typing result restricts
the attack search. One way to enforce our assumption is to consider the class of tagged protocols
introduced by Blanchet and Podelski [14]. An easy way to achieve this in practice is by labelling
encryption and is actually a good protocol design principle [2, 30].

We extend here a preliminary result presented at Concur’14 [20]. Compared to [20], we consid-
erably enrich the class of cryptographic primitives since [20] considers (deterministic) symmetric
encryption only. Moreover, we provide a small attack property for equivalence as well as reachabil-
ity properties while [20] focuses on equivalence. The reachability case is somehow an intermediary
step of the equivalence case. Therefore the reachability case was in some sense contained in [20]
but not formally stated as an independent result. The simplification result of [20], that we extend,
has already been used in several contexts.

o First, in [20] itself, the small attack property is shown to imply decidability for an unbounded
number of sessions but for protocols with no fresh nonces nor fresh keys. Such a decidability
result should probably extend to our novel class of primitives but we chose to focus here on
the small attack property.

e [21] establishes the first decidability result for equivalence of protocols with fresh nonces
and keys. It uses as a preliminary that only well-typed traces need to be considered.

e SAT-Equiv [25] is a new and efficient tool for deciding trace equivalence for a bounded
number of sessions. Thanks to the small attack property, trace equivalence is reduced to
finite model-checking and SAT-Equiv adapts standard model-checking techniques, namely
graph planning.

Of course, due to the limitations of [20], these three results hold for protocols with symmetric key
only. Our extension of the small attack property to a general class of primitives opens the way to
new decidability results or more efficient procedures for more general primitives.

Related work. Formal methods have been very successful for the analysis of security protocols
and many decision procedures and tools (e.g. [24, 35, 36]) have been proposed. Most of these results



focus on reachability properties such as confidentiality or authentication. Much fewer results exist
for behavioral equivalences. Based on a procedure proposed by Baudet [10], a first decidability
result has been proposed for deterministic processes without else branches, and for equational
theories that capture most standard primitives [18]. Then Tiu and Dawson [39] have designed
and implemented a procedure for open bisimulation, a notion of equivalence stronger than the
standard notion of trace equivalence. Cheval et al [17] have proposed and implemented a procedure
for processes with else branches and standard primitives. The tool AkisS [16] is also dedicated to
trace equivalence but is not guaranteed to terminate. All these results focus on a bounded number
of sessions. The tools ProVerif [13] and Tamarin [38] can handle equivalence properties for an
unbounded number of sessions. They actually reason on a stronger notion of equivalence (which
may turn to be too strong in practice) and are not guaranteed to terminate. For an unbounded
number of sessions, a few results have been established [19-21].

Our goal here is not to decide equivalence or reachability properties but to restrict the search
space for attacks. As already discussed, our result extends the preliminary result of [20] to a wide
class of cryptographic primitives and to reachability properties. In terms of proof techniques, we
completely reshaped the proof. [20] relies on the fact that reachability is decidable for a bounded
number of sessions, builds a decision algorithm for equivalence, for a bounded number of sessions,
and then use this algorithm to show that, from any witness of non equivalence, it is possible to
construct a well-typed witness. Our proof here directly builds a well-typed witness, without the
need of decision algorithms. Moreover, the fact that [20] considers symmetric key only simplifies
the proof as an attacker never needs to construct when it tries to learn new information. This is
no longer true for example with asymmetric encryption or hashes where the attacker may need
to encrypt and hash to compare values.

Our proof technique is inspired from the approach developed by Arapinis et al [6] for bounding
the size of messages of an attack for the reachability case. Specifically, they show for some class
of tagged protocols, that whenever there is an attack, there is a well-typed attack (for a particular
typing system). We extend their approach to trace equivalence, for more general typing systems,
and more general cryptographic primitives. One of the first small model properties has been estab-
lished by Lowe [34]. It shows that it is sufficient to consider a finite number of roles, but assumes
that messages are strongly typed: agents expects messages that follows a given (fixed) format and
may never accept e.g. an arbitrary message instead of a nonce. Heather et al [31] provide a result
for limiting attacks to well-typed ones, assuming a strong labelling scheme and no blind copies.
Ramanujam and Suresh [36] also show some kind of typing result, assuming an even stronger la-
beling scheme, with fresh nonces, and use it to establish a decidability result for protocols with
nonces, with no blind copies and the standard primitives. Again for reachability, Médersheim et
al [3, 32] establish a typing result similar to our result, for a flexible class of primitives (but in-
comparable to ours). The type-compliance notion is more restrictive since even pairs of terms of
a protocol should be non unifiable (or have the same type).

2 MODEL
2.1 Term algebra

Private data are represented through an infinite set of names N. Names can model e.g. long-term
and short-term keys, or nonces. We consider an infinite set 3 of constants to represent public
data, or any data known by the attacker, such as agent names or attacker’s nonces or keys. We

. . . . bitstri . .
also consider two additional infinite sets of constants Z?rt:s“ﬁ, and X ﬁ];zhrmg on which we will rely on
. . bitstri _
for our technical development. We write Zfesh = Z?:;’S“ﬁ C] Zfr'ezh”ng, and Zar = Xj W Xfresh. Lastly, we

consider two sets of variables X and W. Variables in X typically model arbitrary data expected



by the protocol, while variables in W are used to store messages learnt by the attacker. All these
sets are assumed to be pairwise disjoint. A data is either a constant, a variable, or a name.

We model messages exchanged on the network and computations of the attacker by terms. A
signature 3. is a set of function symbols with their arity. We distinguish between constructor sym-
bols, like encryption, in 3. and destructor symbols, like decryption, in 34, i.e. £ = X, W 2. Given
a signature 7, the set of terms built from ¥ and a set of data D is denoted 7 (2, D). Constructor
terms on D are terms in 7~ (2., D). We use the usual terminology on terms, that we recall here. We
denote vars(u) the set of variables that occur in a term u. A term is ground if it contains no variable.
The application of a substitution ¢ to a term u is written uo. We denote dom(o) its domain and
img(o) its image. The positions of a term are defined as usual. Given a term t, we denote root(t)
the function symbol occurring at position € in ¢, and St(t) its set of subterms. Two terms u; and u,
are unifiable when there exists a substitution o such that u;o = uz0.

We consider two sorts: atom and bitstring. atom represents atomic data like nonces or keys

while bitstring models arbitrary messages. Names in /N, as well as constants in > and Z?rt:s“ﬁ

have sort atom, whereas constants in Zif)r]::mg have sort bitstring. The constants of sort atom,
i.e. those in X and Z?rt:;;]‘, are called atomic constants. Any constructor f comes with its sort, i.e.
f:(s1 X+ Xsy) — sy where n is the arity of f, sy = bitstring, and s; € {atom; bitstring} for
0 < i < n. Given a constructor term t € 7 (2, 2§ W X), p is a key position of t if it corresponds to

a position where an atom is expected, that is,
p=p'i, tly =f(t,...,t,) forsomef € X : (sy X -+ Xs,) = 5o, and s; = atom.

We say that t is well-sorted if any of its subterm is of the right sort, that is, t|, € Zj & Z?rt;’s“ﬁ WX
for any key position p of .

We consider theories where, intuitively, each symbol corresponds to a particular function that
may be applied only in one particular context. For example, if asymmetric encryption is repre-
sented by aenc(m, pk(k)) then it should not be applied to other keys, such as vk(k). To each con-
structor function symbol f, we associate a linear term f(uy, ..., u,) € 7 (2, X) denoted sh¢ which
is called the shape of f. Shapes have to be compatible, that is, fixed for a given function symbol.
Formally, for any f(¢y,...,,) occurring in a shape, we have that f(t;,...,t,) = shs. A term is
well-shaped if it complies with the shapes, that is, any subterm of ¢, heading with a constructor
symbol f is an instance of the shape of f. More formally, a constructor term t € 7 (3, 2§ ¥ X) is
well-shaped if for any ¢’ € St(¢) such that root(t’) = f, we have that t’ = sh¢o for some substitu-
tion o. Given D C 28' W X, we denote 75(Z¢, D) the subset of ground constructor terms on D that
are well-shaped and well-sorted. Given a set X of constants (typically % or %), X-messages are
terms in 75(Zc, N W Xp).

Example 2.1. Randomized asymmetric encryption, pairs, and triples are typically modelled by
the following signature

>% = {raenc, pub, radec, ( ), ( Y3, fst, snd, proj?, projg, projg}

with & = {raenc, pub, { ), Y3}, and sz = {radec, fst, snd, proj?, projg, projg}.

The symbols raenc (arity 3) and radec (arity 2) represent resp. randomized asymmetric encryp-
tion and decryption. The symbol pub is a key function that models the public key associated to a
given private key. Pairing is modelled using ( ) of arity 2, whereas associated projection functions
are denoted fst and snd (both of arity 1). We also model triples by ( ) of arity 3. Projection func-
tions projl3. (i € {1;2;3}) are of arity 1 and retrieve the component x; of the triple (xi, x3, x3)3. The



sort of our constructors and their shapes are as follows:

raenc : bitstring X bitstring X atom — bitstring Shraenc = raenc(xy, pub(xz), x3)
pub: atom — bitstring shpub = pub(xy)
(): Dbitstring X bitstring — bitstring shey = (x1, x2)

(Y bitstring X bitstring X bitstring — bitstring sh< y = (x1, %, x3)°

For example, the term raenc(m, pub(k), r) represents the encryption of m with the public key
pub(k) and randomness r. We chose to model randomness as an atom to reflect that randoms
are typically non composed messages. However, we could consider the function symbol raenc
with sort: bitstring X bitstring X bitstring — bitstring as well.

Leta, b € % and sko, ro € N (all of sort atom), the term raenc({a, b), pub(sk), ry) is a constructor
term whose key positions are p; = 2.1 and p, = 3. Actually this is a 3] message. We may note
that it is well-sorted since sk and ry are of sort atom, and well-shaped. The constructor term
raenc(a, sk, rp) is well-sorted but it is not well-shaped. Note that we will require protocols to only
process messages, which enforces that terms are well-sorted and well-shaped.

The properties of cryptographic primitives are represented through a set R of rewriting rules.
We consider rewriting rules that apply a destructor on top of constructor terms that are linear,
well-sorted, and well-shaped. We strictly control the non-linearity of our rules, and we assume the
standard subterm property. More formally, for each destructor symbol des € 34, there is exactly
one rule of the form €yes — rges such that:

(1) €ges = des(t, ..., t,) where each t; is either a variable, or equal to shyoe(;,) up to a bijective
renaming of variables;

(2) rdes € T0(Zc, 0) U St(t1). In case ryes is not a fixed constructor term, for simplicity and read-
ability in our technical developments, we assume that ryes occurs in t;. Of course, our results
easily extend to the case where the arguments of a destructor symbol are written in a differ-
ent order;

(3) either {4es is a linear term, or there is a unique variable x with several occurrences in {ges
and such that x occurs exactly once at a key position in #;

Moreover, we assume the existence of at least one non linear rule in our set R of rewriting rules.

Given a set R of rewriting rules, a term u can be rewritten in v using R if there is a position p in u,
and a rewriting rule g(ti, ..., t,) — t in R such that u|, = g(t1,...,t,)0 for some substitution 0,
and v = u[t0],, i.e. u in which the subterm at position p has been replaced by t0. Moreover, we
assume that t;0, ..., 1,0 as well as t0 are Za'—messages, in particular they do not contain destructor
symbols. We consider sets of rewriting rules that yield a convergent rewriting system. As usual,
we denote —* the reflexive-transitive closure of —, and u| the normal form of a term u (it is well
defined as our rewriting system is convergent by unicity of the rule associated to each destructor).

Example 2.2. The properties of the primitives given in Example 2.1 are reflected through the
following rewriting rules.

fst({(x,y)) — «x radec(raenc(x, pub(y),z),y) — «x
snd({(x,y)) — y projl ((x1,x2,x3)3) — x; withi€ {1;2;3}

They satisfy all the requirements stated above.

Our class of rewriting rules is flexible enough to represent most of the standard primitives as
illustrated in the following example. However, we cannot model for instance a decryption algo-
rithm that never fails and always returns a bitstring (e.g. sdec(m, k)). Indeed, such a term is not a
message and will not be accepted as input or output of a protocol.



Example 2.3. We may consider symmetric encryption (randomized or not) using the signature
3% = {senc, rsenc, sdec, rsdec} and the rewriting rules:

senc : bitstring X atom — bitstring Shisenc = senc(xy, x2)
rsenc : bitstring X atom X atom — bitstring Shysenc = rsenc(xy, x2, x3)
sdec(senc(x,y),y) — x rsdec(rsenc(x,y,z),y) = x

Of course, we may consider non randomized asymmetric encryption as well. We can also model
signature, and hash function through the signature 38" = {sign, getmsg, check, vk, ok, hash}:

ok:  — bitstring sho = ok

sign : bitstring X atom — bitstring shsign = sign(xy, x3)
vk : atom — bitstring shyk = vk(xy)

hash :  bitstring — bitstring Shhash = hash(x;)

getmsg(sign(x,y)) — x check(sign(x, y), vk(y)) — ok
We may also represent more exotic theory like 1 out of n encryption (that is, one key among n
suffices to decrypt) and n out of n encryption (that is, the n shares of the key are needed to decrypt)
through the signature yshamir {k1, ko, reveal, get,, get,, onekey, allkeys}:

ki : atom — bitstring shy, = ki(x1);
onekey : bitstring X atom X atom Shonekey = onekey(x1, X2, x3);
allkeys :  bitstring X atom shallkeys = allkeys(x1, x2);

get; (onekey(x, y1,y2),y;) — x with i € {1, 2} reveal(allkeys(x, y), ki(y), k2(y)) = x

We can also model tuples of various size in a similar fashion than triples in Example 2.1. Another
theory of interest is when it is possible to check whether two ciphertexts have been encrypted
with the same key. This can be modeled by adding the destructor symbol samekey to 2% and the
rewrite rule

samekey(senc(x1, y), senc(xz, y)) — ok

An attacker builds his own messages by applying public function symbols to terms he already
knows and that are available through variables in “W. Formally, given a set 3, of constants (typi-
cally =7 or 27), a computation done by the attacker is a Xo-recipe, i.e. a term in 7 (2, W © ).

2.2 Process algebra

Our process algebra is inspired from the applied pi calculus [1]. We do not consider else branches.
Actually we do not have conditional. Instead, equality tests are performed through pattern-matching.
We do not consider replication but our typing result easily extend to processes with replication as
explained in [20]. Indeed, our key result shows how to build a well-typed trace from an arbitrary
one. This holds for traces obtained from finite processes as well as traces from replicated processes.

Let Ch be an infinite set of channels. We consider processes built using the following grammar:

P,Q:= 0 null process
| in(c,u).P input
| out(c,u).P output
| (P|Q) parallel
| i:P phase

where u € 75(2.,Z; W N W X),and c € Ch.

The process 0 does nothing. The process in(c, u).P expects a message m of the form u on chan-
nel ¢ and then behaves like Po where o is a substitution such that m = uc. The process out(c, u).P



emits u on channel c, and then behaves like P. The variables that occur in u are instantiated when
the evaluation takes place. The process P | Q runs P and Q in parallel. Our calculus also introduces
a phase instruction, in the spirit of [13], denoted i : P. Some protocols like e-voting protocols may
proceed in phase. More generally, phases are particularly useful to model security requirements,
for example in case the attacker interacts with the protocol before being given some secret.

For the sake of clarity, we may omit the null process. We also assume that processes are variable
distinct, i.e. any variable is at most bound once. We write fv(P) for the set of free variables that
occur in P, i.e. the set of variables that are not in the scope of an input.

Example 2.4. We consider a variant of the Needham Schroeder Lowe public key protocol [33]
with randomized encryption. The protocol aims at ensuring mutual authentication through the
secrecy of the nonces N, and Nj that are exchanged during an execution. It can be described
informally as follows:

1. A— B: raenc({A, N,), pub(B),r1)
2. B—> A: raenc({Ng, {Np, B)), pub(A), rs)
3. A— B: raenc(Np, pub(B),r3)

where A and B are agents trying to authenticate each other, pub(A) (resp. pub(B)) is the public key
of A (resp. B), N, and Ny, (as well as ry, r, and r3) are nonces generated by A and B. This is a slight
variant of the original protocol [33] proposed by ]J. Millen: in the second message, the identity of B
is placed at the end of the message, instead of the beginning of the message. This variant is subject
to a type-flaw attack (discovered by J. Millen) as we shall explain in the next section.

We model the Needham Schroeder Lowe protocol in our formalism through the process Pys.
that results from the composition of the process P4 representing the role of A and the process Pp
representing the role of B.

PysL=Pa | Pp
with P4 and Pg defined as follows.
P4 = out(ca, raenc({a, ng), pub(skp), r1). Pg = in(cp, raenc({a, y1), pub(skp), y2)).
in(ca, raenc({ng, {(x1, b)), pub(sk,), x2)). out(cp, raenc({y1, (np, b)), pub(sk,), r2)).
out(ca, raenc(x, pub(skp),r3)) in(cg, raenc(ny, pub(sky), ys3)).

where skq, sky, nq, np, r1, rz, and r3 are names, whereas a and b are constants from % .
In order to model a richer scenario, we may want to consider in addition the process Py that
corresponds to the role B played by agent a interacting with a dishonest agent c. Below, r3,n; € N

whereas c, sk. € X (so that they are implicitly given to the attacker). We write Pns. = Pg | Py

Py = in(cy, raenc({c, y;), pub(ska), y;)).
out(cy, raenc({y;, {ny, a)), pub(sk.), r3)).
in(cJ’B, raenc(n;, pub(ska), y3)).

The initial knowledge of the attacker will be specified later.

2.3 Semantics.

The operational semantics of a process is defined using a relation over configurations. Configura-
tions are parameterized by a set of constants % (typically =7 or £¥). A X¢-configuration is a tuple
(P; ¢; 0;i) with i € N and such that:
e P is a multiset of processes (not necessarily ground);
o ¢ ={wi>my,...,w,>my,}is a Xy-frame, ie. a substitution where wy, ..., w, are variables
in W, and my, ..., m, are ¥y-messages;



in(c,R
IN (i:in(c,u).PUP;p;0;i) —(——)—> (i:PUP;P;0W00;i) where R is a Xy-recipe

such that R¢| is a Xy-message, and Rp| = (uc)oy for oy with dom(oy) = vars(uo).
out(c,w)

Out (i:out(c,u).PUP;¢p,0;i) — (i:PUP;pU{wruc};o;i)
with w a fresh variable from ‘W, and uo is a £o-message.

phase i’

MovVE (P;g;05i) —— (P ¢;031) with i’ > i.
PHASE (i:i":PUP;p;0;10) 5 (i’ :PUP;p;0;10)
Crean (:PUPigosi) = (Pigiosi) when i’ > .
NuULL (i:0UP;¢;0;i) 5 (P; ¢, 03 i)
PAR (i:(P|Q)UP; ¢io;i) — (i:PUi:QUP;P ;i)

Fig. 1. Semantics for processes w.r.t. X

e ¢ is a substitution such that dom(c) = fv(P), and img(o) are Zo-messages.
A Yy-configuration (P; §; 0; i) such that o = 0 is said initial.

Intuitively, P represents the processes that still remain to be executed; ¢ represents the sequence
of messages that have been learnt so far by the attacker, and ¢ stores the value of the variables
that have already been instantiated. We often write i : P instead of (P;0;0; i), P instead of 0 : P
and P & P instead of {P} & P. The operational semantics of a 3y-configuration is induced by the
relation — w.r.t. 5 over Yo-configurations defined in Figure 1.

The first rule (IN) allows the attacker to send to some process a term built from publicly available
terms and symbols. The second rule (OuT) corresponds to the output of a term by some process:
the corresponding term is added to the frame of the current configuration, which means that the
attacker can now access the sent term. Note that the term is outputted provided that it is a message.
Regarding phases (rules MoVE, PHASE, and CLEAN), the attacker may move to a subsequent phase
whenever he wants, while processes may move to the next phase when they are done or simply
disappear if the phase is over. The two remaining rules NuLL and PAR are quite standard and are
unobservable (z action) from the point of view of the attacker.

The relation —=%" w.rt. Y between X(-configurations (where «; . .. a, is a sequence of ac-
tions) is defined as the transitive closure of 2 wrt. . Given a sequence of observable actions tr,
and two X,-configurations K and K’, we write K ;bo K’ wrt. Xy when there exists a se-
quence a; ... a, such that K BN K’ w.rt. 3 and tr is obtained from «; . .. a, by erasing
all occurrences of 7.

Definition 2.5. Given a X¢-configuration K = (P; ¢; 0; i), we denote traces, (K) the set of traces
defined as follows:

traces, (K') = {(tr,¢") | K N (P;¢’;0’;i") wrt. 3 for some Zp-configuration (P; ¢’;0”;i')}.

Given a Xy-configuration K, we may note that, by definition of tracey, (K), tr¢] only contains
Yo-messages.

Example 2.6. Continuing Example 2.4, consider the initial configuration Kns. = (ﬁNSL; $0; 0;0)
with initial knowledge ¢o = {wa > pub(sk,), wp > pub(skp)}. This models that the attacker initially
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Fig. 2. Attack trace.

knows the public keys of a and b. Note that the private key of c, sk, is a public constant and is
thus also initially known to the attacker.

As mentioned in Example 2.4, this variant of the Needham Schroeder Lowe protocol is subject
to a type flaw attack depicted in Figure 2. The attack relies on the fact that agent A may accept the
pair (Np, B) as a nonce N¢ coming from C and agent B may confuse the identity C with a nonce.
In this attack, a dishonest agent C initiates a session with agent B but writes his identity C instead
of a nonce. B replies as expected by {C, Ny, B}pup(4). This message is then accepted by A (playing
the responder role). A thinks she is contacted by C and replies with {Nj, B, N}, A}pun(c). Therefore
the attacker learns Nj, and may impersonate A w.r.t. B. This attack is reflected by the following
sequence tr:

in(cg, raenc({a, c), wp, r9)).out(cg, wi).in(cy, wi).out(cy, wz).in(cp, raenc(R, wp, rg))

where R = fst(fst(radec(ws, sk¢))) and ry,r; € Zj. This sequence of actions yields the frame ¢
defined as follows:

¢ = Po W {wy > raenc({c, {np, b)), pub(sks), r2), wa > raenc({{(np,b), (n;, a)), pub(sk.), rz’)}.
We have that (tr, ¢) € trace(KnsL)-

2.4 Action-determinism

As mentioned in introduction, we require processes to be deterministic. We consider a definition
similar to the one introduced in [9]. Intuitively, no two inputs nor two outputs should occur on
the same channel at a concurrent time.

t
Definition 2.7. A configuration K is action-deterministic if whenever K = (P; p; 0;0),and a.P
and f.Q are two elements of P with «, f§ instructions of the form in(c, u), out(c’, u) then ¢ # ¢’ or
the instructions are not of the same nature (that is, @, § are not both an input, nor both an output).

This condition is actually stronger than the one considered in our preliminary results [20].
In [20], we consider instead determinate processes, as introduced in [16]. Intuitively, a process
is determinate as soon as all executions corresponding to one trace yield equivalent frames. How-
ever, this condition is insufficient for the proof of [20] that assumes a unique frame once a trace
has been fixed. For action-deterministic protocols, the attacker knowledge is entirely determined
by its interaction with the protocol.

tr tr
LEmMA 2.8. Let K be an action-deterministic configuration such that K = K; and K = K,
for some tr, K1 = (P1;¢1;01511), and Ko = (Pa; ¢a; 025 i2). We have that ¢1 = ¢y, 01 = 03, and
il = iz.



2.5 Trace equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as trace equiva-
lence [5, 28]. Intuitively, two configurations are trace equivalent if an attacker cannot tell with
which of the two configurations he is interacting. We first introduce a notion of equivalence be-
tween frames.

Intuitively, an attacker can see the difference between two sequences of messages if he is able
to perform some computation that succeeds in ¢; and fails in ¢@; or if he can build a test that leads
to an equality in ¢; and not in ¢; (or conversely).

Definition 2.9. Two Xo-frames ¢; and ¢, are in static inclusion w.r.t. 3o, written ¢; S5 @ w.r.t.
3o, when dom(¢1) = dom(¢;), and:
e for any X-recipe R, we have that Rp;| is Xo-message implies that R, | is 3y-message; and
e for any X-recipes R, R” such that Rp1], R'¢1| are Zo-messages, we have that: Rp;| = R'¢|
implies Rp2| = R'¢2l.
They are in static equivalence w.r.t. Xy, written ¢; ~s ¢o w.r.t. 3o, if 1 Cs ¢ and ¢, Cs @;.

In the remaining of this paper, 3, will be either X or 37, and we sometimes omit to mention it
when it is clear from the context.

Example 2.10. Continuing Example 2.6, we consider the two following > -frames:
o $ =¢pW{wspn);and
o $= P wso k).
We have that R, | = ws¢;] where R = fst(fst(radec(wg, sk.))). This equality does not hold in ¢,
hence ¢; and ¢, are not in static equivalence.

Trace equivalence is the active counterpart of static equivalence. Two configurations are trace
equivalent if, however the attacker behaves, the resulting sequences of messages observed by the
attacker are in static equivalence.

Definition 2.11. A Y y-configuration K is trace included (w.r.t. ) in a Xy-configuration K, writ-
ten K C; K’ w.rt. X, if for every (tr, ) € traces, (%), there exist (tr’, ¢’) € traces, (K’) such that
tr =tr’, and ¢ E;5 ¢’ w.r.t. Xo. They are in trace equivalence, written K =~; K’ w.r.t. o, K &; K’
and K’ C; K w.rt. 2.

Note that two trace equivalent configurations are necessarily at the same phase.

This notion of trace equivalence slightly differs from the one used in [20], where the frames are
required to be in static equivalence ¢ ~5 ¢’ instead of static inclusion ¢ C; ¢’. Actually, these two
notions of equivalence coincide for action-deterministic protocols [16]. Moreover, we will actually
prove a finer result, showing the existence of a well-typed witness (when a witness exists) for this
trace inclusion notion.

Example 2.12. Continuing Example 2.4, we consider the protocol Pysy that models two roles
of B: one played by B responding to A, and the other one played by A responding to C. To model
the fact that the nonce nj sent by B for A should remain secret, we define strong secrecy of nj by
requiring that nj, remains indistinguishable from a fresh value. Formally, we extend the process Pp
modeling agent B responding to A with either the output of the true nonce n; or the output of a
fresh value k € N, yielding the following two processes.

Py = in(cp, raenc((a, y1), pub(skp), y2)). P% = in(cp, raenc((a, y1), pub(skp), y2)).
out(cp, raenc({y1, {(np, b)), pub(sky), r2))- out(cp, raenc({y1, (np, b)), pub(sk,), r2)).
in(cp, raenc(ny, pub(sky), ys3)). in(cg, raenc(ny, pub(sky), ys3)).

1: out(cg, np) 1: out(cp, k)



=1 =2
The corresponding overall processes are Pys, = P | P} and Pyg, = P | P, and we consider
—1
the initial frame ¢, as given in Example 2.6 and the initial configurations K; = (Pys; ¢o; 0; 0) and

K, = (ﬁ,z\,S]_; $0;0;0). Then, we can show that K; Z; K since ny, is not strongly secret due to the
attack depicted in Figure 2. This is exemplified by the trace

tr = in(cg, R1).out(cp, wi).in(cg, wi).out(cg, wz).in(cg, R;).out(cg, ws)

with Ry = raenc({a, ¢), wp, r9) and Ry = raenc(fst(fst(radec(wa, sk¢))), wp, rg), where ro, 7y € 2.
Indeed, consider now

¢ = ¢o W {wy > raenc({c, (np, b)), pub(ska), r2), w2 > raenc({{np,b),(n;,a)), pub(sk), r;)}

and ¢1 = poW{ws>np}, P = pW{ws>k}. We have (tr, ¢;) € tracey; (K1) and (tr, ¢2) € tracey; (%).
Now consider the equality w; = fst(fst(radec(wz, sk.))). It holds in ¢; but not in ¢, hence we have
that 7(1 g—t 7(2.

Consider now a variant P{ where the second message {(Ng, (Np, B))}pub(4) is no longer en-
coded using two nested pairs but using a triple instead, that is, {{N,, Np, B)3}pub( 4)- This transfor-
mation yields the process

Qp = in(cp,raenc((a, y1), pub(skp), y2)).
out(cg, raenc({y1, np, b)*, pub(ska), r2)).
in(cp, raenc(ny, pub(sky), ys))
instead of Pg. The use of triples rules out the type flaw attack and the resulting processes are in
trace equivalence.

3 OURTYPING RESULTS

Even when considering finite processes (i.e. processes without replication), the problem of check-
ing trace equivalence is difficult due to several sources of unboundedness. One of them is the
arbitrarily large size of messages that can be forged by an attacker. We propose here a simplifica-
tion result that reduces the search space for attacks. Roughly, if there is an attack, then there is a
well-typed attack, for a flexible notion of type that can be adapted depending on the desired result.
We establish this result both for trace properties and equivalence properties (trace equivalence).
Compared to the initial work of [20], we extend the result from a fixed, simple signature (symmet-
ric encryption) to a large class of cryptographic primitives that encompasses all the standard ones.
Moreover, [20] only applies to trace equivalence. Intuitively, proving the small attack property for
trace equivalence requires to first show how to reduce the attack on a single trace. This yields a
reduction result for reachability properties, such as authentication or confidentiality, which is of
independent interest.

3.1 Typing system
We consider any type system that is consistent with substitution and unification.

Definition 3.1. A typing system is a pair (7, 5) where 7 is a set of elements called types and &
is a function mapping terms t € 75(2¢, 25 U N U X) to types in 7 such that:

o If t is a term of type 7 and o is a well-typed substitution, then to is of type 7.
e For any unifiable terms t and ¢’ with the same type, i.e. §(¢f) = §(¢’), their most general
unifier mgu(t, t’) is well-typed.

Consider a configuration K and a a typing system (7, ), an execution K = (P; s 05i) is
well-typed if o is a well-typed substitution, i.e. every variable of its domain has the same type as
its image.



Some interesting typing systems are structure-preserving typing systems, that is typing system
that preserve the structure of terms. They are defined as follows:

Definition 3.2. A structure-preserving typing system is a pair (Tinit, ) where Tinit is a set of ele-
ments called initial types, and § is a function mapping data in 7 ¥ N & X to types 7 generated
using the following grammar:

7,11, = 1o | f(11,...,7,) with f € 3¢ and 79 € Tinit
Then, § is extended to constructor terms as follows:
S(f(t, ..., tn)) =1(6(t1),...,0(ty)) with f € .

The following lemma proves that structure-preserving typing systems are typing systems as
defined in Definition 3.1.

LEMMA 3.3. Let (Tinit, 0) be a structure-preserving typing system. Then (T5(Z, Tinit), 8) is a typing
system as in Definition 3.1.

Proor. We have to prove the two following items:

(1) If t is a term and o is a well-typed substitution, then §(to) = d(t).

(2) For any unifiable terms ¢ and ¢’ with the same type, ie. §(¢) = §(t’), their most general

unifier mgu(t,t’) is well-typed.

We prove item (1) by induction on t. If ¢ is a name or a constant, then to = t and the result
trivially holds. If ¢ is a variable, then §(tg) = §(t) as o is well-typed. Now, if t = f(t1,...,1t,),
then 6(to) = f(8(t10),...,5(tno)) as (Tinit, 9) is structure-preserving. By induction hypothesis,
we have that §(t;o) = §(t;) for i € {1,...,n}, and we get that §(to) = f(6(t1),...,5(tn)). As S is
structure-preserving, we have that §(t) = f(5(t1), ..., (t,)), and this allows us to conclude.

We now prove item (2). Given a set I' of well-typed equations, we denote #vars(I') the number
of variables occurring in T, and || its size, i.e. }};—cr([t] + |t’]) where [t| denotes the number of
symbols occurring in t. Our measure [|T'|| is determined by these two elements, in lexicographic
order. We prove the result by induction on ||T'|| relying on this measure.

Base case: ||T|| = (0,0), i.e. T = 0, and thus the result trivially holds.
Induction step: T =T’ W {t = t'}. We distinguish several cases:

e In case t or t’ is a variable. We assume w.lLo.g. that t is a variable x. In such a case, let
o = {x — t'}. We have that o is well-typed. Moreover, applying our induction hypothesis
on I, we deduce that mgu(I'’) is well-typed, and thus {x — t'mgu(I'’)} is well-typed, and
mgu(T) = mgu(l’) W {x — t'mgu(l’)} is well-typed.

e Otherwise, assume that ¢ is a an atom (but not a variable). In such a case, we have that ¢’
is also an atom (and not a variable due to the previous case). Therefore, since t and ¢’ are
unifiable, we have that t = ¢/, and mgu(I') = mgu(T’). Since ||T’|| < ||T||, we have that
mgu(T’) is well-typed by induction hypothesis, and this allows us to conclude.

¢ Now, we assume that t = f(¢, ..., t¢). In such a case, we have that ¢’ = f(¢],..., t,’c) since t’
is not a variable and we know that ¢ and ¢’ are unifiable. We have that mgu(T') = mgu(I'"’)
where I = T" W {t; = t,....t = t}. Note that I'” is a set of well-typed equations,
[IT”]| < |IT|| and thus mgu(I'”’) is well-typed by induction hypothesis.

This concludes the proof. ]

. . . . bitstri
We further assume the existence of an infinite number of constants in ¥ (resp. Z?rt::;, % frlezhrmg)

of any type.



Example 3.4. Let’s continue our running example, with the processes 1_3:\,5,_ and ﬁzNSL, as defined
in Example 2.12. We consider the structure preserving typing system generated from the set s, =
{Ta» Tbs Tc» Tnas Tnb» Tr» Tsk» Tk } Of initial types, and the function dns,. that associates the expected type
to each constant/name (dnsi(a) = 74, InsL(b) = 75, etc.), and the following type to the variables:

SnsL (Y1) = OnsL (Y1) = Tna, and SnsL(y2) = SnsL(ys) = Snsi(y3) = SnsL(ys) = 77

The goal of our main results is to be able to consider only execution traces that comply with a
given type, like this one.

3.2 Type compliance

Our main assumption on the typing of protocols is that any two unifiable encrypted subterms are
of the same type. The goal of this part is to state this hypothesis formally. For this, we need to
define the notion of encrypted subterms.

Among the constructor symbols in 3, we distinguish those that are transparent. They intuitively
correspond to constructors that can be freely opened by the attacker, such as pairs, tuples, or lists.
A constructor symbol f of arity n is transparent if there exists a term f(R{, ..., Rf) € 7°(3, 0) such
that for any term ¢t € 7,(Z, 2; W N @ X) such that root(t) = f, we have that f(Rf,...,R ){o —
t}l = t. We denote Cs such a term, and write C¢[¢] the term obtained by replacing each occurrence
of the hole with ¢.

We write ESt(t) for the set of encrypted subterms of t, i.e. the set of subterms that are not headed
by a transparent function.

ESt(t) = {u € St(t) | uis of the form f(uy,...,u,) and f is not transparent}

Example 3.5. Going back to the signature 2 introduced in Example 2.1, the symbols ( ) and
()? are transparent: the contexts C() = (fst(0), snd(0)) and C; ys = (proj?(l:!), projg(l:!), projg(D))3
satisfy the requirements.

A configuration K = (P; ¢; 0; i) is type-compliant if two unifiable encrypted subterms occurring
in K (i.e. either in # or in ¢) have the same type. Formally, we use the definition given in the
preliminary result [20], which is similar to the one originally introduced by B. Blanchet and A.
Podelski in [14].

Definition 3.6. A configuration K is type-compliant w.r.t. a typing system (7init, 6) if for every
t,t’ € ESt(K) we have that: ¢ and ¢’ unifiable implies that 6(t) = 5(¢’).

Example 3.7. Continuing our running example with Ks. = (PnsL; ¢o; 0; 0), we have that Kys is
not type-compliant w.r.t. the typing system given in Example 3.4. Indeed, the encrypted subterms
are:

t; = raenc({a, y1), pub(sky), y2) and t; = raenc({c, y;), pub(ska), y;);

t2 = raenc({y1, {np, b)), pub(sk,), r2) and t; = raenc((y;, (n;, a)), pub(sk.), r;);
t3 = raenc(np, pub(skp), y3) and t; = raenc(n;, pub(ska), y3);

ta = pub(sk,) and tg = pub(skp).

Actually, we have that t; and ¢] are unifiable with o = {y; — ¢, y; — (np,b), y; — rz}, but we
have that:

o Onsi(t2) = raenc({Tna, {Tubs b)), pub(zsk), 1), whereas
e OnsL(ty) = raenc({zc, Tna), pub(7sk), 7).



Actually, Kns. is type-compliant when considering a typing system such that Snsi(y;) = (Tnp, Tp),
OnsL(y1) = 7¢, and keeping the others elements as defined in the typing system introduced in Ex-
ample 3.4. Note that, w.r.t. this typing system, the attack trace trace tr given in Example 2.6 is
well-typed .

Consider now the variant P{\]SL, as sketched in Example 2.12, where a triple is used instead of
two pairs, that is replacing messages t; and t; by s, = raenc({y1, np, b3, pub(sk,),r2) and s; =
raenc((y{,n’b,a)3, pub(skc),r;). Then the corresponding configuration ‘Kr\’ISL = (P{\]SL;g’Jo;(D; 0)is
type-compliant w.r.t. the typing system given in Example 3.4.

3.3 Reduction results

Our main result consists in showing that whenever there is an attack, then there is an attack that
is well-typed. This holds for reachability properties as well as equivalence properties.

3.3.1 Reachability. We first prove that for any execution trace, there is a well-typed execution
that follows the same sequence of input and output, on the same channels. Formally, we define
tr obtained from tr by replacing any action in(c, R) by in(c, ), any out(c, w) by out(c, _), while
phase i’ is left unchanged. Intuitively, tr only remembers the type of actions, and on which channel.

t

THEOREM 3.8. Let Kp be a X -configuration type-compliant w.r.t. (Ty, 8). If Kp = (P; ¢; 0510)
tr’ - _
w.r.t. X then there exists a well-typed execution Kp — (P;¢";07;i) writ. ZO+ such that tr’ = tr.

tr tr
Conversely, if Kp = (P; ¢’;07;i) is a well-typed execution wr.t. £}, then there exists Kp =
(P; ¢ 05i) wrt. =5 such that tr = .

This shows that for any property that can be expressed as a reachability property, it is suffi-
cient to consider well-typed attacks. For example, secrecy of a data s can easily be encoded by
adding a witness process of the form in(c, s).out(Csecret—violated»> $)- Then the secret of s is preserved
if and only if there is no trace that contains cgecret—violated- Similarly, we can consider any property
that expresses that some state should never be reached. The second part of Theorem 3.8 can be
established by mapping constants from Xf.esh on a constant a € Xj. Such a mapping transform
non-atomic data on atomic ones, and may create equalities. Since our process algebra does not
feature disequality tests, the resulting trace, i.e. the one obtained by applying the mapping, is still
a valid execution trace. The first and main part of this theorem is proved in Section 4.

o
LemMA 3.9. Let Kp be a 3 -configuration type-compliant w.r.t. (75, &). If Kp = (P; ¢’s0’5i) is

t _

an execution wr.t. Zg, then there exists Kp - (P; p; 0 i) wret. %, such that tr = tr’.

Proor. The result is a direct consequence of Lemma A.1 considering the substitution 6 defined
as follows: 8(c) = a € X for any ¢ € Xfresh. |

3.3.2  Equivalence. Similarly to reachability, we show that whenever two processes are not in
trace equivalence, then there is a well-typed witness of non equivalence. Actually, we prove this
result for trace inclusion. Formally, assume given two X -configurations Kp and Kp with Ko
action-deterministic, and such that Kp Z; Ko wrt. X;. A witness of non-inclusion is a trace
(tr,¢) € tracey- (Kp) such that:

e either there is no ¥ such that (tr,¢) € tracey- (Ko);
e or such y exists but ¢ s ¢ wrt. 7.

Note that when a configuration is action-deterministic, once the sequence tr is fixed, there is a
unique frame reachable through tr, which ensures the unicity of .
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THEOREM 3.10. Let Kp be a X -configuration type-compliant w.r.t. (75, d0) and Ko be an action-
deterministic ¥ -configuration. We have that Kp L, Ko w.r.t. Z if, and only if, there exists a witness

(tr,¢) € traceyy (Kp) of this non-inclusion such that its underlying execution Kp = (P; p; 0 i) wrt.
% is well-typed.

The main part of the theorem is proved in Section 5. Here, we simply prove that the existence of
a witness w.r.t. X can be turned into a witness w.r.t. X. Actually, similarly to the reachability case,
the idea is to replace any symbol from Zf.sh by a symbol of 2. However, creating more equalities
is problematic when the witness of non-inclusion is an equality test that holds in Kp but not
in Kg. Therefore, we use here a bijective renaming. Moreover, replacing non atomic constants

bitstrin . . . .
from = ) ¢ by atomic constants may enable more executions and non trace inclusion may be

lost. Therefore, sometimes, we emulate constants from 2?:::'“‘% by a message t, of sort bitstring.
Note that such a #; exists since our theory contains a non-linear rule des(ty, . .., ;) = r4es With a

key position in t;, and thus ;6 where § maps any variable occurring in ¢; to a constant a € X is
a a message of sort bitstring.

LEmMA 3.11. Let Kp be a X -configuration type-compliant w.r.t. (5, 8) and Ko be an action-
deterministic 3. -configuration. If Kp Z; Ko w.r.t. 28' then Kp Z; Ko wrt. 3.

Proor. By hypothesis on our theory, we know the existence of a message t( of sort bitstring.
We consider a minimal (in length) witness of non-inclusion, ie. a trace (trs, #s) € tracess (Kp)
such that:

(1) either (trs,¥s) ¢ tracey: (Kp) for any ¥s; or

(2) (trs,ys) € traces: (Ko) but ¢s Ls ¢s.

We consider two substitutions:

e 0 which is an injective renaming from X, to constants in 3 that have not been used along
the execution under study.

g oL . - . bitstri
e 0’ which is an injective renaming from X2°™ to 3~, and which maps constants from % "¢
fresh 0 fresh

to tp. Note that 6’ preserves atomicity, i.e. 6’(c) is an atom if, and only if, ¢ € Z?:;’S“ﬁ

Case 1: trs = trg.as does not pass in Ko. In such a case, we have that:
trg _ _ . as .
e Kp — (Pg;¢5:0p31p) — (Ps; ds; op; ip);

tre
e Ko LR (Q;;I//S_;O'é;ié); and
° ¢ s Y.

Relying on Lemma A.1, we have that (trg0,y50) € traces. (Kp). More precisely, we have that

Ko m (Q;;lﬁ;@; 069; 1&) The same holds regarding the substitution §’. Note that the first-
order substitution associated to 0 (resp. §’) through y/¢ is 0 (resp. 0’) itself. Thus, to conclude, it
remains to justify that either asf can not be triggered from (Q;; ¥ 0, 059; 15), or g6’ can not be
triggered from (Qy; ¥ 0’; 060’; 15) We consider three cases depending on the action as.
(1) as = phase i. We have that i > i, but i < i;, and thus “phase i “ can still not be triggered
from (Q;; ¥ 0, 059; 1&) Thus, trs6 is a witness of non-inclusion w.r.t. 3.
(2) as = out(c, w) with Pg = out(c, us).PWP, then either Qg is not ready to perform an output
on channel ¢, and thus this is the case for (Q;; lﬁs_ 0; 059; ié), and we are done. Otherwise, we
have that Q§ = out(c,vs).Q W Q but vsaé isnot a Zg-message. If vsaé is not well-shaped,
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then we consider 6. We have that (vscré)e = 05(059) since vg does not contain constants
from Yfresh, and 05(0(59) is not well-shaped, and thus not a 3; -message. If vso~Q is not well-
sorted, then we consider 8’. We have that (vscré)e’ = 05(0(39’) since vs does not contain
constants from Z¢esh, and vs(crée) is not well-sorted since 0’ preserves atomicity.

(3

~

as = in(c, R) with Pg = in(c, us).P & P, then either Qg is not ready to perform an input on
channel ¢, and thus (Qg; ¢5‘ o; cré@; ié) is not ready to perform an input on channel ¢, and
we are done. Otherwise, since ¢35 Cs ¥, and Rpg| is a message, we deduce that Ry | is a
message, and we have that Ry/g |0 = (Ry)0l = R(}50)] is a X -message. Hence, since the
input can not be triggered, this is due to a problem of filtering, there does not exist s such
that (Uso'é)‘[ = Rys|. By contradiction, assume that there exists z’ such that (05(059))1" =

R(y50)|, then [(vs(crée))r’]e‘1 = (R(Y50)1)67", ie. (vscré)(r’e‘l) = Ry |. Contradiction.

Case 2: We have that (trs, ¢s) € tracey: (Kp), (trs, ¥s) € traceyy (Kp), and ¢s Zs 5. Thanks to
Lemma A.1, we know that (trs0, ¢s0) € tracey; (Kp) and (trs6, ys0) € tracey; (Kp), and similarly
considering 6’. To conclude, it remains to show that either ¢s6 Z /50, or ¢s6’ I )56’ We distin-
guish two cases depending on the form of the test. We consider a test of minimal size regarding
the number of symbols.

(1) We have that Rps| and R’¢s| are both messages such that Rps| = R’¢ps]. By minimality of
our witness, we know that Ri/s| and R'i/s| are messages. However, Rys| # R's]. In such
a case, consider 6. We have that Rps|0 = R(¢s0)] (similarly for R’), and Rys [0 = R(¥s6)]
(similarly for R’). Now, assume that R(/s0)| = R’ (¥s0)l, i.e. (RYs])0 = (R'Ys])0, and thus
applying 67!, we deduce that R/s| = R'Ys|, leading to a contradiction.

(2) We have that R@s| is a message whereas Rijs| is not. First, we may note that R can not be
reduced to a variable w, a name, or a constant. Therefore, we have that R = g(Ry, ..., Rk),
and by minimality of our test, we know that R;¢s/| is a message . We first consider the case
where g € X.. Since Rys| is not a message whereas R1s|,...,Rks| are, it means that
either R;i/s| is not an atom whereas an atom was expected at the i" position or R¢s is not
well-shaped. In the first case, we know that R;@s| is an atom. In such a case, we consider 6,
and relying on this test, we can see that ¢s0’ s ¥s6’. In case Ris| is not a message due to
a problem of shape, we consider 0, and relying on this test, we can see that ¢s6 Zs s0.

O

3.4 Tightness of our model

In this subsection, we give examples of theories that do not satisfy the hypothesis of the model and
for which Theorem 3.10 no longer holds, exhibiting processes that do have well-typed witnesses
of attacks. This shows that our hypotheses are rather tight.

In this subsection we assume n,m € N and a,b € 3.

Well-shapedness. We first show why we need our assumption on the existence of a shape of
each constructor symbol. Consider the processes:

P = in(c, x).out(c, aenc({a, n), x))
Q in(c, x).out(c, hash(n))

P is not a process according to our grammar since it involves a term that is not well-shaped.
Indeed x appears in key position while a term of the form pub(t) is expected. The trace tr =
in(c, pub(a)).out(c, w) is a trace of non-inclusion as R = adec(w, a) gives a message in the P side
but not in the Q side.



If we define a structure preserving typing system where §(x) = r with 7 an initial type, then
P is type-compliant as there is only one encrypted subterm in P. However, there is no well-typed
attack. Indeed, note first that we can not have xo = pub(t) for o well-typed since §(x) = §(xo) =
§(pub(t)) = pub(5(#)) which is not an initial type. The term aenc({a, n), xo) cannot be built by
any other recipe as n is unknown from the attacker, and it cannot be opened as xo is not a key.
Therefore, it is indistinguishable from hash(n).

Subterm property. Consider the theory des(f(x)) — g(x) where g is a free symbol. This the-
ory does not satisfy the subterm property and actually violates our main theorem. Consider the
processes

P in(c, x).in(c, y).out(c, f({n, x))).out(c, g({n, y)))
Q in(c, x).in(c, y).out(c, f({(n, x))).out(c, g({m, y)))

Then tr = in(c, a).in(c, a).out(c, wy).out(c, wy) is a trace of non-inclusion of P in Q, as exempli-
fied by the recipes R; = des(w;), R; = w; and the test Ry = R;.

Then P is type-compliant even if we chose §(x) # §(y) but then for any well-typed substitu-
tion o, xo # yo. Thus the equality R; = R, does not hold on P side, and there is no way to compare
g({n, yo)) to anything the attacker may build, as he does not know n. This kind of theories would
require to extend the notion of subterm to allow for some variations, relying for example on some
form of locality.

Each t; is linear in des(t4, . . ., t,) — to. Consider the rule des(f(x, x, y)) — ok, with non linear
term f(x, x, y), and the processes:

P = in(c,x).in(c, y).out(c, f(x,y, m))
Q = in(c,x).in(c, y).out(c, f(x, n, m))

Then tr = in(c, a).in(c, a).out(c, w) is a trace of non-inclusion. Indeed, after executing tr, the
test des(w) yields a message on P side, but not on Q side.

As there is only one encrypted subterm f(x, y, m) in P, P is type-compliant for any typing system.
So we chose §(x) = 7 and §(y) = v’ where v # 7’. Then, again, for any well-typed substitution,
xo # yo so des(f(x,y, m))o is not a message, and it is quite clear we cannot build f(xo, yo, m) to
compare it with f(xo, n, m) as m is private.

At most one non-linear variable in a rule. Consider the rule des(f(x, y), g(x, y)) — ok, with
non linear variables x and y, and the processes:

P = in(c,x).in(c, y).out(c, f(x, n)).out(c, g(y, n))
Q = in(c,x).in(c,y)-out(e, f(x, n)).out(c, gy, m))
Then tr = in(c, a).in(c, a).out(c, w1).out(c, wz) is a trace of non inclusion. Indeed, the recipe

R = des(w1, wy) yields a message on P side, but not on Q side.

There is no unifiable encrypted subterm in P, so P is type compliant even if §(x) # 5(y). But then
for any well-typed substitution, we have xo # yo and so R is not a message in the P side anymore.
Moreover, in this example n, m are secret so they cannot be reused to rebuild the messages by the
attacker. Therefore there is no well-typed witness of non trace inclusion.

4 TYPING RESULT FOR REACHABILITY

The goal of this section is to provide the main ingredients of the proof of Theorem 3.8. Some of
the lemmas are also useful for the proof of Theorem 3.10 on equivalence.

We first define a notion of simple recipes and we explain how we can restrict ourselves to simple
recipes (see Section 4.1). Second, our proof crucially relies on a crafted measure on recipes that we
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introduce in Section 4.2. A witness of reachability, minimal w.r.t. this measure, will be shown to
satisfy some good properties, used to derive a well-typed trace.

4.1 Some preliminaries

We introduce the notion of forced normal form, denoted u. This is the normal form obtained when
applying rewrite rules as soon as the destructor and the constructor match, for example decrypting
a message even with a wrong key. Formally, we define the forced rewriting system associated to a
set R of rewriting rules.

Definition 4.1. Given a rewriting rule of the form €ges — ryes as defined in Section 2.1, its associ-
ated forced rewriting rule is £ . — rqes where £} is obtained from 4es by keeping only the path
tO Tdes in Ces. Formally, £ is defined as follows:

(1) €}, = des(x1, ..., x,) when ryes is a ground term;

(2) otherwise denoted py the unique position of £g4es such that fyeslp, = rges and po = 1.p;, we

have that fées is the linear term such that:
e for any position p’ prefix of py, we have that root(¢}_|p) = root({gesly);
hd féeslpo = I'des;

e for any other position p’ of ¢,

, we have that ¢/, |,/ is a variable.
des des!P

We may note that the forced rewriting system associated to a rewriting system as defined in
Section 2.1 is well-defined. In particular, given a rewriting rule des(ti, . . ., t,) — rges such that ryes
is a non ground term, there exists a unique position p in #; such that f1]y; = rdes. This comes from
the fact that rges € St(t1), and the variable occurring in rges has a unique occurrence in t; which is
a linear term.

Example 4.2. Going back to our running example, we have that the forced rewriting system 7{}‘?‘
associated to R is:

radec(raenc(x, y1, z), y2) — x fst((x,y)) — x snd({x,y) > y
Regarding symmetric encryption and signature as introduced in Example 2.3, we get:
sdec(senc(x,y1),y2) = x getmsg(sign(x,y)) — x check(xy, x3) — ok

Then, given a set Ry of rewriting rules, a term u can be rewritten in v using Ry if there is a
position p in u, and a rewriting rule g(ty, . .., t,) — t in Ry such that u|, = g(ty,.. ., t,)0 for some
substitution 0, and v = u[tf],. As usual, we denote —*, the reflexive-transitive closure of —. We
may note that such a rewriting system is confluent as it terminates and has no critical pair. As
usual, the normal form of a term u is denoted u .

The forced rewriting system allows more rewriting steps than the original one. We will apply it
on recipes to simplify them and avoid detours. The following lemma ensures that the term deduced
(in a given frame ¢) through the recipe R would be the same as the one deduced relying on R{ as
soon as we know that R¢| is a message.

LEMMA 4.3. Let ¢ be a Xo-frame, R a 3-recipe such that RP| is a 3o-message, and R’ be such that
R — R’. We have that R’ is a 3y-recipe, and R'¢p| = R@|.

In our development, we will consider recipes that have a simple form: they are built using con-
structor symbols on top of recipes that necessarily extract a subterm of the frame (roughly a recipe
made of destructors).

Definition 4.4. A Xy-recipe R is a subterm Xy-recipe if for any 3-frame ¢ such that R@| is a 3o-
message, we have that Rp| € St(¢p). We say that R is a simple Xy-recipe if R = C[Ry, ..., Ri] for
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some context C built using symbols from 3. ¥ 3, and each R; is a subterm X-recipe such that
root(R;) & 2.

Simple recipes can be obtained through normalization w.r.t. our forced rewriting system.

LEMMA 4.5. Let 0 be a substitution with dom(0) C Xgesh and whose image contains ¥ -recipes.
Let R be a % -recipe in normal form w.r.t. — such that (RO)$| is a 3; -message for some E; -frame ¢.
We have that R’ is a simple X -recipe for any R’ € St(R).

4.2 Our measure

One key step of the proof is to design a measure that reflects how to transform a trace into a well-
typed one. Our transformation will proceed by modifying the recipes used by the attacker to forge
messages: instead of sending arbitrarily large messages, he should send only small, well-typed
messages. The transformation depends on the trace and the frame ¢s under consideration and
therefore our measure is parameterized by ¢s. Finally, the measure of a recipe will be determined
by three elements, in lexicographic order.

e First, the size of the term computed by R, that is Rps|;

e Second, the recipe R should be headed by as much constructor terms as possible. In particular,
we will prefer the recipe (fst(w), snd(w)) over w itself;

e Finally, the size of R itself.

The rest of this section is devoted to the definition of our measure and the establishment of a
couple of its properties.

Givenatermt € 7 (2, 3§ W N), we denote Multi(t), the multiset of elements from > & 3¢ & N/
defined as follows:

e Multi(a) = {a} when a € 3] W N, and
o Multi(f(ty,...,tn)) = {f} W Multi(¢;) W ... Multi(t,) when f € X.

Given a set D of data and a term t € 7 (2, D), the size of t, denote |¢|, is the number of function
symbols occurring in it. The hat of ¢ is the constructor context R (i.e. a term built on ¥ with some
holes) such that t = R[#4, ..., t,] with root(t;), ..., root(t,) ¢ X.. We denote it hat(¢).

Given a X -frame ¢s together with an ordering < on Zfesn (typically the one corresponding
to the order of appearance of these constants in the underlying trace trs associated to ¢s), the
measure j1¢s associated to a X - recipe R is defined as follows (using the lexicographic ordering):

(1) y;ss (R) = Multi(Rgs|) where elements of the multisets are ordered as follows (cmin € X;):
Cmin < Z()_ N {emin} W3 < Efresh < 2

and for elements in 2., We have that ¢ < ¢’ when ¢ < ¢’.
() 2, (R) = IR$sll - [hat(R)!.
(3) #*(R) = IRI.
Note that cmin € % is the minimal X -recipe according to this measure.

We start by establishing some properties regarding this measure. First, we may note that the

measure i , remains positive since, intuitively, the hat of a term can never disappear by rewriting.

(this result is formally stated and proved in Appendix B.2 - see Lemma B.1).

Then we can show that if a recipe R; is greater than a recipe R; and does not yield a message,
then Ry[R;] is greater than Ry[R;]. This technical lemma will be used very often in our proofs,
when reasoning about some reduction that failed inside a bigger term.



LEMMA 4.6. Let < be an ordering on Zfesh, ¢s be a Xy -frame, Ry, Ry be two X -recipes such that
Ry¢s) is not a 3§ -message, and ,u;ss (R) < ,u;ss (Rz). Let Ry be a X -recipe, and p a position in Ry. We
have that:

.“;ss (Ro[R1]p) < ,U;ss (Ro[Ra]p)-

The proof of Lemma 4.6 is given in Appendix B.2. It relies on the fact that Ry[R;] may only
reduce more than Ry[R:].
The measure decreases when applying forced reduction.

LEMMA 4.7. Let < be an ordering on Sfesh, ¢s be a X5 -frame, and R, R’ be two X7 -recipes such
that R — R’. We have that pgg (R') < pgg(R).

The proof of Lemma 4.7 is given in Appendix B.2. Intuitively, if R — R’ then we consider the
instantiated rule {4es6 — rqes® that has been applied. Either {4.s0¢s] is a message. Then both R
and R’ yield the same term, that is Rps| = R’@s]. The two first items of the measure are unchanged
and we conclude thanks to the third item since R’ is smaller than R. In case £4e50¢s| is not a
message, we conclude by Lemma 4.6.

4.3 Completeness

We are now ready to prove the core part of Theorem 3.8.

t

THEOREM 3.8. Let Kp be a X -configuration type-compliant w.r.t. (Ty, &). If Kp = (P; ¢; 050)
tr’ - _
w.r.t. X then there exists a well-typed execution Kp — (P;¢";07;i) writ. ZO+ such that tr’ = tr.

tr tr
Conversely, if Kp = (P;¢’;0';i) is a well-typed execution w.r.t. X7, then there exists Kp =
(P; ¢ 051) wrt. =5 such that tr = .

Given a trace Kp ;bo (P; ¢; 0; i), we need to build a well-typed trace Kp g (P; ¢s; os; i) such
that trg = tr. This is done inductively in the number of execution steps, by modifying the recipes
used by the adversary: given a recipe R, some parts of R will be replaced by fresh constants from
Sfresh- Roughly, we will show that tr is actually an instance of trg in which the fresh constants of
trg are replaced by recipes over the current frame ¢s.

We first note that once the recipes are fixed (by 0 in the following lemma), the underlying terms
- computed by the recipes - are entirely determined.

LEMMA 4.8. Let ¢s be a X} -frame together with < a total ordering on dom(¢s). Let 6 be a substitu-
tion such that dom(6) C Xfesh, and for any ¢ € Jgesp occurring in ¢s we have that ¢ € dom(0) and
c0 € T (2,2, W dom(¢s)). Moreover, we assume that in case ¢ € Zfresh occurs in wes, then w' < w
for any w’ € vars(c6). We consider the substitution A whose domain is dom(6), and such that:

cA = (c0)(psA)| for any c € dom(A).

The substitution A is well-defined. Moreover, if (c0)¢s| is a 3 -message for each ¢ € dom(6), and

(cO)¢sl is an atomic 37 -message when ¢ € sz‘rt:s“ﬁ, then cA is a X, -message for each c € dom(1), and

¢ is an atomic 7 -message when ¢ € 33T,
0 fresh

We call A the first-order substitution associated to 6 through ¢s.

The fact that A is well-defined comes from the recursive application of the recipes defined by 6,
thanks to the order on the variables. This lemma is formally proved in Appendix B.3.
The relation cA = (c8)(¢sA)] established by Lemma 4.8 can be generalized to arbitrary recipes R.
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LEMMA 4.9. Let ¢s be a =} -frame together with < a total ordering on dom(¢s). Let 8 be a substitu-
tion such that dom(6) C Zfesh, and for any ¢ € Zgesh occurring in ¢s we have that c € dom(0) and
cd € T (X,%; W dom(¢s)). Moreover, we assume that in case ¢ € Zfresh occurs in wes, then w’ < w
for any w’ € vars(c0). Let A be the first-order substitution associated to 6 through ¢s.

Assume that for any ¢ € dom(A), we have that cA is a X -message. Moreover, cA is an atomic % -
message when ¢ € Z?rt:s“ﬁ LetR € T (2,2, W dom(0) W dom(¢s)) such that Rps| is a X -message.
We have that (RO)(psA)| = (Rpsl)A.

The proof follows from an induction on R. The base case is ensured by Lemma 4.8. A formal
proof is given in Appendix B.3.

We also note that execution traces do not introduce new encrypted subterms: they are all in-
stances of the initial encrypted subterms.

LEmMMA 4.10. Let Koy = (Po; Po; 0;0) be an initial Zy-configuration and K = (P;¢;0;i) be a
Xo-configuration such that ¥ = % for some tr w.rt. Zo.

(1) We have that ESt(K o) C ESH(Kyo).
(2) Moreover, in case o is an mgu between pairs of terms occurring in ESt(Ky), then we have that
ESt(K o) € ESt(Ko)o.

The first property follows from the definition: the processes of K are included in those of Ky
and the output terms stored in the frame ¢ of K appear initially in the processes of K. The second
property comes from the fact that unification does not create new encrypted subterm. A formal
proof is given in Appendix B.3.

Given Ky = (Po; do; 0; 0) be an initial 3 -configuration and (trs, ¢s) € tracesy (Ko), we consider
the order < induced by trs. It is defined on the subset of W & Xgqp, that correspond to elements
that occur in trg and ¢ as follows:

either u € dom(¢o) and v ¢ dom(¢)

u<v o . .
{ or u occurs in trg before the first occurrence of v in trg.

We are now ready to state how we transform a trace (tr, ¢) into a well-typed trace (trs, ¢s).

ProrosiTiON4.11. Let Kp = (Po; ¢o; 0; io) be an initial % -configuration, and (tr, ¢) € traces (Kp)
with underlying substitution o. Then, there exists (trs, ¢s) € tracexs (Kp) with underlying substitu-
tion os with dom(os) = dom(c) such that os = mgu(T’)p, as well as two substitutions A and 6 such
that:

o I'={(u,v) | u,v € ESt(Kp) such that uc = vo}.

e p is a bijective renaming from variables in dom(c) ~ dom(mgu(I')) to constants in Zfesh such
that xp € 320 if, and only if, xo is an atomic ¥ -message.

o dom(0) C Zfresh, for any ¢ € Xgesh occurring in trs, we have that ¢ € dom(0),c € 7 (2,35
dom(¢s)), and w’ < ¢ for any w’ € vars(cO) (where < is the ordering induced by trg).

e foranyc € dom(0), (c6)¢s| is a 3§ -message and it is an atom when ¢ € 320,

o A is the first-order substitution associated to 6 through ¢s.

o ¢ =¢sA, 0 = osA, and (trs0) ¢l = trg].

The fact that (trs, ¢s) is well typed is ensured by os = mgu(T')p. Indeed, since I is a set of
unifiable encrypted subterms of the protocol, we know that mgu(T) is well-typed (by assumption
on the protocol). Hence o is well-typed. Therefore Theorem 3.8 is a direct consequence of Propo-
sition 4.11 (the details are provided in Appendix B.3).

The proof of Proposition 4.11 is the key step for proving the existence of a well-typed trace.
We provide here a detailed sketch of proof while the full proof can be found in Appendix B.3. We
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omit here the subtleties between X} and 3. Proposition 4.11 is proved by induction. Consider an
execution trace

tr-

Kp —" (P;dp 50 500) N (P; ¢ 0; 1)

By induction, there exist ¢§, and oy such that

tr

Kp —" (P;d5:05307)

with corresponding A7, and 0~ as specified in the proposition. We consider the transition a.

5

e The case of a phase is immediate: (trg, ¢5) can be easily extended.

o The case of an output, i.e. « = out(c, w) with a corresponding process out(c, u).P ready to
emit, is relatively simple. We simply need to guarantee that uog is a message, which follows
from the fact that uo™ is a message and 0~ = 04 A".

e The difficult case is the input case: a = in(c, R), with a corresponding process in(c, u).P
ready to receive. We have that R$~| = uo. We are looking for Rg such that

(Rs07)¢"L = uo

Such a Rg exists since we could take R. We consider the minimal Rg, w.r.t. our measure, that

satisfies this property.

Step 1 We first prove that Rs¢s] is a message: if this is not the case, we show that this
contradicts the minimality of Rg w.r.t. the measure.

Step 2 We then show that Rg = C[Ry, . .., R, ] where C is a context of constructors and R; ¢s|
are encrypted subterms. Indeed, if R;¢s| was headed by a transparent function, we could
push it into the context C and obtain a smaller Rg (w.r.t. item 2 of the measure). In other
words, we show that Rg is a simple recipe.

Step 3 Rj still does not satisfy the requirements of Proposition 4.11. It could still be a “big”
recipe, that does not satisfy the relation

>

Rs¢sl = uos

needed to pass the input action. Intuitively, we build Rs from Rs by “cutting” the parts

that go beyond uos. By Lemma 4.9, we have that (Rs¢sl)A = uosA. Let’s consider a leaf ¢

of Rs that goes beyond uos. If Rsps| # uos, we can show that

— either c appears in the context C, then we simply cut this part from the context C.

— or ¢ belongs to one of the R;. Then, R;¢s/| is an encrypted subterm of ¢s which is equal
to an encrypted subterm of uos. By Lemma 4.10, they are subterms of I' and therefore,
thanks to the application of the mgu, they are equal (thus there is no need to “cut”).

These three steps are highlighted in the detailed proof.

EQUIVALENCE

We now show how to extract a well-typed witness of non trace inclusion Kp Z; Ko from an
arbitrary witness. Compared with the proof for reachability, the proof starts similarly: from a trace
(tr,¢) € Kp, we build a well-typed trace (trs, #s) € Kp. However, an additional work is needed
to show that the corresponding trace (trs, ¥s) in Ko is indeed a witness of non trace inclusion,
that is, ¢s s ¥s. This requires to further show that any test T witness of non static inclusion for
¢ Zs ¥ can be transformed into a witness of non static inclusion for ¢s Zs ¥/s.
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5.1 Some preliminaries

We introduce a slightly different notion of static inclusion where the attacker is also given the
ability to check whether a message is atomic, i.e. a name in NV, a constant in X & Z?rt:s“ﬁ ora
constant in ¥ of sort atom. This new equivalence actually coincides with the original one.

Definition 5.1. Let ¢1, and ¢, be two X¢-frames. We write ¢y C2°™ ¢, w.r.t. 39 when dom(¢;) =
dom(¢,), and:

e for any X-recipe R, we have that Rp;| is a X-message implies that R¢,| is a Xy-message;

e for any Xy-recipe R, we have that R#;| is an atomic Xy-message, implies that R¢,| is an
atomic ¥o-message; and

e for any X-recipes R, R’ such that Rp;], R’¢,| are Zo-messages, we have that: Rp;| = R'¢|
implies Rp2| = R'¢2l.

Example 5.2. To illustrate the definition above and its difference with the original definition
of static equivalence, we consider 58" as described in Example 2.3. Let ¢ = {w> n} and ¢ =
{w > hash(n)} wheren e N.

We have that ¢ Z2'°™ . Indeed, we have that w@| is an atomic message, whereas wi/| is
not. Such a test is not possible when considering C;. However, relying on a non-linear rule of
our rewriting system, here check(sign(x, y), vk(y)) — ok, we can consider another test that will
witness this non-inclusion, namely check(sign(w, w), vk(w)) = ok. Indeed such a test holds in ¢
but not in ¢.

More generally, we can show that C2*™ coincides with Cj.
LEMMA 5.3. Let ¢; and ¢, be two So-frames. We have that ¢ s @2 if, and only if, ¢; T ¢,

Proor. The proof of the lemma relies on the fact that the attacker may always emulate the
atomicity test using one of the non-linear rules, as illustrated in Example 5.2. In case ¢; T2 ¢y,
it is easy to see that ¢; E¢ ¢2. Therefore, we consider the other implication. Let ¢, and ¢, be two Xo-
frames such that ¢; C; ¢,, we have to establish that ¢; Z2°™ ¢,. Let R be a Z-recipe such that R, |
is an atomic Xy-message. We have to show that R@,| is an atomic 3y-message. By hypothesis, we
know that there exists {4es = rges € R With £4.s non-linear, i.e. several occurrences of a variable x
with at least one occurring at a key position. Let o be the substitution with dom(o) = vars({4es),
and img(o) = {R}, and R’ = {4es0. We have that R’ is a Zy-recipe such that R’¢;] is a Zo-message.
Indeed, the rewriting rule applies since the same atomic message occurs at each key position.

Relying on our hypothesis ¢; E5 ¢2, we know that both R¢,| and R'¢,| are o-message. In
particular, we have that (£4es0) 2] reduces using £4es — rdes meaning that atomic messages occur
at each key position, and thus R¢, | is an atomic ¥y-message. O

Note that this lemma crucially relies on our assumption that our set of rewriting rules contains
at least one non-linear rule.

Our measure. We extend our measure to tests, as considered for checking static inclusion.
Formally, a test T is either a single recipe R, or a pair R, R’ of two recipes. In such a case, i.e.
when T is a pair R, R’, we define:

Hps (T) = (g (R) & py (R'), pig (R) ® prg (R'), o> (R) W r*(R')).

5.2 Completeness

The equivalence counterpart of Proposition 4.11 is the following proposition, that states that we
can transform a witness of non trace inclusion into a well-typed one.
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ProposITION 5.4. Let Kp and Ko be two initial 3 -configurations such that Ko is action-deterministic,

and Kp Z; Ko wrt X;. Let (tr,¢) € tracey- (Kp) with underlying substitution o be a witness of
non-inclusion of minimal length. Then, there exists (trs, ¢s) € traceyy (Kp) a witness of this non-
inclusion with underlying substitution os such that cs = mgu(I')p, as well as two substitutions Ap
and 9 such that:

o I'={(u,v) | u,v € ESt(Kp) such that uc = vo}.

e p is a bijective renaming from variables in dom(c) ~ dom(mgu(I')) to constants in Zfesh such
that xp € 2?::5”; if, and only if, xo is an atomic X -message.

o dom(0) C Zfresh, for any ¢ € Zfesh occurring in trs, we have that ¢ € dom(0),c € T (3,35 ¥
dom(¢s)), and w’ < ¢ for any w’ € vars(cO) (where < is the ordering induced by trg).

e foranyc € dom(0), (c6)¢s| is a 3§ -message and it is an atom when ¢ € 320,

o Ap is the first-order substitution associated to @ through ¢s.

e ¢ =¢sAp, 0 = asAp, and (trs0)p| = trg|.

Exactly like for the reachability case, the fact that (trs, ¢s) is well typed is ensured by o5 =
mgu(T') p. Indeed, since T' is a set of unifiable encrypted subterms of Kp, we know that mgu(I') is
well-typed (by assumption on the protocol). Hence os is well-typed. Therefore Theorem 3.10 is a
direct consequence of Proposition 5.4 (the details are provided in Appendix C).

We provide here a detailed sketch of proof of Proposition 5.4, leaving the full proof in Ap-
pendix C. Consider (tr,¢) € tracey. (Kp) with underlying substitution o be a witness of non-
inclusion of minimal length. We explain how to build a well-typed witness of non inclusion.
Thanks to Proposition 4.11, there exists a well-typed trace (trs, ¢s) € tracey: (Kp) with under-
lying substitution os such that os = mgu(I')p, and Ap and 6 satisfying the conditions of Proposi-
tion 4.11. We would like to show that (trg, @s) is a witness of non-inclusion. There must exist a trace
(trs,¥s) € tracesy (Kp) otherwise we can already conclude that (trs, ¢s) is a witness of non trace
inclusion. For the same reason, we must have ¢s ¢ ¢/s. Then the first step of the proof consists in
showing that we can instantiate (trs, ¥s) by 6 and Ag such that ¢y = ysAg, triy] = (trs8)¢], and
(tr,y) € tracey- (Kp). We also show that ¢/ satisfies the assumptions of Propositions 4.8 and 4.9.

In a second step of the proof, we show that ¢s E /s implies ¢ T 1, hence a contradiction.
More specifically, we show by induction on p4,(T), that:

for any test T, if T holds for ¢ then it holds for .  (*)

This allows us to conclude that any test T that holds in ¢ also holds in i since we may simply
consider tests without constants in dom(8). Hence ¢ Cs .

We consider all the tests defined by the static inclusion £'°™. In particular, the attacker can
test directly whether a message is an atom or not, which avoids to consider a “big” recipe of the
form check(sign(R, R), vk(R)) = ok instead of simply R. We show (*) by induction on our measure.
Therefore let’s assume that (*) holds for any test T” such that pg; (T") < pgs(T). We consider the
three possible cases for T.

o Either T checks whether the term induced by R is a message. We need to show that (R0)¢|
is a message implies (RO)y/] is a message. If Rps| is a message then so is Rys| by static in-
clusion and we can rather easily conclude that (R0)y| is a message. If Rgs| is not a message,
similarly to the reachability case, we can build smaller tests, apply the induction hypothesis
and reconstruct R. An additional difficulty comes from the fact that we now also need to
transfer the properties on .

e Or T checks whether the term induced by R is atomic. We need to show that (RO)¢| is
atomic implies (RO)¥/| is atomic. Thanks to the previous case, we already know that (R0)y/]
is a message. Actually, Rps| must be atomic because (Rf)@| = Rps|Ap is atomic and due to

24



the constraints on Ap. We deduce that Ri/s| is atomic by static inclusion, and thus (RO)y/] =

Riys|Ag is atomic since Ag preserves atomicity.

e Or T is an equality test R = R’. If R and R’ are headed by the same constructor symbol,
we may simply open each recipe and apply the induction hypothesis. Therefore, we may
assume that R = C[Ry, ..., R,] and R’ is headed by a destructor. As for the reachability case,
we can show that the R; as well as R’ are subterm recipes yielding an encrypted subterm.
We have that Rgs| and R’ ¢s| are messages. Either Rps| = R’¢s]. Then this holds for /s as
well and therefore for /. Or Rps| # R'¢s| and yet (Rps)IAp = (R ¢ps)lAp. Let’s consider a
leaf position p on which the two terms differ, i.e. p exits in both R¢s| and R'¢s, but Rgs||, #
R'¢sllp. We assume that p is a leaf of R’$s|, and since Ap makes these two terms equal, we
know that R'¢s| = ¢ € Zfesh (the case where p is a leaf of R¢g is actually simpler).

— either p belongs to one of the R;¢s]|. Then, as for the reachability case, R;$s| is an en-
crypted subterm of ¢s which is equal to an encrypted subterm of R'¢s], and thus an
encrypted subterm of ¢s since R’ is a subterm recipe. By Lemma 4.10, they are subterms
of I and therefore, thanks to the application of the mgu, they are equal.

— or p belongs to the context C, then we build C from C by replacing Clp by c for all such c.
Consider the corresponding recipe R = C[Ry, ..., R,]. We show that the equality R = R’
holds in ¢ since we have removed all the differences. Therefore we have that R = R’ holds
in 1/s. Moreover, the equality R = R holds relying on our induction hypothesis.

6 EXAMPLES

We review several protocols of the literature and identify whether our main results can be applied,
that is, we identify when the protocols satisfy the type-compliance condition. We first discuss
which scenario is considered.

6.1 Complete scenario

We explain which scenario and which security property we consider, illustrated on the NSL pro-
tocol. As presented in Example 2.4 and Example 2.12, we may need to consider a rich scenario
when searching for attacks. In the case of a 2-agent protocol, like the Needham-Schroeder-Lowe
protocol, we wish to instantiate the roles P4 and Pp with different combinations of honest and dis-
honest agents. We consider a and b to be two honest agents, whereas c is dishonest, and denote by
P4(za,zB) (resp. Pp(zp,z4)) the role P4 (resp. Pg) played by agents z4 and zp. Then we consider
the following:

PYal' = Pa(a,b) | Pa(b,a) | Pa(a,c) | Pa(b,c) | Pa(b,a) | Pp(a,b) | Pa(b,c) | Ps(a,c)

P’S\‘esnﬂi considers all possible combinations of a, b, ¢ within P4 and Pp, except that we exclude the
processes Pa(c,a) and Pa(c, b) as well as Pg(c,b) and Pg(c, a). Indeed, these four processes de-
scribe the behaviour of a dishonest agent ¢, which is already included within the semantics of
our model. Pf\fsnﬂi models the possible two-way interactions between honest agents, and between
honest agents willing to establish a session with an attacker. Note that processes P4(a, b), Pg(a, b)
and Pg(a, c) correspond respectively to P4, Pp and Py in Example 2.4. P;esnﬂi models a complete
scenario with one session only of each possible instantiation of a role. Even though our calculus
does not contain replication, type-compliance and well-typedness can easily be lifted to proto-
cols with replication, provided we account for issues arising from the generation of new renamed
copies of our processes. In a slightly different setting, [20] has established that type compliance is

guaranteed for an unbounded number of sessions as soon as a protocol is type-compliant when 2
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sessions are considered for each role and each possible choice of agents. For this reason, we con-

: complete _ psemi rsemi rsemi semi _
sider a complete protocol Py ¢, =Pl | PReL wlhere P{s™ is a copy of Py alpha-renamed
. P . complete . .
to ensure names and variables are all distinct in PNSI_p , and the same type is given to names and

variables that have been alpha-renamed. This scenario is complete in the sense that, according to
the approach of [20], a richer scenario derived from this one by adding more copies of a process
will still be type-compliant according to our definition (note that no more encrypted subterms will
be introduced).

For the security property, we consider the secrecy of a key or a nonce, where secrecy is encoded
as a combination of key usability and “which key-concealing”. For NSL, we consider secrecy of
the nonce n; as received by P4(a,b). To that end we consider two variants of P4(a,b): in the
first one, we add a final action out(c4, senc(mi, np)), whereas we add out(ca, senc(ms, k)) in the
second, where k is a fresh nonce, and m; and m; are two publicly known constants. However,
for NSL, the resulting protocols are not type-compliant. Indeed, there is an encrypted subterm
aenc(x, pub(skp), r3) in P4 (Example 2.4) which can be unified with other encrypted subterm
from the protocol. Note that the scenario we consider is richer than the scenario from Example 3.7,
which explains why the typing system considered is not enough to make the entire protocol type-
compliant. To ensure type-compliance, we need here to consider a tagged version of the protocol
where a public constant is appended to each plaintext in the specification. The informal specifica-
tion is given below.

A—>B: {LNa,A}pub(B)
B—A: {2,N,, N, B}pub(A)
A— B: {3, Nb}pub(B)

6.2 Review of key-exchange protocols

We consider several protocols from the literature and investigate their type-compliance for the
complete scenario. As well as for the Needham-Schroeder-Lowe protocol, the security property
we consider is the secrecy of secret (nonce or session key) exchanged between two honest agents
aand b, encoded as a combination of key usability and “which key-concealing”. Tuples are encoded
directly, without using nested pairs.

The complete scenario for a 3-party protocol with a trusted server S is somewhat more complex
than for a 2-party protocol. We need to consider a server S willing to establish a session between
all pairs of agents in {a, b, c}, in addition of the usual interactions between a, b and c. Each of the
protocols is thus modelled as 14 processes, leading to 28 processes after duplication.

Type-compliance of the protocols has been verified automatically. In some cases, we needed to
tag the protocol to ensure type compliance, as for the case of the NSL protocol. Our findings are
summarized in Figure 3, which describes which protocol is type-compliant, with or without tags.
We discuss below each protocol individually.

Wide Mouth Frog. The Wide Mouth Frog protocol can be informally described as follows.

A—S: A {B,Kalk,,
S—B: {AKgw }Kbs

Here we verify the strong secrecy of K, as received by B. We consider a structure-preserving
typing system which associates the type agent to agents a, b, c and S, the type session to negotiated
keys between the agents such as K, and the type longterm to long-term keys K5, Kps and Ks.
The constants m; and m; occurring in the security property (as for the NSL protocol) are typed
with a type constant. This protocol is type-compliant, without requiring any additional tagging,
as every encrypted subterm is of the form senc({agent, session), longterm), except for the terms
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Type-compliance | Type-compliance
with tuples with tagging
Needham-Schroeder-Lowe X v
Wide Mouth Frog v v
Denning Sacco with shared keys v v
Needham-Schroeder with shared keys v v
Yahalom-Lowe v v
Yahalom-Paulson X v
Otway-Rees v v
Denning Sacco with signature v v
Passive authentication v v
Active authentication v v

Fig. 3. Type-compliance of protocols for Sections 6.2 and 6.3.

that come from the encoding of the security property, which use a constant as plaintext and thus
cannot be unified with other ciphertext.

Denning Sacco with shared keys. The Denning Sacco protocol can be informally described as
follows.

A—>S: AB

§—A: {B,Kap, {Kap, A}k, Kas

A— B: (Kg,Alk,,
We consider the same typing system as for the Wide Mouth Frog protocol. This protocol is type-
compliant, without requiring any additional tagging. The difference in the arity of the plaintexts
in the protocol specification ensures all possible unifications between encrypted subterms occur
between encrypted subterms of the same type.

Needham-Schroeder with shared keys. The Needham-Schroeder symmetric key protocol can
be informally described as follows.

A—>S: ABN,

S—A: {B,NgKgp, {A Kgp}Kps }Kas
A—B: {AKuplk,,

B— A: {req,Nyjx,,

A— B: ({rep,Nplk,,

This protocol is type-compliant, without requiring any additional tagging, using the same structure-
preserving typing system as before.

Yahalom-Lowe. The Yahalom-Lowe protocol can be informally described as follows.

A—>B: AN,

B—S: {ANgNylk,,
S—A: {B,Kab’Na’Nb}Kas
S—B: {AKawlk,,
A—B: {AB,S Nylk,,

This protocol is type-compliant, without requiring any additional tagging, using the same structure-
preserving typing system as before. Note that type-compliance depends on the encoding of tuples:
when considered as nested pairs, type-compliance is not guaranteed, as more encrypted subterms
become unifiable.
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Yahalom-Paulson. The Yahalom-Paulson protocol can be informally described as follows.

A—>B: AN,

B—S: B,N;,,{A,Na}KbS

S—A: Ny, (B,Kap, Nalr,.» 1A B,Kap, Ny }x,,
A— B: {AB,Ka, Nplk,,, {Nplk,,

This protocol is not type-compliant. Indeed its formal specification contains a term senc(xp,p, XK ab)>
in the encrypted subterms of A, which can be unified with any other encrypted subterm from the
protocol, such as subterms encrypted with long-term keys K5 and Kps. To ensure type-compliance
with a non-trivial typing system, we consider a tagged version of the protocol.

A—>B: AN,

B—S: B,Np,{1,A Ny,

S— A: Nb’{Z’BaKab’Na}Kas’{3’A’BaKab,Nb}Kb5
A—B: ({3,A B,Kap, Nplk,,, {4, Nplk,,

Otway-Rees. The Otway-Rees protocol can be informally described as follows.

A— B: M,A B, {Nys,M, A B}Kgs

B—S: M,A B,{Ng,M, A B}Kgs, {Np, M, A, B}Kps

S— B: M, {Nga,Kap}Kas, {Np,Kap}Kps

B—A: M, {Ng Kap}Kas
This protocol is type-compliant, without requiring any additional tagging, using the same structure-
preserving typing system as before. As for the Yahalom-Lowe protocol, type-compliance relies here
on the direct encoding of tuples, and would not hold with nested pairs. Actually, we can also con-
sider a different typing system which consists of typing the variables used to model ciphertext
forwarding using a constant. This does not correspond to the expected type in a normal execution,
but we can show that the protocol is type-compliant. This yields an interesting property w.r.t. at-
tack search. Namely, we deduce that it is useless to instantiate these variables with complex terms
when looking for an attack.

Denning Sacco with signature. This protocol, presented in [12], can be seen as a simplified
version of the Denning Sacco protocol. It can be can be informally described as follows.

A— B: A B, {sign({A, B, k),skA)}pun()
B—->A: {m}

This protocol is type-compliant, without requiring any additional tagging, using the same structure-
preserving typing system as before.

6.3 E-passport protocols

We also consider two authentication protocols used in the e-passport application, namely the pas-
sive authentication (PA) protocol and the active authentication (AA) protocol. These protocols en-
able a reader (agent R in the following informal specifications) to authenticate a passport (agent P).
The two agents already possess sessions keys thanks to a prior execution of a key-exchange proto-
col. For this reason, the security property we want to verify here is a variant of unlinkability: we
want to model the inability for an attacker to distinguish between a scenario involving Passport
1 and two sessions of Passport 2, and a scenario involving two copies of Passport 1 and only one
session of Passport 2. This models the inability for the attacker to link two sessions of a same
passport together. We then investigate the type-compliance of the resulting configurations, and
summarize the results in Figure 3. Similarly to the key-exchange protocols, we consider a version
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of the protocol where each session has been duplicated, to ensure all possible unifications are
observed.

Passive authentication. This protocol can be informally described as follows.

R — P: {read}isenc, mac({read}rsenc, kmac)
P — R: [{dataplsenc, mac({dataP}ksenc, kmac)

where datap = (dgp, sign(hash(dgp), skDS), hash(dgp)). This protocol is type-compliant, without
requiring any additional tagging, using the same structure-preserving typing system as before.
Type-compliance arises here from the fact that encrypted subterms in the formal specification of
the protocol use a fixed key, the session key shared between the reader and the passport, preventing
unification between messages other than the honest execution of the protocol.

Active authentication. This protocol can be informally described as follows.

R — P: [{init, r}gsenc, mac({init, r}xsenc, kmac)
P—oR: {Sign«n’ r>’ SkP) }ksenc’ mac({sign((n, }">, SkP) }ksenc’ kmac)

This protocol is type-compliant, without requiring any additional tagging, using the same structure-
preserving typing system as before, and following the same argument as for the PA protocol.

7 CONCLUSION

We have established a simplification result for both reachability and equivalence properties: if there
is an attack, then there is a well-typed attack, which reduces the search space. Our result holds
for a large class of cryptographic primitives, that encompasses asymmetric encryption, signatures,
and hashes, and for a flexible notion of typing system, provided the underlying protocol is type-
compliant: any two unifiable encrypted subterms have the same type.

The natural next step would be to extend results that rely on the previous small attack result [20],
limited to symmetric encryption. For example, we could probably establish a novel decidability
result for protocols with nonces, for an unbounded number of sessions, for a large class of cryp-
tographic primitives, generalizing the approach of [21]. Similarly, we plan to extend the tool SAT-
Equiv [25] that (efficiently) decides trace equivalence for a bounded number of sessions. SAT-Equiv
is currently limited to symmetric encryption as it relies on [20]. The extension to asymmetric en-
cryption, signatures and hashes will require further (provably correct) optimizations, in order to
preserve the efficiency of the tool.

Finally, typing results can potentially be used for composition results. Given two secure pro-
tocols P and Q, they can be safely composed if, intuitively, the execution of P does not interfere
with the execution of Q (and conversely). Such composition results have been established for trace
properties [3, 22, 26] as well as equivalence properties [4]. We could probably use our typing result
to establish composition for equivalence properties and a larger class of primitives and protocols,
assuming that protocols have disjoint types, which can be typically enforced by tagging.
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A SOUNDNESS PROOFS OF SECTION 3.
This Lemma may seem too precise when we want to prove the soundness part of Theorem 3.8. It

will be used with its complete power when proving the completeness of Theorem 3.10. See the
proof of Proposition 5.4 in Appendix C.

Lemma A.1. Let Ko = (Qo; Yio; 00; i) be a Xy -configuration, and (trs, /s) € traceyy (Kp). Let 6 be
a substitution such that dom(0) C Zfresh, for any ¢ € Jgesh occurring intrs, we have that ¢ € dom(0),
cd € T (2,3, Wdom(ys)), and w' < c for any w’ € vars(c0) (where < is the ordering induced by
trs). We also assume that (c0)ys| is a X -message for any ¢ € dom(0) and an atomic one in case
ce sz‘rtom. We have that (trs0,ysA) € tracey- (Ko) where A is the first-order substitution associated

esh
to 6 through ys.

t
ProoF. Since (trs, ¥s) € tracezg(‘KQ), we know that Ko = (Qo; Yo; 00; io) = (Qs;Us; 055 15).

rsf
Given 6 and A as defined in the lemma, we establish that: Ko = (Qo; Yo; 00; io) tS:> (Q; Y5 0510)
where Q = Qs, ¢ = YsA, 0 = osA, and i = is. We show this result by induction on the length of
the trace.
Base case: tr is empty. Let (Q; ¢; 0; i) = Kp. Since Kp is a %, -configuration, we have that /A = 1,
and oA = o. Therefore, the result trivially holds.

Inductive case: tr = tr™.ag. In such a case, we have that:

trs as .
Ko = (Qu: Yo; 003 i) == (Q5; Y53 053 i5) = (Qs; Yis; 053 is)
Thanks to our induction hypothesis applied on tr~, we know that:

trs@
Ko = (Qo; Yo; 003 io) === Q¢ 507507)
with Q™ = Qg, ¥~ =ygA, 07 = 044, and i” = iy. We distinguish three cases depending on as.
e Case as = phase j for some integer j. In such a case, we have that Qs = Qg, s = V5, 05 = 0y,
andig=j>ig.LetQ=Q ",y =y ,0=0,i=j. Sincei” = ig < j. We have that:
_ o phase j _ . .
QY 50507) —> Q¢ 50 5)) = (Q ¥ 050)
We have that Q = Qs, ¥ = ¥sA, 0 = osA, and i = ig. It gives us the result.
e Case as = in(c, R) for some % -recipe R. In such a case, we have that Q; = {in(c,u).Q.} ¥ P,
and we have also that uog and Ry | (ground term) are unifiable with some substitution z,

and we have that o5 = o & 7. Thanks to Lemma 4.8, we can apply Lemma 4.9, and thus we
have:

RO ™| = (RO)(YsA)] = (RYg 1)A = [(uog)r]A = u(og W r)A = (u(ogA))(r4).
Let Q={Q } WP, Yy =¢y~,0 =0~ WrA, and i = i". We have that:

({in(c,u).Qc} WPy 507507) e, ({QI WPy 50" WrkiT) = (Q: Y 0;3i)
We have that Q = Qs, ¢ = YsA,i = is,and 0 = 0~ W1d = 0, AW A = (05 W1)A = 0sA. Tt
gives us the result.

e Case as = out(c, w). In such a case, we have that Q; = Q~ = {out(c,u).Q.} ¥ P, and we
have that s = g W{wbuog}. Let Q = {Q} WP, ¥ = Yy~ W{wruo },0 =0 ,andi=i". We
now show that us™ = uog Ais a X -message. We know that uog is a 3 -message. Moreover,
thanks to Lemma 4.8, we know that cA is a X j-message for each ¢ € dom(4), and cA is atomic
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when ¢ € Z?rt::}j This allows us to conclude that uc™ = uog Ais a ¥;-message. Therefore, we
have that:

({out(c,u).Qc} WPy 5075i7) 2, (Qe} v Py~ wi{weuo J075i7) = (Q¢;0310).
We have that Q = Qs, 0 = 054, i = is,and / = YsAsince 044 = o~ by induction hypothesis.
It gives us the result.

We may note that the resulting trace trs6 only contains ¥ -recipes: constants from Xesh occurring
in trs have been replaced by 6. Hence, the result. O

B PROOFS OF SECTION 4
B.1 Some preliminaries

LeEMMA 4.3. Let ¢ be a Z-frame, R a Zy-recipe such that Rp| is a 3o-message, and R’ be such that
R — R’. We have that R’ is a £y-recipe, and R'¢| = R§|.

Proor. Since R — R’, we know that there exists a position p in R, a rewriting rule £’ — r
associated to £ — r € R, and a substitution o such that R|, = ¢'c,and R’ = R[ro]p. Since
R¢| is a %o-message, we know that ({'c)¢@| is a Xp-message. Let t{,...,t; and des € 34 be such
that ¢/ = des(t{,...,t,). We have that (('c)¢ = des((t{0)g,...,(t,0)¢). As ({'o)Pl is a Zo-
message, it means that ¢ — r applies as it is the only rule reducing des. Hence, we have that
des((t{o)¢l, ..., (to)pl) — (ro)¢l. We deduce that (¢'c)pl = (ro)@l, and therefore we have
that Rp| = R’¢|. m|

LEMMA 4.5. Let 0 be a substitution with dom(0) C Xgesh and whose image contains ¥ -recipes.
Let R be a X -recipe in normal form w.r.t. — such that (RO)$| is a 33 -message for some X -frame ¢.
We have that R’ is a simple X -recipe for any R’ € St(R).

Proor. We prove this result by structural induction on R.
Base case: R € ‘W U X} In both cases, the result holds since R is a simple X -recipe.

Induction case: We have that R = f(Ry, ..., Ry) for some f € ¥, and we know that Ry, ..., Rg are in
normal form w.r.t. |.

e Case f € 3. We have that (RO)pl = f((R10)dl, ..., (RcO)¢l) is a Xj-message for some
3, -frame ¢, and thus (R;0)¢]| is a X;-message for i € {1,...,k}. Applying our induction
hypothesis on R; (1 < i < k), we easily conclude.

o Casef = des € 54. Let {ges = rdes be the rule in R such that root(€4es) = des, and £, — rges
its associated forced rewriting rule. If rqes € 75(Zc, 0) then we have that R — rqges, which is
impossible as R is in normal form w.r.t. —. Thus, there is a unique position py of £ges such
that {geslp, = rdes and po = 1.p;. We know that each R; is in normal form w.r.t. —, and we
have (R;0)¢] is a Xj-message (1 < i < k) as (RO)¢| is a =] -message. Thus, our induction
hypothesis applies and we deduce that any subterm of R; is a simple > -recipe (1 < i < k).
We first assume that R, is a subterm X} -recipe. Let { be 3;-frame such that Ry/| is a 2} -
message. We have that R/| € St(Ry/]l) C St(y). Thus, R is a subterm X} -recipe, and thus a
simple X} -recipe.

Otherwise, we have that Ry = C[R,... ,R;C,] for some context built using symbols from
YWy, and each R; (1 < j < k’)isasubterm % -recipe such that root(R}) ¢ X. We have that
R =des(C[R],. .. ,R;c,],Rz, ..., Ry), and py does not correspond to a position of the context
C since R is in normal form w.r.t. —. Let p’ be the longest prefix of p; that corresponds to a
position of C. We have that C[R], . .. ’R;c']lp’ = Rj’. for some j. Let ¢/ be Zg—frame such that

33



Ry is a X§-message. We have that Ry} € St(Rjyl) C St(}) as R} is a subterm X-recipe.
Thus, R is a subterm X -recipe, and thus a simple 3 -recipe.

This allows us to conclude. O

B.2 Our measure
LEMMA B.1. Let ¢s be a X -frame, and R be a X -recipe. We have that ”jss (R) = 0.

Proor. Let R = Ry[Ry,...,R,] where Ry is the hat of R. Since Ry only contains constructors,
we have that Rgps] = Ro[RidPsl., ..., Rapsl]. Hence, we have that |[Rpsl| > |Ry| = hat(R), which
implies ,ués (R) = 0. m

LEMMA B.2. Let < be an ordering on Zfesh, {des = Tdes e a rewriting rule from R (as defined in
Section 2.1), and o be a substitution such that img(c) € 7 (2,25 W N).

We have that Multi(rgeso) < Multi(€g4es0). This result also holds when considering the forced
rewriting associated to a rewriting rule in R.

Proor. First, we consider the case where rges € 75(2¢, 0). In such a case, we have
Multi(rgeso) = Multi(rges) < {des} < Multi(€4es0)
Now, we consider the case where rqes € St({4es). We have that:
Multi(rgeso) < {des} W Multi(rgeso) < Multi(£geso).

Thus, in both cases, we have that Multi(rgeso) < Multi(£4es0). The proof regarding the case of a
forced rewriting rule can be done in similar way. ]

LeMMA B.3. Let < be an ordering on Sesh, f € X of arity k, and t1,...,tx € T (2, D) for some
set D of data. We have that Multi(f(t1, ..., tx)]l) < Multi(f(t11, ..., tl)), and similarly for |.

Proor. First, we consider the case where f(t, ..., )] = f(t1l,. .., txl). In such a situation, the
result trivially holds. Thus, we know that f = des € 24, and des(t1, ..., tx)] # des(t1l,.. ., tl). It
means that there exists a substitution ¢ such that:

des(t1l,...,tkl) = Cyeso and des(ty, . .., tx)] = rdeso.

Thanks to Lemma B.2, we know that Multi(des(ty, ..., t)l < Multi(des(t1d,...,txl)). This con-
cludes the proof. A similar reasoning allows us to conclude regarding |. O

LEMMA 4.6. Let < be an ordering on Zfesh, ¢s be a 3j-frame, Ry, Ry be two X7 -recipes such that
Ro¢s) is not a 3 -message, and /1;35 (R) < /1;35 (R2). Let Ry be a X -recipe, and p a position in Ry. We
have that:

ﬂ;;s (Ro[R1]p) < ﬂ;;s (Ro[Ra]p)-
Proor. We first establish the following claim by induction on the length of p (O is not a message).
Multi(Ro[R1]p¢sl) < (Multi(Rops[O],l) \ {O}) W Multi(Ri1¢sl).
Base case: p = €. We have Multi(Ro¢s[O],]) = {O}. So
Multi(Ro[R1]p¢sl) = Multi(Ry¢sl) = (Multi(Rops[O],l) ~ {O}) & Multi(R;¢sl)

Inductive case:p = j.p’,and Ry = f(R], ..., R} ) for some 3 -recipes Ry, . .. , R . Thanks to Lemma B3,
we obtain Multi(Ry[R1]p¢sl) < Multl(f R 19sl,. R1 sl .. R;Cqﬁsl)), and thus

Multi(Ro[Ri]ps) < {f} & <wi¢jMultn(Ri¢s¢>> © Multi(R)[Ri ] $s1).
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By induction hypothesis we have: Multi(R}[Ri1$sl]y) < (Multi(Ri¢s[O], 1)~ {O})wMulti(Ri$sl).
Therefore, we have that:

Multi(Ro[RyTpds ) < (F} ¥ (9 Multi(R)$s 1)) @ (Multi(R,és[D]1) ~ (D)) & Multi(Ri$sl)

But Ri$s[0],| is not a message, and thus no reduction can occur above 0. Thus:

MultiRops[alpl) = {f} & (Wiz;Multi(Ri$sl)) & Multi(R}[O]y$sl).
Hence, we deduce that:
Multi(Rogs[Olpl) \ A0} = {f} & (Wix;Multi(R]¢sl) & (Multi(R}[O]y¢sl) ~ {DO})
We deduce:
Multi(Ro[Ri]p¢sl) < (Multi(Ro[O]p¢sl) ~ {D}) & Multi(Ri$sl)
This proves the claim.

Now, as Rz$s| is not a message, Ro[Rz],$sl = (Multi(Rogs[O],l) \ {O}) W Multi(Rz¢s]). Since
'”;55 (Ry) < '”;55 (Rz), relying on our claim, we easily deduce that '”;55 (Ro[R1]p) < ;1;)5 (Ro[R2]p). O

LEMMA 4.7. Let < be an ordering on Sfesh, ¢s be a X5 -frame, and R, R’ be two X7 -recipes such
that R — R’. We have that jis; (R) < pgs (R).

Proor. We first consider the case where Rps| = R’¢ps|. Hence, we have that ,u;g (R) = ,u;ss (R'),

and we have also that 3 (R) < p*(R’). Since |R¢sl| = |R’$sl|, in order to conclude, it only remains
to establish that [hat(R")| > |hat(R)|. We have that R = Ry[Ry,...,R,] with Ry = hat(R). Since
R — R’, we know that R" = Ry[Ry, ..., R},...,R,] with R; — Rj, and thus |hat(R’)| > |Ry|.

Now, we consider the case where Rps| # R'¢sl. Let £ . — r4es be the rule applied to rewrite
Rin R’. We have that R = R[{} 5], and R’ = R[rges6], for some position p, and some substitu-
tion §. Therefore, we have that Rgs| = (Rps)[(£] 0)Psl]pl and R'¢sl = (Rps)[(rdesd) Psl]pl. By
Lemma B.2, and as ([} .8]¢sl) does not reduce (otherwise we would have that Rgs| = R'¢s|) we

have that Multi((€}_8)$sl) > Multi([rges6]$sl). We deduce that :“;sg (& 8) > :“;sg (Fdes®). Then

des

Lemma 4.6 allows to conclude that '”;55 (R) < '”;55 (R). O

B.3 Completeness

LEMMA B.4. Let ¢s be a X7 -frame together with < a total ordering on dom(¢s). Let 0 be a substi-
tution such that dom(0) C Zfesh, and for any ¢ € Zgesh occurring in ¢s we have that c € dom(9) and
cd € T (2,2, W dom(s)). Moreover, we assume that in case ¢ € Zfresh OcCurs in wes, then w’ < w
for any w’ € vars(c0).

We have that any constant ¢’ € Jges that occurs in (c0)dsl| is such that rank(c’) < rank(c) where
rank(c) = max-{w | w € vars(c0)}) when {w € vars(c8)} # 0, and L otherwise.

PrROOF. Let ¢5 be a X} -frame as defined in the lemma, and ¢ € dom(f). Let ¢’ € Zfesh be a
constant that occurs in (c0)¢s|. In case rank(c) = L, then it means that vars(cf) = 0, and thus
no constant from X.esp occurs in cf. Therefore, we are done. Now, let w; = rank(c), we have that
vars(cf) € {w | w < w;}, and by hypothesis on 8, we have that rank(c’) < w; for any constant
¢’ € Zfresh occurring in (c8)¢s, and thus we have that rank(c”) < rank(c). O

LEMMA 4.8. Let ¢s be a X} -frame together with < a total ordering on dom(¢s). Let 6 be a substitu-
tion such that dom(6) C Xfesh, and for any ¢ € Jgesp occurring in ¢s we have that ¢ € dom(0) and
cd € T (X,%; W dom(¢s)). Moreover, we assume that in case ¢ € Zfresh occurs in wes, then w’ < w
for any w’ € vars(c6). We consider the substitution A whose domain is dom(6), and such that:

cA = (c0)(¢psA)l for any c € dom(A).
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The substitution A is well-defined. Moreover, if (c8)¢s| is a =} -message for each ¢ € dom(0), and
(cO)psl is an atomic 3§ -message when ¢ € 32'°0, then cA is a 35 -message for each ¢ € dom(2), and
cA is an atomic X -message when ¢ € Z?:;’;E

We call A the first-order substitution associated to 6 through ¢s.

Proor. Let dom(¢ps) = {wi,...,w,} be such that w; < wy < ... < w,. We show this result by
induction on rank(c) relying on the order <.

Base case: ¢ € dom(0) such that rank(c) = L. In such a case, we have that vars(cf) = 0, and thus
cA = (c6)| is well-defined. Moreover, assuming that (c0)¢s| = (c6)| is X;-message, then we know
that it is actually a X -message, and thus cA is a 3;-message which is atomic in case (c0)¢s/ is
atomic.

Inductive step: ¢ € dom(0) such that rank(c) = w;. Let A; be the susbtitution which coincides
with A on its domain dom(A;) = {¢’ | ¢/ € dom(A) and rank(c’) < w;}. We have that A; is well-
defined, and actually we have that wj¢sA; = wj¢sA for any w; < w;. Since rank(c) = w;, we know
that vars(c) C {wi,...,w;}, and thus cA = (cO)(¢psA)| = (c0)(PsA;i)| is well-defined. Moreover,
assuming that (c6)¢@s| is a Xj-message, then we know that any constant ¢’ € Xgesh occurring in
(cB)¢sl is such that rank(c’) < w; (thanks to Lemma B.4), and thus ¢’A is a > -message, and an

atomic one when ¢ € Z?rt:s“ﬁ Thus, we have that (cf)¢s|A is a X -message and an atomic one in

case ¢ € 2T Actually, we have that (c)¢slA = (c8)(¢sA)] which allows us to conclude. O

atom*

LEMMA 4.9. Let ¢s be a X} -frame together with < a total ordering on dom(¢s). Let 6 be a substitu-
tion such that dom(6) C fesh, and for any ¢ € Jgesy occurring in ¢s we have that ¢ € dom(0) and
cd € T (X,%; W dom(¢s)). Moreover, we assume that in case ¢ € Zfresh occurs in wes, then w’ < w
for any w’ € vars(cO). Let A be the first-order substitution associated to 6 through ¢s.

Assume that for any c € dom(1), we have that cA is a ¥ -message. Moreover, cA is an atomic % -
message when ¢ € Z?rte"srl:’ LetR € T (2,2, W dom(0) W dom(¢s)) such that Rps| is a 3 -message.
We have that (RO)(psA)| = (Rpsl)A.

Proor. We prove this result by structural induction on R.
Base case: R € % W dom(8) & dom(¢s). In case R = ¢y € X, then we have that (c8)(¢psA)| =
co = (cpsl)A). In case R = ¢ € dom(0), then we have that (c0)(¢sA)l = cA = (cpsl)A thanks to
Lemma 4.8. In case R = w € dom(¢s), then we have that (c0)(psA)| = wpsA] = (wpsl)A.

Inductive step: Rf(Ry, ..., Ri). In case f € X, then we have that:
(RO) (Ps)] = F((R1O) (PsA)L, . .. (ReO) (PsA)]) = f(RipslA, ... RipslA) = ReslA.
In case f € 34, then for each i € {i,..., k}, by hypothesis we have that R;¢$s| is a Zg—message.
Thus, relying on our induction hypothesis, we have that:
RO)(PsM)L = F((RiO) (PsA)L. . .., (RkO)(ds))] = T((Rigs)IA, ..., (Rids)IA)L

However, we have that Rps|A = f(Ri¢sl,...,Redsl)Id = f(Rigsl,... ,Redsl)Al asclisa X -
message whenever ¢ € dom(A) and cA is an atomic % -message when ¢ € 33'°™ by Lemma 4.8. So

RpslA = f(RigslA, ..., ReppslA)l = (RO)(psA)]. O
LEMMA 4.10. Let Koy = (Po; Po; 0;0) be an initial 3y-configuration and K = (P;¢;0;i) be a

tr
3o-configuration such that Ko = K for some tr w.r.t. .

(1) We have that ESt(K o) C ESH(Kyo).
(2) Moreover, in case o is an mgu between pairs of terms occurring in ESt(Ky), then we have that

ESt(K o) C ESt(Kyp)o.
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Proor. We prove ESt(Kc’) C ESt(Kyo’) for any ¢’ which coincide on o on dom(o) by induc-
tion on the execution %K t—r> K.

Base case: tr is empty. In such a case, the result is obvious.

Inductive case: tr = try - a. We have that K ﬁ) V€ 2, K where Ki = (P1;¢1501311), and
ESt(K10]) € ESt(Kyo,) for any o] which coincide with o1 on dom(oy). We distinguish three cases
depending on «a:

e In case « is either a 7 action or a phase i action, then o = 07 and St(K') = St(K;). Therefore,
let o’ be a substitution which coincides with o = o1 on dom(c), we have that ESt(Ko¢’) =
ESt(Ki0”) C ESt(Kyo').

e In case a is an input, then P; = in(c,u).PYP  and P = PYP] so St(P) C St(P1). Moreover,
o = o1 Wt and dom(r) = vars(uoy). Hence, we have that ESt(r) C ESt(uoir) = ESt(uo).
We also have ¢ = ¢, and thus ESt(¢) = ESt(¢;). Therefore, Let ¢’ be a substitution which
coincides with o on dom(o). We have that ESt(Ko’) € ESt(Ki0”’). Note that ¢’ coincides
with o7 on dom(oy), thus thanks to our induction hypothesis, we know that ESt(%0’) C
ESt(Koo”).

e In case « is an output, then ¢ = ¢ W {w > uoy} for some u € St(%;) and 0 = o;. Hence
we have that ESt(¢) C ESt(Ki01). Let ¢’ be a substitution which coincides with ¢ = 07 on
dom(c), we have that ESt(K o) C ESt(Ki0”) C ESH(Kyo').

This concludes the proof for the first item.

To prove item 2, we consider o the mgu between pairs of terms occurring in ESt(%p), and
we show that ESt(Koo) S ESt(Kp)o. Note that this inclusion together with item 1 allows us to
conclude. Let t € ESt(Kyo) be such that t ¢ ESt(Ky)o. Therefore, we have that t € ESt(img(o)).
Let ¢ = 06 where 6 replaces any occurrence of ¢ in img(o) by a fresh variable x. We have that:

e uc = vo for any u = v € I'. Indeed, we know that uoc = vo, and thus (uo)d = (vo)d.
Since t ¢ ESt(Ko)o, and u, v € ESt(Kp), we deduce that (uo)d = u(od) = uo and similarly
(vo)d = v(0d) = vo.

e 7 is strictly more general that o. Indeed, we have that ¢ = o7 considering 7 = {x + t} and ¢
is an encrypted term, and thus not a variable.

This leads to a contradiction since o = mgu(T') and concludes the proof. m]

ProrosiTION 4.11. Let Kp = (Po; po; 0; io) be an initial 5 -configuration, and (tr, §) € tracey. (Kp)
with underlying substitution o. Then, there exists (trs, ¢s) € tracey: (Kp) with underlying substitu-
tion os with dom(os) = dom(c) such that os = mgu(T)p, as well as two substitutions A and 0 such
that:

o I' = {(u,v) | u,v € ESt(Kp) such that uoc = vo}.

e p is a bijective renaming from variables in dom(c) ~ dom(mgu(I')) to constants in Zfesh such
that xp € 320 if, and only if, xo is an atomic ¥ -message.

o dom(0) C Zfresh, for any ¢ € Xgesh occurring in trs, we have that ¢ € dom(0),c € 7 (2,3,
dom(¢s)), and w’ < ¢ for any w’ € vars(cO) (where < is the ordering induced by trg).

o for any c € dom(0), (c0)$sl is a X -message and it is an atom when c € Z?rt:s“ﬁ

o A is the first-order substitution associated to 0 through ds.

o ¢ =¢sA, 0 = osA, and (trs0) ¢l = trg].

Proor. We know that Kp = (P; ¢p;0;i0). Let T = {(u,v) | u,v € ESt(Kp) such that uoc = vo},
and p be a bijective renaming from variables in dom(c) ~\ dom(mgu(T’)) to constants in Z.esh such
thatxp € Z?rt:s“ﬁ if, and only if, xo is an atomic X -message. Let os be such that dom(cs) = dom(o)
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and os = mgu(T)p. As mgu(l') is more general than o, we have 0 = mgu(T')A, for some A,. Let
A = p~11. We have that ¢ = o5

t +
We show by induction on the length of a prefix Kp EN (P*;¢%;0%;i") of this execution trace
that there exists (trg, ¢%) € tracess (Kp) with underlying substitution 0 = 05ldom(s+), as well as
two substitutions 8% and A" such that:

o dom(0") C Sfresh, for any ¢ € Zgesh occurring in tr, we have that ¢ € dom(0%), c0" €
T (2,25 Wdom(¢%)),and w’ <* ¢ for any w’ € vars(cf*) (where <* is the ordering induced
by tr¥).
e for any ¢ € dom(0*), (c0")¢%| is a X -message and it is an atom when c €
e A" is the first-order substitution associated to 6* through ¢.
o ¢t =¢iAT, 0" = 0lA", and (tr{0")¢"| = trigT].
Base case: tr* is empty. In such a case, we have that dom(c*) = 0,and ¢* = ¢o. Let tr§ = €, $¢ = o,
and o = 0. Choosing 0* and A* such that dom(0*) = dom(A*) = 0, the result trivially holds.

Inductive case: trt = tr™.a. In such a case, we have that:

atom
fresh®

.
Kp = (Po; do; 03 i0) = (P3¢ 75073i7) = (PHi¢*5 051",

Thanks to our induction hypothesis applied on tr~, we know that there exists (trg, ¢5) € tracey: (Kp)

with underlying substitution o = 0sl4om(o-)> as well as two substitutions 6~ and A~ such that:

® dom(07) C Zfresh, for any ¢ € Zfesh occurring in trg we have that ¢ € dom(07), c0™ €
T (2,25 Wdom(dy)),and w” <~ ¢ for any w” € vars(cf~) (where <~ is the ordering induced
by trg).
e for any ¢ € dom(07), (c07)¢| is a X -message and it is an atom when ¢ € Z?rt:s”;
e 1™ is the first-order substitution associated to 0~ through ¢z.
o ¢ =dsA, 07 =0 A7, and (trgf7)¢p | =trr ¢ |
Let ¢ € Zfesh and w € dom(qﬁg) such that ¢ occurs in w@s. Then, as ¢ does not occur in the X -
configuration Kp, ¢ must have been introduced in an input before the output of w. So ¢ <~ w. Let
w’ € vars(c67). Then w’ <~ ¢ by definition of <™. So w’ <~ w and the order induced by <~ on
dom(¢) satisfies the condition of Lemma 4.8 and Lemma 4.9. We distinguish three cases depending
on a.

Case where a = phase j for some integer j. In such a case, we have that P* = P~, 9" = ¢, 6" =

o ,and it =j > i". Let P{ = Pg, ¢¢ = d5, 0f = 05, and i§ = j. Since ig = i~ < j, we have that:

_ _  _ ._._ phasej . .
(Pgs¢g5055i5) =—— (P;;gb;;a;;]) = (P;;gb;;o‘;;l;).

Considering 8* = 67,A* = A7, and <*=<", it is easy to show that all our requirements are satisfied.

Case where a = out(c, wg). In such a case, we have that = = {out(c,u).P.} ¥ Q for some u, P,
and Q, P* = (P} WQ, ¢" = ¢~ Wi{wgruos™}, 0" = 07, and it = i". Let P{ = (P} W Q,
¢ = s Wiwgruog}, 0 = o5, and if = iy. We define 0" = 6~ and A* = 1™,

First, we need to show that uoy is a 3§ -message. Thanks to our induction hypothesis, we know
thatuo™ = uogA~, and by hypothesis we have that uo™ is a > -message. Thus, in order to conclude,
we only have to show that ¢cA™ € X implies that ¢ € Z?rt:s“ﬁ for any ¢ € Xf.sh Occurring in uoy.
Letc € Z?rt:s“ﬁ occurring in uog . Since uo~ = uogA~, we know that ¢ € dom(17). Assume that
cA” € 3 and let x € dom(o) . dom(mgu(T')) be the unique variable such that p(x) = c. We have
that xmgu(T') = x, thus we deduce that cA™ = ((xmgu(I'))p)A~ = xo4A” = xo~. Hence, we have
that xo € X, and thus p(x) = c € Z?:;’S“ﬁ by definition of the renaming p.
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Therefore, we have shown that uog is a Zg—message, and thus we have that:

e oy Out(e,wo) - -\ = T S T
(Ps: d5: 053 ig) == (Pg;¢5 Wiwr uog};04;i5) = (P de;09518).
Considering 8 = 7, A" = 17, and <" the extension of <~ with u <* wq for any u € W ¥ Zgesp
occurring in trg or in dom(¢y), it is easy to show that all our requirements are satisfied.

Case where a = in(c, R). We have that £~ = {in(c,u).P.} U Q for some u € 75(Z.,Z; W N) and
R$~| = (uo™)r for some t with dom(r) = vars(uc™). Moreover, we have that c* = 0~ W T,
(uo™)r = uct, ¢* = ¢, and P* = {P.} U Q. We consider Rs minimal w.r.t. Ko such that
(Rs07)p~| = (uo™)r = uc*. Note that such a Rs exists since Rs = R is actually a candidate
(but not necessary a minimal one). We can assume w.l.o.g. that Rg only use constants from Xesh
that have been introduced by trg, and thus that are in dom(67).

Step 1: We prove that Rs$g| is a X -message. Assume that Rs$g| is not a X} -message. We take
the smallest subterm R’ of Rs such that R’¢¢ | is not a 3:; -message. Let p be such that Rs|, = R’. As
R’'¢5lisnotaX;-message, we know that R” ¢ X Wdom(¢g). Thus, we have that R” = f(Ry, ..., Rg)
for some f € . Moreover, by minimality of R’, we know that R;¢| is a X -message for 1 < i < k.
We now establish the following claim:

Claim. If Rig| € Zgresh for some i € {1,. .., k}, then Rs is not minimal.

Proof. Assume R;¢5| = ¢ € Zfesh for some i € {1,...,k}. Note that this implies that ¢ occurs
in ¢, and thus ¢ occurs in trs, and therefore ¢ € dom(6~). We consider R; = cf~. Thanks to
Lemma 4.9, we have that (R;07)¢"| = RipglA~. We have that Ri¢ A~ = cA™ = (c07)(p5A7)]
since A™ is the first-order substitution associated to 6~ through ¢§. Thus we have that (R;07)¢~| =
(c07)p~l = (R;07)¢’|. LetRs = Rs[f(Ry,...,R],...,R)]p. We have that (Rs07)¢~| = (Rs07)¢™|.
We have also that ,u;S; (R) < ;1;); (R;) since Ri¢g| = (c07)¢| is a 3;-message and it is an atom

fresh’

Thus Rs is not minimal, and this proves the claim.

when ¢ € 32" and R;$5| = c. Thus, thanks to Lemma 4.6, we deduce that ,u;s, (Rs) < ,u;s, (Rs).
S S

We now distinguish two cases depending on whether f € ¥ or f € X4.

Case where f € 3. R'¢5| is either not well-shaped or not well-sorted as it is not a X j-message.
If it is not well-sorted, then for one of its subrecipes R;, R;¢¢] is not an atom (it is well-sorted by
minimality of R") while it should be. In particular, (R;07)¢~] = R;¢3|A™ is an atom. So R; ¢ | must
be in Zfresh, which will contradict the minimality of Rs thanks to our claim. We deduce that R'¢|
is well-sorted.

Now, we assume that R’g{)gl is not well-shaped, we consider the shape of f, shf = f(sq,. .., s)
for some sy, ..., sx. As R'¢¢| has a bad shape and is a f-term, there must be a j such that R;¢3 | is
not an instance of s;. In particular, s; is not a variable and we have that s; = sh, for some function
symbol g (thanks to the compatibility of the shapes). We know that R;¢| is a Xj-message and
thus we have that (R;07)¢~| = (R;¢5l)A™ (thanks to Lemma 4.9) is an instance of s; as (R07)¢~|
is a X -message. Relying on our claim, we know that R;¢3l & fresh, thus R;¢5| is a g-term, and
since we know that R;¢¢| is a Xj-message, we know that it is an instance of s;, yielding to a
contradiction.

Case where f = des € 34. In such a case, we have that R” = des(Ry,...,Rk). Let £4es =
des(ty,tp, . . ., ty). We distinguish two subcases.
First, we assume that there is some i € {1,...,k} such that R;¢3| does not unify with ¢;. As

Ri¢5l is a Xj-message, it has a good shape. Thus, the only way to not unify with the linear term ¢;
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whereas R;¢5lA™ = (R;07)¢~| (thanks to Lemma 4.9) does, is when R;¢¢| = c for some ¢ € Zfregh.
Relying on our claim, we obtain a contradiction.

Second, we assume that R; ¢ unifies with t; for each i € {1,.. . k}. In such a case, we know that
Cdes = des(t1, tz, . . ., 1) is a non-linear term and we denote x the non linear variable occurring in
Cdes- Let Iy = {1 < i < k| x occursin t;}. We know that 1 € I,. For any i € Iy, we denote p; the
position in t; such that t;|,, = x.

Since R'¢p A is a X -message, we know that t = des(RidglA™,...,Rrp5lA7) unifies with
des(t, ..., tx). Therefore, we know that there exists an atomic X -message a such that t|; ,, = a
for any i € I). We know that R'¢5| is not a 3 -message whereas R; ¢ | are Xj-message. Thus, we
have that ts = des(Ri$g 1, ..., Rr¢3l) does not unify with des(t, . . ., tx). We deduce that for any
i € Iy, we have that either ts|; 5, = a, or ts|;p, = ¢ for some ¢ € Zfesh such that cA™ = a. We
distinguish two cases depending on whether Ry ||y, = ¢’ for some ¢’ € Zfesh O nOt.

First, we assume that Ri$glly, = ¢’ for some ¢’ € Zfesh. Let vyes be the substitution such that
XVdes = ¢’ and yVges = Cmin for any other variable y € vars({ges). Let R” = des(R1, t2Vdes, - - - » [ Vdes)-
Actually, we have that ?qﬁgl is a X -message, and thanks to Lemma 4.9, we know that RO~ | =
ﬁgbg‘l,l_. Since ﬁgbgl is a 37 -message, we have that #;)g (R") < {des}, and thus ,u;s; (R') < #;)g (R).
We also deduce that (ﬁ@‘)gﬁ_l is a X -message, and we have that (R'07)p~ = (R'07)p| since
the X;-recipes R’ and R’ coincide on their first argument.

Second, we assume that Ridglly, € Zfresh, i.6. Riggllp, = a. We know that there exists iy €
Io such that Ry, ¢5llp, = ¢’ for some ¢’ € Zfesn (otherwise ts will reduce), and we have that
¢’A™ = a. Let vges be the substitution such that xvges = ¢’607 and yvges = Cmin for any other
variable y € vars({4es). Let R” = des(Ry, taVdess - - - » tk Vdes). As 'U;S; (c’07) < #;)g (¢”), we have that
,u;s; (Rl)L’nyé)g (£2Vdes) . . ~L+J,U;5§(thdes) < ,u;s; (R))w.. .L+J,u;Sg (Rg). Therefore, relying on Lemma B.3,
we deduce that:

Multi(R'¢51)
Multi(des(Ridgl, f2VdesPgls - - - » tkVdesPs L))
{des} v ,U;s; (R1) W ,U;;(tzvdes) W ,U;s;(tkvdes)
{des} Wy (Ri) W~ Wy (Ri)

1 ’ s s
Hy- (R)
Since R; ¢ | is a X -message, we have that des((R107)¢ ™1, ((t2Vaes)0 7)™ L, . . ., ((tkVdes)07 )P 1) =
des((Ripg)IA™, ((t2vdes) 7)™ Lo - . ., ((tkVdes)07)¢™1). Such a term unifies with 4es since we have
that RipglA7 |y, = Riggllp,A™ = aA™ = a, and for any i € Iy, we have that:

((tivaes) 07 )P Lp, = (tivdes)P L, = ((tivaes)p, ) L= (c'07)¢p "L =c'A” =a.

Thus, we have that (R'07 )¢~ | is a %, -message, and we have that (E/Q‘)gﬁ‘l = (R'07)¢~| since the
¥, -recipes R’ and R’ coincide on their first argument.
In both cases, we have seen that (R’67)¢~| = (R'67)¢~|, and also that ;1;)_ R) < ;1;)_ (R).
S S

1 (pr
u¢§(R )

I IA

A

Since we know that R’¢ | is not a 3; -message, Lemma 4.6 applies, we obtain that ,u;S_ (Rs [ﬁ]p) <
S
,u;s, (Rs[R']p) = ,u;s, (Rs), and this contradicts the minimality of Rs.
S S
Step 2: We now prove that Rs is a simple X -recipe, in normal form w.rt. |, and of the form
C[Ry,...,R,] where for each i € {1,...,n}, we have that R;ipg| is either an encrypted term, or a

name from N, or a constant from ZO+.
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Assume Rg is not in normal form w.r.t. |{. By Lemma 4.7, we know that ,u;s; (Rsi) < “;Sg (Rs).
Moreover, as Rs6~ —* Rg{0~, Lemma 4.3 applies: (Rs{07)¢~| = (Rs67)¢~|, and this contradicts
the minimality of Rs. Therefore, we know that Ry is in normal form w.r.t. |, and thus Ry is a simple
% -recipe thanks to Lemma 4.5. Therefore, we have that Rs = C[Ry, . .., R,] where each R; is a sub-
termrecipe with 1 < i < n.Ifthereisiy € {1, ..., n}such that root(Riogé;l) =f € X.andfisatrans-
parent function symbol, then R; ¢ | = f (C{ [Ri],-- -, CL [Ri,])¢5l. We consider the context C such
that C[Ry,...,Ry] = C[Ry,....f(CI[R;,]....,CL[R;]).. .., Rn]. We have that R = C[Ry, ..., Ry]
is a %] -recipe such that R{¢5| = Rs¢sl, and thus ,u;ss (Rs) = ,U;SS (Ry), and (R,07)¢™| = RipslA
by Lemma 4.9, which gives (R507)¢™| = RiplA™ = RspslA™ = (Rs07)$™|. We have that
'USSS (R3) < yés (Rs) so this contradicts the minimality of Rs. Therefore, we deduce that each R;¢s|

(with 1 < i < n) is either an encrypted term, a constant from 28’, or a name from N.

Step 3. Let P¢ = P, ¢¢ = ¢35, 04 = 05ldom(o+)> and i = ig. We are going to show that there
exists a X} -recipe Rs such that:
_ . in(cRs) ,
(P53 955053 i5) = (P $5: 053 i5)
as well as two substitutions 6 and A* that satisfy all our requirements.

If Rsg5l = uoy, then let Rs = R, 0 = 07, and A* = 1. To conclude, it remains to establish
that all our requirements are satisfied. In particular we have to show that (i) (Rs60%)¢™| = Rp*|,
and (ii) 0" = g { AT

(i) We have that (Rs6%)¢"| = (Rs07)¢p~| = uoc* =Rp~| = Rp*|.

(ii) Let Z = vars(uo™) = dom(r). We have that Rs$5| = uo = u(og Waos|z) is a 3;-message, and
(Rs07)¢p~l =Rp™| =uc™ = u(c"Wolz). By Lemma 4.9, we know thatR_sg{)gM‘ = (Rs07)¢p~ |,
and thus u(ogA” Wos|zA™) = u(o™ Wolz). This allows us to conclude that 05|zA™ = oz, and
thus we have that:

g A" = (05 Woslz)A" =05 WoslzA” =0 Wolz=0 Wr=0".

Therefore, from now on, we assume that ngé;l * uO';. Let A be the set of fresh constants
that occur until this execution step, i.e. A = St(img(c)) N Zesh. We define A7 = Aa. As o =
osA, we deduce 0" = o fA". Since Rs$gl is a X{ -message, relying on Lemma 4.9, we deduce that
RspglA* = RspglA™ = (Rs07)p™l = Rp™| = uo™ = (usl)A". Let t = Rs¢s| and v = uol. We
have that t # v and tA* = vA*.

Since t # v, we know that there exists a position p defined in ¢ and v such that root(t|,) #
root(vl,). Let p be any position defined in t and v such that root(t|,) # root(vl,). Since tA* = vA*
and dom(A*) C Zfesh, we have that t], € Sesh O 0]y € fresh.

We first assume that there exists such a position p that falls outside the context C. More precisely,
we have that p = p’.p” (with p’ a strict prefix of p) and C[Ry,...,R,]l;y = R;, for some iy €
{1,...,n}. Therefore, since Ry, is a subterm-recipe, we know that t|, = Ri ¢\ is an encrypted
subterm of ¢ Relying on Lemma 4.10 and denoting K¢ = (Pg; ¢5; 05 i), we have that:

o tly € ESt($5) C ESH(K; 05) C ESt(Kpay) = ESt(Kp(mgu(D)laom(az)p)) € ESHKp)a.

. U|P/ = ucr; |P’ € ESt((](pO';—) Cc ESt(‘Kp(mgu(F)Idom(G;))p) Cc ESt(Wp)O';.
This allows us to conclude that there exist t’,v" € ESt(%p) such that t'o5 = t|y, and v'ol =
vl Since t|y is a Xj-message, we also know that t'o¢ = t|,. Since tA* = vA*, we know that

tly A" = v|y AT, and thus (t'0$)A" = (v'0§)A". We have that (t'0{)A" = t'(c{A") and also that

(v'06)AT = v'(6¢AY). Since we have that 6% = 61", we deduce that 6" = v’c*, and thus
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t'o = v'c. By definition of o5, we have that t'os = v’05. We know that t'og = t|,, and since |,
is ground, we deduce that t’os = t|,. Similarly, we have that v’ 0'; = v|y, and since vl is ground,
we deduce that v’os = v|,. Thus, we have that |,y = v|, leading to a contradiction since we have
assumed that ¢ and v differ below the position p’.

Now, we know that for any position p defined in ¢ and v such that root(t|,) # root(v|,), we have
that t[, or vl is in Jfesh, and p is a position of C. If t|, = ¢ € Zfresh, let Ry = Rs[c07]p, we have
that ,u;); (Ry) < ,u;s; (Rs) since ,u;); (ch7) < ,u;); (Rslp) (note that Rs|,$5| = ¢ whereas (c07)¢5lis a
>¢-message and it is an atom when ¢ € Z?f:sng) Moreover, we have that (Rg07)¢~] = (Rs07)¢™ .
This will contradict the minimality of Rs. Therefore, we have that t|, ¢ Y¢esh, and thus v|, = ¢ for
some ¢ € Xfresh-

Let py, ..., pm be the positions such that for each i € {1,...,m}, we have that p; is defined in
both t and v, and root(t|,,) # root(vlp,). For each i € {1,...,m}, we know that p; is a position
of C such that t|,, ¢ Yfresh, and v|p, € Xresh. We denote céresh the constant from Xfesn such that

1

vlp, = céresh. Note that it may happen thatcg = c , forsomei # j. Let C be the context obtained

fres
from C by putting ¢/, at position p;, ¢ _, at position ps, ... Let Rs = C[Ry, ..., R,]. We have that
Egﬁ;l = uO';r by construction. Let R, = (C[R1,...,R,]lp,)0 for eachi € {1,...,m}. Thanks to
Lemma 4.9, we have that Ry, ¢~ | = Ry, ¢5lA” foreachi € {1,...,m}. Asforeachi € {1,...,m}, we
have that R, ¢lA~ = uc{A*|y,, we get that R, ¢35 1A~ = céreshA+ foreachi € {1, ..., m}. Note that
incasec, | =c ., wehavethatR, ¢~| =R, ¢ |.Let0" =0-w(c,  + Ry |c} . &dom(67)}.

. fresh
In case we have that c! = ¢/ . for some i # j, we choose arbitrarily between R,, and R,,..
fre resh Pi Pj

sh fi
Now, it remains to establish that all our requirements are satisfied. In particular, we have to
show that:

(i) of = o4 W1s for some 75 such that dom(rs) = vars(uog) and Ed’;l = (uoyg)1s.

(i) for any ¢ € dom(0*) \ dom(07), (c67)p5| is a 3§ -message, and it is an atom when ¢ € Z?rt:s“ﬁ

(iii) for any ¢ € dom(0") \. dom(6~), we have that cA* = (c6%)(p5A7)!.

(iv) (Rs07)$"| = Rp* .

We prove each item one by one.

(i) Let s = 05ldom(r)- We have that dom(zs) = dom(r) = vars(uo™) = vars(uog). We have
shown that Eqﬁgl = uo{, and thus R_gg{)gl = u(og W1s) = (uog)1s.

(i) Letc € dom(6*)~dom(6~). We have thatc = ¢{  forsomei € {1,...,m},and (¢{ , 0")$5l =
Ry ¢5lisa Zg—mesgage. Assume that c; € Z?rt:s“ﬁ In such a case, there exists x; € dom(p)
such that x;p = c; . As x;p is atomic, we know that x;0 is atomic (by definition of p),
and we have that x;0 = x;05A. Since o5 = mgu(T)p, we have that x;0 = x;mgu(T)pA. As
x; € dom(p), x; ¢ dom(mgu(T')) by definition of p. So x;0 = x;pA = céreshl = céresh/ﬁ.
Since we have shown that x;o is atomic, we deduce that céreshA+ is atomic. Thus, since we
have shown that Ry, ¢5lA™ = céresh/ﬁ, we know that Ry, ¢5|A” is atomic which implies that
Ry, ¢35l is either atomic or a ¢ € Zfresh With ¢ € dom(A7). So we can assume ¢ € Zfesh With
¢ € dom(A7). There is a x € dom(p) such that xp = c. We have xo = xosA = xmgu(I')pA. As
x € dom(p), x ¢ dom(mgu(T')) and xo = xpA = cA = cA™. As xo is atomic, xp is atomic (by
definition of p), so c is atomic, and thus Rp, ¢ is atomic.

(iii) Let ¢ € dom(0*) . dom(6~). We have that ¢ = ¢/ for somei € {1,...,m},and ¢} | A* =
Ry L = Ry, ($507)L = (o, 0) (#5171,
(iv) (Rs07)¢"l = (Rs07)¢™| = R\ = Rgp*|.

This concludes the case where « is an input, and we get the result. O
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We can conclude with the proof of our main theorem on reachability properties.

t
THEOREM 3.8. Let Kp be a X -configuration type-compliant w.r.t. (7o, &o). If Kp = (P; s 050)
tr —
w.rt. 3 then there exists a well-typed execution Kp — (P;¢’s0'5i) wrt. X such that tr' = tr.

tr’ t
Conversely, if Kp ESN (P;¢";0'5i) is a well-typed execution w.r.t. 3y, then there exists Kp =,
(P; ¢ 03 i) wrt. =y such that tr = tr'.

Proor. The converse part is Lemma 3.9. Thus, we now prove the direct part. Let Kp be a X -

configuration type-compliant w.r.t. (7, 8). Assume Kp = (P; ¢; 0;i) wrt. 2. Thanks to Propo-
sition 4.11, we know that there exists (trs, @s) € traceyy (Kp) with underlying substitution os with
dom(os) = dom(o) such that os = mgu(T')p, as well as two substitutions A and 6 such that:
o I' = {(u,v) | u,v € ESt(Kp) such that uc = vo}.
e pisabijective renaming from variables in dom(c) . dom(mgu(T’)) to constants in 3.sh such
that xp € Z?rt:s“ﬁ if, and only if, xo is an atomic X -message.
o dom(0) C Zresh, for any ¢ € Zfesh occurring in trg, we have that ¢ € dom(0),c0 € 7 (3,25 @
dom(¢s)), and w’ < ¢ for any w’ € vars(cf) (where < is the ordering induced by trg).
e for any ¢ € dom(0), (c0)¢sl is a X} -message and it is an atom when ¢ € Z?rtfs“ﬁ
e 1is the first-order substitution associated to 8 through ¢s.
e ¢ =¢sA, 0 = osA, and (trs0)¢pl = trg|.

Since (trs)¢l = trg|, we have that trg = tr. Since we have enough constants of each type,
we may assume w.l.o.g. that p is well-typed Since Kp is type-compliant, we know that encrypted
subterms in ESt(Kp) which are unifiable have the same type. Then, by definition of a typing system,
this allows us to deduce that mgu(I') is well-typed, and thus os = mgu(I')p is well-typed. This
means that (trg, ¢s) is well-typed and concludes the proof. m]

C PROOF OF SECTION 5

ProposITION 5.4. Let Kp and Ko be two initial 3. -configurations such that Ko is action-deterministic,
and Kp Z; Ko wrt 2. Let (tr,¢) € tracey (Kp) with underlying substitution o be a witness of
non-inclusion of minimal length. Then, there exists (trs, ¢s) € tracey; (Kp) a witness of this non-
inclusion with underlying substitution os such that os = mgu(T')p, as well as two substitutions Ap
and 0 such that:

o I' = {(u,v) | u,v € ESt(Kp) such that uoc = vo}.

e p is a bijective renaming from variables in dom(c) ~ dom(mgu(T')) to constants in X¢esp such
that xp € 32'°% if, and only if, xo is an atomic ¥ -message.

o dom(0) C Zfresh, for any ¢ € Sgesh occurring in trs, we have that ¢ € dom(0),c0 € T (2,3, W
dom(¢s)), and w’ < ¢ for any w’ € vars(c6) (where < is the ordering induced by trg).

e for any c € dom(0), (c6)$sl is a X; -message and it is an atom when c € Z?rt;’s“ﬁ

o Ap is the first-order substitution associated to 0 through ¢s.

o ¢ = pslp, 0 = osAp, and (tr59)¢i = tro|.

Proor. Let (tr,¢) € tracey; (Kp) be a witness of non-inclusion of minimal length with un-
derlying substitution o. First, we apply Proposition 4.11. We deduce that there exists (trg, ¢s) €
traces: (Kp) with underlying substitution o with dom(os) = dom(c) such that o5 = mgu(T')p, as
well as two substitutions Ap and 6 such that:

o I' = {(u,v) | u,v € ESt(Kp) such that uc = vo}.
e pisabijective renaming from variables in dom(c) . dom(mgu(T’)) to constants in 3.sh such
that xp € Z?rt:s“ﬁ if, and only if, xo is an atomic % -message.
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o dom(0) C Zfresh, for any ¢ € Zgeqh occurring in trg, we have that ¢ € dom(0),c0 € 7 (2,2, W
dom(¢s)), and w’ < ¢ for any w’ € vars(cf) (where < is the ordering induced by trs).
e for any ¢ € dom(0), (c0)¢s| is a X} -message and it is an atom when ¢ € Z?:;’S“ﬁ
e Ap is the first-order substitution associated to 8 through ¢s.
(] g{) = (j)s).p, o = osAp, and (tr59)¢l = tl’(j)l
Our goal is to show that (trs, ¢s) € traceyy (Kp) is a witness of Kp Z; Ko w.rt X7.

Let /s be such that (trs, ¥s) € tracey; (Kp). Note that in case such a /s does not exists, then
the result trivially holds. Moreover, we know that ¢s Cs ¥s (and thus dom(¢s) = dom(ys)) since
otherwise the result trivially holds.

We have that ¢s is a 3 -frame and < is an ordering on dom(¢s). We have dom(0) C Zfesh and
cd € T(Z,%; W dom(¢s)) for any c € dom(0). Moreover, if ¢ € Xfesh occurs in wes, then, as ¢
does not occur in Kp, it must have been introduced in an input before the output of w. So ¢ < w.
Let w' € wvars(cf). Then w’ < ¢ by definition of <. So w* < w and the order induced by < on
dom(¢s) satisfies the condition of Lemma 4.8 and Lemma 4.9. (cf)¢s| is a Xj-message for each
¢ € dom(0) and (cf)¢s| is an atomic 3 -message when ¢ € Z?rt:s”; So Lemma 4.8 applies and for
each ¢ € dom(4p), cAp is a % -message and cAp is atomic if ¢ € Z?t‘)s“}: So Lemma 4.9 applies, and

for any recipe R such that Rqﬁsl is a 3§ -message, we have (RO)(¢sAp)l = (Rpsl)Ap.

Kq is a X;-configuration, and (trs,s) € traceyy (Kq). Moreover, dom(0) C Zfesh, and ¢ €
dom(0) for each c occurring in trs. We have dom(¢s) = dom(ys) by ¢s Es s so for each ¢ €
dom(0), c0 € T (Z,%; W dom(¢s)) € T (%, 2; W dom(yis)). Moreover, if ¢ € Xesh occurs in wijss,
then, as ¢ does not occur in the protocol, it must have been introduced in an input before the
output of w. So ¢ < w. Let w’ € vars(c0). Then w’ < ¢ by definition of <. So w’ < w and the
order induced by < on dom(i/s) satisfies the condition of Lemma 4.8 and Lemma 4.9. By ¢s Cs s,
(cO)ysl is a =} -message for any ¢ € dom(6) and an atomic one in case ¢ € Z2'°". Hence, we
have that both Lemma A.1 and Lemma 4.8 apply. We obtain that (trs6,ysAp) € tracey. (Ko)
where Ao is the first-order substitution associated to 6 through 5. We also get that cAg is a X -
message for each ¢ € dom(Ag) and it is atomic when ¢ € %2'*™. Therefore, Lemma 4.9 applies,
and we have that for any R € 7 (Z,2; & dom(0) & dom(}s)) such that Rys| is a 3;-message,
(RO)(¥sAp)l = (Rysl)Ap. Moreover, since Ag preserves atomicity, (Ris|)Ap is a X;-message
whenever (Rys]) is a X]-message.

In the remaining of this proof, we suppose that ¢s C; /s (meaning that (trs, ¢s) € tracey: (Kp)
is not a witness), and we show that ¢ C; ¢ leading to a contradiction since by hypothesis, we
know that (tr, ¢) € tracey- (Kp) is a witness, and tr passes in K leading to the frame .

To establish this result, we rely on Lemma 5.3 and thus we reason with the notion E;‘tom. We
consider a test T (built on 7 (2, £§ U dom(¢s)) such that T holds in ¢. We assume that for all T’
such that pig, (T") < pgs(T), we have that:

T’0 holds in ¢ implies that T’ holds in .

We have to prove that T6 holds in /. We distinguish three cases depending on the form of the test:
(1) The test T is a X;-recipe R such that (R9)¢| is a 3;-message. In such a case, we have to
establish that (R0)y/| is a X -message
(2) The test T is a X -recipe such that (Rf)¢| is an atomic ;-message, i.e. (RO)pl € X5 W N.
In such a case, we have to establish that (R9)y/| is an atomic % -message.
(3) Thetest T is made of two X -recipes R, R” such that both (R0)¢| and (R’0)¢| are X -messages,
and (RO)¢| = (R'0)¢|. In such a case, we have to establish that (RO)y| = (R'0)y].
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(1) R is 2] -recipe such that (RO)§| is a =, -message.

Assume that R¢s| is not a Xj-message. We take the smallest subterm R” of R such that R’¢s|
is not a X} -message. Let p be such that R|, = R". As R'¢s] is not a 3 -message, we know that
R ¢ 28' W dom(¢ps). Thus, we have that R’ = f(Ry, ..., Ry) for some f € 3. Moreover, by minimality
of R’, we know that R;¢s] is a 3§ -message for 1 < i < k. We now establish the following claim:

Claim. If R;¢ps| € Zfresh for some i € {1,.. ., k}, then (RO)Y] is a X -message.

Proof. Assume R;¢s| = ¢ € Zgesh for some i € {1,...,k}, and let R} = cf. We have that R}6 = c0,
and thus (R;0)¢l = (c0)¢l, and (R;0)]| = (cO)y]. We have that the test ¢ = R; holds in ¢s, and
thus since ¢s E; s, it also holds in /5. Lemma 4.9 applies, and we obtain: (R;0)y| = (Rivsl)Ap =
cAo = (cO)¥] = (R;O)Y]. Let R= R[R!](p.i)- We have that:

e (RO = R6) holds in both ¢ and ; _
. #;ﬁs (R) < /1;35 (R;) thanks to Lemma B.4, and thus ,u;sg (R) < ,uésg (R) thanks to Lemma B.3
and Lemma 4.6. L L

As (RO)¢| = (RO)P| is a %, -message, such a test transfers to i (relying on our induction hypoth-
esis), and (RO)y] is a %, -message. It proves our claim.

We now distinguish two cases depending on whether f € 3. or f € 34.

Case where f € 3. In such a case, R'¢g| is either not well-shaped or not well-sorted. If it is not
well-sorted, then for one of its subrecipes R;, R;¢s| is not an atom (it is well-sorted by minimality
of R’) while it should be. In particular, (R;0)¢] = R;pslAp is an atom. So R;¢s| must be in Zgeqh,
which implies by our claim that (Rf)y| is a £ -message, and thus we are done. We deduce that
R ¢s| is well-sorted.

Now, we assume that R'@s| is not well-shaped, we consider the shape of f, shy = f(s1,...,st)
for some sy, ..., sg. As R'¢s] has a bad shape and is a f-term, there must be a j such that Rj¢s]
is not an instance of s;. In particular, s; is not a variable and we have s; = shg for some function
symbol g (thanks to the compatibility of the shapes). But R;¢s/| is a X -message and thus we know
that (R;0)¢l = (Rj¢sl)Ap (thanks to Lemma 4.9) is an instance of s; as (R;0)¢] is a X} -message.
Relying on our claim, we know that R;¢s| & Sfresh, thus Rj¢s] is a g-term, and since we know that
Rj¢sl is a 3 -message, we know that it is an instance of s;, yielding to a contradiction.

Case where f = des € 2. In such a case, R" = des(Ry,...,Ry). Let {4es = des(ty, 1o, ..., ). We
distinguish two subcases.

First, we assume that there is some i € {1,...,k} such that R;¢s| does not unify with t;. As
Ri$sl is a 37 -message, it has a good shape. Thus, the only way to not unify with the linear term ¢;
whereas (R;¢s)Ap = (R;0)¢] (thanks to Lemma 4.9) does, is when R;¢s] = ¢ for some ¢ € Zfresh.
Relying on our claim, we obtain a contradiction.

Second, we assume that R;¢s] unifies with ¢; for each i. In such a case, we know that g5 =
des(t1, ..., t) is a non-linear term and we denote x the non-linear variable occurring in £4es. Let
Iy ={1 <i<k|xoccursin t;}. We know that 1 € Iy. For any i € I;, we denote p; the position in ¢;
such that t;],, = x. Since R'¢s|Ap is a X -message, we know that t = des(Ry¢slAp, ..., Rcdslip)
unifies with des(#y, . . ., tx). Therefore, we know that there exists an atomic X -message a such that
tl;.p; = afor any i € Iy. We know that R'¢s| is not a Zg-message whereas R;@s| are Zg-messages.
Thus, we have that ts = des(Ri¢sl, . . ., Rk psl) does not unify with des(t, . . ., t). We deduce the
following fact:

Fact: forany i € Iy, we have ts|; », = a, or tsl; p, = c for some ¢ € Zfresh such that cAp = (cO)¢l = a.

45



Let ¢ be a constant from Xgesh such that ts|; », = ¢ for some i € Iy. Let I; = {i € Iy | Ridsllp, =
c}. We will build two recipes R and R” derived from R’ and enjoying some nice properties: in

particular both (E/Q)ybi and (E//G)tﬁl will be X -message, and this will allow us to derive that
(RO is a 3 -message too.

’

Construction of R’. Let Vs be the substitution such that xv) = = c0, and yv] = cmin for any

other variable y € vars({4es). For i € {1,...,k}, let R} = t;v} incasei € I;, and R = R;
otherwise. Let R = des(Ry,. .., R;c). Each Ri¢s|isa Zg—message, and thus by Lemma 4.9, we have
that (R}0)¢| = R$slAp is a X -message. By construction of R and relying on our fact, we have
that (E/G)gbl is a 3;-message. Therefore, relying on Lemma B.3, and since ,ué)s (R} < ,ué)s (R;) for
iel; #0,and ,u;ss (R) = ,U;SS (R;) otherwise, we deduce that:

. ®) = Multi®g¢sl)
< Multi(des(Ri¢sl, ..., R, Psl))
= {des}wpy (R)W--- Wy (R})
<

{des}wpy (Ri) W~ Wy (Re)
pgs (B

As (E/G)gbl is a 2j-message, we deduce that (E/Q)ybi is a X -message. Since R’¢s/| is not a X -
message, Lemma 4.6 applies, and we obtain ,u;g (R[F/]p) < ,u;ss (R[R']p) = :“;sg (R).

Construction of R”. Let v/ be the substitution such that xvy = c and yvj = cmin for any other

variable y € vars({4es). For i € {1,...,k}, let R = R; in case i € I}, and R} = t;v otherwise. Let

R = des(R{,...,R/). By construction of R”, we have that Eﬁ(j)sl is a Xj-message. By hypothesis
-’

we have that ¢s E¢ /s, and thus we deduce that R ¢s] isa Zg—message. Then, thanks to Lemma 4.9,

we deduce that (E”e)m = EN%MQ. Regarding the measure, we have that {des} < ,u;ss (R’) since

des occurs in R’'¢s]. We have that ,ué)s (EH) < {des} since Eﬁqﬁsl is a X7 -message. Therefore, we

have that yé}s (Eu) < ;1;)5 (R’). Since R’ ¢s| is not a X} -message, Lemma 4.6 applies, and we obtain
(RIR'Y,) < b (RIR'),) = 115, (R).

S

At this point, we have that R = des(R],...,R,),R = des(R/,...,R/), and both (R )y’ and
(E”e)m are X, -message. By construction, for each 1 < i < k, we have that either R; = R} or
R; = R!. Therefore, for each 1 < i < k, we have that (R;0)y| is a X -message and unifies with ¢;.
We put a c0 in key positions of £ges in some R;. As (E’e)m is a X, message, it means that each
of the (R;0)y| has (cf)y| in key position of £4es. Similarly, we get that each of the (R}'0)v/| has
(c0)¢] in key position of {4s. So there is (¢0)1/] in key position of £4es for each (R;0)1/]. We deduce
that (R'0)¢/| is a X -message.

Furthermore, we have Ry = R} or Ry = R/’. Let R = R in case Ry = R{, and R = R in case
Ry = R{". We have that:

o 1l (RIR],) < 41} (R).
o (R[R],0)¢l = (RIR'1,0)$. = (RO)$., and
o (RR]pO)Y1 = (RO)Y.
As (R[E]pe)gbl is a X -message, by minimality (R[ﬁ]lﬁ)t//l is a X -message, and so (RO)y/| is a

%, -message which is the result we want to prove.

g
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Thus, we have that R@s| is a 3 -message. By ¢s Cs s, we know that Ry/s| is a 3 -message,
and Lemma 4.9 allows us to conclude that (RO)y| = Rys|Ag is a 3 -message.

(2) R is a X -recipe such that (RO)¢| is an atomic X -message.

First, we have that Rps| is a X -message (see case (1)), and (R)¢| = Rps|Ap thanks to Lemma 4.9.
As a first step, we establish that Ri/s| is atomic. As Rps|Ap is an atom, we know that Rgs| is either
an atom from X7 U N, or a constant from Zfresh.

o If Rps| ¢ Zfresh, then Rps| = RopslAp is atomic, and relying on our hypothesis ¢s Cs /s, we
deduce that Rys| is atomic.

o If Rps| = ¢ € Zfesh, then there exists x such that xp = c. Since x € dom(p), we know
that x ¢ dom(mgu(T)), and thus xmgu(T') = x. Therefore, we have that xo = xosdp =
x(mgu(T)p)Ap = (xp)Ap = cAp = Rps|Ap. As RpslAp is an atom, we deduce that xo is
atomic, and by definition of p, we have that ¢ = xp € 2%, and thus Rés| is atomic.
Relying on our hypothesis ¢s Cs /s, we deduce that Rys| = c is atomic.

Since Ag replaces atoms by atoms, we deduce in both cases that Ri/s|A¢ is atomic, and thus
(RO = (RYsl)Ao (Lemma 4.9) is an atomic X -message.

(3) Rand R’ are X -recipes, (RO)pl, (R'0)¢p| are X -messages, and (RO)¢| = (R'0)Hl.

Step 1: We prove that R and R are simple 3 -recipe, in normal form w.r.t. |. Moreover, we show
that R’ is a subterm recipe such that R'@s| is either an encrypted term, or a name from N, or

a constant from 2}. Regarding R, we show that R is of the form C[Ry,...,R,] where for each
i € {1,...,n}, we have that R;¢s| is either an encrypted term, or a name from N, or a constant
from =7.

We have that (RO)¢| and (R'0)¢| are X;-messages, pss(R) < pgs(R = R’) and pg (R') <
Hps (R = R’). Hence, we deduce that (R9)y| and (R'0)y/| are X;-messages.

Assume that either R or R’ is not in normal form w.r.t. |, say R. Then ,u;ss (R}) < ,u;ss (R) by
Lemma 4.7. Moreover, as RO —* R|0, Lemma 4.3 applies: (R10)pl = (RO)P| and (RLO)Y] =
(RO)Y| as (RO) gives a X ;-message in both ¢ and 1. So (R{6 = R’0) holds in ¢. By g, (R} = R’) <
Hps (R = R), it transfers to 1 and we deduce (RO)y| = (R{0)y] = (R'0)| which is the result we
want to establish.

Now, we assume that both R and R’ are in normal form w.r.t. |. Thus, both are simple by
Lemma 4.5. In case both R and R” have a constructor as root symbol, then this is necessarily the
same. Therefore, we have that R = f(Ry,...,R¢) and R” = f(R], ..., R} ). We have that (R;0)$| and
(R}0)¢| are 37 -messages (1 < i < k), and (R;0)¢] = (RI0)¢pl (1 < i < k). Since pys(R; = R) <
Hgs (R = R’), we deduce that (R;0)y] = (R;0)¢|, and thus (RO)y| = (R'0)y| which is the result
we want to prove.

Therefore we can assume that say R’ is a subterm-recipe, and R is simple, so R = C[Ry, ..., R,]
where for each i, R; is a subterm-recipe. Now, assume that there is iy such that root(R;,¢sl) = f €
3. and f is transparent, then R; ¢s| = f(C{ [Ri],-- -, C,fc [Ri,])Psl. We consider the context C such
that C[Ry,...,Rn] = C[Ry,....f(Ci[R;],...,CL[Ry,]), . ... Rn]. We have that R = C[Ry,...,Ry]
is a % -recipe such that Rps| = R¢sl, and thus ”;ss (R) = ,U;SS (R), and (RA)¢| = RgslAp by
Lemma 4.9, which gives (R8)$|l = Rpsldp = Rpslip = (RO)$l. We have that ,ués (R) < ;13)5 (R).

The equality Ed)sl = R¢g | transfers to Eg&si = Rys| by ¢s Es ¢s and we deduce (EQ)EM = (RO
by Lemma 4.9. As 14, (R=R) < Hps (R = R'), the equality (RO)¢| = (R'6)¢| transfers to (RO) Y] =
(R’9)y] and we deduce that (RO)y¥| = (R'0)y| which is the result we want to prove.
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Therefore, we deduce that each R;@s] (with 1 < i < n) is either an encrypted term, a constant
from X7, or a name from N. A similar reasonning allows us to establish that R’¢g/| is either an
encrypted term, a constant from 3}, or a name from N.

Step 2: We now establish that (RO)y] = (R'9)y].

Let t = Rps] and v = R'¢ps|. By Lemma 4.9 and (RO)¢p| = (R'0)¢|, we know that tAp = vAp.
If t = v, then we have that Rps] = R'¢s| since ¢s Es 5. Then by Lemma 4.9, we deduce that
(RO = (RO)YI.

From now on, we assume that t+ # v. Since ¢t # v, we know that there exists a position p
defined in ¢ and v such that root(t|,) # root(vl,). Let p be any position defined in ¢ and v such
that root(t|,) # root(v|,). Since tAp = vAp, and dom(Ap) C Xgesh, We have that t|, € Sfesh or
Ulp € Zfresh-

We first assume that there exists such a position p that falls outside the context C. More precisely,
we have that p = p’.p” (with p’ a strict prefix of p) and C[Ry,...,R,]l;y = R;, for some iy €
{1,...,n}. Therefore, since R; ¢s| is not a leaf (p”" # €), we know that t|,» = R;,$s| is an encrypted
subterm of ¢s. Relying on Lemma 4.10, we have that:

o t|y € ESt(¢s) € ESt(Ksos) € ESt(Kp(mgu(I')p)) < ESt(Kp)os.

e vy € ESt(¢s) C ESt(Ksos) € ESt(Kp(mgu(I')p)) € ESt(Kp)os.
This allows us to conclude that there exist t',v” € ESt(Kp) such that t'cs = |y, and v'0s = v|,.
Since tAp = vAp, we know that (tAp)|y = (vAp)ly, thus t|yAp = v|yAp, and (t'o5)Ap = (v'0s)Ap.
We have that (t'os)Ap = t'(osAp) and also that (v’ og)Ap = v’(0sAp). Since we have that o = o5Ap,
we deduce that t'0 = v’c. By definition of og, we have that t'0s = v’0s. Thus, we have that
t|y = vly leading to a contradiction since we have assumed that t and v differ below the position p’.

Thus, we know that for any position p defined in ¢ and v such that root(t|,) # root(vl,), we
have that ¢, or v|, is in Zfresh, and p is a position of C.

Iftl, = ¢ € Zfresh, let R= R[c8],. We have that '”;55 (R) < yé}s (R) since yé}s () < '”;55 (Rlp) (note
that R|,¢sl| = ¢ whereas (c0)¢s/| is a X]-message and it is an atom when ¢ € Z?rt:s”;) Moreover, we
have that:

o (ROPL = (RO)PL = (R'6)¢L, and

® g (R=R') < pgs(R=R').
Thus, by induction hypothesis, we have that (R)y/| = (R’6)y]. We also have Rlp$sl = ¢ so by
$s Cs s, we know that R|,¢s] = c. By Lemma 4.9, (R|,0)¢] = (c8)¢]. So (RO = (RO)Y]. We
deduce (RO)Y| = (R'0)y] which is the result we want to prove.

Hence, from now on, we assume that t|, ¢ Xfesh, and thus v|, = ¢ for some ¢ € Zfesh. Let

P1,- .., Pm be the positions such that for each i € {1,...,m}, we have that p; is defined in both
t and v, and root(t|y,) # root(v|y,;). For each i € {1,...,m}, we know that p; is a position of

C such that t|y, & Zfresh, and v|p, € Xfesh. We denote CZresh the constant from X¢..g, such that

Vlp; = Cfogpe We have (céreshG)gﬁl = (Rlp;,0)l. yé}s (céresh) < yé}s (R") and '”;55 (Rlp,) < ,u;ss (R) so
Feps (Chrosh =§|pi) < pgs (R = R’). We deduce (c; ., )y = (Rlp,0)¢]. B
Now, let C be the context obtained from C by putting céresh at position p; for each i. Let R =

C[Ry.....Ra]. (ROYL = (ROWYL by (ci ., 0)¥L = (Rly,0)yl. Furthermore, we have that R¢s| =

R'¢s| by construction. By ¢s Cg /s, we get Rs| = R'{/s|. By Lemma 4.9, we get (RO)y| =
(R'0)y], and thus (RO)y| = (R'0)y] which is the result we want to prove. O

We can conclude with the proof of our main theorem on equivalence.
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THEOREM 3.10. Let Kp be a X -configuration type-compliant w.r.t. (75, d0) and Ko be an action-
deterministic ¥ -configuration. We have that Kp L, Ko w.r.t. Z if, and only if, there exists a witness

(tr,¢) € traceyy (Kp) of this non-inclusion such that its underlying execution Kp = (P; p; 0 i) wrt.
% is well-typed.

Proor. The converse part is Lemma 3.11. Thus, we now prove the direct part. Let Kp be a X -
configuration type-compliant w.r.t. (75, &) and Ko be an action-deterministic % -configuration.
Assume Kp Z; Ko w.rt. ;. Let (tr,§) € tracey- (Kp) with underlying substitution ¢ be a wit-
ness of non-inclusion of minimal length. Thanks to Proposition 5.4, we know that there exists
(trs, ¢s) € tracey: (Kp) a witness of this non-inclusion with underlying substitution os such that
os = mgu(T)p, as well as two substitutions Ap and 0 such that:

o I' = {(u,v) | u,v € ESt(Kp) such that uc = vo}.

e pisabijective renaming from variables in dom(c) . dom(mgu(T’)) to constants in 3.sh such
that xp € Z?rt:s“ﬁ if, and only if, xo is an atomic X -message.

o dom(0) C Zresh, for any ¢ € Zfesh occurring in trg, we have that ¢ € dom(0),c0 € 7 (3,25 @
dom(¢s)), and w’ < ¢ for any w’ € vars(cf) (where < is the ordering induced by trg).

e for any ¢ € dom(0), (c0)¢sl is a X} -message and it is an atom when ¢ € Z?:;’S“ﬁ

e Ap is the first-order substitution associated to 8 through ¢s.

® ¢ = psAp, 0 = osAp, and (trs0)P| = trg].

First, since Kp is type-compliant, we know that encrypted subterms in ESt(%p) which are unifi-
able have the same type. Then, by definition of a typing system, this allows us to deduce that
mgu(T') is well-typed. Since we have enough constants of each type, we may assume w.l.o.g. that p
is also well-typed. Hence, we have that o5 = mgu(I') p is well-typed, which means that (trs, ¢s) is
a well-typed witness of the non-inclusion Kp %; Ko w.r.t. =7, and concludes the proof. O
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