Rémy Chrétien

Véronique Cortier
email: veronique.cortier@loria.fr

LSV Antoine Dallon
email: dallon@lsv.fr

Stéphanie Delaune
email: stephanie.delaune@irisa.fr.

Stéphanie Delaune Typing

Typing messages for free in security protocols

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Formal methods have been very successful for the analysis of security protocols and many decision procedures and tools (e.g. [START_REF] Comon-Lundh | Deciding security properties for cryptographic protocols. Application to key cycles[END_REF][START_REF] Millen | Constraint Solving for Bounded-Process Cryptographic Protocol Analysis[END_REF][START_REF] Ramanujam | Tagging Makes Secrecy Decidable with Unbounded Nonces as Well[END_REF]) have been proposed. Two main families of security properties are typically considered: trace or accessibility properties, as well as equivalence properties. The former are used to express the most standard properties such as secrecy and authentication: for any execution of the protocol, an attacker should not learn the secret nor get authenticated without the server having accepted her request. The later model privacy properties such as untraceability, vote secrecy, or anonymity (e.g. [START_REF] Backes | Automated Veri cation of Remote Electronic Voting Protocols in the Applied Pi-Calculus[END_REF][START_REF] Bruso | Formal veri cation of privacy for RFID systems[END_REF]). For example, the anonymity of Bob is typically expressed by the fact that an adversary should not distinguish between the situation where Bob is present and the situation where Alice is present. Formally, the behaviour of a protocol can be modelled through a process algebra such as CSP or the pi calculus, enriched with terms to represent cryptographic messages. Then indistinguishability can be modelled through various behavioral equivalences. In contrast, secrecy or authentication are typically expressed by requesting that some bad event never occurs or that some event (e.g. Bob is logged) is always preceded by another one (e.g. the server granted access to Bob). Then checking for privacy amounts into checking for trace equivalence between processes, while checking for secrecy amounts into checking that a process never reaches a certain state. Both properties are undecidable in general [START_REF] Durgin | Undecidability of bounded security protocols[END_REF]. Many results have been developed in the context of reachability properties. For an unbounded number of sessions, several decidable classes have been identi ed (e.g. bounding the size of messages [START_REF] Durgin | Undecidability of bounded security protocols[END_REF] or the number of variables [START_REF] Comon-Lundh | New Decidability Results for Fragments of First-Order Logic and Application to Cryptographic Protocols[END_REF]). Tools like ProVerif [START_REF] Blanchet | An e cient Cryptographic Protocol Veri er Based on Prolog Rules[END_REF] or Tamarin [START_REF] Schmidt | Automated Analysis of Di e-Hellman Protocols and Advanced Security Properties[END_REF] do not try to decide security: instead they propose sound procedures, incomplete but that work well in practice. Tamarin also supports user guidance through lemmas and direct interactions. The case of a bounded number of sessions is known to be (co)-NP-complete [START_REF] Rusinowitch | Protocol Insecurity with Finite Number of Sessions and Composed Keys is NP-complete[END_REF] and several tools aim at developing e cient decision procedures in practice, like AVISPA [START_REF] Armando | The AVISPA Tool for the automated validation of Internet security protocols and applications[END_REF], or Scyther [START_REF] Cremers | The Scyther Tool: Veri cation, Falsi cation, and Analysis of Security Protocols[END_REF] (that can also handle an unbounded number of sessions). Results for equivalence properties are more rare. Even in the case of a bounded number of sessions, there are few decidability results and the associated decision procedures are complex [START_REF] Baudet | Deciding Security of Protocols against O -line Guessing Attacks[END_REF][START_REF] Cheval | Trace Equivalence Decision: Negative Tests and Non-determinism[END_REF][START_REF] Tiu | Automating Open Bisimulation Checking for the Spi Calculus[END_REF].

Our contribution. We consider here a di erent approach. Instead of trying directly to decide security, we develop a simpli cation result. Our main contribution reduces the search space for attacks: if there is an attack, then there exists a well-typed attack. More formally, we show that if there is a witness (i.e. a trace) that P Q then there exists a witness which is well-typed w.r.t. P or Q, provided that P and Q are deterministic processes (intuitively, at any time, no two messages may be emitted or received on the same channel). Similarly for reachability, for any trace of P, we show that there is a well-typed trace of P that follows the same sequence of inputs and outputs, on the same channels, hence preserving secrecy or authentication violations. We can consider arbitrary processes and a large family of equational theories that can express most standard primitives: randomized and deterministic asymmetric and symmetric encryptions, signatures, hash, MACs, and even some form of threshold encryption (1 out of n keys or n out of n). These results hold for any typing system provided that any two uni able encrypted subterms of P (or Q) are of the same type. It is then up to the user to adjust the typing system such that this hypothesis holds for the protocols under consideration. The ner the typing system is, the more our typing result restricts the attack search. One way to enforce our assumption is to consider the class of tagged protocols introduced by Blanchet and Podelski [START_REF] Blanchet | Veri cation of Cryptographic Protocols: Tagging Enforces Termination[END_REF]. An easy way to achieve this in practice is by labelling encryption and is actually a good protocol design principle [START_REF] Abadi | Prudent Engineering Practice for Cryptographic Protocols[END_REF][START_REF] Guttman | Protocol Independence through Disjoint Encryption[END_REF].

We extend here a preliminary result presented at Concur'14 [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF]. Compared to [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], we considerably enrich the class of cryptographic primitives since [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] considers (deterministic) symmetric encryption only. Moreover, we provide a small attack property for equivalence as well as reachability properties while [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] focuses on equivalence. The reachability case is somehow an intermediary step of the equivalence case. Therefore the reachability case was in some sense contained in [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] but not formally stated as an independent result. The simpli cation result of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], that we extend, has already been used in several contexts.

• First, in [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] itself, the small attack property is shown to imply decidability for an unbounded number of sessions but for protocols with no fresh nonces nor fresh keys. Such a decidability result should probably extend to our novel class of primitives but we chose to focus here on the small attack property. • [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF] establishes the rst decidability result for equivalence of protocols with fresh nonces and keys. It uses as a preliminary that only well-typed traces need to be considered. • SAT-Equiv [START_REF] Cortier | SAT-Equiv: an e cient tool for equivalence properties[END_REF] is a new and e cient tool for deciding trace equivalence for a bounded number of sessions. Thanks to the small attack property, trace equivalence is reduced to nite model-checking and SAT-Equiv adapts standard model-checking techniques, namely graph planning.

Of course, due to the limitations of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], these three results hold for protocols with symmetric key only. Our extension of the small attack property to a general class of primitives opens the way to new decidability results or more e cient procedures for more general primitives. Related work. Formal methods have been very successful for the analysis of security protocols and many decision procedures and tools (e.g. [START_REF] Comon-Lundh | Deciding security properties for cryptographic protocols. Application to key cycles[END_REF][START_REF] Millen | Constraint Solving for Bounded-Process Cryptographic Protocol Analysis[END_REF][START_REF] Ramanujam | Tagging Makes Secrecy Decidable with Unbounded Nonces as Well[END_REF]) have been proposed. Most of these results focus on reachability properties such as con dentiality or authentication. Much fewer results exist for behavioral equivalences. Based on a procedure proposed by Baudet [START_REF] Baudet | Deciding Security of Protocols against O -line Guessing Attacks[END_REF], a rst decidability result has been proposed for deterministic processes without else branches, and for equational theories that capture most standard primitives [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF]. Then Tiu and Dawson [START_REF] Tiu | Automating Open Bisimulation Checking for the Spi Calculus[END_REF] have designed and implemented a procedure for open bisimulation, a notion of equivalence stronger than the standard notion of trace equivalence. Cheval et al [START_REF] Cheval | Trace Equivalence Decision: Negative Tests and Non-determinism[END_REF] have proposed and implemented a procedure for processes with else branches and standard primitives. The tool AkisS [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF] is also dedicated to trace equivalence but is not guaranteed to terminate. All these results focus on a bounded number of sessions. The tools ProVerif [START_REF] Blanchet | Automated Veri cation of Selected Equivalences for Security Protocols[END_REF] and Tamarin [START_REF] Schmidt | Automated Analysis of Di e-Hellman Protocols and Advanced Security Properties[END_REF] can handle equivalence properties for an unbounded number of sessions. They actually reason on a stronger notion of equivalence (which may turn to be too strong in practice) and are not guaranteed to terminate. For an unbounded number of sessions, a few results have been established [START_REF] Chrétien | From security protocols to pushdown automata[END_REF][START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF][START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF].

Our goal here is not to decide equivalence or reachability properties but to restrict the search space for attacks. As already discussed, our result extends the preliminary result of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] to a wide class of cryptographic primitives and to reachability properties. In terms of proof techniques, we completely reshaped the proof. [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] relies on the fact that reachability is decidable for a bounded number of sessions, builds a decision algorithm for equivalence, for a bounded number of sessions, and then use this algorithm to show that, from any witness of non equivalence, it is possible to construct a well-typed witness. Our proof here directly builds a well-typed witness, without the need of decision algorithms. Moreover, the fact that [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] considers symmetric key only simpli es the proof as an attacker never needs to construct when it tries to learn new information. This is no longer true for example with asymmetric encryption or hashes where the attacker may need to encrypt and hash to compare values.

Our proof technique is inspired from the approach developed by Arapinis et al [START_REF] Arapinis | Bounding messages for free in security protocols[END_REF] for bounding the size of messages of an attack for the reachability case. Speci cally, they show for some class of tagged protocols, that whenever there is an attack, there is a well-typed attack (for a particular typing system). We extend their approach to trace equivalence, for more general typing systems, and more general cryptographic primitives. One of the rst small model properties has been established by Lowe [START_REF] Lowe | Towards a Completeness Result for Model Checking of Security Protocols[END_REF]. It shows that it is su cient to consider a nite number of roles, but assumes that messages are strongly typed: agents expects messages that follows a given (xed) format and may never accept e.g. an arbitrary message instead of a nonce. Heather et al [START_REF] Heather | How to prevent type aw attacks on security protocols[END_REF] provide a result for limiting attacks to well-typed ones, assuming a strong labelling scheme and no blind copies. Ramanujam and Suresh [START_REF] Ramanujam | Tagging Makes Secrecy Decidable with Unbounded Nonces as Well[END_REF] also show some kind of typing result, assuming an even stronger labeling scheme, with fresh nonces, and use it to establish a decidability result for protocols with nonces, with no blind copies and the standard primitives. Again for reachability, Mödersheim et al [START_REF] Almousa | Typing and Compositionality for Security Protocols: A Generalization to the Geometric Fragment[END_REF][START_REF] Hess | Formalizing and Proving a Typing Result for Security Protocols in Isabelle/HOL[END_REF] establish a typing result similar to our result, for a exible class of primitives (but incomparable to ours). The type-compliance notion is more restrictive since even pairs of terms of a protocol should be non uni able (or have the same type).

MODEL

2.1 Term algebra Private data are represented through an in nite set of names N . Names can model e.g. long-term and short-term keys, or nonces. We consider an in nite set Σ - 0 of constants to represent public data, or any data known by the attacker, such as agent names or attacker's nonces or keys. We also consider two additional in nite sets of constants Σ atom fresh , and Σ bitstring fresh on which we will rely on for our technical development. We write Σ fresh = Σ atom fresh ⊎ Σ bitstring fresh , and Σ + 0 = Σ - 0 ⊎ Σ fresh . Lastly, we consider two sets of variables X and W. Variables in X typically model arbitrary data expected by the protocol, while variables in W are used to store messages learnt by the attacker. All these sets are assumed to be pairwise disjoint. A data is either a constant, a variable, or a name.

We model messages exchanged on the network and computations of the attacker by terms. A signature Σ is a set of function symbols with their arity. We distinguish between constructor symbols, like encryption, in Σ c and destructor symbols, like decryption, in Σ d , i.e. Σ = Σ c ⊎ Σ d . Given a signature F , the set of terms built from F and a set of data D is denoted T (Σ, D). Constructor terms on D are terms in T (Σ c , D). We use the usual terminology on terms, that we recall here. We denote vars(u) the set of variables that occur in a term u. A term is ground if it contains no variable. The application of a substitution σ to a term u is written uσ . We denote dom(σ) its domain and img(σ) its image. The positions of a term are de ned as usual. Given a term t, we denote root(t) the function symbol occurring at position ϵ in t, and St (t) its set of subterms. Two terms u 1 and u 2 are uni able when there exists a substitution σ such that u 1 σ = u 2 σ .

We consider two sorts: atom and bitstring. atom represents atomic data like nonces or keys while bitstring models arbitrary messages. Names in N , as well as constants in Σ - 0 and Σ atom fresh have sort atom, whereas constants in Σ bitstring fresh have sort bitstring. The constants of sort atom, i.e. those in Σ - 0 and Σ atom fresh , are called atomic constants. Any constructor f comes with its sort, i.e. f : (s 1 × • • • × s n) → s 0 where n is the arity of f, s 0 = bitstring, and s i ∈ {atom; bitstring} for 0 ≤ i ≤ n. Given a constructor term t ∈ T (Σ c , Σ + 0 ⊎ X), p is a key position of t if it corresponds to a position where an atom is expected, that is,

p = p ′ .i, t | p ′ = f(t 1 , . . . , t n) for some f ∈ Σ c : (s 1 × • • • × s n) → s 0 , and s i = atom.
We say that t is well-sorted if any of its subterm is of the right sort, that is, t | p ∈ Σ - 0 ⊎ Σ atom fresh ⊎ X for any key position p of t.

We consider theories where, intuitively, each symbol corresponds to a particular function that may be applied only in one particular context. For example, if asymmetric encryption is represented by aenc(m, pk(k)) then it should not be applied to other keys, such as vk(k). To each constructor function symbol f, we associate a linear term f(u 1 , . . . , u n) ∈ T (Σ c , X) denoted sh f which is called the shape of f. Shapes have to be compatible, that is, xed for a given function symbol. Formally, for any f(t 1 , . . . , t n) occurring in a shape, we have that f(t 1 , . . . , t n) = sh f . A term is well-shaped if it complies with the shapes, that is, any subterm of t, heading with a constructor symbol f is an instance of the shape of f. More formally, a constructor term t ∈ T (Σ c , Σ + 0 ⊎ X) is well-shaped if for any t ′ ∈ St(t) such that root(t ′) = f, we have that t ′ = sh f σ for some substitution σ . Given D ⊆ Σ + 0 ⊎ X, we denote T 0 (Σ c , D) the subset of ground constructor terms on D that are well-shaped and well-sorted. Given a set Σ 0 of constants (typically

Σ - 0 or Σ + 0), Σ 0 -messages are terms in T 0 (Σ c , N ⊎ Σ 0).
Example 2.1. Randomized asymmetric encryption, pairs, and triples are typically modelled by the following signature

Σ ex = {raenc, pub, radec, , 3 , fst, snd, proj 3 1 , proj 3 2 , proj 3 3 }
with Σ ex c = {raenc, pub, , 3 }, and Σ ex d = {radec, fst, snd, proj 3 1 , proj 3 2 , proj 3 3 }. The symbols raenc (arity 3) and radec (arity 2) represent resp. randomized asymmetric encryption and decryption. The symbol pub is a key function that models the public key associated to a given private key. Pairing is modelled using of arity 2, whereas associated projection functions are denoted fst and snd (both of arity 1). We also model triples by 3 of arity 3. Projection functions proj 3 i (i ∈ {1; 2; 3}) are of arity 1 and retrieve the component x i of the triple x 1 , x 2 , x 3 3 . The sort of our constructors and their shapes are as follows:

raenc : bitstring × bitstring × atom → bitstring sh raenc = raenc(x 1 , pub(x 2), x 3) pub : atom → bitstring sh pub = pub(x 2) : bitstring × bitstring → bitstring sh = x 1 , x 2 3 : bitstring × bitstring × bitstring → bitstring sh 3 = x 1 , x 2 , x 3 3
For example, the term raenc(m, pub(k), r) represents the encryption of m with the public key pub(k) and randomness r . We chose to model randomness as an atom to re ect that randoms are typically non composed messages. However, we could consider the function symbol raenc with sort: bitstring × bitstring × bitstring → bitstring as well.

Let a, b ∈ Σ - 0 and sk 0 , r 0 ∈ N (all of sort atom), the term raenc(a, b , pub(sk), r 0) is a constructor term whose key positions are p 1 = 2.1 and p 2 = 3. Actually this is a Σ - 0 message. We may note that it is well-sorted since sk and r 0 are of sort atom, and well-shaped. The constructor term raenc(a, sk, r 0) is well-sorted but it is not well-shaped. Note that we will require protocols to only process messages, which enforces that terms are well-sorted and well-shaped.

The properties of cryptographic primitives are represented through a set R of rewriting rules. We consider rewriting rules that apply a destructor on top of constructor terms that are linear, well-sorted, and well-shaped. We strictly control the non-linearity of our rules, and we assume the standard subterm property. More formally, for each destructor symbol des ∈ Σ d , there is exactly one rule of the form ℓ des -→ r des such that: (1) ℓ des = des(t 1 , . . . , t n) where each t i is either a variable, or equal to sh root(t i) up to a bijective renaming of variables; (2) r des ∈ T 0 (Σ c , ∅) ∪ St (t 1). In case r des is not a xed constructor term, for simplicity and readability in our technical developments, we assume that r des occurs in t 1 . Of course, our results easily extend to the case where the arguments of a destructor symbol are written in a di erent order; (3) either ℓ des is a linear term, or there is a unique variable x with several occurrences in ℓ des and such that x occurs exactly once at a key position in t 1 ; Moreover, we assume the existence of at least one non linear rule in our set R of rewriting rules. Given a set R of rewriting rules, a term u can be rewritten in using R if there is a position p in u, and a rewriting rule g(t 1 , ..., t n) → t in R such that u| p = g(t 1 , . . . , t n)θ for some substitution θ , and = u[tθ] p , i.e. u in which the subterm at position p has been replaced by tθ . Moreover, we assume that t 1 θ, . . . , t n θ as well as tθ are Σ + 0 -messages, in particular they do not contain destructor symbols. We consider sets of rewriting rules that yield a convergent rewriting system. As usual, we denote → * the re exive-transitive closure of →, and u↓ the normal form of a term u (it is well de ned as our rewriting system is convergent by unicity of the rule associated to each destructor).

Example 2.2. The properties of the primitives given in Example 2.1 are re ected through the following rewriting rules.

fst(x,) → x radec(raenc(x, pub(), z),) → x snd(x,) → proj 3 i (x 1 , x 2 , x 3
3) → x i with i ∈ {1; 2; 3} They satisfy all the requirements stated above.

Our class of rewriting rules is exible enough to represent most of the standard primitives as illustrated in the following example. However, we cannot model for instance a decryption algorithm that never fails and always returns a bitstring (e.g. sdec(m, k)). Indeed, such a term is not a message and will not be accepted as input or output of a protocol.

Example 2.3. We may consider symmetric encryption (randomized or not) using the signature Σ senc = {senc, rsenc, sdec, rsdec} and the rewriting rules:

senc : bitstring × atom → bitstring sh rsenc = senc(x 1 , x 2) rsenc : bitstring × atom × atom → bitstring sh rsenc = rsenc(x 1 , x 2 , x 3) sdec(senc(x,),) → x rsdec(rsenc(x, , z),) → x
Of course, we may consider non randomized asymmetric encryption as well. We can also model signature, and hash function through the signature Σ sign = {sign, getmsg, check, vk, ok, hash}: ok : → bitstring sh ok = ok sign : bitstring × atom → bitstring sh sign = sign(x 1 , x 2) vk : atom → bitstring sh vk = vk(x 1) hash : bitstring → bitstring sh hash = hash(x 1)

getmsg(sign(x,)) → x check(sign(x,), vk()) → ok
We may also represent more exotic theory like 1 out of n encryption (that is, one key among n su ces to decrypt) and n out of n encryption (that is, the n shares of the key are needed to decrypt) through the signature Σ shamir = {k 1 , k 2 , reveal, get 1 , get 2 , onekey, allkeys}:

k i : atom → bitstring sh k i = k i (x 1); onekey : bitstring × atom × atom sh onekey = onekey(x 1 , x 2 , x 3); allkeys : bitstring × atom sh allkeys = allkeys(x 1 , x 2); get i (onekey(x, 1 , 2), i) → x with i ∈ {1, 2} reveal(allkeys(x,), k 1 (), k 2 ()) → x
We can also model tuples of various size in a similar fashion than triples in Example 2.1. Another theory of interest is when it is possible to check whether two ciphertexts have been encrypted with the same key. This can be modeled by adding the destructor symbol samekey to Σ senc and the rewrite rule samekey(senc(x 1 ,), senc(x 2 ,)) → ok

An attacker builds his own messages by applying public function symbols to terms he already knows and that are available through variables in W. Formally, given a set Σ 0 of constants (typically Σ - 0 or Σ + 0), a computation done by the attacker is a Σ 0 -recipe, i.e. a term in T (Σ, W ⊎ Σ 0).

Process algebra

Our process algebra is inspired from the applied pi calculus [START_REF] Abadi | Mobile Values, New Names, and Secure Communication[END_REF]. We do not consider else branches. Actually we do not have conditional. Instead, equality tests are performed through pattern-matching. We do not consider replication but our typing result easily extend to processes with replication as explained in [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF]. Indeed, our key result shows how to build a well-typed trace from an arbitrary one. This holds for traces obtained from nite processes as well as traces from replicated processes. Let Ch be an in nite set of channels. We consider processes built using the following grammar:

P, Q := 0 null process | in(c, u).P input | out(c, u).P output | (P | Q) parallel | i : P phase where u ∈ T 0 (Σ c , Σ - 0 ⊎ N ⊎ X)
, and c ∈ Ch. The process 0 does nothing. The process in(c, u).P expects a message m of the form u on channel c and then behaves like Pσ where σ is a substitution such that m = uσ . The process out(c, u).P emits u on channel c, and then behaves like P. The variables that occur in u are instantiated when the evaluation takes place. The process P | Q runs P and Q in parallel. Our calculus also introduces a phase instruction, in the spirit of [START_REF] Blanchet | Automated Veri cation of Selected Equivalences for Security Protocols[END_REF], denoted i : P. Some protocols like e-voting protocols may proceed in phase. More generally, phases are particularly useful to model security requirements, for example in case the attacker interacts with the protocol before being given some secret.

For the sake of clarity, we may omit the null process. We also assume that processes are variable distinct, i.e. any variable is at most bound once. We write fv (P) for the set of free variables that occur in P, i.e. the set of variables that are not in the scope of an input.

Example 2.4. We consider a variant of the Needham Schroeder Lowe public key protocol [START_REF] Lowe | Breaking and xing the Needham-Schroeder public-key protocol using FDR[END_REF] with randomized encryption. The protocol aims at ensuring mutual authentication through the secrecy of the nonces N a and N b that are exchanged during an execution. It can be described informally as follows:

1. A → B : raenc(A, N a , pub(B), r 1) 2. B → A : raenc(N a , N b , B , pub(A), r 2) 3. A → B : raenc(N b , pub(B), r 3)
where A and B are agents trying to authenticate each other, pub(A) (resp. pub(B)) is the public key of A (resp. B), N a and N b (as well as r 1 , r 2 , and r 3) are nonces generated by A and B. This is a slight variant of the original protocol [START_REF] Lowe | Breaking and xing the Needham-Schroeder public-key protocol using FDR[END_REF] proposed by J. Millen: in the second message, the identity of B is placed at the end of the message, instead of the beginning of the message. This variant is subject to a type-aw attack (discovered by J. Millen) as we shall explain in the next section.

We model the Needham Schroeder Lowe protocol in our formalism through the process P NSL that results from the composition of the process P A representing the role of A and the process P B representing the role of B.

P NSL = P A | P B with P A and P B de ned as follows.

P A = out(c A , raenc(a, n a , pub(sk b), r 1). in(c A , raenc(n a , x 1 , b , pub(sk a), x 2)). out(c A , raenc(x 1 , pub(sk b), r 3)) P B = in(c B , raenc(a, 1 , pub(sk b), 2)). out(c B , raenc(1 , n b , b , pub(sk a), r 2)). in(c B , raenc(n b , pub(sk b), 3)).
where sk a , sk b , n a , n b , r 1 , r 2 , and r 3 are names, whereas a and b are constants from Σ - 0 . In order to model a richer scenario, we may want to consider in addition the process P ′ B that corresponds to the role B played by agent a interacting with a dishonest agent c. Below, r ′ 3 , n ′ b ∈ N whereas c, sk c ∈ Σ - 0 (so that they are implicitly given to the attacker). We write

P NSL = P B | P ′ B P ′ B = in(c ′ B , raenc(c, ′ 1 , pub(sk a), ′ 2)). out(c ′ B , raenc(′ 1 , n ′ b , a , pub(sk c), r ′ 2)). in(c ′ B , raenc(n ′ b , pub(sk a), ′ 3
)). The initial knowledge of the attacker will be speci ed later.

Semantics.

The operational semantics of a process is de ned using a relation over con gurations. Con gurations are parameterized by a set of constants Σ 0 (typically Σ - 0 or Σ + 0). A Σ 0 -con guration is a tuple (P; ϕ; σ ; i) with i ∈ N and such that:

• P is a multiset of processes (not necessarily ground); -----→ (i : P ∪ P; ϕ; σ ⊎ σ 0 ; i) where R is a Σ 0 -recipe such that Rϕ↓ is a Σ 0 -message, and Rϕ↓ = (uσ)σ 0 for σ 0 with dom(σ 0) = vars(uσ).

• ϕ = {w 1 ⊲ m 1 , . . . , w n ⊲ m n } is a Σ 0 -

O

(i : out(c, u).P ∪ P; ϕ; σ ; i) out(c, w)

------→ (i : P ∪ P; ϕ ∪ {w ⊲ uσ }; σ ; i) with w a fresh variable from W, and uσ is a Σ 0 -message.

M

(P; ϕ; σ ; i) • σ is a substitution such that dom(σ) = fv (P), and img(σ) are Σ 0 -messages. A Σ 0 -con guration (P; ϕ; σ ; i) such that σ = ∅ is said initial.

Intuitively, P represents the processes that still remain to be executed; ϕ represents the sequence of messages that have been learnt so far by the attacker, and σ stores the value of the variables that have already been instantiated. We often write i : P instead of (P; ∅; ∅; i), P instead of 0 : P and P ⊎ P instead of {P } ⊎ P. The operational semantics of a Σ 0 -con guration is induced by the relation α -→ w.r.t. Σ 0 over Σ 0 -con gurations de ned in Figure 1. The rst rule (I) allows the attacker to send to some process a term built from publicly available terms and symbols. The second rule (O) corresponds to the output of a term by some process: the corresponding term is added to the frame of the current con guration, which means that the attacker can now access the sent term. Note that the term is outputted provided that it is a message. Regarding phases (rules M , P , and C), the attacker may move to a subsequent phase whenever he wants, while processes may move to the next phase when they are done or simply disappear if the phase is over. The two remaining rules N and P are quite standard and are unobservable (τ action) from the point of view of the attacker.

The relation α 1 ...α n ------→ w.r.t. Σ 0 between Σ 0 -con gurations (where α 1 . . . α n is a sequence of actions) is de ned as the transitive closure of α -→ w.r.t. Σ 0 . Given a sequence of observable actions tr, and two Σ 0 -con gurations K and K ′ , we write K tr = = ⇒ K ′ w.r.t. Σ 0 when there exists a sequence α 1 . . . α n such that K α 1 ...α n ------→ K ′ w.r.t. Σ 0 and tr is obtained from α 1 . . . α n by erasing all occurrences of τ . De nition 2.5. Given a Σ 0 -con guration K = (P; ϕ; σ ; i), we denote trace Σ 0 (K) the set of traces de ned as follows:

trace Σ 0 (K) = {(tr, ϕ ′) | K tr = = ⇒ (P; ϕ ′ ; σ ′ ; i ′) w.r.t. Σ 0 for some Σ 0 -con guration (P; ϕ ′ ; σ ′ ; i ′)}.
Given a Σ 0 -con guration K , we may note that, by de nition of trace Σ 0 (K), trϕ↓ only contains Σ 0 -messages.

Example 2.6. Continuing Example 2.4, consider the initial con guration K NSL = (P NSL ; ϕ 0 ; ∅; 0) with initial knowledge ϕ 0 = {w a ⊲ pub(sk a), w b ⊲ pub(sk b)}. This models that the attacker initially

C B B A C A C B { A, C } pub(B) { C, N b , B N c } pub(A) { N b , B , N ′ b , A } pub(C) {N b } pub(B)
Fig. 2. A ack trace.

knows the public keys of a and b. Note that the private key of c, sk c , is a public constant and is thus also initially known to the attacker. As mentioned in Example 2.4, this variant of the Needham Schroeder Lowe protocol is subject to a type aw attack depicted in Figure 2. The attack relies on the fact that agent A may accept the pair N b , B as a nonce N C coming from C and agent B may confuse the identity C with a nonce. In this attack, a dishonest agent C initiates a session with agent B but writes his identity C instead of a nonce. B replies as expected by {C, N b , B} pub(A) . This message is then accepted by A (playing the responder role). A thinks she is contacted by C and replies with {N b , B, N ′ b , A} pub(C) . Therefore the attacker learns N b and may impersonate A w.r.t. B. This attack is re ected by the following sequence tr: in(c B , raenc(a, c , w b , r 0)).out(c B , w 1).in(c ′ B , w 1).out(c ′ B , w 2).in(c B , raenc(R, w b , r ′ 0)) where R = fst(fst(radec(w 2 , sk c))) and r 0 , r ′ 0 ∈ Σ - 0 . This sequence of actions yields the frame ϕ de ned as follows:

ϕ = ϕ 0 ⊎ {w 1 ⊲ raenc(c, n b , b , pub(sk a), r 2), w 2 ⊲ raenc(n b , b , n ′ b , a , pub(sk c), r ′ 2)}.
We have that (tr, ϕ) ∈ trace(K NSL).

Action-determinism

As mentioned in introduction, we require processes to be deterministic. We consider a de nition similar to the one introduced in [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF]. Intuitively, no two inputs nor two outputs should occur on the same channel at a concurrent time.

De nition 2.7. A con guration K is action-deterministic if whenever K tr -→ (P; ϕ; σ ; i), and α .P and β.Q are two elements of P with α, β instructions of the form in(c, u), out(c ′ , u) then c c ′ or the instructions are not of the same nature (that is, α, β are not both an input, nor both an output). This condition is actually stronger than the one considered in our preliminary results [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF]. In [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], we consider instead determinate processes, as introduced in [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF]. Intuitively, a process is determinate as soon as all executions corresponding to one trace yield equivalent frames. However, this condition is insu cient for the proof of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] that assumes a unique frame once a trace has been xed. For action-deterministic protocols, the attacker knowledge is entirely determined by its interaction with the protocol. L 2.8. Let K be an action-deterministic con guration such that K tr = = ⇒ K 1 and K tr = = ⇒ K 2 for some tr, K 1 = (P 1 ; ϕ 1 ; σ 1 ; i 1), and K 2 = (P 2 ; ϕ 2 ; σ 2 ; i 2). We have that ϕ 1 = ϕ 2 , σ 1 = σ 2 , and i 1 = i 2 .

Trace equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as trace equivalence [START_REF] Arapinis | Analysing Unlinkability and Anonymity Using the Applied Pi Calculus[END_REF][START_REF] Delaune | Verifying Privacy-type Properties of Electronic Voting Protocols[END_REF]. Intuitively, two con gurations are trace equivalent if an attacker cannot tell with which of the two con gurations he is interacting. We rst introduce a notion of equivalence between frames.

Intuitively, an attacker can see the di erence between two sequences of messages if he is able to perform some computation that succeeds in ϕ 1 and fails in ϕ 2 ; or if he can build a test that leads to an equality in ϕ 1 and not in ϕ 2 (or conversely).

De nition 2.9. Two Σ 0 -frames ϕ 1 and ϕ 2 are in static inclusion w.r.t. Σ 0 , written ϕ 1 ⊑ s ϕ 2 w.r.t. Σ 0 , when dom(ϕ 1) = dom(ϕ 2), and:

• for any Σ 0 -recipe R, we have that Rϕ 1 ↓ is Σ 0 -message implies that Rϕ 2 ↓ is Σ 0 -message; and

• for any Σ 0 -recipes R, R ′ such that Rϕ 1 ↓, R ′ ϕ 1 ↓ are Σ 0 -messages, we have that:

Rϕ 1 ↓ = R ′ ϕ 1 ↓ implies Rϕ 2 ↓ = R ′ ϕ 2 ↓. They are in static equivalence w.r.t. Σ 0 , written ϕ 1 ∼ s ϕ 2 w.r.t. Σ 0 , if ϕ 1 ⊑ s ϕ 2 and ϕ 2 ⊑ s ϕ 1 .
In the remaining of this paper, Σ 0 will be either Σ - 0 or Σ + 0 , and we sometimes omit to mention it when it is clear from the context.

Example 2.10. Continuing Example 2.6, we consider the two following Σ - 0 -frames:

• ϕ 1 = ϕ ⊎ {w 3 ⊲ n b }; and • ϕ 2 = ϕ ⊎ {w 3 ⊲ k}.
We have that Rϕ 1 ↓ = w 3 ϕ 1 ↓ where R = fst(fst(radec(w 2 , sk c))). This equality does not hold in ϕ 2 , hence ϕ 1 and ϕ 2 are not in static equivalence.

Trace equivalence is the active counterpart of static equivalence. Two con gurations are trace equivalent if, however the attacker behaves, the resulting sequences of messages observed by the attacker are in static equivalence.

De nition 2.11. A Σ 0 -con guration K is trace included (w.r.t. Σ 0) in a Σ 0 -con guration K ′ , written K ⊑ t K ′ w.r.t. Σ 0 , if for every (tr, ϕ) ∈ trace Σ 0 (K), there exist (tr ′ , ϕ ′) ∈ trace Σ 0 (K ′) such that tr = tr ′ , and ϕ ⊑ s ϕ ′ w.r.t. Σ 0 . They are in trace equivalence, written K ≈ t K ′ w.r.t. Σ 0 , K ⊑ t K ′ and K ′ ⊑ t K w.r.t. Σ 0 .

Note that two trace equivalent con gurations are necessarily at the same phase. This notion of trace equivalence slightly di ers from the one used in [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], where the frames are required to be in static equivalence ϕ ∼ s ϕ ′ instead of static inclusion ϕ ⊑ s ϕ ′ . Actually, these two notions of equivalence coincide for action-deterministic protocols [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF]. Moreover, we will actually prove a ner result, showing the existence of a well-typed witness (when a witness exists) for this trace inclusion notion.

Example 2.12. Continuing Example 2.4, we consider the protocol P NSL that models two roles of B: one played by B responding to A, and the other one played by A responding to C. To model the fact that the nonce n b sent by B for A should remain secret, we de ne strong secrecy of n b by requiring that n b remains indistinguishable from a fresh value. Formally, we extend the process P B modeling agent B responding to A with either the output of the true nonce n b or the output of a fresh value k ∈ N , yielding the following two processes.

P 1 B = in(c B , raenc(a, 1 , pub(sk b), 2)). out(c B , raenc(1 , n b , b , pub(sk a), r 2)). in(c B , raenc(n b , pub(sk b), 3)). 1 : out(c B , n b) P 2 B = in(c B , raenc(a, 1 , pub(sk b), 2)). out(c B , raenc(1 , n b , b , pub(sk a), r 2)). in(c B , raenc(n b , pub(sk b), 3)). 1 : out(c B , k)
The corresponding overall processes are P

1 NSL = P ′ B | P 1 B and P 2 NSL = P ′ B | P 2
B , and we consider the initial frame ϕ 0 as given in Example 2.6 and the initial con gurations K 1 = (P 1 NSL ; ϕ 0 ; ∅; 0) and K 2 = (P 2 NSL ; ϕ 0 ; ∅; 0). Then, we can show that K 1 t K 2 since n b is not strongly secret due to the attack depicted in Figure 2. This is exempli ed by the trace tr = in(c B , R 1).out(c B , w 1).in(c ′ B , w 1).out(c ′ B , w 2).in(c B , R 2).out(c B , w 3) with R 1 = raenc(a, c , w b , r 0) and R 2 = raenc(fst(fst(radec(w 2 , sk c))), w b , r ′ 0), where r 0 , r ′ 0 ∈ Σ - 0 . Indeed, consider now

ϕ = ϕ 0 ⊎ {w 1 ⊲ raenc(c, n b , b , pub(sk a), r 2), w 2 ⊲ raenc(n b , b , n ′ b , a , pub(sk c), r ′ 2)} and ϕ 1 = ϕ 0 ⊎ {w 3 ⊲n b }, ϕ 2 = ϕ ⊎ {w 3 ⊲k}. We have (tr, ϕ 1) ∈ trace Σ - 0 (K 1) and (tr, ϕ 2) ∈ trace Σ - 0 (K 2)
. Now consider the equality w 3 = fst(fst(radec(w 2 , sk c))). It holds in ϕ 1 but not in ϕ 2 hence we have that

K 1 t K 2 .
Consider now a variant P ′ NSL where the second message { N a , N b , B } pub(A) is no longer encoded using two nested pairs but using a triple instead, that is, { N a , N b , B 3 } pub(A) . This transformation yields the process

Q B = in(c B , raenc(a, 1 , pub(sk b), 2)). out(c B , raenc(1 , n b , b 3 , pub(sk a), r 2)). in(c B , raenc(n b , pub(sk b), 3))
instead of P B . The use of triples rules out the type aw attack and the resulting processes are in trace equivalence.

OUR TYPING RESULTS

Even when considering nite processes (i.e. processes without replication), the problem of checking trace equivalence is di cult due to several sources of unboundedness. One of them is the arbitrarily large size of messages that can be forged by an attacker. We propose here a simpli cation result that reduces the search space for attacks. Roughly, if there is an attack, then there is a well-typed attack, for a exible notion of type that can be adapted depending on the desired result. We establish this result both for trace properties and equivalence properties (trace equivalence). Compared to the initial work of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], we extend the result from a xed, simple signature (symmetric encryption) to a large class of cryptographic primitives that encompasses all the standard ones. Moreover, [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] only applies to trace equivalence. Intuitively, proving the small attack property for trace equivalence requires to rst show how to reduce the attack on a single trace. This yields a reduction result for reachability properties, such as authentication or con dentiality, which is of independent interest.

Typing system

We consider any type system that is consistent with substitution and uni cation.

De nition 3.1. A typing system is a pair (T , δ) where T is a set of elements called types and δ is a function mapping terms t ∈ T 0 (Σ c , Σ + 0 ∪ N ∪ X) to types in T such that: • If t is a term of type τ and σ is a well-typed substitution, then tσ is of type τ .

• For any uni able terms t and t ′ with the same type, i.e. δ (t) = δ (t ′), their most general uni er mgu(t, t ′) is well-typed.

Consider a con guration K and a a typing system (T , δ), an execution K tr = = ⇒ (P; ϕ; σ ; i) is well-typed if σ is a well-typed substitution, i.e. every variable of its domain has the same type as its image. Some interesting typing systems are structure-preserving typing systems, that is typing system that preserve the structure of terms. They are de ned as follows:

De nition 3.2. A structure-preserving typing system is a pair (T init , δ) where T init is a set of elements called initial types, and δ is a function mapping data in Σ + 0 ⊎ N ⊎ X to types τ generated using the following grammar:

τ , τ 1 , τ 2 = τ 0 | f(τ 1 , . . . , τ n) with f ∈ Σ c and τ 0 ∈ T init
Then, δ is extended to constructor terms as follows:

δ (f(t 1 , . . . , t n)) = f(δ (t 1), . . . , δ (t n)) with f ∈ Σ c .
The following lemma proves that structure-preserving typing systems are typing systems as de ned in De nition 3.1.

L 3.3. Let (T init , δ
) be a structure-preserving typing system. Then (T 0 (Σ, T init), δ) is a typing system as in De nition 3.1.

P

. We have to prove the two following items: (1) If t is a term and σ is a well-typed substitution, then δ (tσ) = δ (t).

(2) For any uni able terms t and t ′ with the same type, i.e. δ (t) = δ (t ′), their most general uni er mgu(t, t ′) is well-typed. We prove item (1) by induction on t. If t is a name or a constant, then tσ = t and the result trivially holds. If t is a variable, then

δ (tσ) = δ (t) as σ is well-typed. Now, if t = f(t 1 , . . . , t n), then δ (tσ) = f(δ (t 1 σ), . . . , δ (t n σ)) as (T init , δ) is structure-preserving.
By induction hypothesis, we have that δ (t i σ) = δ (t i) for i ∈ {1, . . . , n}, and we get that δ (tσ) = f(δ (t 1), . . . , δ (t n)). As δ is structure-preserving, we have that δ (t) = f(δ (t 1), . . . , δ (t n)), and this allows us to conclude.

We now prove item [START_REF] Abadi | Prudent Engineering Practice for Cryptographic Protocols[END_REF]. Given a set Γ of well-typed equations, we denote #vars(Γ) the number of variables occurring in Γ, and |Γ| its size, i.e. t =t ′ ∈Γ (|t | + |t ′ |) where |t | denotes the number of symbols occurring in t. Our measure Γ is determined by these two elements, in lexicographic order. We prove the result by induction on Γ relying on this measure. Base case: Γ = (0, 0), i.e. Γ = ∅, and thus the result trivially holds. Induction step: Γ = Γ ′ ⊎ {t = t ′ }. We distinguish several cases:

• In case t or t ′ is a variable. We assume w.l.o.g. that t is a variable x. In such a case, let σ = {x → t ′ }. We have that σ is well-typed. Moreover, applying our induction hypothesis on Γ ′ , we deduce that mgu(Γ ′) is well-typed, and thus {x → t ′ mgu(Γ ′)} is well-typed, and

mgu(Γ) = mgu(Γ ′) ⊎ {x → t ′ mgu(Γ ′)} is well-typed.
• Otherwise, assume that t is a an atom (but not a variable). In such a case, we have that t ′ is also an atom (and not a variable due to the previous case). Therefore, since t and t ′ are uni able, we have that t = t ′ , and mgu(Γ) = mgu(Γ ′). Since Γ ′ < Γ , we have that mgu(Γ ′) is well-typed by induction hypothesis, and this allows us to conclude. • Now, we assume that t = f(t 1 , . . . , t k). In such a case, we have that t ′ = f(t ′ 1 , . . . , t ′ k) since t ′ is not a variable and we know that t and t ′ are uni able. We have that mgu(Γ) = mgu(Γ ′′) where

Γ ′′ = Γ ′ ⊎ {t 1 = t ′ 1 , . . . , t k = t ′ k }.
Note that Γ ′′ is a set of well-typed equations, Γ ′′ < Γ and thus mgu(Γ ′′) is well-typed by induction hypothesis. This concludes the proof.

We further assume the existence of an in nite number of constants in Σ 0 (resp. Σ atom fresh , Σ bitstring fresh) of any type.

Example 3.4. Let's continue our running example, with the processes P 1 NSL and P 2 NSL , as de ned in Example 2.12. We consider the structure preserving typing system generated from the set T NSL = {τ a , τ b , τ c , τ na , τ nb , τ r , τ sk , τ k } of initial types, and the function δ NSL that associates the expected type to each constant/name (δ NSL (a) = τ a , δ NSL (b) = τ b , etc.), and the following type to the variables:

δ NSL (1) = δ NSL (′ 1) = τ na , and δ NSL (2) = δ NSL (3) = δ NSL (′ 2) = δ NSL (′ 3) = τ r .
The goal of our main results is to be able to consider only execution traces that comply with a given type, like this one.

Type compliance

Our main assumption on the typing of protocols is that any two uni able encrypted subterms are of the same type. The goal of this part is to state this hypothesis formally. For this, we need to de ne the notion of encrypted subterms.

Among the constructor symbols in Σ c , we distinguish those that are transparent. They intuitively correspond to constructors that can be freely opened by the attacker, such as pairs, tuples, or lists. A constructor symbol f of arity n is transparent if there exists a term

f(R f 1 , . . . , R f n) ∈ T (Σ,) such that for any term t ∈ T 0 (Σ, Σ + 0 ⊎ N ⊎ X) such that root(t) = f, we have that f(R f 1 , . . . , R f n){ → t }↓ = t.
We denote C f such a term, and write C f [t] the term obtained by replacing each occurrence of the hole with t.

We write ESt (t) for the set of encrypted subterms of t, i.e. the set of subterms that are not headed by a transparent function.

ESt(t) = {u ∈ St (t) | u is of the form f(u 1 , . . . , u n) and f is not transparent} Example 3.5.
Going back to the signature Σ ex introduced in Example 2.1, the symbols and 3 are transparent: the contexts C = fst(), snd() and C 3 = proj 3 1 (), proj 3 2 (), proj 3 3 () 3 satisfy the requirements.

A con guration K = (P; ϕ; ∅; i) is type-compliant if two uni able encrypted subterms occurring in K (i.e. either in P or in ϕ) have the same type. Formally, we use the de nition given in the preliminary result [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], which is similar to the one originally introduced by B. Blanchet and A. Podelski in [START_REF] Blanchet | Veri cation of Cryptographic Protocols: Tagging Enforces Termination[END_REF].

De nition 3.6. A con guration K is type-compliant w.r.t. a typing system (T init , δ) if for every t, t ′ ∈ ESt (K) we have that: t and t ′ uni able implies that δ (t) = δ (t ′).

Example 3.7. Continuing our running example with K NSL = (P NSL ; ϕ 0 ; ∅; 0), we have that K NSL is not type-compliant w.r.t. the typing system given in Example 3.4. Indeed, the encrypted subterms are:

• t 1 = raenc(a, 1 , pub(sk b), 2) and t ′ 1 = raenc(c, ′ 1 , pub(sk a), ′ 2); • t 2 = raenc(1 , n b , b , pub(sk a), r 2) and t ′ 2 = raenc(′ 1 , n ′ b , a , pub(sk c), r ′ 2); • t 3 = raenc(n b , pub(sk b), 3) and t ′ 3 = raenc(n ′ b , pub(sk a), ′ 3); • t A = pub(sk a) and t B = pub(sk b).
Actually, we have that t 2 and t ′ 1 are uni able with

σ = { 1 → c, ′ 1 → n b , b , ′ 2 → r 2 }, but we have that: • δ NSL (t 2) = raenc(τ na , τ nb , τ b , pub(τ sk), τ r), whereas • δ NSL (t ′ 1) = raenc(τ c , τ na , pub(τ sk), τ r).
Actually, K NSL is type-compliant when considering a typing system such that δ NSL (′ 1) = τ nb , τ b , δ NSL (1) = τ c , and keeping the others elements as de ned in the typing system introduced in Example 3.4. Note that, w.r.t. this typing system, the attack trace trace tr given in Example 2.6 is well-typed .

Consider now the variant P ′ NSL , as sketched in Example 2.12, where a triple is used instead of two pairs, that is replacing messages t 2 and t ′ 2 by

s 2 = raenc(1 , n b , b 3 , pub(sk a), r 2) and s ′ 2 = raenc(′ 1 , n ′ b , a 3 , pub(sk c), r ′ 2)
. Then the corresponding con guration K ′ NSL = (P ′ NSL ; ϕ 0 ; ∅; 0)is type-compliant w.r.t. the typing system given in Example 3.4.

Reduction results

Our main result consists in showing that whenever there is an attack, then there is an attack that is well-typed. This holds for reachability properties as well as equivalence properties.

3.3.1 Reachability. We rst prove that for any execution trace, there is a well-typed execution that follows the same sequence of input and output, on the same channels. Formally, we de ne tr obtained from tr by replacing any action in(c, R) by in(c, _), any out(c, w) by out(c, _), while phase i ′ is left unchanged. Intuitively, tr only remembers the type of actions, and on which channel.

T 3.8. Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0). If K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 then there exists a well-typed execution K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) w.r.t. Σ + 0 such that tr ′ = tr. Conversely, if K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) is a well-typed execution w.r.t. Σ + 0 , then there exists K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ -
0 such that tr = tr ′ . This shows that for any property that can be expressed as a reachability property, it is sucient to consider well-typed attacks. For example, secrecy of a data s can easily be encoded by adding a witness process of the form in(c, s).out(c secret-violated , s). Then the secret of s is preserved if and only if there is no trace that contains c secret-violated . Similarly, we can consider any property that expresses that some state should never be reached. The second part of Theorem 3.8 can be established by mapping constants from Σ fresh on a constant a ∈ Σ - 0 . Such a mapping transform non-atomic data on atomic ones, and may create equalities. Since our process algebra does not feature disequality tests, the resulting trace, i.e. the one obtained by applying the mapping, is still a valid execution trace. The rst and main part of this theorem is proved in Section 4.

L 3.9. Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0). If K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) is an execution w.r.t. Σ + 0 , then there exists K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 such that tr = tr ′ . P .
The result is a direct consequence of Lemma A.1 considering the substitution θ de ned as follows: θ (c) = a ∈ Σ - 0 for any c ∈ Σ fresh . 3.3.2 Equivalence. Similarly to reachability, we show that whenever two processes are not in trace equivalence, then there is a well-typed witness of non equivalence. Actually, we prove this result for trace inclusion. Formally, assume given two Σ - 0 -con gurations K P and K Q with K Q action-deterministic, and such that

K P t K Q w.r.t. Σ - 0 . A witness of non-inclusion is a trace (tr, ϕ) ∈ trace Σ - 0 (K P) such that: • either there is no ψ such that (tr,ψ) ∈ trace Σ - 0 (K Q); • or such ψ exists but ϕ ⊑ s ψ w.r.t. Σ - 0 .
Note that when a con guration is action-deterministic, once the sequence tr is xed, there is a unique frame reachable through tr, which ensures the unicity of ψ . T 3.10. Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0) and K Q be an actiondeterministic Σ - 0 -con guration. We have that K P t K Q w.r.t. Σ - 0 if, and only if, there exists a witness (tr, ϕ) ∈ trace Σ + 0 (K P) of this non-inclusion such that its underlying execution K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t.

Σ + 0 is well-typed.
The main part of the theorem is proved in Section 5. Here, we simply prove that the existence of a witness w.r.t. Σ + 0 can be turned into a witness w.r.t. Σ - 0 . Actually, similarly to the reachability case, the idea is to replace any symbol from Σ fresh by a symbol of Σ - 0 . However, creating more equalities is problematic when the witness of non-inclusion is an equality test that holds in K P but not in K Q . Therefore, we use here a bijective renaming. Moreover, replacing non atomic constants from Σ bitstring fresh by atomic constants may enable more executions and non trace inclusion may be lost. Therefore, sometimes, we emulate constants from Σ bitstring fresh by a message t 0 of sort bitstring. Note that such a t 0 exists since our theory contains a non-linear rule des(t 1 , . . . , t n) → r des with a key position in t 1 , and thus t 1 δ where δ maps any variable occurring in t 1 to a constant a ∈ Σ - 0 is a a message of sort bitstring. L 3.11. Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0) and K Q be an actiondeterministic Σ - 0 -con guration. If

K P t K Q w.r.t. Σ + 0 then K P t K Q w.r.t. Σ - 0 . P
. By hypothesis on our theory, we know the existence of a message t 0 of sort bitstring. We consider a minimal (in length) witness of non-inclusion, i.e. a trace (tr S , ϕ S) ∈ trace Σ + 0 (K P) such that:

(1) either (tr S ,ψ S) trace Σ + 0 (K Q) for any ψ S ; or (2) (tr S ,ψ S) ∈ trace Σ + 0 (K Q) but ϕ S s ψ S . We consider two substitutions:

• θ which is an injective renaming from Σ fresh to constants in Σ - 0 that have not been used along the execution under study.

• θ ′ which is an injective renaming from Σ atom fresh to Σ - 0 , and which maps constants from Σ bitstring fresh to t 0 . Note that θ ′ preserves atomicity, i.e. θ ′ (c) is an atom if, and only if, c ∈ Σ atom fresh .

Case 1: tr S = tr - S .α S does not pass in K Q . In such a case, we have that:

• K P tr - S --→ (P - S ; ϕ - S ; σ - P ; i - P) α S
--→ (P S ; ϕ S ; σ P ; i P);

• K Q tr - S --→ (Q - S ;ψ - S ; σ - Q ; i - Q); and • ϕ - S ⊑ s ψ - S . Relying on Lemma A.1, we have that (tr - S θ,ψ - S θ) ∈ trace Σ - 0 (K Q).
More precisely, we have that

K Q tr - S θ ---→ (Q - S ;ψ - S θ ; σ - Q θ ; i - Q).
The same holds regarding the substitution θ ′ . Note that the rstorder substitution associated to θ (resp. θ ′) through ψ - S is θ (resp. θ ′) itself. Thus, to conclude, it remains to justify that either α S θ can not be triggered from

(Q - S ;ψ - S θ ; σ - Q θ ; i - Q), or α S θ ′ can not be triggered from (Q - S ;ψ - S θ ′ ; σ - Q θ ′ ; i - Q)
We consider three cases depending on the action α S . (1) α S = phase i. We have that i > i - P but i ≤ i - Q , and thus "phase i " can still not be triggered from

(Q - S ;ψ - S θ ; σ - Q θ ; i - Q).
Thus, tr S θ is a witness of non-inclusion w.r.t. Σ - 0 .

(2) α S = out(c, w) with P - S = out(c, u S).P ⊎ P, then either Q - S is not ready to perform an output on channel c, and thus this is the case for (Q - S ;ψ - S θ ; σ - Q θ ; i - Q), and we are done. Otherwise, we have that

Q - S = out(c, S).Q ⊎ Q but S σ - Q is not a Σ + 0 -message. If S σ - Q is not well-shaped,
then we consider θ . We have that (S σ - Q)θ = S (σ - Q θ) since S does not contain constants from Σ fresh , and S (σ - Q θ) is not well-shaped, and thus not a Σ - 0 -message. If S σ -Q is not wellsorted, then we consider θ ′ . We have that (S σ - Q)θ ′ = S (σ - Q θ ′) since S does not contain constants from Σ fresh , and S (σ - Q θ) is not well-sorted since θ ′ preserves atomicity. (3) α S = in(c, R) with P - S = in(c, u S).P ⊎ P, then either Q - S is not ready to perform an input on channel c, and thus

(Q - S ;ψ - S θ ; σ - Q θ ; i - Q)
is not ready to perform an input on channel c, and we are done. Otherwise, since ϕ - S ⊑ s ψ - S , and Rϕ - S ↓ is a message, we deduce that Rψ - S ↓ is a message, and we have that

Rψ - S ↓θ = (Rψ - S)θ↓ = R(ψ - S θ)↓ is a Σ - 0 -message.
Hence, since the input can not be triggered, this is due to a problem of ltering, there does not exist τ S such that (S σ - Q)τ = Rψ S ↓. By contradiction, assume that there exists τ ′ such that

(S (σ - Q θ))τ ′ = R(ψ - S θ)↓, then [(S (σ - Q θ))τ ′]θ -1 = (R(ψ - S θ)↓)θ -1 , i.e. (S σ - Q)(τ ′ θ -1) = Rψ - S ↓. Contradiction.
Case 2: We have that (tr S , ϕ S) ∈ trace Σ + 0 (K P), (tr S ,ψ S) ∈ trace Σ + 0 (K Q), and ϕ S s ψ S . Thanks to Lemma A.1, we know that (tr S θ, ϕ S θ) ∈ trace Σ + 0 (K P) and (tr S θ,ψ S θ) ∈ trace Σ + 0 (K Q), and similarly considering θ ′ . To conclude, it remains to show that either ϕ S θ ψ S θ , or ϕ S θ ′ ψ S θ ′ .We distinguish two cases depending on the form of the test. We consider a test of minimal size regarding the number of symbols.

(1) We have that Rϕ S ↓ and R ′ ϕ S ↓ are both messages such that Rϕ S ↓ = R ′ ϕ S ↓. By minimality of our witness, we know that Rψ S ↓ and R ′ ψ S ↓ are messages. However, Rψ S ↓ R ′ ψ S ↓. In such a case, consider θ . We have that Rϕ S ↓θ = R(ϕ S θ)↓ (similarly for R ′), and

Rψ S ↓θ = R(ψ S θ)↓ (similarly for R ′). Now, assume that R(ψ S θ)↓ = R ′ (ψ S θ)↓, i.e. (Rψ S ↓)θ = (R ′ ψ S ↓)θ
, and thus applying θ -1 , we deduce that Rψ S ↓ = R ′ ψ S ↓, leading to a contradiction. [START_REF] Abadi | Prudent Engineering Practice for Cryptographic Protocols[END_REF] We have that Rϕ S ↓ is a message whereas Rψ S ↓ is not. First, we may note that R can not be reduced to a variable w, a name, or a constant. Therefore, we have that R = g(R 1 , . . . , R k), and by minimality of our test, we know that R i ϕ S ↓ is a message . We rst consider the case where g ∈ Σ c . Since Rψ S ↓ is not a message whereas R 1 ψ S ↓, . . . , R k ψ S ↓ are, it means that either R i ψ S ↓ is not an atom whereas an atom was expected at the i th position or Rϕ S is not well-shaped. In the rst case, we know that R i ϕ S ↓ is an atom. In such a case, we consider θ ′ , and relying on this test, we can see that ϕ S θ ′ s ψ S θ ′ . In case Rψ S ↓ is not a message due to a problem of shape, we consider θ , and relying on this test, we can see that ϕ S θ s ψ S θ .

Tightness of our model

In this subsection, we give examples of theories that do not satisfy the hypothesis of the model and for which Theorem 3.10 no longer holds, exhibiting processes that do have well-typed witnesses of attacks. This shows that our hypotheses are rather tight.

In this subsection we assume n, m ∈ N and a, b ∈ Σ - 0 . Well-shapedness. We rst show why we need our assumption on the existence of a shape of each constructor symbol. Consider the processes:

P = in(c, x).out(c, aenc(a, n , x)) Q = in(c, x).out(c, hash(n))
P is not a process according to our grammar since it involves a term that is not well-shaped. Indeed x appears in key position while a term of the form pub(t) is expected. The trace tr = in(c, pub(a)).out(c, w) is a trace of non-inclusion as R = adec(w, a) gives a message in the P side but not in the Q side.

If we de ne a structure preserving typing system where δ (x) = τ with τ an initial type, then P is type-compliant as there is only one encrypted subterm in P. However, there is no well-typed attack. Indeed, note rst that we can not have xσ = pub(t) for σ well-typed since δ (x) = δ (xσ) = δ (pub(t)) = pub(δ (t)) which is not an initial type. The term aenc(a, n , xσ) cannot be built by any other recipe as n is unknown from the attacker, and it cannot be opened as xσ is not a key. Therefore, it is indistinguishable from hash(n).

Subterm property. Consider the theory des(f(x)) → g(x) where g is a free symbol. This theory does not satisfy the subterm property and actually violates our main theorem. Consider the processes

P = in(c, x).in(c,).out(c, f(n, x)).out(c, g(n,)) Q = in(c, x).in(c,).out(c, f(n, x)).out(c, g(m,))
Then tr = in(c, a).in(c, a).out(c, w 1).out(c, w 2) is a trace of non-inclusion of P in Q, as exemplied by the recipes R 1 = des(w 1), R 2 = w 2 and the test R 1 = R 2 . Then P is type-compliant even if we chose δ (x) δ () but then for any well-typed substitution σ , xσ σ . Thus the equality R 1 = R 2 does not hold on P side, and there is no way to compare g(n, σ) to anything the attacker may build, as he does not know n. This kind of theories would require to extend the notion of subterm to allow for some variations, relying for example on some form of locality.

Each t i is linear in des(t 1 , . . . , t n) → t 0 .
Consider the rule des(f(x, x,)) → ok, with non linear term f(x, x,), and the processes:

P = in(c, x).in(c,).out(c, f(x, , m)) Q = in(c, x).in(c,).out(c, f(x, n, m))
Then tr = in(c, a).in(c, a).out(c, w) is a trace of non-inclusion. Indeed, after executing tr, the test des(w) yields a message on P side, but not on Q side.

As there is only one encrypted subterm f(x, , m) in P, P is type-compliant for any typing system. So we chose δ (x) = τ and δ () = τ ′ where τ τ ′ . Then, again, for any well-typed substitution, xσ σ so des(f(x, , m))σ is not a message, and it is quite clear we cannot build f(xσ , σ , m) to compare it with f(xσ , n, m) as m is private.

At most one non-linear variable in a rule. Consider the rule des(f(x,), g(x,)) → ok, with non linear variables x and , and the processes:

P = in(c, x).in(c,).out(c, f(x, n)).out(c, g(, n)) Q = in(c, x).in(c,).out(c, f(x, n)).out(c, g(, m))
Then tr = in(c, a).in(c, a).out(c, w 1).out(c, w 2) is a trace of non inclusion. Indeed, the recipe R = des(w 1 , w 2) yields a message on P side, but not on Q side.

There is no uni able encrypted subterm in P, so P is type compliant even if δ (x) δ (). But then for any well-typed substitution, we have xσ σ and so R is not a message in the P side anymore. Moreover, in this example n, m are secret so they cannot be reused to rebuild the messages by the attacker. Therefore there is no well-typed witness of non trace inclusion.

TYPING RESULT FOR REACHABILITY

The goal of this section is to provide the main ingredients of the proof of Theorem 3.8. Some of the lemmas are also useful for the proof of Theorem 3.10 on equivalence.

We rst de ne a notion of simple recipes and we explain how we can restrict ourselves to simple recipes (see Section 4.1). Second, our proof crucially relies on a crafted measure on recipes that we introduce in Section 4.2. A witness of reachability, minimal w.r.t. this measure, will be shown to satisfy some good properties, used to derive a well-typed trace.

Some preliminaries

We introduce the notion of forced normal form, denoted u ։ . This is the normal form obtained when applying rewrite rules as soon as the destructor and the constructor match, for example decrypting a message even with a wrong key. Formally, we de ne the forced rewriting system associated to a set R of rewriting rules.

De nition 4.1. Given a rewriting rule of the form ℓ des → r des as de ned in Section 2.1, its associated forced rewriting rule is ℓ ′ des ։ r des where ℓ ′ des is obtained from ℓ des by keeping only the path to r des in ℓ des . Formally, ℓ ′ des is de ned as follows: (1) ℓ ′ des = des(x 1 , . . . , x n) when r des is a ground term; (2) otherwise denoted p 0 the unique position of ℓ des such that ℓ des | p 0 = r des and p 0 = 1.p ′ 0 , we have that ℓ ′ des is the linear term such that: • for any position p ′ pre x of p 0 , we have that root(ℓ

′ des | p ′) = root(ℓ des | p ′); • ℓ ′ des | p 0 = r des ; • for any other position p ′ of ℓ ′
des , we have that ℓ ′ des | p ′ is a variable. We may note that the forced rewriting system associated to a rewriting system as de ned in Section 2.1 is well-de ned. In particular, given a rewriting rule des(t 1 , . . . , t n) → r des such that r des is a non ground term, there exists a unique position p ′ 0 in t 1 such that t 1 | p ′ 0 = r des . This comes from the fact that r des ∈ St (t 1), and the variable occurring in r des has a unique occurrence in t 1 which is a linear term.

Example 4.2. Going back to our running example, we have that the forced rewriting system R ex f associated to R ex is:

radec(raenc(x, 1 , z), 2) ։ x fst(x,) ։ x snd(x, ։
Regarding symmetric encryption and signature as introduced in Example 2.3, we get:

sdec(senc(x, 1), 2) ։ x getmsg(sign(x,)) ։ x check(x 1 , x 2) ։ ok
Then, given a set R f of rewriting rules, a term u can be rewritten in using R f if there is a position p in u, and a rewriting rule g(t 1 , . . . , t n) ։ t in R f such that u| p = g(t 1 , . . . , t n)θ for some substitution θ , and = u[tθ] p . As usual, we denote ։ * , the re exive-transitive closure of ։. We may note that such a rewriting system is con uent as it terminates and has no critical pair. As usual, the normal form of a term u is denoted u ։ . The forced rewriting system allows more rewriting steps than the original one. We will apply it on recipes to simplify them and avoid detours. The following lemma ensures that the term deduced (in a given frame ϕ) through the recipe R would be the same as the one deduced relying on R ։ as soon as we know that Rϕ↓ is a message. L 4.3. Let ϕ be a Σ 0 -frame, R a Σ 0 -recipe such that Rϕ↓ is a Σ 0 -message, and R ′ be such that R ։ R ′ . We have that R ′ is a Σ 0 -recipe, and R ′ ϕ↓ = Rϕ↓.

In our development, we will consider recipes that have a simple form: they are built using constructor symbols on top of recipes that necessarily extract a subterm of the frame (roughly a recipe made of destructors).

De nition 4.4. A Σ 0 -recipe R is a subterm Σ 0 -recipe if for any Σ 0 -frame ϕ such that Rϕ↓ is a Σ 0 - message, we have that Rϕ↓ ∈ St (ϕ). We say that R is a simple Σ 0 -recipe if R = C[R 1 , . . . , R k] for some context C built using symbols from Σ c ⊎ Σ 0 , and each R i is a subterm Σ 0 -recipe such that root(R i) Σ c .
Simple recipes can be obtained through normalization w.r.t. our forced rewriting system. L 4.5. Let θ be a substitution with dom(θ) ⊆ Σ fresh and whose image contains Σ - 0 -recipes. Let R be a Σ + 0 -recipe in normal form w.r.t. ։ such that (Rθ)ϕ↓ is a Σ + 0 -message for some Σ - 0 -frame ϕ. We have that R ′ is a simple Σ + 0 -recipe for any R ′ ∈ St (R).

Our measure

One key step of the proof is to design a measure that re ects how to transform a trace into a welltyped one. Our transformation will proceed by modifying the recipes used by the attacker to forge messages: instead of sending arbitrarily large messages, he should send only small, well-typed messages. The transformation depends on the trace and the frame ϕ S under consideration and therefore our measure is parameterized by ϕ S . Finally, the measure of a recipe will be determined by three elements, in lexicographic order.

• First, the size of the term computed by R, that is Rϕ S ↓;

• Second, the recipe R should be headed by as much constructor terms as possible. In particular, we will prefer the recipe fst(w), snd(w) over w itself; • Finally, the size of R itself.

The rest of this section is devoted to the de nition of our measure and the establishment of a couple of its properties.

Given a term t ∈ T (Σ, Σ + 0 ⊎ N), we denote Multi(t), the multiset of elements from Σ ⊎ Σ + 0 ⊎ N de ned as follows:

• Multi(a) = {a} when a ∈ Σ + 0 ⊎ N , and

• Multi(f(t 1 , . . . , t n)) = {f} ⊎ Multi(t 1) ⊎ . . . Multi(t n) when f ∈ Σ.
Given a set D of data and a term t ∈ T (Σ, D), the size of t, denote |t |, is the number of function symbols occurring in it. The hat of t is the constructor context R (i.e. a term built on Σ c with some holes) such that t = R[t 1 , . . . , t n] with root(t 1), . . . , root(t n) Σ c . We denote it hat(t).

Given a Σ + 0 -frame ϕ S together with an ordering ≺ on Σ fresh (typically the one corresponding to the order of appearance of these constants in the underlying trace tr S associated to ϕ S), the measure µϕ S associated to a Σ + 0 -recipe R is de ned as follows (using the lexicographic ordering):

(1) µ 1 ϕ S (R) = Multi(Rϕ S ↓)
where elements of the multisets are ordered as follows (c min ∈ Σ - 0):

c min < Σ - 0 {c min } ⊎ Σ c < Σ fresh < Σ d and for elements in Σ fresh , we have that c < c ′ when c ≺ c ′ . (2) µ 2 ϕ S (R) = |Rϕ S ↓| -|hat(R)|. (3) µ 3 (R) = |R|.
Note that c min ∈ Σ - 0 is the minimal Σ - 0 -recipe according to this measure. We start by establishing some properties regarding this measure. First, we may note that the measure µ 2 ϕ S remains positive since, intuitively, the hat of a term can never disappear by rewriting. (this result is formally stated and proved in Appendix B.2 -see Lemma B.1).

Then we can show that if a recipe R 2 is greater than a recipe R 1 and does not yield a message, then R 0 [R 2] is greater than R 0 [R 1]. This technical lemma will be used very often in our proofs, when reasoning about some reduction that failed inside a bigger term. L 4.6. Let ≺ be an ordering on Σ fresh , ϕ S be a Σ + 0 -frame, R 1 , R 2 be two Σ + 0 -recipes such that R 2 ϕ S ↓ is not a Σ + 0 -message, and µ 1 ϕ S (R 1) < µ 1 ϕ S (R 2). Let R 0 be a Σ + 0 -recipe, and p a position in R 0 . We have that:

µ 1 ϕ S (R 0 [R 1] p) < µ 1 ϕ S (R 0 [R 2] p). The proof of Lemma 4.6 is given in Appendix B.2. It relies on the fact that R 0 [R 1] may only reduce more than R 0 [R 2].
The measure decreases when applying forced reduction.

L 4.7. Let ≺ be an ordering on Σ fresh , ϕ S be a Σ + 0 -frame, and R, R ′ be two

Σ + 0 -recipes such that R ։ R ′ . We have that µ ϕ S (R ′) < µ ϕ S (R).
The proof of Lemma 4.7 is given in Appendix B.2. Intuitively, if R ։ R ′ then we consider the instantiated rule ℓ des θ ։ r des θ that has been applied. Either ℓ des θϕ S ↓ is a message. Then both R and R ′ yield the same term, that is Rϕ S ↓ = R ′ ϕ S ↓. The two rst items of the measure are unchanged and we conclude thanks to the third item since R ′ is smaller than R. In case ℓ des θϕ S ↓ is not a message, we conclude by Lemma 4.6.

Completeness

We are now ready to prove the core part of Theorem 3.8. = == ⇒ (P; ϕ S ; σ S ; i) such that tr S = tr. This is done inductively in the number of execution steps, by modifying the recipes used by the adversary: given a recipe R, some parts of R will be replaced by fresh constants from Σ fresh . Roughly, we will show that tr is actually an instance of tr S in which the fresh constants of tr S are replaced by recipes over the current frame ϕ S .

We rst note that once the recipes are xed (by θ in the following lemma), the underlying terms -computed by the recipes -are entirely determined. L 4.8. Let ϕ S be a Σ + 0 -frame together with ≺ a total ordering on dom(ϕ S). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , and for any c ∈ Σ fresh occurring in ϕ S we have that c ∈ dom(θ) and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)). Moreover, we assume that in case c ∈ Σ fresh occurs in wϕ S , then w ′ ≺ w for any w ′ ∈ vars(cθ). We consider the substitution λ whose domain is dom(θ), and such that:

cλ = (cθ)(ϕ S λ)↓ for any c ∈ dom(λ).
The substitution λ is well-de ned. Moreover, if (cθ)ϕ S ↓ is a Σ + 0 -message for each c ∈ dom(θ), and (cθ)ϕ S ↓ is an atomic Σ + 0 -message when c ∈ Σ atom fresh , then cλ is a Σ - 0 -message for each c ∈ dom(λ), and cλ is an atomic Σ - 0 -message when c ∈ Σ atom fresh . We call λ the rst-order substitution associated to θ through ϕ S .

The fact that λ is well-de ned comes from the recursive application of the recipes de ned by θ , thanks to the order on the variables. This lemma is formally proved in Appendix B. [START_REF] Almousa | Typing and Compositionality for Security Protocols: A Generalization to the Geometric Fragment[END_REF].

The relation cλ = (cθ)(ϕ S λ)↓ established by Lemma 4.8 can be generalized to arbitrary recipes R. L 4.9. Let ϕ S be a Σ + 0 -frame together with ≺ a total ordering on dom(ϕ S). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , and for any c ∈ Σ fresh occurring in ϕ S we have that c ∈ dom(θ) and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)). Moreover, we assume that in case c ∈ Σ fresh occurs in wϕ S , then w ′ ≺ w for any w ′ ∈ vars(cθ). Let λ be the rst-order substitution associated to θ through ϕ S .

Assume that for any c ∈ dom(λ), we have that cλ is a Σ - 0 -message. Moreover, cλ is an atomic

Σ - 0 - message when c ∈ Σ atom fresh . Let R ∈ T (Σ, Σ - 0 ⊎ dom(θ) ⊎ dom(ϕ S)) such that Rϕ S ↓ is a Σ + 0 -message. We have that (Rθ)(ϕ S λ)↓ = (Rϕ S ↓)λ.
The proof follows from an induction on R. The base case is ensured by Lemma 4.8. A formal proof is given in Appendix B.3.

We also note that execution traces do not introduce new encrypted subterms: they are all instances of the initial encrypted subterms. (2) Moreover, in case σ is an mgu between pairs of terms occurring in ESt (K 0), then we have that

ESt

(K σ) ⊆ ESt (K 0)σ .
The rst property follows from the de nition: the processes of K are included in those of K 0 and the output terms stored in the frame ϕ of K appear initially in the processes of K 0 . The second property comes from the fact that uni cation does not create new encrypted subterm. A formal proof is given in Appendix B.3.

Given K 0 = (P 0 ; ϕ 0 ; ∅; ∅) be an initial Σ - 0 -con guration and (tr S , ϕ S) ∈ trace Σ + 0 (K 0), we consider the order ≺ induced by tr S . It is de ned on the subset of W ⊎ Σ fresh that correspond to elements that occur in tr S and ϕ S as follows:

u ≺ ⇔ either u ∈ dom(ϕ 0) and dom(ϕ 0) or u occurs in tr S before the rst occurrence of in tr S .

We are now ready to state how we transform a trace (tr, ϕ) into a well-typed trace (tr S , ϕ S). P 4.11. Let K P = (P 0 ; ϕ 0 ; ∅; i 0) be an initial Σ - 0 -con guration, and (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ . Then, there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) with underlying substitution σ S with dom(σ S) = dom(σ) such that σ S = mgu(Γ)ρ, as well as two substitutions λ and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.
• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ, σ = σ S λ, and (tr S θ)ϕ↓ = trϕ↓.

The fact that (tr S , ϕ S) is well typed is ensured by σ S = mgu(Γ)ρ. Indeed, since Γ is a set of uni able encrypted subterms of the protocol, we know that mgu(Γ) is well-typed (by assumption on the protocol). Hence σ S is well-typed. Therefore Theorem 3.8 is a direct consequence of Proposition 4.11 (the details are provided in Appendix B.3).

The proof of Proposition 4.11 is the key step for proving the existence of a well-typed trace. We provide here a detailed sketch of proof while the full proof can be found in Appendix B.3. We omit here the subtleties between Σ + 0 and Σ - 0 . Proposition 4.11 is proved by induction. Consider an execution trace

K P tr - -→ * (P; ϕ -; σ -; i -) α -→ (P; ϕ; σ ; i)
By induction, there exist ϕ - S , and σ - S such that

K P tr - S -→ * (P; ϕ - S ; σ - S ; i -)
with corresponding λ -, and θ -as speci ed in the proposition. We consider the transition α.

• The case of a phase is immediate: (tr - S , ϕ - S) can be easily extended. • The case of an output, i.e. α = out(c, w) with a corresponding process out(c, u).P ready to emit, is relatively simple. We simply need to guarantee that uσ - S is a message, which follows from the fact that uσ -is a message and σ -= σ - S λ -. • The di cult case is the input case: α = in(c, R), with a corresponding process in(c, u).P ready to receive. We have that Rϕ -↓ = uσ . We are looking for R S such that

(R S θ -)ϕ -↓ = uσ
Such a R S exists since we could take R. We consider the minimal R S , w.r.t. our measure, that satis es this property.

Step 1 We rst prove that R S ϕ S ↓ is a message: if this is not the case, we show that this contradicts the minimality of R S w.r.t. the measure.

Step 2 We then show that R S = C[R 1 , . . . , R n] where C is a context of constructors and R i ϕ S ↓ are encrypted subterms. Indeed, if R i ϕ S ↓ was headed by a transparent function, we could push it into the context C and obtain a smaller R S (w.r.t. item 2 of the measure). In other words, we show that R S is a simple recipe.

Step 3 R S still does not satisfy the requirements of Proposition 4.11. It could still be a "big" recipe, that does not satisfy the relation

R S ϕ S ↓ = uσ S
needed to pass the input action. Intuitively, we build R S from R S by "cutting" the parts that go beyond uσ S . By Lemma 4.9, we have that (R S ϕ S ↓)λ = uσ S λ. Let's consider a leaf c of R S that goes beyond uσ S . If R S ϕ S ↓ uσ S , we can show that either c appears in the context C, then we simply cut this part from the context C.

or c belongs to one of the R i . Then, R i ϕ S ↓ is an encrypted subterm of ϕ S which is equal to an encrypted subterm of uσ S . By Lemma 4.10, they are subterms of Γ and therefore, thanks to the application of the mgu, they are equal (thus there is no need to "cut"). These three steps are highlighted in the detailed proof.

EQUIVALENCE

We now show how to extract a well-typed witness of non trace inclusion K P t K Q from an arbitrary witness. Compared with the proof for reachability, the proof starts similarly: from a trace (tr, ϕ) ∈ K P , we build a well-typed trace (tr S , ϕ S) ∈ K P . However, an additional work is needed to show that the corresponding trace (tr S ,ψ S) in K Q is indeed a witness of non trace inclusion, that is, ϕ S s ψ S . This requires to further show that any test T witness of non static inclusion for ϕ s ψ can be transformed into a witness of non static inclusion for ϕ S s ψ S .

Some preliminaries

We introduce a slightly di erent notion of static inclusion where the attacker is also given the ability to check whether a message is atomic, i.e. a name in N , a constant in Σ - 0 ⊎ Σ atom fresh , or a constant in Σ of sort atom. This new equivalence actually coincides with the original one.

De nition 5.1. Let ϕ 1 , and ϕ 2 be two Σ 0 -frames. We write ϕ 1 ⊑ atom s ϕ 2 w.r.t. Σ 0 when dom(ϕ 1) = dom(ϕ 2), and:

• for any Σ 0 -recipe R, we have that Rϕ 1 ↓ is a Σ 0 -message implies that Rϕ 2 ↓ is a Σ 0 -message;

• for any Σ 0 -recipe R, we have that Rϕ 1 ↓ is an atomic Σ 0 -message, implies that Rϕ 2 ↓ is an atomic Σ 0 -message; and • for any Σ 0 -recipes R, R ′ such that Rϕ 1 ↓, R ′ ϕ 1 ↓ are Σ 0 -messages, we have that:

Rϕ 1 ↓ = R ′ ϕ 1 ↓ implies Rϕ 2 ↓ = R ′ ϕ 2 ↓.
Example 5.2. To illustrate the de nition above and its di erence with the original de nition of static equivalence, we consider Σ sign as described in Example 2.3. Let ϕ = {w ⊲ n} and ψ = {w ⊲ hash(n)} where n ∈ N .

We have that ϕ ⊑ atom s ψ . Indeed, we have that wϕ↓ is an atomic message, whereas wψ ↓ is not. Such a test is not possible when considering ⊑ s . However, relying on a non-linear rule of our rewriting system, here check(sign(x,), vk()) → ok, we can consider another test that will witness this non-inclusion, namely check(sign(w, w), vk(w)) = ok. Indeed such a test holds in ϕ but not in ψ .

More generally, we can show that ⊑ atom s coincides with ⊑ s . L 5.3. Let ϕ 1 and ϕ 2 be two Σ 0 -frames. We have that ϕ 1 ⊑ s ϕ 2 if, and only if, ϕ 1 ⊑ atom s ϕ 2 .

P

. The proof of the lemma relies on the fact that the attacker may always emulate the atomicity test using one of the non-linear rules, as illustrated in Example 5.2. In case ϕ 1 ⊑ atom s ϕ 2 , it is easy to see that ϕ 1 ⊑ s ϕ 2 . Therefore, we consider the other implication. Let ϕ 1 and ϕ 2 be two Σ 0frames such that ϕ 1 ⊑ s ϕ 2 , we have to establish that ϕ 1 ⊑ atom s ϕ 2 . Let R be a Σ 0 -recipe such that Rϕ 1 ↓ is an atomic Σ 0 -message. We have to show that Rϕ 2 ↓ is an atomic Σ 0 -message. By hypothesis, we know that there exists ℓ des → r des ∈ R with ℓ des non-linear, i.e. several occurrences of a variable x with at least one occurring at a key position. Let σ be the substitution with dom(σ) = vars(ℓ des), and img(σ) = {R}, and R ′ = ℓ des σ . We have that R ′ is a Σ 0 -recipe such that R ′ ϕ 1 ↓ is a Σ 0 -message. Indeed, the rewriting rule applies since the same atomic message occurs at each key position.

Relying on our hypothesis ϕ 1 ⊑ s ϕ 2 , we know that both Rϕ 2 ↓ and R ′ ϕ 2 ↓ are Σ 0 -message. In particular, we have that (ℓ des σ)ϕ 2 ↓ reduces using ℓ des → r des meaning that atomic messages occur at each key position, and thus Rϕ 2 ↓ is an atomic Σ 0 -message.

Note that this lemma crucially relies on our assumption that our set of rewriting rules contains at least one non-linear rule.

Our measure. We extend our measure to tests, as considered for checking static inclusion. Formally, a test T is either a single recipe R, or a pair R, R ′ of two recipes. In such a case, i.e. when T is a pair R, R ′ , we de ne:

µ ϕ S (T) = (µ 1 ϕ S (R) ⊎ µ 1 ϕ S (R ′), µ 2 ϕ S (R) ⊎ µ 2 ϕ S (R ′), µ 3 (R) ⊎ µ 3 (R ′)).

Completeness

The equivalence counterpart of Proposition 4.11 is the following proposition, that states that we can transform a witness of non trace inclusion into a well-typed one. P 5.4. Let K P and K Q be two initial Σ - 0 -con gurations such that K Q is action-deterministic, and K P t K Q w.r.t. Σ - 0 . Let (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ be a witness of non-inclusion of minimal length. Then, there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) a witness of this noninclusion with underlying substitution σ S such that σ S = mgu(Γ)ρ, as well as two substitutions λ P and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.
• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ P is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ P , σ = σ S λ P , and (tr S θ)ϕ↓ = trϕ↓.

Exactly like for the reachability case, the fact that (tr S , ϕ S) is well typed is ensured by σ S = mgu(Γ)ρ. Indeed, since Γ is a set of uni able encrypted subterms of K P , we know that mgu(Γ) is well-typed (by assumption on the protocol). Hence σ S is well-typed. Therefore Theorem 3.10 is a direct consequence of Proposition 5.4 (the details are provided in Appendix C).

We provide here a detailed sketch of proof of Proposition 5.4, leaving the full proof in Appendix C. Consider (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ be a witness of noninclusion of minimal length. We explain how to build a well-typed witness of non inclusion. Thanks to Proposition 4.11, there exists a well-typed trace (tr S , ϕ S) ∈ trace Σ + 0 (K P) with underlying substitution σ S such that σ S = mgu(Γ)ρ, and λ P and θ satisfying the conditions of Proposition 4.11. We would like to show that (tr S , ϕ S) is a witness of non-inclusion. There must exist a trace (tr S ,ψ S) ∈ trace Σ + 0 (K Q) otherwise we can already conclude that (tr S , ϕ S) is a witness of non trace inclusion. For the same reason, we must have ϕ S ⊑ s ψ S . Then the rst step of the proof consists in showing that we can instantiate (tr S ,ψ S) by θ and λ Q such that ψ = ψ S λ Q , trψ ↓ = (tr S θ)ψ ↓, and (tr,ψ) ∈ trace Σ - 0 (K Q). We also show that ψ satis es the assumptions of Propositions 4.8 and 4.9. In a second step of the proof, we show that ϕ S ⊑ s ψ S implies ϕ ⊑ s ψ , hence a contradiction. More speci cally, we show by induction on µ ϕ S (T), that: for any test T , if Tθ holds for ϕ then it holds for ψ .

(*) This allows us to conclude that any test T that holds in ϕ also holds in ψ since we may simply consider tests without constants in dom(θ). Hence ϕ ⊑ s ψ .

We consider all the tests de ned by the static inclusion ⊑ atom s . In particular, the attacker can test directly whether a message is an atom or not, which avoids to consider a "big" recipe of the form check(sign(R, R), vk(R)) = ok instead of simply R. We show (*) by induction on our measure. Therefore let's assume that (*) holds for any test T ′ such that µ ϕ S (T ′) < µ ϕ S (T). We consider the three possible cases for T .

• Either T checks whether the term induced by R is a message. We need to show that (Rθ)ϕ↓ is a message implies (Rθ)ψ ↓ is a message. If Rϕ S ↓ is a message then so is Rψ S ↓ by static inclusion and we can rather easily conclude that (Rθ)ψ ↓ is a message. If Rϕ S ↓ is not a message, similarly to the reachability case, we can build smaller tests, apply the induction hypothesis and reconstruct R. An additional di culty comes from the fact that we now also need to transfer the properties on ψ . • Or T checks whether the term induced by R is atomic. We need to show that (Rθ)ϕ↓ is atomic implies (Rθ)ψ ↓ is atomic. Thanks to the previous case, we already know that (Rθ)ψ ↓ is a message. Actually, Rϕ S ↓ must be atomic because (Rθ)ϕ↓ = Rϕ S ↓λ P is atomic and due to the constraints on λ P . We deduce that Rψ S ↓ is atomic by static inclusion, and thus (Rθ)ψ ↓ = Rψ S ↓λ Q is atomic since λ Q preserves atomicity. • Or T is an equality test R = R ′ . If R and R ′ are headed by the same constructor symbol,

we may simply open each recipe and apply the induction hypothesis. Therefore, we may assume that R = C[R 1 , . . . , R n] and R ′ is headed by a destructor. As for the reachability case, we can show that the R i as well as R ′ are subterm recipes yielding an encrypted subterm.

We have that Rϕ S ↓ and R ′ ϕ S ↓ are messages. Either Rϕ S ↓ = R ′ ϕ S ↓. Then this holds for ψ S as well and therefore for ψ . Or Rϕ S ↓ R ′ ϕ S ↓ and yet (Rϕ S)↓λ P = (R ′ ϕ S)↓λ P . Let's consider a leaf position p on which the two terms di er, i.e. p exits in both Rϕ S ↓ and R ′ ϕ S , but Rϕ S ↓| p R ′ ϕ S ↓| p . We assume that p is a leaf of R ′ ϕ S ↓, and since λ P makes these two terms equal, we know that R ′ ϕ S ↓ = c ∈ Σ fresh (the case where p is a leaf of Rϕ S is actually simpler).

either p belongs to one of the R i ϕ S ↓. Then, as for the reachability case, R i ϕ S ↓ is an encrypted subterm of ϕ S which is equal to an encrypted subterm of R ′ ϕ S ↓, and thus an encrypted subterm of ϕ S since R ′ is a subterm recipe. By Lemma 4.10, they are subterms of Γ and therefore, thanks to the application of the mgu, they are equal. -or p belongs to the context C, then we build C from C by replacing C | p by c for all such c.

Consider the corresponding recipe R = C[R 1 , . . . , R n]. We show that the equality R = R ′ holds in ϕ S since we have removed all the di erences. Therefore we have that R = R ′ holds in ψ S . Moreover, the equality R = R holds relying on our induction hypothesis.

EXAMPLES

We review several protocols of the literature and identify whether our main results can be applied, that is, we identify when the protocols satisfy the type-compliance condition. We rst discuss which scenario is considered.

Complete scenario

We explain which scenario and which security property we consider, illustrated on the NSL protocol. As presented in Example 2.4 and Example 2.12, we may need to consider a rich scenario when searching for attacks. In the case of a 2-agent protocol, like the Needham-Schroeder-Lowe protocol, we wish to instantiate the roles P A and P B with di erent combinations of honest and dishonest agents. We consider a and b to be two honest agents, whereas c is dishonest, and denote by P A (z A , z B) (resp. P B (z B , z A)) the role P A (resp. P B) played by agents z A and z B . Then we consider the following:

P semi NSL = P A (a, b) | P B (b, a) | P A (a, c) | P B (b, c) | P A (b, a) | P B (a, b) | P A (b, c) | P B (a, c) P semi
NSL considers all possible combinations of a, b, c within P A and P B , except that we exclude the processes P A (c, a) and P A (c, b) as well as P B (c, b) and P B (c, a). Indeed, these four processes describe the behaviour of a dishonest agent c, which is already included within the semantics of our model. P semi NSL models the possible two-way interactions between honest agents, and between honest agents willing to establish a session with an attacker. Note that processes P A (a, b), P B (a, b) and P B (a, c) correspond respectively to P A , P B and P ′ B in Example 2.4. P semi NSL models a complete scenario with one session only of each possible instantiation of a role. Even though our calculus does not contain replication, type-compliance and well-typedness can easily be lifted to protocols with replication, provided we account for issues arising from the generation of new renamed copies of our processes. In a slightly di erent setting, [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF] has established that type compliance is guaranteed for an unbounded number of sessions as soon as a protocol is type-compliant when 2 sessions are considered for each role and each possible choice of agents. For this reason, we consider a complete protocol P complete NSL = P semi NSL | P ′semi NSL where P ′semi NS is a copy of P semi NSL alpha-renamed to ensure names and variables are all distinct in P complete NSL , and the same type is given to names and variables that have been alpha-renamed. This scenario is complete in the sense that, according to the approach of [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], a richer scenario derived from this one by adding more copies of a process will still be type-compliant according to our de nition (note that no more encrypted subterms will be introduced).

For the security property, we consider the secrecy of a key or a nonce, where secrecy is encoded as a combination of key usability and "which key-concealing". For NSL, we consider secrecy of the nonce n b as received by P A (a, b). To that end we consider two variants of P A (a, b): in the rst one, we add a nal action out(c A , senc(m 1 , n b)), whereas we add out(c A , senc(m 2 , k)) in the second, where k is a fresh nonce, and m 1 and m 2 are two publicly known constants. However, for NSL, the resulting protocols are not type-compliant. Indeed, there is an encrypted subterm aenc(x 1 , pub(sk b), r 3) in P A (Example 2.4) which can be uni ed with other encrypted subterm from the protocol. Note that the scenario we consider is richer than the scenario from Example 3.7, which explains why the typing system considered is not enough to make the entire protocol typecompliant. To ensure type-compliance, we need here to consider a tagged version of the protocol where a public constant is appended to each plaintext in the speci cation. The informal speci cation is given below.

A → B : {1, N a , A} pub(B) B → A : {2, N a , N b , B} pub(A) A → B : {3, N b } pub(B)

Review of key-exchange protocols

We consider several protocols from the literature and investigate their type-compliance for the complete scenario. As well as for the Needham-Schroeder-Lowe protocol, the security property we consider is the secrecy of secret (nonce or session key) exchanged between two honest agents a and b, encoded as a combination of key usability and "which key-concealing". Tuples are encoded directly, without using nested pairs. The complete scenario for a 3-party protocol with a trusted server S is somewhat more complex than for a 2-party protocol. We need to consider a server S willing to establish a session between all pairs of agents in {a, b, c}, in addition of the usual interactions between a, b and c. Each of the protocols is thus modelled as 14 processes, leading to 28 processes after duplication.

Type-compliance of the protocols has been veri ed automatically. In some cases, we needed to tag the protocol to ensure type compliance, as for the case of the NSL protocol. Our ndings are summarized in Figure 3, which describes which protocol is type-compliant, with or without tags. We discuss below each protocol individually.

Wide Mouth Frog. The Wide Mouth Frog protocol can be informally described as follows.

A → S : A, {B, K ab } K as S → B : {A, K ab } K bs
Here we verify the strong secrecy of K ab as received by B. We consider a structure-preserving typing system which associates the type agent to agents a, b, c and S, the type session to negotiated keys between the agents such as K ab and the type longterm to long-term keys K as , K bs and K cs . The constants m 1 and m 2 occurring in the security property (as for the NSL protocol) are typed with a type constant. This protocol is type-compliant, without requiring any additional tagging, as every encrypted subterm is of the form senc(agent, session , longterm), except for the terms that come from the encoding of the security property, which use a constant as plaintext and thus cannot be uni ed with other ciphertext.

Denning Sacco with shared keys. The Denning Sacco protocol can be informally described as follows.

A → S : A, B S → A : {B, K ab , {K ab , A} K bs } K as A → B : {K ab , A} K bs We consider the same typing system as for the Wide Mouth Frog protocol. This protocol is typecompliant, without requiring any additional tagging. The di erence in the arity of the plaintexts in the protocol speci cation ensures all possible uni cations between encrypted subterms occur between encrypted subterms of the same type.

Needham-Schroeder with shared keys. The Needham-Schroeder symmetric key protocol can be informally described as follows.

A → S : A, B, N a S → A : {B, N a , K ab , {A, K ab }K bs } K as A → B : {A, K ab } K bs B → A : {req, N b } K ab A → B : {rep, N b } K ab
This protocol is type-compliant, without requiring any additional tagging, using the same structurepreserving typing system as before.

Yahalom-Lowe. The Yahalom-Lowe protocol can be informally described as follows.

A → B : A, N a B → S : {A, N a , N b } K bs S → A : {B, K ab , N a , N b } K as S → B : {A, K ab } K bs A → B : {A, B, S, N b } K ab
This protocol is type-compliant, without requiring any additional tagging, using the same structurepreserving typing system as before. Note that type-compliance depends on the encoding of tuples: when considered as nested pairs, type-compliance is not guaranteed, as more encrypted subterms become uni able.

Yahalom-Paulson. The Yahalom-Paulson protocol can be informally described as follows.

A → B : A, N a B → S : B, N b , {A, N a } K bs S → A : N b , {B, K ab , N a } K as , {A, B, K ab , N b } K bs A → B : {A, B, K ab , N b } K bs , {N b } K ab
This protocol is not type-compliant. Indeed its formal speci cation contains a term senc(x nb , x K ab), in the encrypted subterms of A, which can be uni ed with any other encrypted subterm from the protocol, such as subterms encrypted with long-term keys K as and K bs . To ensure type-compliance with a non-trivial typing system, we consider a tagged version of the protocol.

A → B : A, N a B → S : B, N b , {1, A, N a } K bs S → A : N b , {2, B, K ab , N a } K as , {3, A, B, K ab , N b } K bs A → B : {3, A, B, K ab , N b } K bs , {4, N b } K ab
Otway-Rees. The Otway-Rees protocol can be informally described as follows.

A → B : M, A, B, {N a , M, A, B}K as B → S : M, A, B, {N a , M, A, B}K as , {N b , M, A, B}K bs S → B : M, {N a , K ab }K as , {N b , K ab }K bs B → A : M, {N a , K ab }K as
This protocol is type-compliant, without requiring any additional tagging, using the same structurepreserving typing system as before. As for the Yahalom-Lowe protocol, type-compliance relies here on the direct encoding of tuples, and would not hold with nested pairs. Actually, we can also consider a di erent typing system which consists of typing the variables used to model ciphertext forwarding using a constant. This does not correspond to the expected type in a normal execution, but we can show that the protocol is type-compliant. This yields an interesting property w.r.t. attack search. Namely, we deduce that it is useless to instantiate these variables with complex terms when looking for an attack.

Denning Sacco with signature. This protocol, presented in [START_REF] Blanchet | Véri cation automatique de protocoles cryptographiques : modèle formel et modèle calculatoire. Automatic veri cation of security protocols: formal model and computational model[END_REF], can be seen as a simpli ed version of the Denning Sacco protocol. It can be can be informally described as follows.

A → B : A, B, {sign(A, B, k , skA)} pub(B) B → A : {m} k
This protocol is type-compliant, without requiring any additional tagging, using the same structurepreserving typing system as before.

E-passport protocols

We also consider two authentication protocols used in the e-passport application, namely the passive authentication (PA) protocol and the active authentication (AA) protocol. These protocols enable a reader (agent R in the following informal speci cations) to authenticate a passport (agent P). The two agents already possess sessions keys thanks to a prior execution of a key-exchange protocol. For this reason, the security property we want to verify here is a variant of unlinkability: we want to model the inability for an attacker to distinguish between a scenario involving Passport 1 and two sessions of Passport 2, and a scenario involving two copies of Passport 1 and only one session of Passport 2. This models the inability for the attacker to link two sessions of a same passport together. We then investigate the type-compliance of the resulting con gurations, and summarize the results in Figure 3. Similarly to the key-exchange protocols, we consider a version of the protocol where each session has been duplicated, to ensure all possible uni cations are observed.

Passive authentication. This protocol can be informally described as follows.

R → P : {read } ksenc , mac({read } ksenc , kmac) P → R : {data P } ksenc , mac({data P } ksenc , kmac)

where data P = d P , sign(hash(d P), skDS), hash(d P) . This protocol is type-compliant, without requiring any additional tagging, using the same structure-preserving typing system as before. Type-compliance arises here from the fact that encrypted subterms in the formal speci cation of the protocol use a xed key, the session key shared between the reader and the passport, preventing uni cation between messages other than the honest execution of the protocol.

Active authentication. This protocol can be informally described as follows.

R → P : {init, r } ksenc , mac({init, r } ksenc , kmac) P → R : {sign(n, r , skP)} ksenc , mac({sign(n, r , skP)} ksenc , kmac)
This protocol is type-compliant, without requiring any additional tagging, using the same structurepreserving typing system as before, and following the same argument as for the PA protocol.

CONCLUSION

We have established a simpli cation result for both reachability and equivalence properties: if there is an attack, then there is a well-typed attack, which reduces the search space. Our result holds for a large class of cryptographic primitives, that encompasses asymmetric encryption, signatures, and hashes, and for a exible notion of typing system, provided the underlying protocol is typecompliant: any two uni able encrypted subterms have the same type.

The natural next step would be to extend results that rely on the previous small attack result [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF], limited to symmetric encryption. For example, we could probably establish a novel decidability result for protocols with nonces, for an unbounded number of sessions, for a large class of cryptographic primitives, generalizing the approach of [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF]. Similarly, we plan to extend the tool SAT-Equiv [START_REF] Cortier | SAT-Equiv: an e cient tool for equivalence properties[END_REF] that (e ciently) decides trace equivalence for a bounded number of sessions. SAT-Equiv is currently limited to symmetric encryption as it relies on [START_REF] Chrétien | Typing messages for free in security protocols: the case of equivalence properties[END_REF]. The extension to asymmetric encryption, signatures and hashes will require further (provably correct) optimizations, in order to preserve the e ciency of the tool.

Finally, typing results can potentially be used for composition results. Given two secure protocols P and Q, they can be safely composed if, intuitively, the execution of P does not interfere with the execution of Q (and conversely). Such composition results have been established for trace properties [START_REF] Almousa | Typing and Compositionality for Security Protocols: A Generalization to the Geometric Fragment[END_REF][START_REF] Ciobâcă | Protocol composition for arbitrary primitives[END_REF][START_REF] Cortier | Safely Composing Security Protocols[END_REF] as well as equivalence properties [START_REF] Arapinis | Composing security protocols: from con dentiality to privacy[END_REF]. We could probably use our typing result to establish composition for equivalence properties and a larger class of primitives and protocols, assuming that protocols have disjoint types, which can be typically enforced by tagging.

A SOUNDNESS PROOFS OF SECTION 3. This Lemma may seem too precise when we want to prove the soundness part of Theorem 3.8. It will be used with its complete power when proving the completeness of Theorem 3.10. See the proof of Proposition 5.4 in Appendix C.

L

A.1. Let K Q = (Q 0 ;ψ 0 ; σ 0 ; i 0) be a Σ - 0 -con guration, and (tr S ,ψ S) ∈ trace Σ + 0 (K Q). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ψ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S). We also assume that (cθ)ψ S ↓ is a Σ + 0 -message for any c ∈ dom(θ) and an atomic one in case c ∈ Σ atom fresh . We have that (tr S θ,ψ S λ) ∈ trace Σ - 0 (K Q) where λ is the rst-order substitution associated to θ through ψ S .

P

.

Since (tr S ,ψ S) ∈ trace Σ + 0 (K Q), we know that K Q = (Q 0 ;ψ 0 ; σ 0 ; i 0) tr S = == ⇒ (Q S ;ψ S ; σ S ; i S).
Given θ and λ as de ned in the lemma, we establish that:

K Q = (Q 0 ;ψ 0 ; σ 0 ; i 0) tr S θ = === ⇒ (Q;ψ ; σ ; i) where Q = Q S , ϕ = ψ S λ, σ = σ S
λ, and i = i S . We show this result by induction on the length of the trace.

Base case: tr is empty. Let (Q;ψ ; σ ; i) = K Q . Since K Q is a Σ - 0 -con guration, we have that ψ λ = ψ , and σ λ = σ . Therefore, the result trivially holds.

Inductive case: tr = tr -.α S . In such a case, we have that:

K Q = (Q 0 ;ψ 0 ; σ 0 ; i 0) tr S = == ⇒ (Q - S ;ψ - S ; σ - S ; i - S) α S = == ⇒ (Q S ;ψ S ; σ S ; i S)
Thanks to our induction hypothesis applied on tr -, we know that:

K Q = (Q 0 ;ψ 0 ; σ 0 ; i 0) tr S θ = === ⇒ (Q -;ψ -; σ -; i -) with Q -= Q - S , ψ -= ψ - S λ, σ -= σ - S λ, and i -= i - S .
We distinguish three cases depending on α S . • Case α S = phase j for some integer j. In such a case, we have that

Q S = Q - S , ψ S = ψ - S , σ S = σ - S , and i S = j > i - S . Let Q = Q -, ψ = ψ -, σ = σ -, i = j. Since i -= i - S < j.
We have that:

(Q -;ψ -; σ -; i -) phase j -----→ (Q -;ψ -; σ -; j) = (Q;ψ ; σ ; i)
We have that Q = Q S , ψ = ψ S λ, σ = σ S λ, and i = i S . It gives us the result.

• Case α S = in(c, R) for some Σ + 0 -recipe R.
In such a case, we have that Q - S = {in(c, u).Q c } ⊎ P, and we have also that uσ - S and Rψ - S ↓ (ground term) are uni able with some substitution τ , and we have that σ S = σ - S ⊎ τ . Thanks to Lemma 4.8, we can apply Lemma 4.9, and thus we have:

(Rθ)ψ -↓ = (Rθ)(ψ S λ)↓ = (Rψ - S ↓)λ = [(uσ - S)τ]λ = u (σ - S ⊎ τ)λ = (u (σ - S λ))(τ λ). Let Q = {Q c } ⊎ P, ψ = ψ -, σ = σ -⊎
τ λ, and i = i -. We have that:

({in(c, u).Q c } ⊎ P;ψ -; σ -; i -) in(c, Rθ) ------→ ({Q c } ⊎ P;ψ -; σ -⊎ τ λ; i -) = (Q;ψ ; σ ; i) We have that Q = Q S , ψ = ψ S λ, i = i S , and σ = σ -⊎ τ λ = σ - S λ ⊎ τ λ = (σ - S ⊎ τ)λ = σ S λ.
It gives us the result.

• Case α S = out(c, w). In such a case, we have that Q - S = Q -= {out(c, u).Q c } ⊎ P, and we have that ψ S = ψ - S ⊎ {w ⊲uσ - S }. Let Q = {Q c } ⊎ P, ψ = ψ -⊎ {w ⊲uσ -}, σ = σ -, and i = i -. We now show that uσ -= uσ - S λ is a Σ - 0 -message. We know that uσ - S is a Σ + 0 -message. Moreover, thanks to Lemma 4.8, we know that cλ is a Σ - 0 -message for each c ∈ dom(λ), and cλ is atomic when c ∈ Σ atom fresh . This allows us to conclude that uσ -= uσ - S λ is a Σ - 0 -message. Therefore, we have that:

({out(c, u).Q c } ⊎ P;ψ -; σ -; i -) out(c, w) ------→ ({Q c } ⊎ P;ψ -⊎ {w ⊲ uσ -}; σ -; i -) = (Q;ψ ; σ ; i).
We have that Q = Q S , σ = σ S λ, i = i S , and ψ = ψ S λ since σ - S λ = σ -by induction hypothesis. It gives us the result.

We may note that the resulting trace tr S θ only contains Σ - 0 -recipes: constants from Σ fresh occurring in tr S have been replaced by θ . Hence, the result.

B PROOFS OF SECTION 4 B.1 Some preliminaries L 4.3.
Let ϕ be a Σ 0 -frame, R a Σ 0 -recipe such that Rϕ↓ is a Σ 0 -message, and R ′ be such that R ։ R ′ . We have that R ′ is a Σ 0 -recipe, and R ′ ϕ↓ = Rϕ↓.

P

. Since R ։ R ′ , we know that there exists a position p in R, a rewriting rule ℓ ′ ։ r associated to ℓ → r ∈ R, and a substitution σ such that R| p = ℓ ′ σ , and

R ′ = R[rσ] p . Since Rϕ↓ is a Σ 0 -message, we know that (ℓ ′ σ)ϕ↓ is a Σ 0 -message. Let t ′ 1 , . . . , t ′ k and des ∈ Σ d be such that ℓ ′ = des(t ′ 1 , . . . , t ′ n). We have that (ℓ ′ σ)ϕ = des((t ′ 1 σ)ϕ, . . . , (t ′ k σ)ϕ).
As (ℓ ′ σ)ϕ↓ is a Σ 0message, it means that ℓ → r applies as it is the only rule reducing des. Hence, we have that des((t ′ 1 σ)ϕ↓, . . . , (t ′ k σ)ϕ↓) → (rσ)ϕ↓. We deduce that (ℓ ′ σ)ϕ↓ = (rσ)ϕ↓, and therefore we have that Rϕ↓ = R ′ ϕ↓. L 4.5. Let θ be a substitution with dom(θ) ⊆ Σ fresh and whose image contains Σ - 0 -recipes. Let R be a Σ + 0 -recipe in normal form w.r.t. ։ such that (Rθ)ϕ↓ is a Σ + 0 -message for some Σ - 0 -frame ϕ. We have that R ′ is a simple Σ + 0 -recipe for any R ′ ∈ St (R).

P

. We prove this result by structural induction on R. Base case: R ∈ W ∪ Σ + 0 . In both cases, the result holds since R is a simple Σ + 0 -recipe. Induction case: We have that R = f(R 1 , . . . , R k) for some f ∈ Σ, and we know that R 1 , . . . , R k are in normal form w.r.t.

։ .

• Case f ∈ Σ c . We have that (Rθ)ϕ↓ = f((R 1 θ)ϕ↓, . . . , (R k θ)ϕ↓) is a Σ + 0 -message for some Σ - 0 -frame ϕ, and thus (R i θ)ϕ↓ is a Σ + 0 -message for i ∈ {1, . . . , k}. Applying our induction hypothesis on R i (1 ≤ i ≤ k), we easily conclude.

• Case f = des ∈ Σ d . Let ℓ des -→ r des be the rule in R such that root(ℓ des) = des, and ℓ ′ des ։ r des its associated forced rewriting rule. If r des ∈ T 0 (Σ c , ∅) then we have that R ։ r des , which is impossible as R is in normal form w.r.t. ։. Thus, there is a unique position p 0 of ℓ des such that ℓ des | p 0 = r des and p 0 = 1.p ′ 0 . We know that each R i is in normal form w.r.t. ։, and we have

(R i θ)ϕ↓ is a Σ + 0 -message (1 ≤ i ≤ k) as (Rθ)
ϕ↓ is a Σ + 0 -message. Thus, our induction hypothesis applies and we deduce that any subterm of R i is a simple

Σ + 0 -recipe (1 ≤ i ≤ k). We rst assume that R 1 is a subterm Σ + 0 -recipe. Let ψ be Σ + 0 -frame such that Rψ ↓ is a Σ + 0 - message. We have that Rψ ↓ ∈ St (R 1 ψ ↓) ⊆ St (ψ)
. Thus, R is a subterm Σ + 0 -recipe, and thus a simple Σ + 0 -recipe. Otherwise, we have that

R 1 = C[R ′ 1 , . . . , R ′ k ′]
for some context built using symbols from Σ c ⊎Σ + 0 , and each

R ′ j (1 ≤ j ≤ k ′) is a subterm Σ + 0 -recipe such that root(R ′ j) Σ c . We have that R = des(C[R ′ 1 , . . . , R ′ k ′], R 2 , . . . , R k)
, and p 0 does not correspond to a position of the context C since R is in normal form w.r.t. ։. Let p ′ be the longest pre x of p ′ 0 that corresponds to a position of C. We have that

C[R ′ 1 , . . . , R ′ k ′]| p ′ = R ′ j for some j. Let ψ be Σ + 0 -frame such that
By induction hypothesis we have:

Multi(R ′ j [R 1 ϕ S ↓] p ′) ≤ (Multi(R ′ j ϕ S [] p ′↓) { })⊎Multi(R 1 ϕ S ↓)
. Therefore, we have that:

Multi(R 0 [R 1] p ϕ S ↓) ≤ {f} ⊎ (⊎ i j Multi(R ′ i ϕ S ↓)) ⊎ (Multi(R ′ j ϕ S [] p ′↓) { }) ⊎ Multi(R 1 ϕ S ↓) But R ′ j ϕ S [] p ′↓
is not a message, and thus no reduction can occur above . Thus:

Multi(R 0 ϕ S [] p ↓) = {f} ⊎ (⊎ i j Multi(R ′ i ϕ S ↓)) ⊎ Multi(R ′ j [] p ′ϕ S ↓
). Hence, we deduce that:

Multi(R 0 ϕ S [] p ↓) { } = {f} ⊎ (⊎ i j Multi(R ′ i ϕ S ↓) ⊎ (Multi(R ′ j [] p ′ϕ S ↓) { }) We deduce: Multi(R 0 [R 1] p ϕ S ↓) ≤ (Multi(R 0 [] p ϕ S ↓) { }) ⊎ Multi(R 1 ϕ S ↓) This proves the claim. Now, as R 2 ϕ S ↓ is not a message, R 0 [R 2] p ϕ S ↓ = (Multi(R 0 ϕ S [] p ↓) { }) ⊎ Multi(R 2 ϕ S ↓). Since µ 1 ϕ S (R 1) < µ 1 ϕ S (R 2)
, relying on our claim, we easily deduce that

µ 1 ϕ S (R 0 [R 1] p) < µ 1 ϕ S (R 0 [R 2] p). L 4.7.
Let ≺ be an ordering on Σ fresh , ϕ S be a Σ + 0 -frame, and R, R ′ be two Σ + 0 -recipes such that R ։ R ′ . We have that µ ϕ S (R ′) < µ ϕ S (R).

P

. We rst consider the case where Rϕ S ↓ = R ′ ϕ S ↓. Hence, we have that

µ 1 ϕ S (R) = µ 1 ϕ S (R ′
), and we have also that

µ 3 (R) < µ 3 (R ′). Since |Rϕ S ↓| = |R ′ ϕ S ↓|, in order to conclude, it only remains to establish that |hat(R ′)| ≥ |hat(R)|. We have that R = R 0 [R 1 , . . . , R n] with R 0 = hat(R). Since R ։ R ′ , we know that R ′ = R 0 [R 1 , . . . , R ′ i , . . . , R n] with R i ։ R ′ i , and thus |hat(R ′)| ≥ |R 0 |. Now, we consider the case where Rϕ S ↓ R ′ ϕ S ↓. Let ℓ ′
des ։ r des be the rule applied to rewrite R in R ′ . We have that R = R[ℓ ′ des δ] p and R ′ = R[r des δ] p for some position p, and some substitution δ . Therefore, we have that

Rϕ S ↓ = (Rϕ S)[(ℓ ′ des δ)ϕ S ↓] p ↓ and R ′ ϕ S ↓ = (Rϕ S)[(r des δ)ϕ S ↓] p ↓. By Lemma B.

2, and as ([ℓ ′

des δ]ϕ S ↓) does not reduce (otherwise we would have that Rϕ S ↓ = R ′ ϕ S ↓) we have that Multi((ℓ ′ des δ)ϕ S ↓) > Multi([r des δ]ϕ S ↓). We deduce that µ 1 ϕ S (ℓ ′ des δ) > µ 1 ϕ S (r des δ). Then Lemma 4.6 allows to conclude that µ 1 ϕ S (R ′) < µ 1 ϕ S (R).

B.3 Completeness L B.4. Let ϕ S be a Σ + 0 -frame together with ≺ a total ordering on dom(ϕ S). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , and for any c ∈ Σ fresh occurring in ϕ S we have that c ∈ dom(θ) and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)). Moreover, we assume that in case c ∈ Σ fresh occurs in wϕ S , then w ′ ≺ w for any w ′ ∈ vars(cθ).

We have that any constant c ′ ∈ Σ fresh that occurs in (cθ)ϕ S ↓ is such that rank(c ′) ≺ rank(c) where rank(c) = max ≺ {w | w ∈ vars(cθ)}) when {w ∈ vars(cθ)} ∅, and ⊥ otherwise.

P

. Let ϕ S be a Σ + 0 -frame as de ned in the lemma, and c ∈ dom(θ). Let c ′ ∈ Σ fresh be a constant that occurs in (cθ)ϕ S ↓. In case rank(c) = ⊥, then it means that vars(cθ) = ∅, and thus no constant from Σ fresh occurs in cθ . Therefore, we are done. Now, let w i = rank(c), we have that vars(cθ) ⊆ {w | w w i }, and by hypothesis on θ , we have that rank(c ′) ≺ w i for any constant c ′ ∈ Σ fresh occurring in (cθ)ϕ S , and thus we have that rank(c ′) ≺ rank(c). L 4.8. Let ϕ S be a Σ + 0 -frame together with ≺ a total ordering on dom(ϕ S). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , and for any c ∈ Σ fresh occurring in ϕ S we have that c ∈ dom(θ) and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)). Moreover, we assume that in case c ∈ Σ fresh occurs in wϕ S , then w ′ ≺ w for any w ′ ∈ vars(cθ). We consider the substitution λ whose domain is dom(θ), and such that: cλ = (cθ)(ϕ S λ)↓ for any c ∈ dom(λ).

The substitution λ is well-de ned. Moreover, if (cθ)ϕ S ↓ is a Σ + 0 -message for each c ∈ dom(θ), and (cθ)ϕ S ↓ is an atomic Σ + 0 -message when c ∈ Σ atom fresh , then cλ is a Σ - 0 -message for each c ∈ dom(λ), and cλ is an atomic Σ - 0 -message when c ∈ Σ atom fresh . We call λ the rst-order substitution associated to θ through ϕ S .

P

. Let dom(ϕ S) = {w 1 , . . . , w n } be such that w 1 ≺ w 2 ≺ . . . ≺ w n . We show this result by induction on rank(c) relying on the order ≺.

Base case: c ∈ dom(θ) such that rank(c) = ⊥. In such a case, we have that vars(cθ) = ∅, and thus cλ = (cθ)↓ is well-de ned. Moreover, assuming that (cθ)ϕ S ↓ = (cθ)↓ is Σ + 0 -message, then we know that it is actually a Σ - 0 -message, and thus cλ is a Σ - 0 -message which is atomic in case (cθ)ϕ S ↓ is atomic.

Inductive step: c ∈ dom(θ) such that rank(c) = w i . Let λ i be the susbtitution which coincides with λ on its domain dom(λ i) = {c ′ | c ′ ∈ dom(λ) and rank(c ′) ≺ w i }. We have that λ i is wellde ned, and actually we have that w j ϕ S λ i = w j ϕ S λ for any w j w i . Since rank(c) = w i , we know that vars(cθ) ⊆ {w 1 , . . . , w i }, and thus cλ = (cθ)(ϕ S λ)↓ = (cθ)(ϕ S λ i)↓ is well-de ned. Moreover, assuming that (cθ)ϕ S ↓ is a Σ + 0 -message, then we know that any constant c ′ ∈ Σ fresh occurring in (cθ)ϕ S ↓ is such that rank(c ′) ≺ w i (thanks to Lemma B.4), and thus c ′ λ is a Σ - 0 -message, and an atomic one when c ∈ Σ atom fresh . Thus, we have that (cθ)ϕ S ↓λ is a Σ - 0 -message and an atomic one in case c ∈ Σ fresh atom . Actually, we have that (cθ)ϕ S ↓λ = (cθ)(ϕ S λ)↓ which allows us to conclude. L 4.9. Let ϕ S be a Σ + 0 -frame together with ≺ a total ordering on dom(ϕ S). Let θ be a substitution such that dom(θ) ⊆ Σ fresh , and for any c ∈ Σ fresh occurring in ϕ S we have that c ∈ dom(θ) and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)). Moreover, we assume that in case c ∈ Σ fresh occurs in wϕ S , then w ′ ≺ w for any w ′ ∈ vars(cθ). Let λ be the rst-order substitution associated to θ through ϕ S .

Assume that for any c ∈ dom(λ), we have that cλ is a Σ - 0 -message. Moreover, cλ is an atomic Σ - 0message when c ∈ Σ atom fresh . Let R ∈ T (Σ, Σ - 0 ⊎ dom(θ) ⊎ dom(ϕ S)) such that Rϕ S ↓ is a Σ + 0 -message. We have that (Rθ)(ϕ S λ)↓ = (Rϕ S ↓)λ.

P

. We prove this result by structural induction on R. Base case: R ∈ Σ - 0 ⊎ dom(θ) ⊎ dom(ϕ S). In case R = c 0 ∈ Σ - 0 , then we have that (cθ)(ϕ S λ)↓ = c 0 = (cϕ S ↓)λ). In case R = c ∈ dom(θ), then we have that (cθ)(ϕ S λ)↓ = cλ = (cϕ S ↓)λ thanks to Lemma 4.8. In case R = w ∈ dom(ϕ S), then we have that (cθ)(ϕ S λ)↓ = wϕ S λ↓ = (wϕ S ↓)λ.

Inductive step: Rf(R 1 , . . . , R k). In case f ∈ Σ c , then we have that:

(Rθ)(ϕ S λ)↓ = f((R 1 θ)(ϕ S λ)↓, . . . (R k θ)(ϕ S λ)↓) = f(R 1 ϕ S ↓λ, . . . R k ϕ S ↓λ) = Rϕ S ↓λ.
In case f ∈ Σ d , then for each i ∈ {i, . . . , k}, by hypothesis we have that R i ϕ S ↓ is a Σ + 0 -message. Thus, relying on our induction hypothesis, we have that: (2) Moreover, in case σ is an mgu between pairs of terms occurring in ESt (K 0), then we have that ESt (K σ) ⊆ ESt (K 0)σ .

(Rθ)(ϕ S λ)↓ = f((R 1 θ)(ϕ S λ)↓, . . . , (R k θ)(ϕ S λ)↓)↓ = f((R 1 ϕ S)↓λ, . . . , (R k ϕ S)↓λ)↓ However, we have that Rϕ S ↓λ = f(R 1 ϕ S ↓, . . . , R k ϕ S ↓)↓λ = f(R 1 ϕ S ↓, . . . , R k ϕ S ↓)λ↓ as cλ is a Σ - 0 - message whenever c ∈ dom(λ)

P

. We prove ESt (K σ ′) ⊆ ESt (K 0 σ ′) for any σ ′ which coincide on σ on dom(σ) by induction on the execution K 0 tr -→ K . Base case: tr is empty. In such a case, the result is obvious.

Inductive case: tr = tr 0 • α. We have that K 0 tr 0 --→ K 1 α -→ K where K 1 = (P 1 ; ϕ 1 ; σ 1 ; i 1), and ESt(K 1 σ ′ 1) ⊆ ESt(K 0 σ ′ 1) for any σ ′ 1 which coincide with σ 1 on dom(σ 1). We distinguish three cases depending on α:

• In case α is either a τ action or a phase i action, then σ = σ 1 and St (K) = St (K 1). Therefore, let σ ′ be a substitution which coincides with σ = σ 1 on dom(σ), we have that

ESt(K σ ′) = ESt (K 1 σ ′) ⊆ ESt (K 0 σ ′).
• In case α is an input, then P 1 = in(c, u).P ⊎ P ′ 1 and P = P ⊎ P ′ 1 so St (P) ⊆ St (P 1). Moreover, σ = σ 1 ⊎ τ and dom(τ) = vars(uσ 1). Hence, we have that ESt(τ) ⊆ ESt(uσ 1 τ) = ESt(uσ). We also have ϕ = ϕ 1 , and thus ESt(ϕ) = ESt(ϕ 1). Therefore, Let σ ′ be a substitution which coincides with σ on dom(σ). We have that ESt (K σ ′) ⊆ ESt(K 1 σ ′). Note that σ ′ coincides with σ 1 on dom(σ 1), thus thanks to our induction hypothesis, we know that ESt (K

1 σ ′) ⊆ ESt (K 0 σ ′).
• In case α is an output, then ϕ = ϕ 1 ⊎ {w ⊲ uσ 1 } for some u ∈ St(K 1) and σ = σ 1 . Hence we have that ESt(ϕ) ⊆ ESt (K 1 σ 1). Let σ ′ be a substitution which coincides with σ = σ 1 on dom(σ), we have that

ESt (K σ ′) ⊆ ESt(K 1 σ ′) ⊆ ESt(K 0 σ ′).
This concludes the proof for the rst item.

To prove item 2, we consider σ the mgu between pairs of terms occurring in ESt (K 0), and we show that ESt (K 0 σ) ⊆ ESt (K 0)σ . Note that this inclusion together with item 1 allows us to conclude. Let t ∈ ESt (K 0 σ) be such that t ESt (K 0)σ . Therefore, we have that t ∈ ESt (img(σ)). Let σ = σδ where δ replaces any occurrence of t in img(σ) by a fresh variable x. We have that:

• uσ = σ for any u = ∈ Γ. Indeed, we know that uσ = σ , and thus (uσ)δ = (σ)δ . Since t ESt (K 0)σ , and u, ∈ ESt(K 0), we deduce that (uσ)δ = u (σδ) = uσ and similarly (σ)δ = (σδ) = σ .

• σ is strictly more general that σ . Indeed, we have that σ = στ considering τ = {x → t } and t is an encrypted term, and thus not a variable. This leads to a contradiction since σ = mgu(Γ) and concludes the proof. P 4.11. Let K P = (P 0 ; ϕ 0 ; ∅; i 0) be an initial Σ - 0 -con guration, and (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ . Then, there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) with underlying substitution σ S with dom(σ S) = dom(σ) such that σ S = mgu(Γ)ρ, as well as two substitutions λ and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.
• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ, σ = σ S λ, and (tr S θ)ϕ↓ = trϕ↓.

P

. We know that K P tr = = ⇒ (P; ϕ; σ ; i). Let Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }, and ρ be a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. Let σ S be such that dom(σ S) = dom(σ)

and σ S = mgu(Γ)ρ. As mgu(Γ) is more general than σ , we have σ = mgu(Γ)λ 0 for some λ 0 . Let λ = ρ -1 λ 0 . We have that σ = σ S λ.

We show by induction on the length of a pre x K P tr + = == ⇒ (P + ; ϕ + ; σ + ; i +) of this execution trace that there exists (tr + S , ϕ + S) ∈ trace Σ + 0 (K P) with underlying substitution σ + S = σ S | dom(σ +) , as well as two substitutions θ + and λ + such that:

• dom(θ +) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr + S , we have that c ∈ dom(θ +), cθ + ∈ T (Σ, Σ - 0 ⊎ dom(ϕ + S)), and w ′ ≺ + c for any w ′ ∈ vars(cθ +) (where ≺ + is the ordering induced by tr + S). • for any c ∈ dom(θ +), (cθ +)ϕ + S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ + is the rst-order substitution associated to θ + through ϕ + S . • ϕ + = ϕ + S λ + , σ + = σ + S λ + , and (tr + S θ +)ϕ + ↓ = tr + ϕ + ↓. Base case: tr + is empty. In such a case, we have that dom(σ +) = ∅, and ϕ + = ϕ 0 . Let tr + S = ϵ, ϕ + S = ϕ 0 , and σ + S = ∅. Choosing θ + and λ + such that dom(θ +) = dom(λ +) = ∅, the result trivially holds. Inductive case: tr + = tr -.α. In such a case, we have that:

K P = (P 0 ; ϕ 0 ; ∅; i 0) tr - = == ⇒ (P -; ϕ -; σ -; i -) α = = ⇒ (P + ; ϕ + ; σ + ; i +).
Thanks to our induction hypothesis applied on tr -, we know that there exists (tr - S , ϕ - S) ∈ trace Σ + 0 (K P) with underlying substitution σ - S = σ S | dom(σ -) , as well as two substitutions θ -and λ -such that: • dom(θ -) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr - S we have that c ∈ dom(θ -), cθ -∈ T (Σ, Σ - 0 ⊎ dom(ϕ - S)), and w ′ ≺ -c for any w ′ ∈ vars(cθ -) (where ≺ -is the ordering induced by tr - S). • for any c ∈ dom(θ -), (cθ -)ϕ - S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ -is the rst-order substitution associated to θ -through ϕ - S . • ϕ -= ϕ - S λ -, σ -= σ - S λ -, and (tr - S θ -)ϕ -↓ = tr -ϕ -↓. Let c ∈ Σ fresh and w ∈ dom(ϕ - S) such that c occurs in wϕ S . Then, as c does not occur in the Σ - 0con guration K P , c must have been introduced in an input before the output of w. So c ≺ -w. Let w ′ ∈ vars(cθ -). Then w ′ ≺ -c by de nition of ≺ -. So w ′ ≺ -w and the order induced by ≺ -on dom(ϕ - S) satis es the condition of Lemma 4.8 and Lemma 4.9. We distinguish three cases depending on α.

Case where α = phase j for some integer j. In such a case, we have that P + = P -, ϕ + = ϕ -, σ + = σ -, and i + = j > i -. Let P + S = P - S , ϕ + S = ϕ - S , σ + S = σ - S , and i + S = j. Since i - S = i -< j, we have that:

(P - S ; ϕ - S ; σ - S ; i - S)
phase j

= ===== ⇒ (P + S ; ϕ + S ; σ + S ; j) = (P + S ; ϕ + S ; σ + S ; i + S). Considering θ + = θ -, λ + = λ -, and ≺ + =≺ -, it is easy to show that all our requirements are satis ed.

Case where α = out(c, w 0). In such a case, we have that P -= {out(c, u).P c } ⊎ Q for some u, P c , and

Q, P + = {P c } ⊎ Q, ϕ + = ϕ -⊎ {w 0 ⊲ uσ -}, σ + = σ -, and i + = i -. Let P + S = {P c } ⊎ Q, ϕ + S = ϕ - S ⊎ {w 0 ⊲ uσ - S }, σ + S = σ - S
, and i + S = i - S . We de ne θ + = θ -and λ + = λ -. First, we need to show that uσ - S is a Σ + 0 -message. Thanks to our induction hypothesis, we know that uσ -= uσ - S λ -, and by hypothesis we have that uσ -is a Σ - 0 -message. Thus, in order to conclude, we only have to show that cλ -∈ Σ - 0 implies that c ∈ Σ atom fresh for any c ∈ Σ fresh occurring in uσ - S . Let c ∈ Σ atom fresh occurring in uσ - S . Since uσ -= uσ - S λ -, we know that c ∈ dom(λ -). Assume that cλ -∈ Σ - 0 and let x ∈ dom(σ) dom(mgu(Γ)) be the unique variable such that ρ (x) = c. We have that xmgu(Γ) = x, thus we deduce that cλ -= ((xmgu(Γ))ρ)λ -= xσ - S λ -= xσ -. Hence, we have that xσ ∈ Σ - 0 , and thus ρ (x) = c ∈ Σ atom fresh by de nition of the renaming ρ.

Therefore, we have shown that uσ - S is a Σ + 0 -message, and thus we have that:

(P - S ; ϕ - S ; σ - S ; i - S)
out(c, w 0)

= ======= ⇒ (P + S ; ϕ - S ⊎ {w ⊲ uσ - S }; σ - S ; i - S) = (P + S ; ϕ + S ; σ + S ; i + S). Considering θ + = θ -, λ + = λ -, and ≺ + the extension of ≺ -with u ≺ + w 0 for any u ∈ W ⊎ Σ fresh occurring in tr - S or in dom(ϕ 0), it is easy to show that all our requirements are satis ed. Case where α = in(c, R). We have that P -= {in(c, u).P c } ∪ Q for some u ∈ T 0 (Σ c , Σ - 0 ⊎ N) and Rϕ -↓ = (uσ -)τ for some τ with dom(τ) = vars(uσ -). Moreover, we have that σ + = σ -⊎ τ , (uσ -)τ = uσ + , ϕ + = ϕ -, and P + = {P c } ∪ Q. We consider R S minimal w.r.t. µ ϕ - S such that (R S θ -)ϕ -↓ = (uσ -)τ = uσ + . Note that such a R S exists since R S = R is actually a candidate (but not necessary a minimal one). We can assume w.l.o.g. that R S only use constants from Σ fresh that have been introduced by tr - S , and thus that are in dom(θ -).

Step 1: We prove that R S ϕ - S ↓ is a Σ + 0 -message. Assume that R S ϕ - S ↓ is not a Σ + 0 -message. We take the smallest subterm R ′ of R S such that R ′ ϕ - S ↓ is not a Σ + 0 -message. Let p be such that R S | p = R ′ . As R ′ ϕ - S ↓ is not a Σ + 0 -message, we know that R ′ Σ + 0 ⊎dom(ϕ - S)
. Thus, we have that R ′ = f(R 1 , . . . , R k) for some f ∈ Σ. Moreover, by minimality of R ′ , we know that R i ϕ - S ↓ is a Σ + 0 -message for 1 ≤ i ≤ k. We now establish the following claim:

Claim. If R i ϕ - S ↓ ∈ Σ fresh for some i ∈ {1, . . . , k}, then R S is not minimal. Proof. Assume R i ϕ - S ↓ = c ∈ Σ fresh for some i ∈ {1, . . . , k}.
Note that this implies that c occurs in ϕ - S , and thus c occurs in tr S , and therefore c ∈ dom(θ -). We consider R ′ i = cθ -. Thanks to Lemma 4.9, we have that

(R i θ -)ϕ -↓ = R i ϕ - S ↓λ -. We have that R i ϕ - S ↓λ -= cλ -= (cθ -)(ϕ - S λ -)↓ since λ -is the rst-order substitution associated to θ -through ϕ - S . Thus we have that (R i θ -)ϕ -↓ = (cθ -)ϕ -↓ = (R ′ i θ -)ϕ ′ ↓. Let R S = R S [f(R 1 , . . . , R ′ i , . . . , R k)] p . We have that (R S θ -)ϕ -↓ = (R S θ -)ϕ -↓. We have also that µ 1 ϕ - S (R ′ i) < µ 1 ϕ - S (R i) since R ′ i ϕ - S ↓ = (cθ -)ϕ - S ↓ is a Σ + 0 -
message and it is an atom when c ∈ Σ atom fresh , and R i ϕ - S ↓ = c. Thus, thanks to Lemma 4.6, we deduce that µ 1

ϕ - S (R S) < µ 1 ϕ - S (R S)
. Thus R S is not minimal, and this proves the claim.

We now distinguish two cases depending on whether f ∈ Σ c or f ∈ Σ d .

Case where f ∈ Σ c . R ′ ϕ - S ↓ is either not well-shaped or not well-sorted as it is not a Σ + 0 -message. If it is not well-sorted, then for one of its subrecipes R i , R i ϕ - S ↓ is not an atom (it is well-sorted by minimality of R ′) while it should be. In particular, (R i θ -)ϕ -↓ = R i ϕ - S ↓λ -is an atom. So R i ϕ - S ↓ must be in Σ fresh , which will contradict the minimality of R S thanks to our claim. We deduce that R ′ ϕ - S ↓ is well-sorted. Now, we assume that R ′ ϕ - S ↓ is not well-shaped, we consider the shape of f, sh f = f(s 1 , . . . , s k) for some s 1 , . . . , s k . As R ′ ϕ - S ↓ has a bad shape and is a f-term, there must be a j such that R j ϕ - S ↓ is not an instance of s j . In particular, s j is not a variable and we have that s j = sh g for some function symbol g (thanks to the compatibility of the shapes). We know that R j ϕ - S ↓ is a Σ + 0 -message and thus we have that (R j θ -)ϕ -↓ = (R j ϕ - S ↓)λ -(thanks to Lemma 4.9) is an instance of s j as (Rθ -)ϕ -↓ is a Σ - 0 -message. Relying on our claim, we know that R j ϕ - S ↓ Σ fresh , thus R j ϕ - S ↓ is a g-term, and since we know that R j ϕ - S ↓ is a Σ + 0 -message, we know that it is an instance of s j , yielding to a contradiction.

Case where f = des ∈ Σ d . In such a case, we have that R ′ = des(R 1 , . . . , R k). Let ℓ des = des(t 1 , t 2 , . . . , t k). We distinguish two subcases.

First, we assume that there is some i ∈ {1, . . . , k} such that R i ϕ - S ↓ does not unify with t i . As R i ϕ - S ↓ is a Σ + 0 -message, it has a good shape. Thus, the only way to not unify with the linear term t i whereas R i ϕ - S ↓λ -= (R i θ -)ϕ -↓ (thanks to Lemma 4.9) does, is when R i ϕ - S ↓ = c for some c ∈ Σ fresh . Relying on our claim, we obtain a contradiction.

Second, we assume that R i ϕ - S ↓ uni es with t i for each i ∈ {1, . . . k}. In such a case, we know that ℓ des = des(t 1 , t 2 , . . . , t k) is a non-linear term and we denote x the non linear variable occurring in ℓ des . Let I 0 = {1 ≤ i ≤ k | x occurs in t i }. We know that 1 ∈ I 0 . For any i ∈ I 0 , we denote p i the position in t i such that t i | p i = x.

Since R ′ ϕ - S ↓λ -is a Σ - 0 -message, we know that t = des(R 1 ϕ - S ↓λ -, . . . , R k ϕ - S ↓λ -) uni es with des(t 1 , . . . , t k). Therefore, we know that there exists an atomic Σ - 0 -message a such that t | i .p i = a for any i ∈ I 0 . We know that R ′ ϕ - S ↓ is not a Σ + 0 -message whereas R i ϕ - S ↓ are Σ + 0 -message. Thus, we have that t S = des(R 1 ϕ - S ↓, . . . , R k ϕ - S ↓) does not unify with des(t 1 , . . . , t k). We deduce that for any i ∈ I 0 , we have that either t S | i .p i = a, or t S | i .p i = c for some c ∈ Σ fresh such that cλ -= a. We distinguish two cases depending on whether R 1 ϕ - S ↓| p 1 = c ′ for some c ′ ∈ Σ fresh or not. First, we assume that R 1 ϕ - S ↓| p 1 = c ′ for some c ′ ∈ Σ fresh . Let ν des be the substitution such that xν des = c ′ and ν des = c min for any other variable ∈ vars(ℓ des). Let R ′ = des(R 1 , t 2 ν des , . . . , t k ν des). Actually, we have that R ′ ϕ - S ↓ is a Σ + 0 -message, and thanks to Lemma 4.9, we know that

(R ′ θ -)ϕ -↓ = R ′ ϕ - S ↓λ -. Since R ′ ϕ - S ↓ is a Σ + 0 -message, we have that µ 1 ϕ - S (R ′) < {des}, and thus µ 1 ϕ - S (R ′) < µ 1 ϕ - S (R ′).
We also deduce that (R ′ θ -)ϕ -↓ is a Σ - 0 -message, and we have that (R ′ θ -)ϕ -↓ = (R ′ θ -)ϕ -↓ since the Σ + 0 -recipes R ′ and R ′ coincide on their rst argument. Second, we assume that R 1 ϕ - S ↓| p 1 Σ fresh , i.e. R 1 ϕ - S ↓| p 1 = a. We know that there exists i 0 ∈ I 0 such that R i 0 ϕ - S ↓| p i 0 = c ′ for some c ′ ∈ Σ fresh (otherwise t S will reduce), and we have that c ′ λ -= a. Let ν des be the substitution such that xν des = c ′ θ -and ν des = c min for any other variable ∈ vars(ℓ des).

Let R ′ = des(R 1 , t 2 ν des , . . . , t k ν des). As µ 1 ϕ - S (c ′ θ -) < µ 1 ϕ - S (c ′), we have that µ 1 ϕ - S (R 1)⊎µ 1 ϕ - S (t 2 ν des)⊎. . .⊎µ 1 ϕ - S (t k ν des) < µ 1 ϕ - S (R 1)⊎. . .⊎µ 1 ϕ - S (R k).
Therefore, relying on Lemma B.3, we deduce that:

µ 1 ϕ - S (R ′) = Multi(R ′ ϕ - S ↓) ≤ Multi(des(R 1 ϕ - S ↓, t 2 ν des ϕ - S ↓, . . . , t k ν des ϕ - S ↓)) = {des} ⊎ µ 1 ϕ - S (R 1) ⊎ µ 1 ϕ - S (t 2 ν des) ⊎ • • • ⊎ µ 1 ϕ - S (t k ν des) < {des} ⊎ µ 1 ϕ - S (R 1) ⊎ • • • ⊎ µ 1 ϕ - S (R k) = µ 1 ϕ - S (R ′) Since R 1 ϕ - S ↓ is a Σ + 0 -message, we have that des((R 1 θ -)ϕ -↓, ((t 2 ν des)θ -)ϕ -↓, . . . , ((t k ν des)θ -)ϕ -↓) = des((R 1 ϕ - S)↓λ -, ((t 2 ν des)θ -)ϕ -↓, . . . , ((t k ν des)θ -)ϕ -↓). Such a term uni es with ℓ des since we have that R 1 ϕ - S ↓λ -| p 1 = R 1 ϕ - S ↓| p 1 λ -= aλ -= a,
and for any i ∈ I 0 , we have that:

((t i ν des)θ -)ϕ -↓| p i = (t i ν des)ϕ -↓| p i = ((t i ν des)| p i)ϕ -↓ = (c ′ θ -)ϕ -↓ = c ′ λ -= a.
Thus, we have that (R ′ θ -)ϕ -↓ is a Σ - 0 -message, and we have that (R

′ θ -)ϕ -↓ = (R ′ θ -)ϕ -↓ since the Σ +
0 -recipes R ′ and R ′ coincide on their rst argument.

In both cases, we have seen that (R ′ θ -)ϕ -↓ = (R ′ θ -)ϕ -↓, and also that µ 1

ϕ - S (R ′) < µ 1 ϕ - S (R ′).
Since we know that R ′ ϕ - S ↓ is not a Σ + 0 -message, Lemma 4.6 applies, we obtain that µ 1

ϕ - S (R S [R ′] p) < µ 1 ϕ - S (R S [R ′] p) = µ 1 ϕ - S (R S)
, and this contradicts the minimality of R S .

Step 2: We now prove that R S is a simple Σ + 0 -recipe, in normal form w.r.t. ։ , and of the form C[R 1 , . . . , R n] where for each i ∈ {1, . . . , n}, we have that R i ϕ - S ↓ is either an encrypted term, or a name from N , or a constant from Σ + 0 .

Assume R S is not in normal form w.r.t.

։

. By Lemma 4.7, we know that µ 1

ϕ - S (R S ։) < µ 1 ϕ - S (R S). Moreover, as R S θ -։ * R S ։ θ -, Lemma 4.3 applies: (R S ։ θ -)ϕ -↓ = (R S θ -)ϕ -↓
, and this contradicts the minimality of R S . Therefore, we know that R S is in normal form w.r.t. ։ , and thus R S is a simple Σ + 0 -recipe thanks to Lemma 4.5. Therefore, we have that

R S = C[R 1 , . . . , R n] where each R i is a sub- term recipe with 1 ≤ i ≤ n. If there is i 0 ∈ {1, . . . , n} such that root(R i 0 ϕ - S ↓) = f ∈ Σ c and f is a trans- parent function symbol, then R i 0 ϕ - S ↓ = f(C f 1 [R i 0], . . . , C f k [R i 0])ϕ - S ↓. We consider the context C such that C[R 1 , . . . , R n] = C[R 1 , . . . , f(C f 1 [R i 0], . . . , C f k [R i 0]), . . . , R n]. We have that R ′ S = C[R 1 , . . . , R n] is a Σ + 0 -recipe such that R ′ S ϕ - S ↓ = R S ϕ - S ↓, and thus µ 1 ϕ S (R S) = µ 1 ϕ S (R ′ S), and (R ′ S θ -)ϕ -↓ = R ′ S ϕ - S ↓λ - by Lemma 4.9, which gives (R ′ S θ -)ϕ -↓ = R ′ S ϕ - S ↓λ -= R S ϕ - S ↓λ -= (R S θ -)ϕ -↓. We have that µ 2 ϕ S (R ′ S) < µ 2 ϕ S (R S
) so this contradicts the minimality of R S . Therefore, we deduce that each R i ϕ S ↓ (with 1 ≤ i ≤ n) is either an encrypted term, a constant from Σ + 0 , or a name from N .

Step 3. Let P + S = P + , ϕ + S = ϕ - S , σ + S = σ S | dom(σ +) , and i + S = i - S . We are going to show that there exists a Σ + 0 -recipe R S such that:

(P - S ; ϕ - S ; σ - S ; i - S) in(c, R S)
= ====== ⇒ (P + S ; ϕ + S ; σ + S ; i + S) as well as two substitutions θ + and λ + that satisfy all our requirements.

If R S ϕ - S ↓ = uσ + S , then let R S = R S , θ + = θ -, and λ + = λ -. To conclude, it remains to establish that all our requirements are satis ed. In particular we have to show that (i) (R S θ +)ϕ + ↓ = Rϕ + ↓, and (ii)

σ + = σ + S λ + . (i) We have that (R S θ +)ϕ + ↓ = (R S θ -)ϕ -↓ = uσ + = Rϕ -↓ = Rϕ + ↓. (ii) Let Z = vars(uσ -) = dom(τ). We have that R S ϕ - S ↓ = uσ + S = u (σ - S ⊎σ S | Z) is a Σ + 0 -message, and (R S θ -)ϕ -↓ = Rϕ -↓ = uσ + = u (σ -⊎σ | Z)
. By Lemma 4.9, we know that R S ϕ - S ↓λ -= (R S θ -)ϕ -↓, and thus u

(σ - S λ -⊎ σ S | Z λ -) = u (σ -⊎ σ | Z)
. This allows us to conclude that σ S | Z λ -= σ | Z , and thus we have that:

σ + S λ + = (σ - S ⊎ σ S | Z)λ -= σ - S λ -⊎ σ S | Z λ -= σ -⊎ σ | Z = σ -⊎ τ = σ + .
Therefore, from now on, we assume that R S ϕ - S ↓ uσ + S . Let A be the set of fresh constants that occur until this execution step, i.e. A = St (img(σ + S)) ∩ Σ fresh . We de ne λ + = λ| A . As σ = σ S λ, we deduce σ + = σ + S λ + . Since R S ϕ - S ↓ is a Σ + 0 -message, relying on Lemma 4.9, we deduce that

R S ϕ - S ↓λ + = R S ϕ - S ↓λ -= (R S θ -)ϕ -↓ = Rϕ -↓ = uσ + = (uσ + S)λ + . Let t = R S ϕ S ↓ and = uσ + S .
We have that t and tλ + = λ + . Since t , we know that there exists a position p de ned in t and such that root(t | p) root(| p). Let p be any position de ned in t and such that root(t | p) root(| p). Since tλ + = λ + and dom(λ +) ⊆ Σ fresh , we have that t | p ∈ Σ fresh or | p ∈ Σ fresh .

We rst assume that there exists such a position p that falls outside the context C. More precisely, we have that p = p ′ .p ′′ (with p ′ a strict pre x of p) and C[R 1 , . . . , R n]| p ′ = R i 0 for some i 0 ∈ {1, . . . , n}. Therefore, since R i 0 is a subterm-recipe, we know that t | p ′ = R i 0 ϕ - S ↓ is an encrypted subterm of ϕ - S Relying on Lemma 4.10 and denoting K - S = (P - S ; ϕ - S ; σ - S ; i - S), we have that:

• t | p ′ ∈ ESt (ϕ - S) ⊆ ESt(K - S σ - S) ⊆ ESt(K P σ - S) = ESt (K P (mgu(Γ)| dom(σ - S) ρ)) ⊆ ESt(K P)σ - S . • | p ′ = uσ + S | p ′ ∈ ESt(K P σ + S) ⊆ ESt(K P (mgu(Γ)| dom(σ + S))ρ) ⊆ ESt(K P)σ + S .
This allows us to conclude that there exist t ′ , ′ ∈ ESt (K 0) such that t ′ σ - S = t | p ′ , and ′ σ + S = | p ′ . Since t | p ′ is a Σ + 0 -message, we also know that t ′ σ + S = t | p ′ . Since tλ + = λ + , we know that t | p ′ λ + = | p ′ λ + , and thus (t ′ σ + S)λ + = (′ σ + S)λ + . We have that (t ′ σ + S)λ + = t ′ (σ + S λ +) and also that (′ σ + S)λ + = ′ (σ + S λ +). Since we have that σ + = σ + S λ + , we deduce that t ′ σ + = ′ σ + , and thus t ′ σ = ′ σ . By de nition of σ S , we have that t ′ σ S = ′ σ S . We know that t ′ σ - S = t | p ′ , and since t | p ′ is ground, we deduce that t ′ σ S = t | p ′ . Similarly, we have that ′ σ + S = | p ′ , and since | p ′ is ground, we deduce that ′ σ S = | p ′ . Thus, we have that t | p ′ = | p ′ leading to a contradiction since we have assumed that t and di er below the position p ′ . Now, we know that for any position p de ned in t and such that root 0 -message and it is an atom when c ∈ Σ atom fresh). Moreover, we have that (R ′ S θ -)ϕ -↓ = (R S θ -)ϕ -↓. This will contradict the minimality of R S . Therefore, we have that t | p Σ fresh , and thus | p = c for some c ∈ Σ fresh .

Let p 1 , . . . , p m be the positions such that for each i ∈ {1, . . . , m}, we have that p i is de ned in both t and , and root(t | p i) root(| p i). For each i ∈ {1, . . . , m}, we know that p i is a position of C such that t | p i Σ fresh , and | p i ∈ Σ fresh . We denote c i fresh the constant from Σ fresh such that | p i = c i fresh . Note that it may happen that c i fresh = c j fresh for some i j. Let C be the context obtained from C by putting c 1 fresh at position p 1 , c 2 fresh at position p 2 , ... Let R S = C[R 1 , . . . , R n]. We have that R S ϕ - S ↓ = uσ + S by construction. Let R p i = (C[R 1 , . . . , R n]| p i)θ -for each i ∈ {1, . . . , m}. Thanks to Lemma 4.9, we have that R p i ϕ -↓ = R p i ϕ - S ↓λ -for each i ∈ {1, . . . , m}. As for each i ∈ {1, . . . , m}, we have that R p i ϕ - S ↓λ -= uσ + S λ + | p i , we get that R p i ϕ - S ↓λ -= c i fresh λ + for each i ∈ {1, . . . , m}. Note that in case c i fresh = c j fresh , we have that R p i ϕ -↓ = R p j ϕ -↓. Let θ + = θ -⊎ {c i fresh → R p i | c i fresh dom(θ -)}. In case we have that c i fresh = c j fresh for some i j, we choose arbitrarily between R p i and R p j . Now, it remains to establish that all our requirements are satis ed. In particular, we have to show that:

(i) σ + S = σ - S ⊎ τ S for some τ S such that dom(τ S) = vars(uσ - S) and R S ϕ - S ↓ = (uσ - S)τ S . (ii) for any c ∈ dom(θ +) dom(θ -), (cθ +)ϕ - S ↓ is a Σ + 0 -message, and it is an atom when c ∈ Σ atom fresh . (iii) for any c ∈ dom(θ +) dom(θ -), we have that cλ + = (cθ +)(ϕ - S λ -)↓. (iv) (R S θ +)ϕ + ↓ = Rϕ + ↓.

We prove each item one by one. (i) Let τ S = σ S | dom(τ) . We have that dom(τ S) = dom(τ) = vars(uσ -) = vars(uσ - S). We have shown that R S ϕ - S ↓ = uσ + S , and thus R S ϕ - S ↓ = u (σ - S ⊎ τ S) = (uσ - S)τ S . (ii) Let c ∈ dom(θ +) dom(θ -). We have that c = c i fresh for some i ∈ {1, . . . , m}, and (c i fresh θ +)ϕ - S ↓ = R p i ϕ - S ↓ is a Σ + 0 -message. Assume that c i fresh ∈ Σ atom fresh . In such a case, there exists x i ∈ dom(ρ) such that x i ρ = c i fresh . As x i ρ is atomic, we know that x i σ is atomic (by de nition of ρ), and we have that x i σ = x i σ S λ. Since σ S = mgu(Γ)ρ, we have that x i σ = x i mgu(Γ)ρλ. As x i ∈ dom(ρ), x i dom(mgu(Γ)) by de nition of ρ. So x i σ = x i ρλ = c i fresh λ = c i fresh λ + . Since we have shown that x i σ is atomic, we deduce that c i fresh λ + is atomic. Thus, since we have shown that R p i ϕ - S ↓λ -= c i fresh λ + , we know that R p i ϕ - S ↓λ -is atomic which implies that R p i ϕ - S ↓ is either atomic or a c ∈ Σ fresh with c ∈ dom(λ -). So we can assume c ∈ Σ fresh with c ∈ dom(λ -). There is a x ∈ dom(ρ) such that x ρ = c. We have xσ = xσ S λ = xmgu(Γ)ρλ. As x ∈ dom(ρ), x dom(mgu(Γ)) and xσ = x ρλ = cλ = cλ -. As xσ is atomic, x ρ is atomic (by de nition of ρ), so c is atomic, and thus R p i ϕ - S ↓ is atomic. (iii) Let c ∈ dom(θ +) dom(θ -). We have that c = c i fresh for some i ∈ {1, . . . , m}, and c i fresh λ + = R p i ϕ -↓ = R p i (ϕ - S λ -)↓ = (c i fresh θ +)(ϕ - S λ -)↓. (iv) (R S θ +)ϕ + ↓ = (R S θ -)ϕ -↓ = Rϕ -↓ = Rϕ + ↓.

This concludes the case where α is an input, and we get the result.

We can conclude with the proof of our main theorem on reachability properties. . The converse part is Lemma 3.9. Thus, we now prove the direct part. Let K P be a Σ - 0con guration type-compliant w.r.t. (T 0 , δ 0). Assume K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 . Thanks to Proposition 4.11, we know that there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) with underlying substitution σ S with dom(σ S) = dom(σ) such that σ S = mgu(Γ)ρ, as well as two substitutions λ and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.

• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ, σ = σ S λ, and (tr S θ)ϕ↓ = trϕ↓. Since (tr S θ)ϕ↓ = trϕ↓, we have that tr S = tr. Since we have enough constants of each type, we may assume w.l.o.g. that ρ is well-typed Since K P is type-compliant, we know that encrypted subterms in ESt (K P) which are uni able have the same type. Then, by de nition of a typing system, this allows us to deduce that mgu(Γ) is well-typed, and thus σ S = mgu(Γ)ρ is well-typed. This means that (tr S , ϕ S) is well-typed and concludes the proof. C PROOF OF SECTION 5 P 5.4. Let K P and K Q be two initial Σ - 0 -con gurations such that K Q is action-deterministic, and K P t K Q w.r.t. Σ - 0 . Let (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ be a witness of non-inclusion of minimal length. Then, there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) a witness of this noninclusion with underlying substitution σ S such that σ S = mgu(Γ)ρ, as well as two substitutions λ P and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.

• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ P is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ P , σ = σ S λ P , and (tr S θ)ϕ↓ = trϕ↓.

P

. Let (tr, ϕ) ∈ trace Σ - 0 (K P) be a witness of non-inclusion of minimal length with underlying substitution σ . First, we apply Proposition 4.11. We deduce that there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) with underlying substitution σ S with dom(σ S) = dom(σ) such that σ S = mgu(Γ)ρ, as well as two substitutions λ P and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.

• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message.

• dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ P is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ P , σ = σ S λ P , and (tr S θ)ϕ↓ = trϕ↓. Our goal is to show that (tr S , ϕ S) ∈ trace Σ + 0 (K P) is a witness of K P t K Q w.r.t Σ + 0 . Let ψ S be such that (tr S ,ψ S) ∈ trace Σ + 0 (K Q). Note that in case such a ψ S does not exists, then the result trivially holds. Moreover, we know that ϕ S ⊑ s ψ S (and thus dom(ϕ S) = dom(ψ S)) since otherwise the result trivially holds.

We have that ϕ S is a Σ + 0 -frame and ≺ is an ordering on dom(ϕ S). We have dom(θ) ⊆ Σ fresh and cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)) for any c ∈ dom(θ). Moreover, if c ∈ Σ fresh occurs in wϕ S , then, as c does not occur in K P , it must have been introduced in an input before the output of w. So c ≺ w. Let w ′ ∈ vars(cθ). Then w ′ ≺ c by de nition of ≺. So w ′ ≺ w and the order induced by ≺ on dom(ϕ S) satis es the condition of Lemma 4.8 and Lemma 4.9. (cθ)ϕ S ↓ is a Σ + 0 -message for each c ∈ dom(θ) and (cθ)ϕ S ↓ is an atomic Σ + 0 -message when c ∈ Σ atom fresh . So Lemma 4.8 applies and for each c ∈ dom(λ P), cλ P is a Σ - 0 -message and cλ P is atomic if c ∈ Σ atom fresh . So Lemma 4.9 applies, and for any recipe R such that Rϕ S ↓ is a Σ + 0 -message, we have (Rθ)(ϕ S λ P)↓ = (Rϕ S ↓)λ P . K Q is a Σ - 0 -con guration, and (tr S ,ψ S) ∈ trace Σ + 0 (K Q). Moreover, dom(θ) ⊆ Σ fresh , and c ∈ dom(θ) for each c occurring in tr S . We have dom(ϕ S) = dom(ψ S) by ϕ S ⊑ s ψ S so for each c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)) ⊆ T (Σ, Σ - 0 ⊎ dom(ψ S)). Moreover, if c ∈ Σ fresh occurs in wψ S , then, as c does not occur in the protocol, it must have been introduced in an input before the output of w. So c ≺ w. Let w ′ ∈ vars(cθ). Then w ′ ≺ c by de nition of ≺. So w ′ ≺ w and the order induced by ≺ on dom(ψ S) satis es the condition of Lemma 4.8 and Lemma 4.9. By ϕ S ⊑ s ψ S , (cθ)ψ S ↓ is a Σ + 0 -message for any c ∈ dom(θ) and an atomic one in case c ∈ Σ atom fresh . Hence, we have that both Lemma A.1 and Lemma 4.8 apply. We obtain that (tr S θ,ψ S λ Q) ∈ trace Σ - 0 (K Q) where λ Q is the rst-order substitution associated to θ through ψ S . We also get that cλ Q is a Σ - 0message for each c ∈ dom(λ Q) and it is atomic when c ∈ Σ atom fresh . Therefore, Lemma 4.9 applies, and we have that for any R ∈ T (Σ, Σ - 0 ⊎ dom(θ) ⊎ dom(ψ S)) such that Rψ S ↓ is a Σ + 0 -message, (Rθ)(ψ S λ Q)↓ = (Rψ S ↓)λ Q . Moreover, since λ Q preserves atomicity, (Rψ S ↓)λ Q is a Σ - 0 -message whenever (Rψ S ↓) is a Σ + 0 -message.

In the remaining of this proof, we suppose that ϕ S ⊑ s ψ S (meaning that (tr S , ϕ S) ∈ trace Σ + 0 (K P) is not a witness), and we show that ϕ ⊑ s ψ leading to a contradiction since by hypothesis, we know that (tr, ϕ) ∈ trace Σ - 0 (K P) is a witness, and tr passes in K Q leading to the frame ψ . To establish this result, we rely on Lemma 5.3 and thus we reason with the notion ⊑ atom s . We consider a test T (built on T (Σ, Σ + 0 ∪ dom(ϕ S)) such that Tθ holds in ϕ. We assume that for all T ′ such that µ ϕ S (T ′) < µ ϕ S (T), we have that:

T ′ θ holds in ϕ implies that T ′ θ holds in ψ .

We have to prove that Tθ holds in ψ . We distinguish three cases depending on the form of the test:

(1) The test T is a Σ + 0 -recipe R such that (Rθ)ϕ↓ is a Σ - 0 -message. In such a case, we have to establish that (Rθ)ψ ↓ is a Σ - 0 -message (2) The test T is a Σ + 0 -recipe such that (Rθ)ϕ↓ is an atomic Σ - 0 -message, i.e. (Rθ)ϕ↓ ∈ Σ - 0 ⊎ N . In such a case, we have to establish that (Rθ)ψ ↓ is an atomic Σ - 0 -message. (3) The testT is made of two Σ + 0 -recipes R, R ′ such that both (Rθ)ϕ↓ and (R ′ θ)ϕ↓ are Σ - 0 -messages, and (Rθ)ϕ↓ = (R ′ θ)ϕ↓. In such a case, we have to establish that (Rθ)ψ ↓ = (R ′ θ)ψ ↓.

T 3 . 8 .

 38 Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0). If K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 then there exists a well-typed execution K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) w.r.t. Σ + 0 such that tr ′ = tr. Conversely, if K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) is a well-typed execution w.r.t. Σ + 0 , then there exists K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 such that tr = tr ′ .Given a trace K P tr = = ⇒ (P; ϕ; σ ; i), we need to build a well-typed trace K P tr S

L 4 . 10 .

 410 Let K 0 = (P 0 ; ϕ 0 ; ∅; 0) be an initial Σ 0 -con guration and K = (P; ϕ; σ ; i) be a Σ 0 -con guration such that K 0 tr = = ⇒ K for some tr w.r.t. Σ 0 .(1) We have that ESt (K σ) ⊆ ESt(K 0 σ).

Fig. 3 .

 3 Fig.3. Type-compliance of protocols for Sections 6.2 and 6.3.

 and cλ is an atomic Σ - 0 -message when c ∈ Σ atom fresh by Lemma 4.8. So Rϕ S ↓λ = f(R 1 ϕ S ↓λ, . . . , R k ϕ S ↓λ)↓ = (Rθ)(ϕ S λ)↓.

L 4 . 10 .

 410 Let K 0 = (P 0 ; ϕ 0 ; ∅; 0) be an initial Σ 0 -con guration and K = (P; ϕ; σ ; i) be a Σ 0 -con guration such that K 0 tr = = ⇒ K for some tr w.r.t. Σ 0 .(1) We have that ESt (K σ) ⊆ ESt(K 0 σ).

 (t | p) root(| p), we have that t | p or | p is in Σ fresh , and p is a position of C. If t | p = c ∈ Σ fresh , let R ′ S = R S [cθ -] p , we have that µ | p) (note that R S | p ϕ - S ↓ = c whereas (cθ -)ϕ - S ↓ is a Σ +

T 3 . 8 .

 38 Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0). If K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 then there exists a well-typed execution K P tr ′= == ⇒ (P; ϕ ′ ; σ ′ ; i) w.r.t. Σ + 0 such that tr ′ = tr. Conversely, if K P tr ′ = == ⇒ (P; ϕ ′ ; σ ′ ; i) is a well-typed execution w.r.t. Σ + 0 , then there exists K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ - 0 such that tr = tr ′ . P

 frame, i.e. a substitution where w 1 , . . . , w n are variables in W, and m 1 , . . . , m n are Σ 0 -messages;

	I	(i : in(c, u).P ∪ P; ϕ; σ ; i)	in(c, R)

Acknowledgments

This work has been partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreements No 645865-SPOOC and No 714955-POPSTAR) and the DGA.

Rψ ↓ is a Σ + 0 -message. We have that Rψ ↓ ∈ St (R ′ j ψ ↓) ⊆ St (ψ) as R ′ j is a subterm Σ + 0 -recipe. Thus, R is a subterm Σ + 0 -recipe, and thus a simple Σ + 0 -recipe. This allows us to conclude. B.2 Our measure L B.1. Let ϕ S be a Σ + 0 -frame, and R be a Σ + 0 -recipe. We have that µ 2 ϕ S (R) ≥ 0. P . Let R = R 0 [R 1 , . . . , R n] where R 0 is the hat of R. Since R 0 only contains constructors, we have that Rϕ S ↓ = R 0 [R 1 ϕ S ↓, . . . , R n ϕ S ↓]. Hence, we have that |Rϕ S ↓| ≥ |R 0 | = hat(R), which implies µ 2 ϕ S (R) ≥ 0.

L B.2. Let ≺ be an ordering on Σ fresh , ℓ des -→ r des be a rewriting rule from R (as de ned in Section 2.1), and σ be a substitution such that img(σ) ⊆ T (Σ, Σ + 0 ⊎ N). We have that Multi(r des σ) < Multi(ℓ des σ). This result also holds when considering the forced rewriting associated to a rewriting rule in R.

P

. First, we consider the case where r des ∈ T 0 (Σ c , ∅). In such a case, we have Multi(r des σ) = Multi(r des) < {des} < Multi(ℓ des σ)

Now, we consider the case where r des ∈ St (ℓ des). We have that:

Multi(r des σ) < {des} ⊎ Multi(r des σ) ≤ Multi(ℓ des σ).

Thus, in both cases, we have that Multi(r des σ) < Multi(ℓ des σ). The proof regarding the case of a forced rewriting rule can be done in similar way.

L B.3.

Let ≺ be an ordering on Σ fresh , f ∈ Σ of arity k, and t 1 , . . . , t k ∈ T (Σ, D) for some set D of data. We have that Multi(f(t 1 , . . . , t k)↓) ≤ Multi(f(t 1 ↓, . . . , t k ↓)), and similarly for ։ .

P

. First, we consider the case where f(t 1 , . . . , t k)↓ = f(t 1 ↓, . . . , t k ↓). In such a situation, the result trivially holds. Thus, we know that f = des ∈ Σ d , and des(t 1 , . . . , t k)↓ des(t 1 ↓, . . . , t k ↓). It means that there exists a substitution σ such that: des(t 1 ↓, . . . , t k ↓) = ℓ des σ and des(t 1 , . . . , t k)↓ = r des σ .

Thanks to Lemma B.2, we know that Multi(des(t 1 , . . . , t k)↓ < Multi(des(t 1 ↓, . . . , t k ↓)). This concludes the proof. A similar reasoning allows us to conclude regarding ։ .

L 4.6. Let ≺ be an ordering on Σ fresh , ϕ S be a

. Let R 0 be a Σ + 0 -recipe, and p a position in R 0 . We have that:

. We rst establish the following claim by induction on the length of p (is not a message).

Base case:

Inductive case: p = j.p ′ , and

. Thus, we have that R ′ = f(R 1 , . . . , R k) for some f ∈ Σ. Moreover, by minimality of R ′ , we know that R i ϕ S ↓ is a Σ + 0 -message for 1 ≤ i ≤ k. We now establish the following claim:

Claim. If R i ϕ S ↓ ∈ Σ fresh for some i ∈ {1, . . . , k}, then (Rθ)ψ ↓ is a Σ - 0 -message. Proof. Assume R i ϕ S ↓ = c ∈ Σ fresh for some i ∈ {1, . . . , k}, and let R ′ i = cθ . We have that R ′ i θ = cθ , and thus (R ′ i θ)ϕ↓ = (cθ)ϕ↓, and (R ′ i θ)ψ ↓ = (cθ)ψ ↓. We have that the test c = R i holds in ϕ S , and thus since ϕ S ⊑ s ψ S , it also holds in ψ S . Lemma 4.9 applies, and we obtain:

We have that: As (Rθ)ϕ↓ = (Rθ)ϕ↓ is a Σ - 0 -message, such a test transfers to ψ (relying on our induction hypothesis), and (Rθ)ψ ↓ is a Σ - 0 -message. It proves our claim. We now distinguish two cases depending on whether f ∈ Σ c or f ∈ Σ d .

Case where f ∈ Σ c . In such a case, R ′ ϕ S ↓ is either not well-shaped or not well-sorted. If it is not well-sorted, then for one of its subrecipes R i , R i ϕ S ↓ is not an atom (it is well-sorted by minimality of R ′) while it should be. In particular, (R i θ)ϕ↓ = R i ϕ S ↓λ P is an atom. So R i ϕ S ↓ must be in Σ fresh , which implies by our claim that (Rθ)ψ ↓ is a Σ - 0 -message, and thus we are done. We deduce that R ′ ϕ S ↓ is well-sorted. Now, we assume that R ′ ϕ S ↓ is not well-shaped, we consider the shape of f, sh f = f(s 1 , . . . , s k) for some s 1 , . . . , s k . As R ′ ϕ S ↓ has a bad shape and is a f-term, there must be a j such that R j ϕ S ↓ is not an instance of s j . In particular, s j is not a variable and we have s j = sh g for some function symbol g (thanks to the compatibility of the shapes). But R j ϕ S ↓ is a Σ + 0 -message and thus we know that (R j θ)ϕ↓ = (R j ϕ S ↓)λ P (thanks to Lemma 4.9) is an instance of s j as (R j θ)ϕ↓ is a Σ + 0 -message. Relying on our claim, we know that R j ϕ S ↓ Σ fresh , thus R j ϕ S ↓ is a g-term, and since we know that R j ϕ S ↓ is a Σ + 0 -message, we know that it is an instance of s j , yielding to a contradiction. Case where f = des ∈ Σ d . In such a case, R ′ = des(R 1 , . . . , R k). Let ℓ des = des(t 1 , t 2 , . . . , t k). We distinguish two subcases.

First, we assume that there is some i ∈ {1, . . . , k} such that R i ϕ S ↓ does not unify with t i . As R i ϕ S ↓ is a Σ + 0 -message, it has a good shape. Thus, the only way to not unify with the linear term t i whereas (R i ϕ S)λ P = (R i θ)ϕ↓ (thanks to Lemma 4.9) does, is when R i ϕ S ↓ = c for some c ∈ Σ fresh . Relying on our claim, we obtain a contradiction.

Second, we assume that R i ϕ S ↓ uni es with t i for each i. In such a case, we know that ℓ des = des(t 1 , . . . , t k) is a non-linear term and we denote x the non-linear variable occurring in ℓ des . Let

We know that 1 ∈ I 0 . For any i ∈ I 0 , we denote p i the position in t i such that t i | p i = x. Since R ′ ϕ S ↓λ P is a Σ - 0 -message, we know that t = des(R 1 ϕ S ↓λ P , . . . , R k ϕ S ↓λ P) uni es with des(t 1 , . . . , t k). Therefore, we know that there exists an atomic Σ - 0 -message a such that t | i .p i = a for any i ∈ I 0 . We know that R ′ ϕ S ↓ is not a Σ + 0 -message whereas R i ϕ S ↓ are Σ + 0 -messages. Thus, we have that t S = des(R 1 ϕ S ↓, . . . , R k ϕ S ↓) does not unify with des(t 1 , . . . , t k). We deduce the following fact:

Let c be a constant from Σ fresh such that t S | i .p i = c for some i ∈ I 0 . Let I 1 = {i ∈ I 0 | R i ϕ S ↓| p i = c}. We will build two recipes R ′ and R ′′ derived from R ′ and enjoying some nice properties: in particular both (R ′ θ)ψ ↓ and (R ′′ θ)ψ ↓ will be Σ - 0 -message, and this will allow us to derive that (Rθ)ψ ↓ is a Σ - 0 -message too. Construction of R ′ . Let ν ′ des be the substitution such that xν ′ des = cθ , and ν ′ des = c min for any other variable ∈ vars(ℓ des). For i ∈ {1, . . . , k}, let R ′ i = t i ν ′ des in case i ∈ I 1 , and

) otherwise, we deduce that:

applies, and we obtain

des be the substitution such that xν ′′ des = c, and ν ′′ des = c min for any other variable ∈ vars(ℓ des). For i ∈ {1, . . . , k}, let

. By construction of R ′′ , we have that R ′′ ϕ S ↓ is a Σ + 0 -message. By hypothesis we have that ϕ S ⊑ s ψ S , and thus we deduce that R ′′ ψ S ↓ is a Σ + 0 -message. Then, thanks to Lemma 4.9, we deduce that (R

6 applies, and we obtain

At this point, we have that

message and uni es with t i . We put a cθ in key positions of ℓ des in some

We have that:

message, and so (Rθ)ψ ↓ is a Σ - 0 -message which is the result we want to prove.

Thus, we have that Rϕ S ↓ is a Σ + 0 -message. By ϕ S ⊑ s ψ S , we know that Rψ S ↓ is a Σ + 0 -message, and Lemma 4.9 allows us to conclude that (Rθ)ψ ↓ = Rψ S ↓λ Q is a Σ - 0 -message. (2) R is a Σ + 0 -recipe such that (Rθ)ϕ↓ is an atomic Σ - 0 -message. First, we have that Rϕ S ↓ is a Σ + 0 -message (see case (1)), and (Rθ)ϕ↓ = Rϕ S ↓λ P thanks to Lemma 4.9. As a rst step, we establish that Rψ S ↓ is atomic. As Rϕ S ↓λ P is an atom, we know that Rϕ S ↓ is either an atom from Σ - 0 ∪ N , or a constant from Σ fresh . • If Rϕ S ↓ Σ fresh , then Rϕ S ↓ = Rϕ S ↓λ P is atomic, and relying on our hypothesis ϕ S ⊑ s ψ S , we deduce that Rψ S ↓ is atomic. • If Rϕ S ↓ = c ∈ Σ fresh , then there exists x such that x ρ = c. Since x ∈ dom(ρ), we know that x dom(mgu(Γ)), and thus xmgu(Γ) = x. Therefore, we have that xσ = xσ S λ P = x (mgu(Γ)ρ)λ P = (x ρ)λ P = cλ P = Rϕ S ↓λ P . As Rϕ S ↓λ P is an atom, we deduce that xσ is atomic, and by de nition of ρ, we have that c = x ρ ∈ Σ atom fresh , and thus Rϕ S ↓ is atomic. Relying on our hypothesis ϕ S ⊑ s ψ S , we deduce that Rψ S ↓ = c is atomic.

Since λ Q replaces atoms by atoms, we deduce in both cases that Rψ S ↓λ Q is atomic, and thus (Rθ)ψ ↓ = (Rψ S ↓)λ Q (Lemma 4.9) is an atomic Σ - 0 -message.

(3) R and R ′ are Σ + 0 -recipes, (Rθ)ϕ↓, (R ′ θ)ϕ↓ are Σ - 0 -messages, and (Rθ)ϕ↓ = (R ′ θ)ϕ↓.

Step 1: We prove that R and R ′ are simple Σ + 0 -recipe, in normal form w.r.t. ։ . Moreover, we show that R ′ is a subterm recipe such that R ′ ϕ S ↓ is either an encrypted term, or a name from N , or a constant from Σ + 0 . Regarding R, we show that R is of the form C[R 1 , . . . , R n] where for each i ∈ {1, . . . , n}, we have that R i ϕ S ↓ is either an encrypted term, or a name from N , or a constant from Σ + 0 . We have that (Rθ)ϕ↓ and (R ′ θ)ϕ↓ are Σ - 0 -messages,

↓ which is the result we want to establish. Now, we assume that both R and R ′ are in normal form w.r.t. ։ . Thus, both are simple by Lemma 4.5. In case both R and R ′ have a constructor as root symbol, then this is necessarily the same. Therefore, we have that

↓ which is the result we want to prove.

Therefore we can assume that say R ′ is a subterm-recipe, and R is simple, so R = C[R 1 , . . . , R n] where for each i, R i is a subterm-recipe. Now, assume that there is i 0 such that root(R

, and (Rθ)ϕ↓ = Rϕ S ↓λ P by Lemma 4.9, which gives (Rθ)ϕ↓ = Rϕ S ↓λ P = Rϕ S ↓λ P = (Rθ)ϕ↓. We have that µ 2 ϕ S (R) < µ 2 ϕ S (R). The equality Rϕ S ↓ = Rϕ S ↓ transfers to Rψ S ↓ = Rψ S ↓ by ϕ S ⊑ s ψ S and we deduce (Rθ)ψ ↓ = (Rθ)ψ ↓ by Lemma 4.9. As µ ϕ S (R = R ′) < µ ϕ S (R = R ′), the equality (Rθ)ϕ↓ = (R ′ θ)ϕ↓ transfers to (Rθ)ψ ↓ = (R ′ θ)ψ ↓ and we deduce that (Rθ)ψ ↓ = (R ′ θ)ψ ↓ which is the result we want to prove. Therefore, we deduce that each R i ϕ S ↓ (with 1 ≤ i ≤ n) is either an encrypted term, a constant from Σ + 0 , or a name from N . A similar reasonning allows us to establish that R ′ ϕ S ↓ is either an encrypted term, a constant from Σ + 0 , or a name from N .

Step 2: We now establish that (Rθ)ψ ↓ = (R ′ θ)ψ ↓. Let t = Rϕ S ↓ and = R ′ ϕ S ↓. By Lemma 4.9 and (Rθ)ϕ↓ = (R ′ θ)ϕ↓, we know that tλ P = λ P . If t = , then we have that Rϕ S ↓ = R ′ ϕ S ↓ since ϕ S ⊑ s ψ S . Then by Lemma 4.9, we deduce that

From now on, we assume that t . Since t , we know that there exists a position p de ned in t and such that root(t | p) root(| p). Let p be any position de ned in t and such that root(t | p) root(| p). Since tλ P = λ P , and dom(λ P) ⊆ Σ fresh , we have that t | p ∈ Σ fresh or | p ∈ Σ fresh . We rst assume that there exists such a position p that falls outside the context C. More precisely, we have that p = p ′ .p ′′ (with p ′ a strict pre x of p) and C[R 1 , . . . , R n]| p ′ = R i 0 for some i 0 ∈ {1, . . . , n}. Therefore, since R i 0 ϕ S ↓ is not a leaf (p ′′ ϵ), we know that t | p ′ = R i 0 ϕ S ↓ is an encrypted subterm of ϕ S . Relying on Lemma 4.10, we have that:

This allows us to conclude that there exist t ′ , ′ ∈ ESt (K P) such that t ′ σ S = t | p ′ , and ′ σ S = | p ′ . Since tλ P = λ P , we know that (tλ P)| p ′ = (λ P)| p ′ , thus t | p ′ λ P = | p ′ λ P , and (t ′ σ S)λ P = (′ σ S)λ P . We have that (t ′ σ S)λ P = t ′ (σ S λ P) and also that (′ σ S)λ P = ′ (σ S λ P). Since we have that σ = σ S λ P , we deduce that t ′ σ = ′ σ . By de nition of σ S , we have that t ′ σ S = ′ σ S . Thus, we have that t | p ′ = | p ′ leading to a contradiction since we have assumed that t and di er below the position p ′ . Thus, we know that for any position p de ned in t and such that root(t | p) root(| p), we have that t | p or | p is in Σ fresh , and p is a position of C.

We have that µ 1 ϕ S (R) < µ 1 ϕ S (R) since µ 1 ϕ S (cθ) < µ 1 ϕ S (R| p) (note that R| p ϕ S ↓ = c whereas (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh). Moreover, we have that:

• (Rθ)ϕ↓ = (Rθ)ϕ↓ = (R ′ θ)ϕ↓, and

Thus, by induction hypothesis, we have that (Rθ)ψ ↓ = (R ′ θ)ψ ↓. We also have R| p ϕ S ↓ = c so by ϕ S ⊑ s ψ S , we know that R| p ψ S ↓ = c. By Lemma 4.9, (R| p θ)ψ ↓ = (cθ)ψ ↓. So (Rθ)ψ ↓ = (Rθ)ψ ↓. We deduce (Rθ)ψ ↓ = (R ′ θ)ψ ↓ which is the result we want to prove. Hence, from now on, we assume that t | p Σ fresh , and thus | p = c for some c ∈ Σ fresh . Let p 1 , . . . , p m be the positions such that for each i ∈ {1, . . . , m}, we have that p i is de ned in both t and , and root(t

For each i ∈ {1, . . . , m}, we know that p i is a position of C such that t | p i Σ fresh , and | p i ∈ Σ fresh . We denote c i fresh the constant from Σ fresh such that

Furthermore, we have that Rϕ S ↓ = R ′ ϕ S ↓ by construction. By ϕ S ⊑ s ψ S , we get Rψ S ↓ = R ′ ψ S ↓. By Lemma 4.9, we get (Rθ)ψ ↓ = (R ′ θ)ψ ↓, and thus (Rθ)ψ ↓ = (R ′ θ)ψ ↓ which is the result we want to prove.

We can conclude with the proof of our main theorem on equivalence. T 3.10. Let K P be a Σ - 0 -con guration type-compliant w.r.t. (T 0 , δ 0) and K Q be an actiondeterministic Σ - 0 -con guration. We have that K P t K Q w.r.t. Σ - 0 if, and only if, there exists a witness (tr, ϕ) ∈ trace Σ + 0 (K P) of this non-inclusion such that its underlying execution K P tr = = ⇒ (P; ϕ; σ ; i) w.r.t. Σ + 0 is well-typed. P . The converse part is Lemma 3.11. Thus, we now prove the direct part. Let K P be a Σ - 0con guration type-compliant w.r.t. (T 0 , δ 0) and K Q be an action-deterministic Σ - 0 -con guration. Assume K P t K Q w.r.t. Σ - 0 . Let (tr, ϕ) ∈ trace Σ - 0 (K P) with underlying substitution σ be a witness of non-inclusion of minimal length. Thanks to Proposition 5.4, we know that there exists (tr S , ϕ S) ∈ trace Σ + 0 (K P) a witness of this non-inclusion with underlying substitution σ S such that σ S = mgu(Γ)ρ, as well as two substitutions λ P and θ such that:

• Γ = {(u,) | u, ∈ ESt (K P) such that uσ = σ }.

• ρ is a bijective renaming from variables in dom(σ) dom(mgu(Γ)) to constants in Σ fresh such that x ρ ∈ Σ atom fresh if, and only if, xσ is an atomic Σ - 0 -message. • dom(θ) ⊆ Σ fresh , for any c ∈ Σ fresh occurring in tr S , we have that c ∈ dom(θ), cθ ∈ T (Σ, Σ - 0 ⊎ dom(ϕ S)), and w ′ ≺ c for any w ′ ∈ vars(cθ) (where ≺ is the ordering induced by tr S).

• for any c ∈ dom(θ), (cθ)ϕ S ↓ is a Σ + 0 -message and it is an atom when c ∈ Σ atom fresh . • λ P is the rst-order substitution associated to θ through ϕ S .

• ϕ = ϕ S λ P , σ = σ S λ P , and (tr S θ)ϕ↓ = trϕ↓. First, since K P is type-compliant, we know that encrypted subterms in ESt(K P) which are uniable have the same type. Then, by de nition of a typing system, this allows us to deduce that mgu(Γ) is well-typed. Since we have enough constants of each type, we may assume w.l.o.g. that ρ is also well-typed. Hence, we have that σ S = mgu(Γ)ρ is well-typed, which means that (tr S , ϕ S) is a well-typed witness of the non-inclusion K P t K Q w.r.t. Σ + 0 , and concludes the proof.