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Asynchronous Iterations of Parareal Algorithm for
Option Pricing Models

Frédéric Magoulès∗ Guillaume Gbikpi-Benissan† Qinmeng Zou‡

Abstract

Spatial domain decomposition method has been largely investigated in the last several
decades, while time decomposition seems against intuition, which is not as popular as
the former. However, there are still many attractive methods being proposed, espe-
cially the parareal algorithm, which shows both theoretical and experimental efficiency
in the context of parallel computing. In this paper, we present an original model of
asynchronous variant based on parareal scheme, applied to the European option pricing
problem. Some numerical experiments are given to illustrate the convergence perfor-
mance and computational efficiency of such method.

Keywords: Parallel computing; asynchronous iterations; parareal method; European
options; domain decomposition; time-dependent problems

1 Introduction
Today’s dominating high-performance computer architecture is parallel. Computer Assisted
Engineering (CAE) generally lead to problems that are not naturally parallelizable. Strong
effort was done during the last years to propose high-performance decomposition domain
methods (DDM) that support scalability and reach high rates of speedup and efficiency.

Since about two decades, people have also tried to propose parallel-in-time algorithms.
Although it can be appear as unnatural because of time-line “orientation”, some attempts did
succeed for particular problems or equations, inviting people to look forward and continue
research in this direction. Multiple shooting methods [12, 17] for example were proposed to
allow for parallel computations of initial-value problems of differential equations. Another
approach is the time decomposition method originally introduced by researchers from the
multi-grid field [29, 32] and applied to solve PDEs. Finally, people also tried to apply spa-
tial domain decomposition methods for time dependent problems. The so-called Waveform
relaxation methods (see, e.g., [27]) distribute the computation on parallel computers by par-
titioning the system into subsystems and then use a Picard iteration to compute the global
solution. The major flaw of these methods is their low convergence rate. To make them
efficient, one needs to use time-dependent transmission conditions adapted to the underlying
problem [26].

The recent parareal scheme (resp. PITA algorithm) proposed in [33] (resp. [22]) follows
both multiple shooting and multi-grid approaches. Two levels of grid in time are considered
in order to split the time domain into subdomains. A prediction of the solution is parallel
computed on the fine grid in time. Then at each end-boundary of time subdomains, the
solution makes a jump with the previous initial boundary value (IBV) to the next time
subdomain. A correction of the IBV for the next fine grid iterate is then computed on the
coarse grid in time. Ref. [22] shows that the method converges at least in a finite number of
iterations, due to the propagation of the fine time grid solution as at each iteration k, the
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IBV of the kth time subdomain is exact. Generalizations of the parareal scheme then were
proposed by introducing a wider class of coarse solvers that are not specifically defined on
coarser sub-grids in time. Coarse solvers can be simpler physical models where fine physics
is approximated or simply skipped.

On the other hand, an efficient computational scheme has been proposed to confront the
drawbacks of the classical parallel methods, which is called asynchronous iterative scheme.
The primordial idea was put forward by Chazan and Miranker [13] for the solving of lin-
ear systems, where a necessary and sufficient convergence condition was derived. Several
extensions were then developed based on the operator theory applied to the nonlinear prob-
lems [44, 7, 21, 46]. Furthermore, we cite also the work of Bertsekas and Tsitsiklis [8, 9]
for the general theories of asynchronous iterations, which leads to a great deal of striking
applications (see, e.g., [41, 40]). In [9], the asynchronous scheme is designed to be divided
into two types, which are called totally asynchronous iterations and partially asynchronous
iterations. The major difference consists in whether the bounded assumption being used for
the communication time, where the negative answer was first formalized in [7]. Recently, a
brand-new scheme called asynchronous iterations with flexible communication was proposed
in [20, 45, 24], which was continually under investigation in the following periods [25, 19].
The key idea behind this scheme is that items are sent to the other processors as soon as
it is obtained, regardless of the local completion. Accordingly, such scheme is built upon
the two-stage model, which was introduced in [23], or the partial update situation, see [19]
for further information. An attempt to present all the theoretical and practical efforts is
beyond the scope of our paper, thus we refer the reader to [25, 3] for a broader discussion.

In this paper, we concentrate on a modified parareal algorithm which will be enhanced by
the asynchronous iterative scheme with flexible communication. In Section 2, we formalize
an option pricing model which will be considered to the end. Section 3 gives the details of
asynchronous parareal algorithm. Then, we implement the asynchronous solver in Section
4, where we present the programming trick using an advanced asynchronous communication
library. Finally, Section 5 is devoted to the numerical experiments, and concluding remarks
are presented in Section 6.

2 Problem Formulation

2.1 Overview
An option is a contract that gives its owner the right to trade in a fixed number of shares of
the underlying asset at a fixed price at any time on or before a given date, which is a promi-
nent form of financial derivatives that have been derived from other financial instruments,
mainly used for hedging and arbitrage. The right to buy a security is called a call option,
whereas the right to sell is called a put option.

Option pricing remained a frustrating problem that was obscure to solve, until the revo-
lutionary advent of Black-Scholes model. The pioneering work was done by Black, Merton,
and Scholes [10, 42, 43] in the early 1970s. In quick succession, Cox and Ross [15] proposed
the risk neutral pricing theory, which leads to the famous martingale pricing theory [28] by
Harrison and Kreps. Meanwhile, Cox, Ross, and Rubinstein simplified the Black-Scholes
model, giving birth to the binomial options pricing model [16]. More recently, some stochas-
tic volatility option models have been proposed to better simulate the real volatility in the
financial market (see, e.g., [30, 18]).

To the end, we will investigate the original Black-Scholes equation, to solve the European
call option pricing problem. Consider the following equation

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
= rV, (1)

where V is the price of the option as a function of underlying asset price S and time t and
the parameters are volatility σ and risk-free interest rate r, with the final and boundary
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conditions given by 
V (S, t) = max(S − E, 0), t = T, S ∈ [0,+∞),

V (S, t) = 0, t ∈ [0, T ], S = 0,

V (S, t) ∼ S − Ee−r(T−t), t ∈ [0, T ], S → +∞,

where T is the time to maturity, and E is the exercise price. There are many assumptions
to be held: (i) the underlying asset follows geometric Brownian motion with drift rate µ
and volatility σ constant, (ii) the underlying asset does not pay dividends, (iii) the risk-
free interest rate r is constant, (iv) there are no transaction costs or taxes, (v) trading in
assets is a continuous process, (vi) the short selling is permitted, (vii) there are no arbitrage
opportunities.

2.2 Derivation of the Black-Scholes Equation
To derive this outstanding equation, it is necessary to establish a model for the underlying
asset price. Economic theory suggest that a stock price follows a generalized Wiener process

∆S = νS∆t+ σS∆Z.

The right hand side is composed of two parts. The first contains a drift rate ν, which depicts
the trend of stock price, whereas as the second item is a standard Wiener process, also known
as Brownian motion, with a volatility parameter σ, describing the standard deviation of the
stock’s returns. The stochastic term Z takes on the expression

∆Z = ε
√

∆t,

where ε is a standard normal distribution variable, while stock price follows the lognormal
distribution. In the limit, as ∆t→ 0, this becomes

dS = νSdt+ σSdZ. (2)

Therefore, the option price is a function of stock price and time. From Itô’s lemma [31], it
follows the process

dV = (νS
∂V

∂S
+
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
)dt+ σS

∂V

∂S
dZ. (3)

Since a square-root term
√

∆t exists in the stochastic process, the second-order term is kept
during the Taylor series expansions. It is seen that solving the equation seems obscure in
view of the stochastic term dZ. The main conceptual idea proposed by Black and Scholes
lies in the construction of a portfolio consisting of underlying stock and option that is
instantaneously risk-less. Let Π be the value of portfolio consisting of one short position
derivative and ∂C

∂S units of the underlying asset. Then, the value of the portfolio is given by

Π = −V +
∂V

∂S
S. (4)

Hence, the instantaneous change in the portfolio becomes

dΠ = −dC +
∂C

∂S
dS.

Substituting (2) and (3) yields

dΠ = (−∂C
∂t
− 1

2
σ2S2 ∂

2C

∂S2
)dt. (5)
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The change of the portfolio value is not dependent on dZ, which means that the portfolio
is risk-less during the time interval dt. As mentioned before, there are no arbitrage oppor-
tunities in the financial market, so that the return of this portfolio must be equal to other
risk-free securities. Thus

dΠ = rΠdt. (6)

Substituting (4) and (5) into (6) yields

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0,

where we obtain the original Black-Scholes equation (1), which involves adequate conditions
to reach the final solution.

2.3 Transformation into the Heat Equation
It is seen that the Black-Scholes partial differential equation (1) is a parabolic linear equation,
while the heat equation leads to a simpler one. Accordingly, the transformation from the
original to the latter can simplify the solving process. A change of variables is given as

S = Eex, t = T − 2τ

σ2
, V = Ev.

Substituting into the Black-Scholes equation (1) gives

∂v

∂τ
= (κ− 1)

∂v

∂x
+
∂2v

∂x2
− κv,

where κ = 2r
σ2 . Setting

α =
1

2
(κ− 1), β =

1

2
(κ+ 1), v = e−αx−β

2τu,

then gives the heat equation in an infinite interval

∂u

∂τ
=
∂2u

∂x2
, τ ∈ [0,

Tσ2

2
], x ∈ R. (7)

We notice that the heat equation is forward parabolic, whereas the Black-Scholes equation
is backward. In particular, the initial and boundary conditions become{

u(x, τ) = max(eβx − eαx, 0), τ = 0, x ∈ R,
u(x, τ) ∼ 0, τ ∈ [0, Tσ

2

2 ], x→ ±∞.

Unfortunately, we address the issue that such infinity conditions can not be applied directly
to the discrete applications. A suitably large boundary instead of the original boundary is
supposed to be considered. Accordingly, we choose the precise boundaries as following{

x− = min(x0, 0)− log(4),

x+ = max(x0, 0) + log(4),

such that {
u(x, τ) = 0, τ ∈ [0, Tσ

2

2 ], x = x−,

u(x, τ) = eβx+β
2τ − eαx+α2τ , τ ∈ [0, Tσ

2

2 ], x = x+.

We then notice that the equation (7) can be solved employing appropriate time and space
discretization.
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2.4 Black-Scholes Pricing Formula
Without numerical tools, we can also deduce the solution of (7), called the Black-Scholes
formula, by some analytic procedures. In the case of heat equation, the fundamental solution
is

G(x, τ) =
1√
4πτ

exp(−x
2

4τ
). (8)

In particular, the general solution of the heat equation can be presented by the convolution
integral

u(x, τ) =

∫ +∞

−∞
G(x− y, τ)u0(y)dy,

where u(x, 0) = u0(x) with x ∈ R and τ ≥ 0. Substituting (8) yields

u(x, τ) =
1√
4πτ

∫ +∞

−∞
exp(− (x− y)2

4τ
)u0(y)dy.

We note that applying the initial condition into such eqaution still involves some brute force.
To summarize, the final closed-form solution is

V (S, t) = SN (d1)− Ee−r(T−t)N (d2),

where N (x) is the cumulative distribution function of the standard normal distribution

N (x) =
1√
2π

∫ x

−∞
e−

1
2 z

2

dz,

with the parameters d1 and d2 shown as below

d1 =
ln S

E + (r + σ2

2 )(T − t)
σ
√
T − t

, d2 =
ln S

E + (r − σ2

2 )(T − t)
σ
√
T − t

.

We notice that d2 = d1 − σ
√
T − t.

3 Asynchronous Parareal Algorithm

3.1 Asynchronous Iteration
Let E be a product space with E = E1×· · ·×Ep and let f : E → E be the function defined
by fi : E → Ei with

f(x) = [f1(x), . . . , fp(x)], x = (x1, . . . , xp) ∈ E.

Let k ∈ N, P k ⊆ {1, . . . , p} and P k /∈ ∅. We assume that

∀i ∈ {1, . . . , p}, card{k ∈ N | i ∈ P k} = +∞ (9)

For i = 1, . . . , p and j = 1, . . . , p, let µij(k) ∈ N such that

µij(k) ≤ k, (10)

and satisfying
∀i, j ∈ {1, . . . , p}, lim

k→+∞
µij(k) = +∞. (11)

An asynchronous iteration corresponding to f and starting with a given vector x0 is defined
recursively by

xk+1
i =

{
xki , i /∈ P k,

fi(x
µi
1(k)

1 , . . . , x
µi
p(k)
p ), i ∈ P k.

(12)
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Figure 1: Example of the asynchronous iteration with asynchronous communication.

Figure 2: Example of the synchronous iteration with asynchronous communication.

Note that the assumption (9) illustrates that each processor will proceed the computation
now and again, while (11) indicates that each component used by each processor will be
updated eventually.

On the other hand, Algorithm 1 gives us a computational model of the basic asynchronous
iteration.

Algorithm 1 Asynchronous iteration with asynchronous communication.
1: while not convergence do
2: Receive x from other processors
3: xi ← fi(x)
4: Send xi to other processors
5: end while

It is important to notice that the asynchronous iteration functions well without the syn-
chronization points, while the latter may become a decisive bottleneck. In other words, we
proceed the next iteration using the latest local data rather than waiting for the newest
information from other processors. Finally, we are interested in the operational process of
such iteration. An typical example is showed in Figure 1. To make clear, we illustrate
also the synchronous counterpart in Figure 2 whereby we can gain a better insight of the
asynchronous iterative mechanism.

We now turn to the study of two-stage methods that can be applied to the parareal
algorithm. The original asynchronous two-stage methods were introduced in [23], which are
called outer asynchronous and totally asynchronous respectively. A well-known improve-
ment consists of allowing the intermediate results from the inner level to be used by the
other processors. As a consequence, this method may be performant in some cases taking
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Figure 3: Example of the asynchronous two-stage iteration with flexible communication.

advantage of a better approximation to the solution.
It would obviously be possible to extent the model (12) to the two-stage situation. Let f

: E×E → E be the function defined by fi : E×E → Ei. For i = 1, . . . , p and j = 1, . . . , p,
let ρij(k) ∈ N such that

ρij(k) ≤ k, (13)

and satisfying
∀i, j ∈ {1, . . . , p}, lim

k→+∞
ρij(k) = +∞. (14)

We assume that the conditions (9), (10) and (11) are still vouched in such context. Then,
an asynchronous two-stage iteration with flexible communication corresponding to f and
starting with a given vector x0 is defined recursively by

xk+1
i =

{
xki , i /∈ P k,

fi((x
µi
1(k)

1 , . . . , x
µi
p(k)
p ), (x

ρi1(k)
1 , . . . , x

ρip(k)
p )), i ∈ P k.

(15)

Furthermore, we can establish the computational scheme from the aforementioned math-
ematical model, which is presented in Algorithm 2.

Algorithm 2 Asynchronous two-stage iteration with flexible communication.
1: while not convergence do
2: Receive x from other processors
3: x̂← x
4: Send xi to other processors
5: while not precise enough do
6: xi ← fi(xi, x̂)
7: Send xi to other processors
8: end while
9: end while

Clearly, the crucial property lies in the sending instruction of inner iteration whereby one can
make a transmission without waiting for the local completion in such scope. In this context,
we may fully exploit the latest local approximations to accelerate the global convergence.
In the same manner, Figure 3 provides an example of the asynchronous two-stage iteration
with flexible communication, which illustrates the context of inner/outer iteration (see, e.g.,
[19]).
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Figure 4: Parareal iterative scheme. F propagates step-by-step, whereas G performs only
one step in each subdomain. We compute λn+1 by combining the predictor and the corrector.
Then, continue the next iteration.

3.2 Classical Parareal Algorithm
Given a second-order linear elliptic operator L, consider the following time-dependent prob-
lem 

∂u
∂t (x, t) + Lu(x, t) = f(x, t), t ∈ [0, T ], x ∈ Ω,

u(x, t) = u0(x), t = 0, x ∈ Ω,

u(x, t) = g(x), t ∈ [0, T ], x ∈ ∂Ω,

where the boundary ∂Ω is Lipschitz continuous. The above mathematical description can
be decomposed into N sequential problems

0 = T0 < · · · < Tn = n∆T < · · · < TN = T.

By importing a function λn, we now reconstruct our problem as
∂un

∂t (x, t) + Lun(x, t) = fn(x, t), t ∈ [Tn, Tn+1], x ∈ Ω,

un(x, t) = λn(x), t = Tn, x ∈ Ω,

un(x, t) = g(x), t ∈ [Tn, Tn+1], x ∈ ∂Ω,

(16)

where n = 0, . . . , N − 1, together with the condition

λn+1(x) = lim
ε→0

un(x, Tn+1 − ε).

Now we can solve the subproblems (16) independently with some essential message passing
of the initial boundary values.

The parareal iterative scheme is driven by two operators, G and F , which are called
coarse propagator and fine propagator respectively. On the other hand, we assume that
the time-dependent problem is approximated by some appropriate classical discretization
schemes. Let δt be a fine time step. Each subproblem will be solved at a time by G
with respect to ∆T , and be further solved by F concerning δt. Note that the discretization
schemes exploited for such two operators might be different. Finally, in order to approximate
the solution of (16) in parallel, we arrive at an iterative method

λk+1
n+1 = G(λk+1

n ) + F (λkn)−G(λkn),

which is the parareal iterative scheme, where G(λk+1
n ) is called predictor and the remain is

called corrector, with n = 0, . . . , N − 1 and λ00 = u0. This is therefore a predictor-corrector
scheme. Furthermore, we are obliged to respect two more conditions λ0n+1 = G(λ0n) and
λk+1
0 = λk0 within the iterations. To make clear, Figure 4 illustrates the aforementioned

context and Algorithm 3 gives us the implementation of such method.

8



Algorithm 3 Classical parareal algorithm.
1: n : rank of current processor
2: λ0 = u0
3: for i = 0 to n− 1 do
4: λ0 = G(λ0)
5: end for
6: w = G(λ0)
7: while not convergence do
8: v = F (λ0)
9: wait for the update of λ0 from processor n− 1

10: w̃ = G(λ0)
11: λ = w̃ + v − w
12: send λ to processor n+ 1 as λ0
13: w = w̃
14: end while

3.3 Asynchronous Parareal Algorithm
Now we turn to the investigation of a modified parareal method based on asynchronous
scheme. We choose equation (15) to establish the new model. Given P k ⊆ {0, . . . , N − 1}
and P k 6= ∅, consider the following iteration

λk+1
n+1 =

{
λkn+1, n /∈ P k,
G(λ

µn(k)
n ) + F (λ

ρn(k)
n )−G(λ

ρn(k)
n ), n ∈ P k,

where λk+1
0 = λk0 , and satisfying

0 ≤ µij(k) ≤ k + 1, 0 ≤ ρij(k) ≤ k,

and under the similar assumptions{
card{k ∈ N | n ∈ P k} = +∞, n ∈ {0, . . . , N − 1},

lim
k→+∞

µn(k) = lim
k→+∞

ρn(k) = +∞, n ∈ {0, . . . , N − 1},

We notice that the predictor and the corrector come from different iterations, so that we
can treat parareal scheme as a special case of two-stage methods. It is seen that the classical
parareal scheme will be obtained when setting P k = {0, . . . , N − 1}, µn(k) = k + 1 and
ρn(k) = k. As a consequence, the asynchronous parareal scheme is illustrated in Algorithm
4 whereby one can exploit for the implementation.

4 Implementation

4.1 Asynchronous Communication Library
The development of asynchronous communication library is interesting because they provide
the reliable computational environments. However, the issues of termination and commu-
nication management are important, for which many theoretical investigations have been
done, but few implementations are proposed. Several libraries have been proposed to deal
with the problems (see, e.g., [6, 5, 4, 11, 14]), implemented upon Java or C++, but no one
manages to build upon the MPI library, which is indeed widely used in the scientific domain.

Recently, JACK [39], an asynchronous communication kernel library, was proposed as the
first MPI-based C++ library for parallel implementation of both classical and asynchronous
iterations, which has been upgraded to the new version called JACK2. It offers a new high-
level API, a simplified management of resources and several global convergence detectors.
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Algorithm 4 Asynchronous parareal algorithm.
1: n : rank of current processor
2: λ0 = u0
3: for i = 0 to n− 1 do
4: λ0 = G(λ0)
5: end for
6: w = G(λ0)
7: while not convergence do
8: v = F (λ0)
9: if detect λ0 from processor n− 1 then

10: update λ0
11: end if
12: w̃ = G(λ0)
13: λ = w̃ + v − w
14: send λ to processor n+ 1 as λ0
15: w = w̃
16: end while

In the sequel, we will specify the implementation of the asynchronous parareal iterative
scheme.

4.2 Preprocessing
We follow the primitive ideas of JACK2 that each element should be configured before
processing including communication graph, communication buffers, computation residual
and solution vectors. Hence, there are many but unambiguous works to be carried out in
this cycle.

The parareal algorithm is a special case of domain decomposition methods, since each
time frame only depends upon its predecessor, and essentially needed by its successor. We
separate the neighbors into the outgoing links and the incoming links, and thus write the
code as Listing 1. Notice that the first processor has no predecessor, whereas the last one
has no successor.

Listing 1: Communication graph.
/* template <typename T, typename U> */
// T: float, double, ...
// U: int, long, ...
U numb_sneighb = 1;
U numb_rneighb = 1;
U* sneighb_rank = new U[1]; // outgoing links.
U* rneighb_rank = new U[1]; // incoming links.

The second component is the communication buffers, which is managed completely by the
library, illustrated in Listing 2. Clearly, each processor needs to handle the information from
one incoming neighbor and one outgoing neighbor, while each neighbor has an array of data.
Therefore, buffers are constructed with the two-dimensional arrays.

Listing 2: Communication buffers.
/* template <typename T, typename U> */
U* sbuf_size = new U[1];
U* rbuf_size = new U[1];
sbuf_size[0] = numb_sub_domain;
rbuf_size[0] = numb_sub_domain;
T** send_buf = new T*[1]; // buffers for sending data.
T** recv_buf = new T*[1]; // buffers for receiving data.
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send_buf[0] = new T[sbuf_size[0]];
recv_buf[0] = new T[rbuf_size[0]];

The computation residual involves an indication of norm, whereby we define the length of a
vector, and thus measure the convergence results compared with a threshold. In Listing 3,
as an example, we choose the L2-norm and present the configuration.

Listing 3: Computation residual.
/* template <typename T, typename U> */
T* res_vec_buf = new T[1]; // local residual vector.
U res_vec_size = 1;
T res_vec_norm; // norm of the global residual vector.
float norm_type = 2; // 2 for Euclidean norm, < 1 for maximum norm.

Finally, for the asynchronous parareal scheme, the solution vectors are the parameters to
initialize the configuration of asynchronous iterations. Listing 4 illustrates the variables in
demand.

Listing 4: Solution vectors.
/* template <typename T, typename U> */
T* sol_vec_buf; // local solution vector.
U sol_vec_size = numb_sub_domain;
int lconv_flag; // local convergence indicator.

In JACK2, we can see that JACKComm is a front-end interface to perform both blocking
and nonblocking tasks. A simple way to initialize the communicator is shown in Listing 5.

Listing 5: Initialization of communicator.
// -- initializes MPI
MPI_Init(&argc, &argv);

JACKComm comm;
comm.Init(numb_sneighb, numb_rneighb, sneighb_rank, rneighb_rank, MPI_COMM_WORLD);
comm.Init(sbuf_size, rbuf_size, send_buf, recv_buf);
comm.Init(res_vec_size, res_vec_buf, &res_vec_norm, norm_type);

For the asynchronous mode, the library employs a member function in initializing the solu-
tion vectors, which can be easily overloaded for some advanced abilities.

Listing 6: Initialization of asynchronous mode.
if (async_flag) {
comm.ConfigAsync(sol_vec_size, &sol_vec_buf, &lconv_flag, &recv_buf);
comm.SwitchAsync();

}

We mention here that there are many classes behind the common front-end interface to
handle the diverse problems, such as stopping criterion, norm computation and spanning tree
construction. If necessary, moreover, one can switch to an appropriate convergence detection
method within several choices equipped with some advanced configurations, which are still
easy to manipulate. We do not pursue these features further and turn to the implementation
of processing step.

4.3 Implementation of Parareal Algorithms
We implement the algorithms in two levels, which solve the sequential time-dependent prob-
lem and parallel-in-time problem respectively. It is seen that in parallel solver we solve
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independently the sequential problems, leading to a composite pattern in our design. Our
discussion focus on the parareal scheme applied to the partial differential equations. Hence,
we give two classes, PDESolver and Parareal, to meet the needs. Moreover, for our specific
problem, we need two instances to simulate coarse propagator and fine propagator, for which
the initialization is illustrated as Listing 7.

Listing 7: Declaration of solvers.
/* template <typename T, typename U> */
PDESolver<T,U> coarse_pde;
PDESolver<T,U> fine_pde;
Vector<T,U> coarse_vec_U; // coarse results.
Vector<T,U> fine_vec_U; // fine results.
Vector<T,U> vec_U; // solution vector.
Vector<T,U> vec_U0; // initial vector.

There are still some initialization functions for the solvers which are unessential to be men-
tioned. The key part begins with some chores that must be handled before the main iteration.
Following the aforementioned parareal algorithms, we illustrate such process, somewhat triv-
ial, in Listing 8.

Listing 8: Initialization of iterations.
/* template <typename T, typename U> */
for (U i = 0; i < rank; i++) {
coarse_pde.Integrate();
vec_U0 = coarse_vec_U;

}
coarse_pde.Integrate();
vec_U = coarse_vec_U;

Now we have a dividing ridge. For the classical parareal algorithm, we follow Algorithm
3 and list the code as below. Note that the processor n will stop updating after (n +
1)th iteration, which leads to a supplementary condition in the judging area to lighten the
communication. Furthermore, we need to finalize the fine solution and wait for the global
termination.

Listing 9: Synchronous parareal iterative process.
res_norm = res_thresh;
numb_iter = 0;
while (res_norm >= res_thresh && numb_iter < m_rank) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
comm.UpdateResidual();
numb_iter++;

}

Listing 10: Synchronous parareal finalized process.
if (res_norm >= res_thresh) {
fine_pde.Integrate();
vec_U = fine_vec_U;
comm.Send();
// -- wait for global termination
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(*res_vec_buf) = 0.0;
while (res_vec_norm >= res_thresh) {
comm.UpdateResidual();
numb_iter++;

}
}

Finally, the asynchronous mode is more interesting for us, while the implementation is
compact enough. Listing 11 illustrate a somewhat similar code as before.

Listing 11: Asynchronous parareal iterative process.
res_norm = res_thresh;
numb_iter = 0;
while (res_norm >= res_thresh) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
lconv_flag = ((*res_vec_buf) < res_thresh);
comm.UpdateResidual();
numb_iter++;

}

Notice that function Integrate gives the same effect as G(λn) or F (λn). In the code above,
we use vec_U0 in each processor as incoming information and employ the two propagator
to obtain the intermediate data, whereas vec_U, the solution vector, is computed eventu-
ally by the predictor-corrector scheme. lconv_flag is a convergence indicator equipped by
the library, whereby function UpdateResidual can invoke other objects to communicate the
residual information. It is seen that the programmer should guarantee the sending and re-
ceiving buffers corresponding to the vec_U and vec_U0. In practice, such behavior depends
on the mathematical library used in the project.

5 Numerical Experiments
In this section, we are interested in the numerical performance of asynchronous parareal
method. We utilize Alinea [34] to carry out the mathematical operations, which is imple-
mented in C++ for both central processing unit and graphic processing unit devices. Note
that it has basic linear algebra operations [1] and plenty of linear system solvers [36, 2, 35],
together with some energy consumption optimization [38] and spatial domain decomposition
methods [37]. Besides, the experiments are executed on the SGI ICE X clusters connected
with InfiniBand. Each node includes two Intel Xeon E5-2670 v3 2.30 GHz CPUs. Finally,
SGI Message Passing Toolkit 2.14 provides the MPI environment.

As we mentioned above, the application is European option pricing problem, and we
employ the Black-Scholes model to predict the target price. The basic idea is, obviously,
that we can use heat equation to simplify the computation. After deciding the appropriate
discretization schemes, we need to solve the remain equation in the time domain. In the
sequel, we assume that both coarse problem and fine problem are approximated by the
implicit Euler method, while testing different high-order schemes are beyond the purpose of
this paper. Moreover, let us fix volatility and risk-free interest rate as σ = 0.2 and r = 0.05,
which has few influence to the parareal algorithms. Finally, we choose finite difference
method to discretize the spatial domain, thereby a variable m representing the number of
sub-intervals has to be determined.
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We first illustrate some results which means to prove the precision of asynchronous
parareal scheme. In Table 1, we vary ∆T to simulate different time to maturity, and further
obtain different option prices, where we can see that the method is precise enough.

Table 1: Asynchronous parareal results with approximate option prices Va, exact option
prices Ve, absolute error εa, relative error εr and number of iterations I, given N = 20,
m = 250, δt = 0.001, S = 50, E = 60.

∆T Va Ve εa εr Imin Imax Imean Time

0.05 1.6297 1.6237 0.0060 0.0037 33 43 37 0.600
0.20 8.3064 8.3022 0.0042 0.0005 34 47 39 2.453
0.35 13.9586 13.9541 0.0045 0.0003 33 43 37 4.039
0.50 18.7968 18.7918 0.0050 0.0003 34 47 40 6.123
0.65 22.9713 22.9659 0.0054 0.0002 34 45 39 7.769
0.80 26.5845 26.5796 0.0049 0.0002 38 47 42 10.337
0.95 29.7150 29.7125 0.0025 0.0001 35 45 39 11.459

In the case of convergence properties, we illustrate an example In Figure 5, over which
we can see, tidily enough, that each processor converges fast.
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Figure 5: Asynchronous parareal iterations for 16 cores. Unlike other asynchronous methods,
parareal scheme performs a tidy convergence process.

For the synchronous counterpart, as mentioned before, the processor n will stop updating
after (n+ 1)th iteration. We notice that the asynchronous parareal are similar to that case,
but bring out different number of iterations when keeping a better view.

We now consider the running time. The first case leads to a fixed time to maturity, while
changing the number of processors dramatically, shown in Figure 6.
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Figure 6: Asynchronous parareal iterations for fixed time to maturity.

We vary ∆T with respect to N to keep the problem immutable with some given param-
eters. Finally, we compare the performance of asynchronous parareal with its synchronous
counterpart, which leads to Table 2.

Table 2: Comparison of Synchronous and Asynchronous Parareal Scheme, given m = 150,
S = 25, E = 30, δt = 0.001, ∆T = 0.1.

Synchronous Asynchronous

N Iter. Time Imin Imax Imean Time

16 11 0.620 22 30 26 0.490
32 11 0.781 30 47 40 0.677
64 11 0.971 44 77 60 0.947

The results illustrate that the asynchronous scheme requires more iterations with the
increase of processors, whereas the number of iterations of the synchronous version remains
the same throughout the test. We notice that the asynchronous version is faster. Let us men-
tion here that the environment is not distributed, thereby the scene of large communication
delays can hardly appear.

6 Conclusions
In this paper we investigated a modified parareal method with respect to the asynchronous it-
erative scheme. We first proposed a brand-new scheme from the traditional parallel theories,
upon which an attractive model was established. Note that we applied asynchronous itera-
tions to the predictor-corrector scheme, instead of the classical inner-outer scheme, thereby
we can make use of the two-stage model to derive our target equations. To overcome the
difficulty of implementation, an asynchronous communication library has been adopted to
facilitate our programming. We illustrated the design philosophy in detail and gave several
numerical results, from which, as expected, we illustrated the excellent precision and the
conditional efficiency for the target approach. Notice that the Black-Scholes equation is too
simple to accurately predict the real financial market, thereby we could proceed our research
with a somewhat challenging situation, such as a mutable volatility or other types of option
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pricing problem. More important, there are still many theoretical research could be done,
upon which a comprehensive analysis is under investigation by the authors.
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