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Abstract: In this paper, we address the problem of vehicle localization in urban environments.
We rely on visual odometry, calculating the incremental motion, to track the position of the vehicle
and on place recognition to correct the accumulated drift of visual odometry, whenever a location is
recognized. The algorithm used as a place recognition module is SeqSLAM, addressing challenging
environments and achieving quite remarkable results. Specifically, we perform the long-term
navigation of a vehicle based on the fusion of visual odometry and SeqSLAM. The template library for
this latter is created online using navigation information from the visual odometry module. That is,
when a location is recognized, the corresponding information is used as an observation of the filter.
The fusion is done using the EKF and the UKEF, the well-known nonlinear state estimation methods,
to assess the superior alternative. The algorithm is evaluated using the KITTI dataset and the results
show the reduction of the navigation errors by loop-closure detection. The overall position error of
visual odometery with SeqSLAM is 0.22% of the trajectory, which is much smaller than the navigation
errors of visual odometery alone 0.45%. In addition, despite the superiority of the UKF in a variety
of estimation problems, our results indicate that the UKF performs as efficiently as the EKF at the
expense of an additional computational overhead. This leads to the conclusion that the EKF is a better
choice for fusing visual odometry and SeqSlam in a long-term navigation context.

Keywords: real-time navigation; visual-odometry; SeqSLAM,; loop-closure; EKF; UKF

1. Introduction

Autonomous vehicles have recently received great attention in the robotics, intelligent
transportation, and artificial intelligence communities. Accurate estimation of a vehicle’s location is
a key capability to realizing autonomous operation. Currently, the leading technology in this setting
is GPS receivers to estimate their absolute, georeferenced pose. However, most commercial GPS
systems suffer from limited precision and are sensitive to multipath effects (e.g., in the so-called “urban
canyons” formed by tall buildings), which can introduce significant biases that are difficult to detect in
addition to sometimes being unavailable (e.g., in tunnels). To provide alternatives to GPS localization,
many sensory devices have been applied to carry out the localization task, including visual sensors
that are often desirable due to their low-cost, wide availability and passive nature.

Vision-based localization techniques fall into several broad categories including real-time
Structure from motion (SfM) or Visual Odometry (VO) and Place Recognition. While VO methods
calculate the egomotion by incrementally estimating the rotation and translation undergone by the
vehicle using only the input of a single or multiple cameras, Place Recognition methods are based
on learning a database of images (the map) and the vehicle consecutively tries to find matchings
between this database and the actual visual input (query image(s)). Within the place recognition
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paradigm, numerous research papers have addressed visual appearance-based place recognition by
ground vehicles especially in varying environments [1-5]. A leading method is SeqSLAM aiming at
matching image sequences under strong seasonal and illumination changes through the computation of
image-by-image dissimilarity scores between all query and database images. Despite its performance
under strong changes, SeqSLAM tends to fail in correctly matching images when dealing with changes
in viewpoint that can be found between them [6].

Hence, our motivation is to create a vision-driven localization method in urban environments
that uses cues from SeqSLAM and VO. Our method is able to localize vehicles in the global reference
system if a georeferenced database of images has been learned beforehand. However, in this paper,
we address the problem of long-term navigation where loop closures, referring to when the vehicle
has returned to a past location after having discovered new terrain for a while, are used to reduce
the drift caused by VO. Such detection makes it possible to increase the precision of the actual pose
estimate. To this end, we present the integration of the robust sequence-based recognition capabilities
of the SeqSLAM system with the accurate 3D metric properties of monocular VO in a probabilistic
framework through the use of the Extended Kalman Filter (EKF), the efficient recursive estimator [7]
and the unscented Kalman filter (UKF). Keeping power-, space- and weight-constrained applications
in mind, we prefer to avoid additional sensors and to utilize only visual cues available in monocular
sequences. In fact, despite years of research, monocular-based-localization systems are still an exciting
open problem.

The paper proceeds as follows: Section 2 presents some related work. Section 3 summarises
the SeqSLAM’s main components and its improved version. Then, our approach details including
the position tracking, the uncertainty estimation and the fusion through the filtering techniques are
presented in Section 4. Finally, Section 5 presents the results, discusses the outcomes of this paper and
presents suggestions for future work.

2. Related Work

Several approaches have been developed in the past few years, which frame self-localization as
a retrieval task. Towards this goal, multiple representations of the world have been adopted, namely,
visual Bag-of-Words (BoW), visual features and 3D point clouds. BoW representation has been first
used by the popular algorithm FAB-MAP [8] that relies on extracting scale-invariant image keypoints
and descriptors. The descriptor vectors are then quantized using a dictionary trained on prior data.
Fab-Map achieves robust image recall performance for outdoor image sequences up to 1000 km [9].
Other approaches dealing with visual features either use a trained georeferenced map of simple visual
3D features [10], or visual features from 3D building geometry [11]. In the case of 3D point clouds,
the localization is performed by retrieving point clouds which are similar to the current scene [12].

However, the success of visual features-based approaches is very dependent on the quality of
the visual vocabulary, and in turn on the prior data and the reliability of extracting the same visual
keypoints and descriptors in images with similar viewpoints. The latter is particularly problematic
when there are large lighting variations and scene appearance changes due either to seasonal changes
or to day and night cycles. Significant performance improvements over Fab-MAP under extreme
lighting and atmospheric variations have been achieved within the SeqSLAM system, which relies
on the use of a whole image regardless of its content by searching in a pre-learnt database of images
for the most similar sequence to the query sequence [1,2]. SeqSLAM proved its success with very
low resolution imagery [2,13], on large-scale environments of 3000 km over four seasons [6], with UV
imagery [4] and with ConvNet features [5]. However, one of SeqSLAM’s most significant drawbacks is
its lack of viewpoint invariance inherited from the use of global image matching.

On the other hand, when the initial position is known, self-localization is achieved by visual
odometry that yields relative motion estimates, integrated to obtain an estimate of the vehicle’s current
position. High accuracy has been achieved using stereo-based SfM systems [14]. Good performance
of monocular systems has also been demonstrated on the KITTI visual odometry benchmark [15],
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for example in [16,17], but the incremental nature of these methods inevitably leads to drift.
Simultaneous Localization and Mapping (SLAM) methods attempt to reduce this drift by using
landmarks and jointly optimizing over all or a selection of poses and landmarks [18,19]. Drift can
be further reduced by revisiting places several times and detecting loop closures in the traveled
trajectory [20].

However, SLAM methods suffer from issues in terms of speed and map size which limit their
application at large scales. Even though efficient optimization strategies using either incremental
sparse matrix factorization [21] or relative representations [22] have been used, several recent works
have instead relied on publicly available maps [23,24], road networks [25] or satellite images [26] to
address the localization of ground vehicles.

Other approaches are based on the fusion of two or multiple algorithms. In fact, data from
different algorithms might be combined to derive a more accurate estimate of the vehicle’s pose,
as their uncertainties might be complementary. Illustrated in [27] is the fusion of visual odometry,
used to track the position of a camera-equipped Micro Aerial Vehicle (MAV) flying in urban streets with
an air-ground image matching algorithm using a cadastral 3D city model by means of a Kalman filter.
Additionally, our approach is based on the fusion of VO and the appearance-based place recognition
algorithm SeqSLAM. We adapted SeqSLAM for use in the context of long-term navigation for loop
closure detection in order to reduce the drift caused by VO. The database of images is, therefore,
created online. However, in the case of learning a geo-referenced database beforehand, the method
remains valid and more accurate estimates could be obtained in the global reference frame without
assuming a loopy trajectory.

3. Appearance-Based Global Positioning System

In this section, we briefly present the main components of the state-of-the-art appearance-based
global positioning algorithm SeqSLAM and then show some components of the Sequence Matching
Across Route Traversals (SMART) system, built upon SeqSLAM to overcome some of its limitations.
The SeqSLAM algorithm, using a simple whole-image comparison with Sum of Absolute Differences
(SAD), demonstrated impressive place recognition performance across significant condition variance
such as seasonal changes and day to night transitions where feature-based methods failed entirely
and in the case of low quality imagery (low resolution, low depth, and image blur). In order to
increase the discriminative nature of the observation and to avoid the problem of false-positives,
location is represented in SeqSLAM as a sequence of images, rather than a single image from one
pose. Images are, beforehand, resolution-reduced and patch-normalised to enhance contrast and are,
therefore, converted into visual templates. Then, to compare each query image I, from the query
sequence Q = (I, ..., Ig) where Q = | Q| to each database image Ip from the database D = (Iy, ..., Ip)
where D = |D|, SeqSLAM calculates the difference score d

1

1= RoR,

g — Ip] )

where Ry and Ry are the horizontal and vertical image dimensions, respectively. The difference scores
are assembled into the so-called difference matrix.

A next key processing step is to normalize the image difference values (d) within their (spatially)
local image neighborhoods. Subsequently, a search for diagonals of low difference values is performed
over the defined sequence length (Q) as depicted in Figure 1.

However, one of SeqSLAM’s most significant drawbacks is its lack of viewpoint invariance
inherited from the use of global image matching. To compensate for a small viewpoint invariance,
variable offset image matching and distance-based template learning have been used in the SMART
system built upon SeqSLAM [28]. In fact, to improve performance on traverses with small shifts in
lateral pose, a variable offset image matching is used where each query frame (template) is compared
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to each database frame (template) at a range of offsets with the sum of absolute differences (SAD)
performed on the overlapping region and the minimum difference score is used:

d= min d(u,v) )
xmaxleftgugxmaxright
ymaxupgvsymuxdawn
1
d(u,v) = m Z Z |Axu/]/a - wab| ®)

xp € X Yp €Yp

where 1 and v are the coordinates in the difference score, X4, Y4, Xp and Yp are vectors representing
the overlapping region of images a and B and x, and x;, are the pixel coordinates in a and B respectively
(Figure 2).

Query

Database

Figure 1. For each matrix entry, a sub-route score for a range of possible slopes (semi-transparent
region). When all scores are calculated for one starting point, the minimal score of all of them is selected.
Finally, the sub-route with the smallest score and the second smallest score are used to compute the
best database matching to the input query sequence.
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Figure 2. For each comparison, query frame B is slid over template frame a in a range of offsets (within
the dashed boundary), with the minimum calculated difference score.

On the other hand, SMART learns (creates the database of templates) and queries templates
at regular distance intervals (fixed distance fy;; between templates) rather than fixed time or
frame intervals as SeqSLAM does (fixed number of frames between database and query templates).
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To function effectively, odometry information (sourced either from wheel encoders or vision) is
needed [28].

4. Proposed Approach

We propose a kind of hybrid approach that combines local metrical localization (e.g., visual
odometry) with a topological one (e.g., Se qSLAM). The vehicle tracking is performed by VO leading to
drift due to the run-time error accumulation. Loop closure recognition via SeqSLAM allows incremental
pose drift [29] to be overcome and the state and position of the vehicle to be recovered in cases where
the tracking is lost. The use of a two algorithms fusion-based approach is mainly motivated by the
fact that VO is prone to drift and place recognition approaches generally suffer from false positive
(FP) detections. Although false positives have an impact on the short-term deviation of the system
inside the filtering framework, this latter robustly recovers after some time. Combined methods give,
therefore, an increased robustness to the system. The template library can be loaded beforehand
(when a learning has already been done) or created in real-time (without prior learning). In such a case,
the template database is populated with the acquired frames from the monocular stream converted
into visual templates along with their poses acquired from the VO module. The query sequence is
a FIFO buffer holding the n last templates. In fact, when a new frame is captured, features are detected
and matched with the last acquired frame and the relative motion is estimated using the VO module,
which will subsequently allow the pose of the vehicle to be predicted. The frame is also converted
into a visual template and added to the query sequence with the aim of matching with a database
template. The SeqSLAM module performs the matching that will be tested to determine whether it is
a true positive based on both a matching score provided by SeqSLAM and the prediction made by
the VO module. If a place is recognized, a correction of the pose is made. Otherwise, the template is
assumed to belong to a new place and is, therefore, added to the database as depicted in Figure 3.

Pose Visual Iq
Prediction |em— Od <
ometry
Camera
Add Template Template
Template Database Creation
} N
Y
Pose False
Correction Positive? SGQSLAM “ Tq—71+1|"' | o | | “ |
Query Buffer

Figure 3. Block diagram of the main components of the system.

4.1. Position Tracking

The goal of this section is to track the state of the vehicle over several images. The vehicle state
in time k is composed by the position in the 2D plane and the orientation with respect to the first
reference frame. Thus, we consider the reduced state vector x; € R3

Xk = (Pr, Ok), 4)

where py € R? denotes the position and 6; € R denotes the orientation (heading angle).
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We adopt a Bayesian approach [30] to track and update the position of the vehicle. We compute the
posterior probability density function (pdf) of the state in two steps. To compute the prediction update
of the Bayesian filter, we use VO. To compute the measurement update, we integrate the topological
localization update, whenever it is supplied by SeqSLAM, described in the previous section.

The system model f describes the evolution of the state over time. The measurement model h
relates the current measurement z; € R3 to the state. Both are expressed in a probabilistic form:

Xefe—1 = f(X—1jk—1, Ux—-1), @)
zk = h(xg-1), (6)

where 1;_; € R? denotes the output of the VO algorithm at time k — 1, Xk|k—1 denotes the prediction
of estimate x at time k and x;_;;_; denotes the updated estimate of x at time k — 1. The functions f
and h are in general non-linear functions.

4.1.1. Visual Odometry System

Visual Odometry (VO) is usually referred to as the problem of incrementally estimating the
egomotion of a vehicle using a single or multiple cameras [31]. In order to deal with all central
camera models including perspective, dioptric, omnidirectional and catadioptric imaging devices,
image measurements are represented as 3D bearing vectors: a unit vector originating at the camera
center and pointing toward the landmark. Each bearing vector has only two degrees of freedom,
which are the azimuth and elevation inside the camera reference frame as formulated in the OpenGV
library [32]. Because a bearing vector has only two degrees of freedom, we refer to it as 2D information
and it is normally expressed in a camera reference frame. The fundamental matrix solver within the
OpenGYV library computes the relative pose of a viewpoint with respect to another viewpoint given
a number of eight correspondences between bearing vectors expressed in the respective camera frames
within a Random Sample Consensus (RANSAC) framework to deal with false matchings [33].

4.1.2. State Prediction and Uncertainty Estimation

At time k, two consecutive images I and I;_; are given as input to the VO algorithm. This latter
returns an incremental motion estimate with respect to the local camera reference frame. We define
this estimate as (5;{‘,,(_1 € R3

Sk—1 = (Ast, D), @)

where As} € R? denotes the translational component of the motion and A the heading angle increment.

As we are using monocular visual odometry using only the input of a single camera, we deal with
a scale ambiguity where the norm of the translational component cannot be recovered and we only
obtain the direction of the translation. As; is valid up to a scale factor and, thus, the metric translation
of the vehicle in the ground-plane As; € R? at time k with respect to the local camera frame is equal to

Asp = AAsy, (8)

where A € Ris the scale factor. Several approaches have shown their efficacy in solving the scale factor
ambiguity within the monocular scheme including the use of prior knowledge of the camera height
relative to ground-plane [34].

Given that we predicted the state of the vehicle x; using xx_; and the incremental motion
estimate &, 1 € R, the uncertainty of the pose has to be estimated as well, represented by a 3 x 3
covariance matrix.

In order to estimate the covariance matrix Z(;k’,H € R3%3, we use the Monte Carlo technique [35].
In general, when dealing with a nonlinear function f(.) that relates a random variable Y to an
N-dimensional random variable X such as Y = f(X), where X has a mean X and a covariance Xy,
the transformed mean and covariance of Y can be obtained via a Monte Carlo simulation that relies on
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a repeated random sampling. In fact, a large number of samples { X3, X5 ..., X,;} are randomly drawn
from X and the function f(.) is evaluated for each sample. For the transferred samples from function
f(),{Y1, Ya..., Yy}, the mean Y and covariance Xy are estimated according to:

.1 X

Y:N;Yi )
5, = L NY» (Y, -1)T 10
y—mi:l(I* )(Yi—=Y)". (10)

In the case of VO, the algorithm uses at every step a set of 2D corresponding bearing vectors
between images k and k — 1 and provides an incremental estimate Jy 1. In fact, features which are
detected and matched between every consecutive pair of frames are, subsequently, converted into
bearing vectors. We randomly sample eight correspondences from corresponding bearing vectors and
feed them to the RANSAC procedure to compute an estimate {4;}. All the estimates for which the
number of inliers exceeds a prefixed threshold t are saved in a set S = {J;}. Estimating the covariance
matrix using the Monte Carlo technique requires a large number of samples to be randomly drawn
from the initial N-dimensional random variable x. We usually obtain a high number of valid Monte
Carlo estimates (e.g., more than 500 out of the 1000 iterations result in a valid estimation) and the
covariance ¥, , , is, finally, estimated using (9) and (10).

The error of the VO is propagated throughout consecutive camera positions as follows. At time k,
the state xy;_; depends on x;_q;_; and Jx—1

k-1 = f(—1jk=1, Ok k—1)- (11)
We compute the associated covariance Xy, | € R3*3 by the error propagation law:

_ T T
Zxk\kfl - fokfl\kflzxkfl\kfl vka—l\k—l + vf5k,k—1z‘5k,k—1 vfb‘k/k,l (12)

assuming that x;_y;_1 and Jy x—1 are uncorrelated.
We compute the Jacobian matrices numerically, the rows of the jacobian matrices V(' S ),
V('fs,. ,) € RI*3(i=1,2,3)are computed as:

UM U N U N -
5]

Y1) 9Cx—1jk—1) 9Cx_1k—1

a(f) alf) alf)
Toep1) 0(0s1) Caer ) (14)

where ixk_1|k_1 and i‘Sk,k—l denote the i-th component of x;_1;_; and Jy ;1 respectively.

V(ika,l‘k,1) = [8(

V(fau) =[5

4.2. Loop Closure-Based Measurement Update

In the SeqSLAM algorithm, the input is the query sequence that refers to the last acquired images
converted to visual templates. The algorithm selects the path in the difference matrix that connects the
query templates to the database ones. The observations are the sequence of  query images I;, and the
state space S is the set of database images 1;. For each observation there is a state corresponding to one
of the database images in the state space as depicted in Figure 4 where primitive high-resolution images
are used instead of low-resolution templates for the purpose of clarity. Thus, the observables here are
the query and database templates, which are continuously calculated from the monocular sequence
and the tracked state x; = (x,y, 0) is hidden. However, to each database template is connected a pose
where this image has been taken and to the query template to be matched is connected the predicted
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state. Hence, the unobservable state variables are directly obtained from the observable templates and
the transformation from the state space to the observation space is a simple linear model.

y = Hx. (15)

where H = I3. In fact, when a place is recognized, the corresponding information of the node (matched
in the database) can be used as an observation of the filter.

i
Lo P P

Observations

L

Figure 4. Unobservable state variables for a measurement update obtained from observable query and
database templates by a linear model.

4.3. False Positives Filtering

The Gaussian assumption underlying the Kalman Filter and its variants implies that when an
observation that significantly differs from the state estimate, as determined from the state covariances,
is incorporated into the state estimate, the resulting Gaussian deviates significantly from its prior shape.
This means that the current estimate of the true state is no longer useful which has a negative impact
on the system robustness. Although the filter recovers after some time, several applications depend
on the short-term result in which false positives (FP) have a disastrous impact. In fact, even with
the use of a sequence matching instead of a single image by the SeqSLAM algorithm, this latter still
suffers from false-positives. Thus, to filter them out, we use the state and covariance estimates and the
Gaussian basis of filtering techniques to estimate the likelihood of a given observation. The conditional
pdf P(zx|xk, Ly, ) is evaluated for the given observation and state estimates to reject observations with
too low likelihood as false-positives. The conditional (pdf) is simply a multi-dimensional Gaussian
with the mean the estimated state and its covariance. Both the mean and the covariance have to be
transformed into the observation space. Hence, the likelihood has the following form
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1 _
P(Zklxk’ Zxk) = 76—1/2(Z—ka)Tck1(Z—ka) (16)
(271)"Cy

where C, = HXy H T 4+ R is the covariance matrix in the observation space, n the state dimension
and R is the measurement covariance matrix. If the evaluated likelihood is above a preset,
empirically determined threshold, the measurement update step is performed. Otherwise, only the
prediction is done and the covariance of the state estimate will grow until a successful observation is
reported. As well as the case of rejected observations, the dynamics update is still performed in the
case of false negatives and they, therefore, do not affect the system performance.

SeqSLAM uses a threshold on similarity between sequences to determine whether a match refers
to a true positive determined by precision-recall tests. The lower the threshold is, the more similar
are the matched images. However, a too low threshold leads to false negatives (e.g., non-detections).
The better compromise has been achieved when using both the similarity score and the likelihood to
assess true positives without too many non detections as presented in Algorithm 1.

Algorithm 1: False positives filtering.

Similarity Score<— Sscore;
Similarity threshold low<— Tj,,,;
Similarity threshold high<— Tj;ep;

Likelihood threshold<— Tjkerinoods

if ((Sscore < Tipw) 07 ((Sscore < Thigh) and (likelihood < Tjjxelinood))) then
Do correction;

end

4.4. Filtering-Based Fusion of Visual Odometry and SeqSLAM

Our aim is to reduce the uncertainty associated to the state estimate by fusing the prediction
estimate with the measurement, whenever a valid measurement issued from a recognized loop closure
by SeqSLAM is available. The outputs of this fusion step are the updated estimate x;; and its
covariance Xy, € R3. We compute them according to the Kalman filter (KF) update mode as we
are dealing with a linear measurement model. The update step is first performed by predicting the
measurement and its uncertainty given by

Zgk—1 = HxXppp—1/ 17)

Sk = HEgp_1H' +R. (18)

Then, the measurement update adjusts the prediction results according to

Xk = Xkk—1 + Ki(zk — zgk-1) (19)
= (I = KeH)xpp—q + Kizg- (20)
Zppe = (I = KeH) g1 (I — KeH)T + KeRK] (21)

with Kj a gain matrix that is optimal in the minimum variance sense and is given by
Tc-1 -1
Ky = Zy1H S " = M5, 7, (22)
where M is the cross-covariance between the state and output predictions.

4.5. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an alternative to the Extended Kalman Filter (EKF)
demonstrating a superior performance and ease of implementation for nonlinear estimation. The UKF



Sensors 2018, 18, 939 10 of 18

uses an alternative form for dealing with nonlinearity based on the sigma points. The time update
includes the weights and sigma points calculations, whereas the measurement update uses the sigma
points to generate the covariance matrices and the Kalman gain respectively. The augmented state
matrix Y is constructed from the prior belief of the state (x;_jjx_1, Zx—1jx—1):

Y =

Y a1 O 23
' Qk} o)

where Qy is the process noise covariance matrix estimated via a Monte Carlo simulation as explained
in the previous section. The prior belief (x;_jx_1,Z¢_1)4—1) is converted into a sigma point
representation via:

AAT =, (cholesky decomposition) (24)

X0 = Xg_1[k—1 (25)
Xiklk—1 = Xk—1jk—1 T \/ (n + K)coL;A, i=1,..,n (26)
Xi,k‘k*l = xk,1|k,1 — 1/ (1’1 -+ K)COliA, 1= n, .., 2n (27)

where « is a scaling parameter that affects fourth and higher order moments of the pdf. The associated
weights f; are the following:

X .
AT otherwise.

L i=0
Bi = {’;ﬂ 28)
The subsequent step consists in passing the sigma point through the state evolution model

Vi1 = f(Xigp—1) =0, .., 2n. (29)

The mean and covariance estimates for 7y are calculated as

2n
X1 = Y Bivikik-1/ (30)
i=0

2n
Zigee1 = 2 Bi(Vige1 — Xige—1) (Vi1 — Xige) " (31)
i=0

The estimate of the posterior (xi, X ) is performed through passing each sigma point according
to the observation model
Ui,k|k = H'Xi,k‘k*l’ i= O, ey 2n. (32)

The predicted measurement and innovation covariance are then computed

2n
Yik—1 = Y BiViklks (33)
i=0
2n T
Vigk = 2 Bi(Vike — Xkr—1) (Vigpe—1 — %) + Ry, (34)
i=0

where Ry is the measurement noise covariance matrix. The state measurement covariance and Kalman
gain are, next, built according to:

2n
Ui = Y Bi(Xikk—1 — Xje—1) (Vi — Yie—1) " (35)
i=0
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-1
Kk = Ugi V. (36)

K|k
Finally, the posterior belief, xyx, Zyx is computed according to:

X = Xgk—1 + Ke (Ve — Yige—1) (37)
I = g1 — KUY (38)
5. Experiments and Results

5.1. The Experimental Dataset and Parameters

5.1.1. The Experimental Dataset

The Kitti odometry dataset [15], recorded from cars driven in urban and rural areas and on
highways, consists of 22 sequences where the first 11 are provided with ground truth.

In order to evaluate our method, we conducted experiments on three data sequences from
the odometry category with a loopy trajectory. Together, these sequences, presented in Figure 5,
include 1249 images of loop closures. The total driving distance for loop closures in these sequences is
1169.6 m and are highlighted in blue in Figure 5. The locations of loop closures for the Sequence 00 in
terms of the amount of travelled meters from the first reference pose are presented in Table 1.
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Figure 5. Ground truth trajectories of sequences 00, 05 and 06 of the KITTI dataset comprising
loop-closures. (a) Sequence 06; (b) Sequence 05; (c) Sequence 00.
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Table 1. Loop closure locations in meters for Sequence 00.

Sequence Distance up to Traveled Distance (m)

1160.1
1204.8
2566.1
3023.3
3636.3
3707

00

TEHO O W >

We recall that the Kitti dataset provides challenging benchmarks to the computer vision
community that are available online www.cvlibs.net/datasets /kitti.

5.1.2. Parameters

The parameters used for SeqSLAM are those reported in the literature and presented in Table 2.

Table 2. SeqSLAM'’s parameters.

Parameter Value Description
Ry, Ry 64,16 Template size
Q 10 Query sequence length
p 8 x 8 pixels  Patch normalization size
XL/XRrYTrYR 1,1,1,1 Shift offsets

In order to calibrate SeqSLAM and evaluate the uncertainty of the position determination, we used
almost 50% of the 1249 images providing two traversals of the same route. The first traversal was used
as a database sequence and the second as a query sequence. We assimilated the measurement noise
vg = N (0, R). The matching results were compared to the ground truth. In the case of true positives,
the deviations have been chosen to be respectively oy = 1, 0, = 1 and 0y = 0.1 so that the returned
result is always within 3 standard deviations from the ground truth.

5.2. Results

5.2.1. Accuracy Evaluation

We display the ground truth trajectory measured by a precise GPS in green in Figures 6-8 for
Sequences 00, 05 and 06 respectively from the Kitti odometry benchmark. We show the path estimated
by VO in red and the corrected one (VO+SeqSLAM) in blue. Even though the position is generally
accurately detected, the non-detections (FN) are sometimes visible (the correction is not made in the
beginning of a loop-closure). In fact, when an update from SeqSLAM is integrated into the Bayesian
tracking to correct the trajectory after an important drift, the correction is suddenly made, resulting in
a non-smooth trajectory (marked by the blue stars). The drift, though, is greatly reduced for a precise
localization afterwards.

We show the mean error per travelled meter of position and heading in Figure 9 for the
Sequence 00. For a travelled trajectory of 1100 m, no loop closures are detected and the mean error in
position is 5 (m) and 4 (deg) in heading. For 3000 (m) of travelled distance where two loop closures are
detected (Segment AB and Seqment CD in Figure 5c), the mean error is 5 (m) in position and 3.6 (deg)
in heading when the SeqSLAM-based correction is integrated into the Bayesian tracking against 9 (m)
in position and 4.5 (deg) for VO only. When the vehicle performs a big rotation movement (in segment
DE of Figure 5c), the mean error increases dramatically to reach 11 (m) for VO and 6.7 (m) for the
SeqSLAM-based corrected VO for a travelled distance of almost 4000 (m). The problem of important
drift caused by big rotations is inherent to the monocular VO.
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Figure 9. Mean error per travelled meter with respect to the travelled distance for Seq00. (a) mean

position error per travelled meter; (b) mean heading error per travelled meter.

We show the comparative results between the corrected and non-corrected journeys in Table 3 in
terms of average error in meters and the percentage of the error with respect to the whole trajectory.
The performance of SeqSLAM-based loop closure detection and correction is almost two times better

than only VO. We also present in Table 4 the error of the ending pose for all the test sequences.

Table 3. Average position errors with and without correction.

Sequence Method Mean Position Error (m) (%) of Trajectory
00 VO+SeqSLAM 7.98 0.2
VO 14.26 0.39
05 VO+SeqSLAM 5.59 0.25
VO 9.02 0.41
06 VO+SeqSLAM 343 0.27
VO 6.54 0.53
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Table 4. Error of the ending pose with and without correction.

Sequence Method Position Error (m) Heading Error (deg)
00 VO+SeqSLAM 45 2.5
VO 16.71 9.96
05 VO+SeqSLAM 1.37 2.85
VO 14.29 6.03
06 VO+SeqSLAM 3.93 1.31
VO 18.03 3.55

5.2.2. Fusion Method Evaluation

The UKF is a superior alternative to the EKF for a variety of estimation and control problems.
However, its effectiveness depends on the nonlinearity of the problem. In our case, we are dealing with
a nonlinear prediction model and a linear measurement model. As listed in Table 5, our experimental
results and analysis indicate that UKF performs as efficiently as the EKE. However, the additional
computational overhead of the UKF and the linear nature of the update step with SeqSLAM’s
observations lead to the conclusion that the EKF is a better choice for fusing VO and SeqsLAM.

Table 5. EKF-based fusion vs UKF-based.

Sequence Fusion Method Mean Position Error (m) (%) of Trajectory

00 EKF 7.98 0.2
UKF 7.96 0.2

05 EKF 5.59 0.25
UKF 5.62 0.25

5.3. Timing and Storage

In this section, we briefly describe the storage and computational requirements of the system.
In fact, all the templates are down-sampled from 1241 x 376 to 64 x 16 (0.22%) pixels. Consequently,
the storage and computational requirements are greatly reduced. To deal with the computational
complexity of building a difference matrix between the query and all the database images,
a CUDA-based solution was designed in [36], allowing less than 30 ms to be achieved for the query
and database sequences used in our experiments. This timing is based on the use of a mid-range
GPU, the CUDA NVIDIA GeForce GTX 850M running at 876 MHz with 4096 MB of GDDR device
memory. The acceleration is mainly based on the allocation of the three major steps of SeqSLAM,
namely: the difference matrix computation, the difference matrix contrast-enhancement and the route
searching to three GPU kernels that exploit the parallel CUDA threads and thread-blocks and the fast
shared memory. The database, in this design, is stored in the GPU’s global memory. Regarding the
timing using a commercially available laptop with an 8 core-2.40 GHz clock, it is around 100 ms.

5.4. Discussion

The template library is created online using navigation information from the VO. That is,
when there is not a match in the database, a node is added to this latter with the template and
the corresponding information of pose obtained from the VO module. The sequence searching strategy
used in this work is based on a regular time interval but could be optimized for a regular distance
interval between templates to make the localized sequence searching algorithm more efficient as
reported in [28]. In fact, we have not relied on the regular distance strategy as we have used the
Kitti dataset for evaluation. a regular distance consists in taking templates at a regular distance of
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1 m for example. Moreover, this work is a proof of concept that an enhancement could be obtained
by only detecting loop closures without jointly optimizing over landmarks and poses as a SLAM
system does. However, the greatest interest would be generated when a learning of a geotagged
database is already performed which would allow an absolute localization in the global reference
frame. The SeqSLAM algorithm could also be adapted to work with different camera systems to make
it possible to share the database of templates between different users. Furthermore, even though the
drift has been greatly reduced, other methods could be fused with SeqgSLAM and VO to make the
output suitable for autonomous cars.

6. Conclusions

This paper presented a solution to localize a vehicle in urban environments by means of the
integration of VO and SeqSLAM. SeqSLAM is a well-known successful approach for place recognition
in varying conditions such as seasonal changes and day and night cycles when not dealing with
a viewpoint change. The localization was performed using a single on-board camera and the
template library was created online using navigation information from the VO. The integration
was performed with a Bayesian filtering through the use of an EKF. That is, when a place is recognized,
the corresponding information is used as an observation of the filter, otherwise the prediction is
performed by the VO module. The performance of the system can be increased by using a pre-learnt
geo-tagged database of images to develop a reliable alternative to satellite-based global positioning.
In such a case, the importance of SeqSLAM is even more important due to its ability to deal with severe
lighting differences between the learnt database and the actual visual input. The results showed the
superiority of the visual odometry integrated with SeqSLAM algorithm in real-time localization as the
navigation errors are greatly reduced by loop-closure detection.
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experimental results. All authors contributed in framing the writing of the paper.
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Abbreviations

The following abbreviations are used in this manuscript:

GPS Global Positioning System
StM Structure from Motion

VO Visual Odometry

SeqSLAM  Sequence SLAM

SLAM Simultaneous Localization and Mapping
KF Kalman Filter

UKF Unscented Kalman Filter
FP False positive

FN False negative

pdf probability density function
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