
HAL Id: hal-01740903
https://hal.science/hal-01740903v1

Submitted on 26 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open-source flexible packet parser for high data rate
agile network probe

Franck Cornevaux-Juignet, Matthieu Arzel, Pierre-Henri Horrein, Tristan
Groleat, Christian Person

To cite this version:
Franck Cornevaux-Juignet, Matthieu Arzel, Pierre-Henri Horrein, Tristan Groleat, Christian Per-
son. Open-source flexible packet parser for high data rate agile network probe. CNS 2017 :
IEEE Conference on Communications and Network Security, Oct 2017, Las Vegas, États-Unis.
�10.1109/CNS.2017.8228685�. �hal-01740903�

https://hal.science/hal-01740903v1
https://hal.archives-ouvertes.fr

978-1-5386-0683-4/17/$31.00 2017 IEEE

Open-source flexible packet parser for high data
rate agile network probe

Franck Cornevaux-Juignet∗, Matthieu Arzel∗, Pierre-Henri Horrein∗, Tristan Groléat† and Christian Person∗

∗IMT Atlantique Bretagne-Pays de la Loire campus de Brest
Technople Brest-Iroise CS 83818 29238 Brest Cedex 3 FRANCE

Email: firstname.lastname@imt-atlantique.fr

†OVH
230 rue Roland Garros, 29490 Guipavas FRANCE

Email: tristan.groleat@corp.ovh.com

Abstract—The development of a network centered life has
increased overall data rates in core networks. Thus, data centers
face the challenge to provide always more services at higher
data rates while reacting quickly to complex failures and more
powerful attacks thanks to efficient network forensics. Moreover,
Software-Defined Networking (SDN) becomes a standard which
offers agility but also requires forensic devices able to handle
multiple configurations.

Although conventional software probes are programmable and
thus agile, they cannot support high data rate packet process-
ing any more. Probes could benefit from Application Specific
Integrated Circuits (ASIC) to cope with high data rates, but
ASICs development time of many months makes them unable to
satisfy agility requirements. With reconfiguration ability and high
throughput processing without packet loss, Field Programmable
Gate Arrays (FPGA) are the key technology chosen by some
companies, such as Microsoft, Amazon and OVH, to be integrated
into smart Network Interface Cards (NIC). Nevertheless, while
high performance criteria is fulfilled, current FPGA probes
benefit from an agility still limited to their conventional firmware
upgrades which require proprietary tools and hardware-design
time and knowledge.

This paper proposes the first solution to offer FPGA probes
with runtime agility thanks to a flexible packet parser which can
be parameterized continuously by a software, endorsing complex
tasks and SDN control. This allows a live adaptation of protocol
processings from computer host alongside handling packets
at line rate without data loss. The proposed parser is open-
source and easily usable by network engineers through a Python
software API. Benchmark results illustrate the performance of
the agile high-level probe implemented on a NetFPGA SUME
board, with XC7VX690T FPGA. 60 millions of 64-byte packets
are counted based on features provided at runtime. These are
selected by the software part, allowing the detection of different
volumetric attacks within a few tens of microseconds. This
represents a 40 Gb/s traffic of smallest Ethernet packets with
no packet loss. With adequate boards, the generic design of
the probe offers 160 Gb/s data rates and beyond on modern
hardware, assuring probe scalability.

I. INTRODUCTION

In September 2016, the web service provider OVH has been
one of the victims of an attack never encountered before [1].
A botnet infected up to 150,000 poorly protected security
cameras to generate up to 1 Tb/s of malicious traffic. In
October 2016, a similar attack targeted the Dyn company,
provider of many well-known online services [2]. Both attacks
were the results of the Mirai botnet, controlling enough
connected objects to create overwhelming traffic. This is an
example of using Internet of Things devices as a leverage [3].
The development of the Internet has led to the emergence of
numerous services and an increase of bandwidth to end users.
The current expansion of connected objects and computer

This research is supported by Brittany region, Finistère regional council,
Brest Métropole funds.

equipment has multiplied the number of possible sources of
threats.

Network actors monitor the traffic to detect anomalies in
traffic and to counter potential threats or malfunctions. This
live forensics must be done without packet loss and with
the smallest latency in order to react as fast as possible on
high speed links. Moreover, traffic monitoring systems must
be compliant with SDN agility [4]. This paradigm dissociates
the data plane and the control plane of the infrastructure to
set a level of programmability and follow the evolution of the
traffic. The plane separation unties the control from network
equipment leading to the network architecture abstraction
and a global management adapting the infrastructure to the
traffic content. Therefore, packets must be processed at line
rate and in a flexible way to allow the infrastructure agility.
Conventional probe solutions are not adapted to answer this
challenge of an agile monitoring at high data rates of 40 Gb/s
or 100 Gb/s links, and even 400 Gb/s in data centers.

Despite their processing flexibility, software based probes
lack processing power to concurrently sustain high data rate
traffic and normal processings [5]. To improve processing
capabilities of network equipment, common solutions use
specialized hardware implemented as ASICs. Despite the
performance, ASIC system development time and production
cost are prohibitive for processing flexibility [6]. The current
considered solutions are smart NICs composed of an ASIC
part for NIC and an FPGA to offload CPU processings, as
seen in Microsoft Azure [7]. This conventional architecture
is shown in figure 1(a). FPGAs offer a good compromise
between high data rate processing and flexibility. The pro-
gramming paradigm is similar to ASIC, meaning that FPGA
data pipelines can achieve high data rate processing through
high parallelization, well-suited to network processing. Yet,
unlike ASICs, FPGAs are not designed for a unique task: they
can be programmed with a new design without the need to
produce a new chip. This increased agility makes them better
candidates for SDN. However, this compromise is not perfect.
Development time for FPGA is high, and requires expensive
tools, which counterbalances this flexibility. FPGA agility
is usually limited to periodic firmware updates, instead of
runtime modifications to adapt the processing to the incoming
traffic.

While a solution would be to integrate all expected pro-
cessings in the design loaded in the FPGA, and then dynam-
ically select the requested operation, this is not possible due
to limited FPGA resources. Only an adapted and restricted
probe configuration can be run at a given time. Using a set
of pre-designed firmwares, selected at runtime according to
the situation, the FPGA can be reprogrammed within a few

Smart NIC

link

packet
data

packets
NIC FPGA

CPU
ApplicationFPGA

configuration

(a) Conventional smart NIC
Smart NIC

link

packet
data

packets
NIC FPGA

CPU
Application

configuration
parameters

(b) Proposed smart NIC

Fig. 1. Conventional and proposed smart NIC architectures

seconds. However, during these few seconds, the probe cannot
monitor the traffic. If no pre-designed firmware is adapted to a
new situation, a new FPGA configuration has to be designed
by a specialist having knowledge in hardware and network
protocols. This work is complex and time-consuming, even
with the help of high-level tools, to meet the required perfor-
mance in terms of latency and throughput while fitting FPGA
constraints. Discarding the design time, firmware generation
is a matter of hours, even days for complex architectures.
Obviously, common FPGA-based solutions provide a coarse-
grain agility but they do not allow re-configuring probes to
continuously adapt the monitoring to the incoming traffic.

This paper presents an innovative FPGA-based flexible
packet parser to support a high performance adaptative net-
work monitoring probe for live forensics aware of traffic
content. The proposed FPGA part is designed to be runtime re-
configurable and to process packets at line rate, using a generic
parser design. The software part runs forensic applications and
controls the runtime FPGA configuration. This architecture
is shown in the figure 1(b). Thus, network engineers avoid
FPGA development and are just using a dedicated API, able
to provide only useful data according to dynamically evolving
application needs, without loss. A high performance parser
must face multiple challenges [8]:

• line-rate throughput,
• headers sequential dependency,
• protocols and headers heterogeneity,
• header format programmability.

The proposed architecture takes advantage of the combination
of hardware processing power and software flexibility to
answer these challenges. It relies on a static parser processing
packets at high data rates, which is made configurable thanks
to parameters sent from the software application. This allows a
runtime dynamic configuration of processed protocols without
shutting down the probe, which is not possible in current
solutions. Moreover, once the FPGA is configured, specialized
proprietary tools are not needed to configure the parser. A
software API ensures an efficient software integration and an
easy adoption by end-users.

The paper is organized as follows. Section II introduces
several works in the area. Section III describes the flexible
probe and parser implementation details. Section IV presents
obtained results and Section V concludes with future develop-
ment.

II. RELATED WORK

A. Software probes
The development of a software based probe is equivalent

to the development of programs. Thanks to CPU flexibility,
software based probes are very flexible and can perform any

processing. The wide variety of existing development tools
allows applications to be portable on any software platform.

However, these solutions have performance issues in terms
of data rate. Moreno et al. [5] showed that there is a boundary
on smallest 64-byte packets processing. Despite fully opti-
mized drivers, software tends toward the loss of packets when
approaching 10 Gb/s, even with basic processing such as
packets counting. This analysis is shared by Gallenmüller et
al. [9]. The CPU takes at least 100 cycles to receive and
transmit a packet with the most efficient driver. The analysis
of a simple processing, packet forwarding, with a lookup table
of 256 MB in size leads to 7.1 Mpps processed. This is less
than 14,88 Mpps of 64-byte packets that need to be processed
in a worst case scenario on a 10 Gb/s link.

For the last 20 years, networking devices have improved
datapath bandwidth more than CPU devices [4]. This evolution
has led to the emergence of other solutions than software
based solutions. Despite a longer time to market because
of longer development and verification, network devices are
always ahead in terms of bandwidth.
B. Hardware probes

The extreme parallelization of FPGA design allows to
pipeline packets processing and to reach high data rates. Xilinx
with Ultrascale+ [10] and Intel with Stratix 10 [11] announce
devices supporting 400 Gb/s data rate.

An example of high data rate application was described by
Groléat et al. [12]. They proposed a standalone SVM classifier
labeling a packet depending on the flow of the packet. The flow
is detected with the classical 5-tuple IP source, IP destination,
port source, port destination and protocol. The implemented
design supports 10 Gb/s of 64-byte packets on an FPGA board.

FPGA implementation of network probes has attracted some
interest in recent years. Antichi et al.[13] developed a solution
where the hardware part of the probe unloads CPU with
the packet processing. An onboard memory allows to share
sketches between hardware and software. An anomaly is
detected based on aggregate data of sketches. The implemen-
tation was done on a NetFPGA 1G card for a full 1 Gb/s
link. Between full software and part hardware probes, the
decrease in CPU usage from 100 % to quasi 0 % comes with
a reduction of packet drop rate. However, the hardware part
must be reconfigured to process other types of traffic. Garnica
et al. [14] designed a 10 Gb/s hardware-software probe for
URL legal filtering. This throughput is maintained with 64-
byte packets. The hardware part extracts IP addresses and
filters depending on local rules. The software part holds the
URL and IP correspondence to decide which URL filter has to
be applied. The implementation is done on a NetCope server.
The results are extrapolated as functioning at 100 Gb/s on
Virtex7 FPGA.

However, a common characteristic of all these solutions is a
fixed packet parser. Data extracted from packets and process-
ings are only adapted to the current solution. Modifications in
incoming traffic could invalidate processings. Even despite the
use of a software part, processings are limited to subsets of
packets. FPGA development reaches its limits when the design
must be modified. Indeed, the update of a design requires
the modification of the design and the reprogrammation of
the chip. Time is needed for modifications and functioning
tests, besides specific competences not widespread in network
community are required. Moreover, the reconfiguration leaves
the probe unable to process incoming packets during recon-
figuration time.

C. Configurable solutions
To counter drawbacks tied to hardware development, some

solutions have been proposed combining an hardware part
for basic operations on a huge workload, and a software
part for smarter processing on a reduced dataset, and for the
configuration of the hardware design.

A NoC-Enhanced FPGA packet parser is proposed by Bitar
et al. [15]. A NoC hosts a header parser on each node and can
reconfigure routes between parsers. Based on synthesis results,
they extrapolate a design working at 400 Gb/s with 512-
byte packets. The ultimate purpose of this design is to hold
dynamic protocol configuration with a partial reconfiguration
of router nodes. Hager et al. [16] designed a probe which
integrates a reconfigurable core processing in a NetFPGA 10G
board design. Processing is set to an optimized routing table
to forward packets. However, the header parser extracts only
destination IPv4 addresses, which reduces greatly the interest
of partial reconfiguration.

Pus et al. [17] presented a pipelined design of packet
header parsers reaching data rates of 100 Gb/s. This parser
architecture supports an automatic high level parser generation
tool [18]. Using the P4 language allows a high level de-
scription of header parsers. The presented P4-to-VHDL parser
generator uses this description to create an HDL design. The
resulting architecture is parsing packets, as the original, at
100 Gb/s after synthesis. This tool allows faster design of data
extraction from packets, but requires a full configuration of the
FPGA when new protocols are considered, stopping running
processing.

In the same field of software assisted development, HLS
languages such as G [19] and PP [20] were introduced for
packet parsing. A specific architecture is used as a result of
the HLS language compilation assuring high data rates, up
to 400 Gb/s. Parser stages are based on microcode allowing
header parsing modifications. If too significant changes are
done between two updates, the parser architecture must be
regenerated. Otherwise, the design is globally regenerated
and reconfigured. With the PX language [21], deployment
flexibility is ensured by the tool flow which checks if an update
of the current implementation firmware is possible before
generating a new bitstream. A generated OpenFlow packet
classifier processes packets at a data rate of 100 Gb/s. The
outcome of this whole research is the SDNet full product [22]
allowing the generation of a dynamic solution thanks to partial
reconfiguration of the FPGA at 100 Gb/s. Bringing an easy
access to FPGA systems for network specialist is necessary for
the development of high performance processings. However,
presented solutions need to be reconfigured at some point.
During the reconfiguration time, even with partial reconfigu-
ration, the parser and the probe are unable to process packets.
Moreover, design flexibility relies on external tools, which are
proprietary, inducing design portability issues between FPGA’s
vendors.

III. FLEXIBLE NETWORK PROBE

A. Hardware/software system
In current utilization of smart NICs, the FPGA is seen as

a hardware accelerator which can be upgraded. Even though
the CPU offload allows to reach high performance monitoring,
FPGA processings are stopped during the reconfiguration time.
Processing adaptations are then limited to sparse firmware
upgrades. This low flexibility meets the requirements of SDN,
but is not enough to be adapted to incoming traffic.

To overcome this limitation, this paper proposes a hybrid
architecture between the FPGA of the smart NIC and the
CPU to support runtime adaptations and live adaptation to
traffic. The static configurable design on the FPGA offers
a live configuration via parameter settings, as well as CPU
offloading. The software part runs monitoring applications and
handles the settings control of the FPGA. The configuration
possibility creates a feedback loop between the CPU and
the FPGA allowing to refine hardware processings when
needed. The CPU can then work on a chosen fraction of data
produced by the FPGA, such as specifically filtered packets
or metadata like packet counters. This idea takes advantage
of both software flexibility and hardware raw performance to
tackle high performance traffic monitoring.

1) Network users friendly: A static design with parameters
permits the abstraction of the probe for the user. Indeed, no
hardware reconfiguration of the probe is necessary, avoiding
the use of external specialized proprietary tools for FPGA
development. Configuration parameters are figured out in
software, where an API allows an easy interaction with them.
Network applications can then interact with preprocessing
functions in a transparent manner.

2) High throughput: The FPGA part of the design contains
a static architecture set to support high data rates. The global
probe is then reliable and resilient to saturation traffic. The
traffic is fully processed by the probe without packet loss.
Data forwarded to the software part are precise and chosen by
the operator, not by packet sub-sampling.

3) Runtime adaptative processing: The configuration of
the FPGA design is performed through parameters provided
by the software application. These parameters modify the
functionality of preprocessing units designed on purpose.
This offers flexibility of the probe, without the need for
time-expensive FPGA reconfiguration. Configuration is then
possible at runtime allowing the probe to be content-aware
and to adapt itself to the incoming traffic. Moreover, the
hardware part runs processings with a controlled low latency.
The feedback loop is then low latency, enabling a reactive
probe.

B. Parameterized Packet Parsing
1) Flexible design: This part presents a packet parser

consistent with the paradigm presented previously. Packet
parsing is the required first step responsible for detecting
and extracting required features in a packet, often in protocol
headers. A packet parser supplies adequate inputs from packets
to next operations in the processing chain. The most commonly
used features are source and destination IP addresses, source
and destination UDP or TCP ports, and the transport protocol.
These form the classical 5-tuple for network analysis by
tracking flow information from this tuple. However, algorithms
could need complementary information on packets like layer 7
protocol header fields or non common protocol layer specific
to a type of application server. To provide such diversity in
information, a static parser can not be considered. Packet
parsing is a per packet operation on the datapath, justifying
its implementation on FPGAs at high data rate.

Using configuration parameters allows a hardware design
to gain flexibility. The one wanted in this case is on the
type of protocol header to process. A packet is a succession
of bits organized in several headers and payload data. A
specific feature in a packet needs 2 pieces of information to
be extracted, the header location and its location inside the

frame1

frame2

0 255

Ether IP

IP TCP HTTP

112

0 25516 176

Fig. 2. Packet frames example with 64-byte packet and 256-bit datapath width

header. The protocol encapsulation in a packet lets a lower-
level header to contain information on the next header, the
service access point (SAP). However, a protocol can have a
variable size. In this case, the size information is contained in
the current header. A header feature, a field or aggregate of
multiple fields, is at a fixed offset from the beginning of the
header and has a fixed size. To extract a feature from a packet,
the parameters needed are :

• a header size or the location of the corresponding size
field,

• the location of the SAP field in the header to know the
next header,

• the location of the feature inside the corresponding
header.

As an example, to get the TCP destination port out of a
TCP/IPv4 packet, the offset of the field from the beginning
of the header and the end offset of the field are needed.
The global TCP header must be extracted from the IPv4
packet, requiring the knowledge of the location of IPv4 length
and protocol fields. Obviously, the IPv4 packet has to be
beforehand extracted from the Ethernet frame.

2) Global architecture: When processed in the FPGA, the
packet is not continuous, it is composed of frames, whose
number depends on the datapath width. Frame width on the
FPGA is chosen alongside an operating frequency to match a
target link speed. The extraction of a feature from the packet
is conditioned by its location in each frame. A feature is
determined in the header where it is needed to be extracted, it
is therefore necessary to locate the corresponding header. The
figure 2 shows the composition of the 2 frames of a 64-byte
Ethernet packet on a 256-bit wide datapath. It is easy to notice
that a header can be broken into 2 frames, as well as features
of interest.

The parser must then locate the header in each frame to
locate and extract wanted features. Moreover, the built parser
must extract any feature from any header. This genericity
infers the separation of the packet parser between header
parsing and feature analysis. Indeed, the number of features
to extract by protocol is not known a priori. This separation
allows in addition to share feature analyzers between all
headers.

Due to data encapsulation in network packets, protocol
headers need to be processed in encapsulation order. It is there-
fore not possible to handle all headers of the packet at the same
time. The figure 3 shows the packet parser full architecture.
High data rates are achieved by analyzing headers in pipelined
stages. Each stage is analyzing one layer of encapsulation.
On the other hand, feature extraction does not dependent on
information inside packets, but can be determined with fixed
offsets from header beginning. As a result it is possible to
make it parallel. Header data for each header are produced at
different times due to the location in the pipeline. Introducing
a suitable delay after each header location synchronizes header
data with the corresponding packet data.

The parser configuration is handled by parameters for the
location and the extraction. Each protocol is uniquely identi-
fied during the parsing process. This lets configured analyzers
to detect the right protocol to work on.

3) Header parsing: This module extracts the current proto-
col location information in frames and determines the follow-
ing header if possible. The location is done with the size of the
header or the size field inside the header to locate it in packet
frames. This location determines min and max indices of the
header in the current frame if needed. Protocol decapsulation
uses the SAP field to determine the next header in the packet.

The figure 4 presents header parsing architecture. The first
step in the module fetches the descriptor corresponding to
the type given by the previous block. This descriptor is the
configuration parameter which contains information about the
analysis of the current header : the header global id, the length
field size and offset, the protocol field size and offset. For
the length and protocol, the offset and size refer to the offset
and the size of the corresponding field in the header. They are
extracted as any feature as shown later in the paper. Thanks to
the length field, the current header can be located inside packet
frames. The location consists of determining the header min
index and max index in each packet data frame. The protocol
field value is combined with the current protocol global id in
order to find the next header protocol global id. This protocol
is processed by the next block in the pipeline. Referring to
the example in III-B1, such parameters to decapsulate IPv4
encapsulation and get TCP header are :

• IPv4 length field offset : 4 bits
• IPv4 length field length : 4 bits
• IPv4 protocol field offset : 72 bits
• IPv4 protocol field length : 8 bits
• TCP protocol field value : 6
4) Feature analysis: This module extracts from one header

several features whose number is selected at synthesis time of
the design. Features are located with minimum and maximum
offsets from the beginning of the header. With the module
configuration, the type of header to use can be selected as
well as min and max offsets of features to be extracted. On
the opposite, the feature max width is selected at synthesis
time. To extract a feature, min and max indices of the feature
in each frame must be known. These indices are computed
from header location indices and feature offset in the header.

The figure 5 presents the different steps leading to features
extraction. The analyzer receives all header data coming from
all the header location modules and select the proper header
depending on the configured header type. When indices of the
feature in the frame are calculated, the feature part is extracted
from the frame and set in proper indices in a register, as shown
in figure 6 for the IP destination address. When all the parts of
the feature are extracted, the feature is considered extracted.
The packet last frame validates extracted features. To get, for
example, TCP destination port field, the begin offset, 16 bits,
and the end offset, 31 bits, of the field are needed.

5) Architecture flexibility: The full processing architecture
is based on abstract parameters. These parameters are designed
to correspond to information needed for data decapsulation.
The architecture can extract any feature from any header in-
formed in parameter memory. Parameter values can be defined
from the software part, making the packet parser flexible up
to a limit due to hardware. Indeed, the hardware resources are
not infinite on an FPGA. At design time, a maximum depth of
encapsulation has to be fixed. Beyond this depth, the remaining

header configuration

packet data

Configuration
Control

header
data

header
data

header
data Feature

Analysis

Feature
Analysis

extractor
configuration

header
data

features

features
validity

packet data

initial type

initial offset

header type

header offset

Header
Parsing

Header
Parsing

Header
Parsing

packet
data

features
validity

features

configuration
parameters

Header data
Synchronization

Fig. 3. Packet parser global architecture

protocol
descriptor

configuration

protocol
mapping

configuration

header type

header offset

header
type

header
min

index

header
max
index

next header type

packet data

next header offset

protocol
descriptor

length
descriptor

Protocol
Field

Extraction

Length
Field

Extraction

Header
Descriptor
Reading

Header
Computation

packet data

protocol

length

Fig. 4. Packet parser header parsing

packet data

header types

header min indices

header max indices

Feature
Extraction

Type
Validation

header min index

header max index

feature
validity

feature
extracted

type
configuration

feature limits
configuration

Feature
Extraction

Feature
Location

Feature
Location

feature
 validity

feature
extracted

index min

index max

index min

index max

Fig. 5. Packet parser feature analysis

headers cannot be analyzed. Therefore, this depth choice is
crucial to insure a complete packet parsing at hardware level.
Specific packets with more headers than foreseen are detected
and transferred to the software part for further processing.

On the opposite of cutting edge parsing solutions, this
architecture is configurable at runtime without stopping probe
processing, thanks to simple register one-cycle read and write.
Since supported data rate is only determined by data width
and clock on the FPGA, the flexible packet parser can be

programmed to support high data rates alongside being highly
flexible allowing a probe similar to the one presented in the
next section.

C. NetFPGA based probe
1) NetFPGA system: NetFPGA is an affordable platform

designed for research in high performance network field. This
project brings the possibility to design working prototypes
of smart NICs. The genericity of the proposed architecture

frame2frame1

0 255

Ether IP
ip
d2

TCP HTTP

112 0 25516 176

0 64

IP destination

ip
d1

ip
d1

ip
d2

32

Fig. 6. IP destination address extraction from frames

10G MAC
RX 0

10G MAC
RX 1

10G MAC
RX 2

10G MAC
RX 3

10G MAC
TX 0

10G MAC
TX 1

10G MAC
TX 2

10G MAC
TX 3

Input Arbiter

BRAM Ouput
Queues

User Defined
Probe

DMA RX

DMA

DMA TX

packet

packet
packet
to host

register
operation

packet
from host

Fig. 7. NetFPGA flow pipeline

allows to work on any FPGA, and so it can be integrated in
a NetFPGA system.

NetFPGA platform is designed to sustain high data rate
with a Virtex 7 XC7VX690T FPGA part and gains flexibility
through communication with a software part. Indeed, the board
is primarily designed for 40 Gb/s of traffic with four SFP+
interfaces but an FMC extension card can add interfaces up to
120 Gb/s [23]. The board contains a PCI express connection
giving the possibility to communicate with a host.

The project proposes a reference architecture to facilitate
integration of user designed modules for 40 Gb/s system. A
flow pipeline model is used with external and host forged
packets concentrated by the input arbiter in a common flow
for all user defined processing, as shown in figure 7. Then,
packets are dispatched to different outputs and to host by
output queues. A DMA system allows the communication
with the host computer through PCI express connection. This
implements the separation between register operation, namely
reading and writing, and packet transmission.

2) Architecture implementation: The flexibility of the pro-
posed architecture simplifies its integration inside the NetF-
PGA project. Indeed, the insertion in the pipeline flow requires
only the adaptation of communication interfaces. Register
operations are used to transfer the configuration parameters
to the design. Metadata can be sent to the host through
local forged packets. User defined protocols can be used to
differentiate metadata sent to software programs. The software
part needs the adaptation of calls to NetFPGA driver. This
ability of interface adaptation makes the design easily portable
to other platforms.

IV. EXPERIMENTAL RESULTS

A. Experimental probe
The proposed architecture for flexible packet parser has been

implemented and deployed on the NetFPGA smart NIC. The
focus of this study is on the parser, which is the primary
block for any network processing application. The proposed

packet

preprocessing
configparser

config

Attack
Detection

Packet
Parsing

features

Counter

Counter

Threshold
Comparator

Alert Generator

CMS

CUSUM
alerts

counters
values

FPGA

Software

Data
Logging

Feature
Selection

Anomaly Detection

Feature Count

Packet Preprocessing

Fig. 8. Test solution architecture

experimental setup aims at providing sufficient proof that the
packet parser is able to perform at the expected performance
level, and to evaluate its impact on applications in terms of
configuration latency, resource usage, and ease of use.

The parser has been coupled to a basic preprocessing unit,
in order to form a simple configurable hardware probe as
illustrated in figure 8. Required data is requested from a
software application, which performs actual processing and
adapt the configuration.

The preprocessing unit is composed of filtered counters
on selected features and an anomaly detection based on
destination IP count. One parametrable filter and one counter
are available for each possible extracted feature. The anomaly
detection is done with a change point detection over CMS
sketches [24] coupled with threshold detection. Counters and
alerts generated are transferred to the host machine via PCIe
connection for further processing.

Based on this simple probe implementation, a first remark
can be made: making use of features from hardware is as
easy as processing a FIFO. This means that common data
processing elements can be easily integrated, removing the
complexity induced by data extraction and frame management.
Using a generic unit, the same preprocessing can also be
applied to different field without any hardware change. For
example, with a counter able to process up to 6 bytes fields,
the same architecture can be used to count Ethernet packets
or IP packets.

Decisions for fields to monitor and required data is made by
software. This is done through a simple software API, which
completely abstracts the hardware implementation. The use
of hardware for preprocessing is completely hidden from the
developer.

B. Benchmark scenario

Wide presence of connected objects facilitates the creation
of intense volumetric attacks on any protocol [3]. This mali-
cious traffic aims to exhaust server resources with the reception
of a massive number of packets. The overload orientation
of these attacks makes them detectable if enough processing
power is available. This application is a good candidate to
validate the probe: it saturates data links, and it requires a good
agility to adapt to the protocol being targeted by the attack. It is
also a well-known attack, with well-known countermeasures.
The ability to efficiently protect a network from such an attack

0 100 200 300 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
r

of
pa

ck
et

s
(M

pp
s)

total traffic 192.168.1.1
192.168.1.2 192.168.1.3
192.168.1.4

Fig. 9. Incoming packet counters

relies only on the ability to monitor all affected protocols at
a sufficient speed.

The proposed test probe is fed with a synthetic traffic
composed of a base traffic mixed with attacks on different
protocols. Considered attacks are common ones like ICMP
ping flood, TCP syn flood, DNS QUERY flood and HTTP
GET flood [25]. This list only affects the software part: any
attack which can be detected by counting occurrences of a
field and comparing to a threshold can be processed by the
probe, as long as a configuration is provided.

For the sake of clarity, each attack is targeting a distinct
IP address. The base traffic creates a floor of 30 Gb/s of
minimal size 64-byte packets, being 44,642 Mpps. Attacks are
sent successively completing the base traffic to reach 40 Gb/s,
59,523 Mpps, the maximum rate achievable with the current
card interfaces. Global traffic shape received by the probe is
visible on figure 9. Different spikes in traffic correspond to
different attacks :

• ICMP ping flood on 192.168.1.1 (1)
• TCP syn flood on 192.168.1.2 (2)
• DNS QUERY flood on 192.168.1.3 (3)
• HTTP GET flood on 192.168.1.4 (4)

The generation of this traffic is done by a custom generator
with the possibility of producing a 40 Gb/s traffic of 64-byte
packets. The testbed is available under an open-source license
on NetFPGA SUME for verification [26].

A program developed on purpose in Python is monitoring
this incoming traffic. This very basic program detects volu-
metric attacks, including the ones inserted inside the test, on
a destination IP address. This program decides which kind of
protocol is monitored. As many features as decided at design
time can be simultaneously analyzed. When an alert is set,
parameters of the probe are incrementally computed by the
Python program, to refine the detection with adapted counter
values while keeping track of other possible threats. Decision
steps are shown in figure 10. Each step leads to a parameters
set for the design coherent with the observed traffic.

This procedure takes advantage of the flexibility of the
approach, to selectively monitor protocols according to the
traffic shape at a given time. Any protocol can be described
using the proposed set of parameters, and software integration

IP_ALERT

ICMP Attack UDP AttackTCP Attack

Ping Flood Syn Flood Ack Flood HTTP Attack

GET Flood POST Flood

DNS Attack

QUERY Flood

NO_ALERT

Fig. 10. Detection decision steps

is as simple as calling the corresponding functions. This
application is a proof of concept, and only implements basic
functionality. More complex forensics could obviously take
full advantage of the proposed agile and high data rate probe.

C. Test results and resource usage
Figure 11 summarizes counter values over time for traffic

content-aware specialization on IP, TCP and HTTP protocols,
as response forensics for received traffic shown in figure 9.
Figure 11(a) shows the recorded traffic for a specific IP,
figure 11(b) a refinement on TCP traffic, and figure 11(c)
a refinement on HTTP traffic. Holes in the curves represent
time intervals when no anomaly is detected, and then no
recording is necessary for these protocols. The same behavior
can be observed with ICMP, UDP and DNS test traffic. All
configuration refinements are done at runtime on demand of
the software. Dash vertical lines represent detected attacks.
These detections are performed at the beginning of each traffic
spike, showing the short reaction time of the probe. Counter
values export interval is configurable in a range from micro-
seconds to seconds, directly influencing detection time. The
probe is able to differentiate protocols at a rate of 40 Gb/s.

This example shows the possibility to monitor high data
rate traffic in an agile way. To monitor the same type of
traffic, a classic FPGA approach will reserve resources for
each protocol, even if the usage is not optimal. Finally, on
a classic approach, if a new protocol needs to be added to
the monitoring list, a new binary needs to be generated and
the FPGA needs to be reconfigured. For the proposed design,
adding simply corresponding protocol parameters to settings
is enough and done by the software.

Configuration parameters bring flexibility but require an un-
derlying design which is non protocol-specialized. This could
lead to resources over-utilization by the design. For complex
traffic, this drawback can be mitigated by the possibility to
share resources between protocols. The figure 12 studies the
impact of different configurations of the packet parser on
resource consumption on the FPGA. Based values used, when
not variating, are 5 header parsers, 10 feature analyzers and
128-bit features. These results correspond to a complete imple-
mentation process with Vivado 2014.4 tool without NetFPGA
interfaces overheads on Virtex 7 XC7VX690T. Feature width
amplitude is fixed to extract features from common 32-bit IPv4
address field to 128-bit IPv6 address field. The widest design
uses 26 % of FPGA’s resource, which lets plenty of space
available to implement further preprocessing.

0 100 200 300 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
r

of
pa

ck
et

s
(M

pp
s) monitored IP ICMP type

TCP type UDP type

(a) IP counters

0 100 200 300 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
r

of
pa

ck
et

s
(M

pp
s) total SYN

ACK HTTP port
HTTPS port

(b) TCP counters

0 100 200 300 400
0

20

40

60

| |
(1)

| |
(2)

| |
(3)

| |
(4)

Time (s)

N
um

be
r

of
pa

ck
et

s
(M

pp
s) total GET

POST

(c) HTTP counters

Fig. 11. Traffic distribution seen by the probe during the dynamic attack
detection

The design latency is an other key component. Each header
parser has a latency of 8 cycles and each analyzer has a
latency of 6 cycles. Parsers are designed as serial pipelines,
so the global latency of header parsing is the addition of
each latency. On the opposite, analyzers are parallel, so the
global latency of feature analysis is 6 cycles. In the case of
the widest design, the latency is 54 clock cycles, meaning
345.6 ns given the frequency. The test solution is built on
top of the proposed flexible parser. It is an adaptative probe

4 5 6
0

10

20

30

Number of parsersR
es

ou
rc

e
ut

ili
za

tio
n

(%
)

(a) Header parser number variation

4 6 8 10
0

10

20

30

Number of analyzersR
es

ou
rc

e
ut

ili
za

tio
n

(%
)

(b) Feature analyzer number varia-
tion

32 64 128
0

10

20

30

Feature widthR
es

ou
rc

e
ut

ili
za

tio
n

(%
)

(c) Feature width variation

Fig. 12. Packet parser resource utilization on XC7VX690T

TABLE I
PACKET PARSER SOLUTIONS ON XC7VXH870T

proposed [20] [17]
Datapath

width 512 1024 2048

Raw T’put
(Gb/s) 160 325 333

Clock
period (ns) 3.2 3.154 n.c.

Latency
(ns) 96 309 25.9

Slices (%
FPGA) 10 12.4 3.9

always tuned for current incoming traffic. In addition to be
easily done in Python via an API, parametrization of the packet
parser allows the probe to consider the same protocols as in
software. This test probe even processes data rates way beyond
those processed by its full software counterpart. The presented
packet parser combines high performance and high agility.

D. Packet parser architecture comparisons
Table I shows the comparison between the proposed so-

lution with a 512-bit wide datapath and other packet parser
designs on Virtex 7 XC7VXH870T. Results are given for a
TCPandIP4andIP6 specialized parser after synthesis for the
proposed design and [17], and after implementation for [20].
In order to provide a fair comparison between the related
works and the proposed architecture, the parser was configured
with 3 header parsers, 3 feature analyzers and 64-bit feature
width. This allows parsing of the same protocols, with all the

important features with spare ones. The different solutions are
compared in terms of throughput, latency, and resource usage.
Flexibility is also discussed in terms of expected agility. Even
if this is not measurable, by studying the architecture and its
integration, a good idea of its adaptability can be obtained.
Despite its high flexibility, the proposed approach has a
comparable resource usage with [20], but greatly improves the
latency and the flexibility. Comparison with [17] is difficult on
a fair basis, since this solution is very dedicated, with almost
no flexibility. Resource usage is 2.5 times as large for the
proposed solution, but it stays acceptable. Latency is 4 times
as large but, once again, remains acceptable at 100 ns, which
means a buffering of only 4 kbits. This comparison is done
on a simple example and more complex and diverse traffic
could lead to compensate the overhead on resource usage by
resource sharing between different protocols.

This is compensated by the clear advantage of flexibility,
and by the independence from proprietary tools provided by
the approach. Adding a new protocol can be done in software
only, using the API, while the compared solutions require a
new synthesis and configuration of the FPGA. This requires
using proprietary tools and stopping current processings on
the probe. [20] achieves some level of flexibility, by allowing
upgrades with partial reconfiguration by SDNet solution [22].
However, partial reconfiguration requires to reserve space
on FPGA for the wider design and imposes strong routing
constraints, impacting final performances. It also takes longer
than a simple change in parameters.

Another interesting difference lies in the datapath. The com-
pared solutions use a wider datapath. The width of the datapath
is linked to the parallelism level of the architecture. This higher
it is, the higher the expected throughput is. However, it also
creates a constraint on the minimal packet size. If 64 bytes
packets at line rate must be processed, the datapath cannot be
wider than 64 bytes (512 bits). Saturating the link with 64
bytes packets on the compared solution will lead to packet
loss. Higher parallelism also means more duplication in the
resources, which might limit the preprocessing.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a packet parser for a novel probe
paradigm with a static flexible FPGA design on the datapath
and a software part on the control path. This solution achieves
a higher agility than conventional smart NICs solutions con-
sidering only the reconfiguration of the FPGA. The use of
configuration parameters allows to dynamically set protocols
and information to extract for further processings while not
reconfiguring the probe. This implies that the probe is con-
tinuously running and FPGA vendor agnostic. This solution
achieves both high flexibility and high data rate, as never
encountered before to the authors’ knowledge.

The solution has been implemented and deployed on NetF-
PGA SUME board, based on a Virtex 7 FPGA and only 4
10G interfaces. Future work will focus on the portability of this
design on 100 Gb/s links to further increase attainable through-
puts. In the current solution, network related algorithms are
full-software, and available metadata are limited to basic
metrics. Hardware filtering and further offload processings
are under way to complete the parser in order to test more
elaborated forensic algorithms.

REFERENCES

[1] OVH, “OVH Mirai attack,” accessed: 2017-02-27. [Online]. Available:
https://www.ovh.com/fr/a2367.goutte-ddos-n-a-pas-fait-deborder-le-vac

[2] Dyn, “Dyn mirai attack,” accessed: 2017-02-27. [Online]. Available:
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

[3] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, Feb 2017.

[4] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfigurable
network systems and software-defined networking,” Proceedings of the
IEEE, vol. 103, no. 7, pp. 1102–1124, July 2015.

[5] V. Moreno, J. Ramos, P. M. S. del Rı́o, J. L. Garcı́a-Dorado, F. J. Gomez-
Arribas, and J. Aracil, “Commodity packet capture engines: Tutorial,
cookbook and applicability,” IEEE Communications Surveys Tutorials,
vol. 17, no. 3, pp. 1364–1390, thirdquarter 2015.

[6] Xilinx, “Xilinx smart networks,” accessed: 2017-07-05. [Online].
Available: https://www.xilinx.com/applications/smarter-networks.html

[7] D. Firestone, “Smartnic: Accelerating azures network with
fpgas on ocs servers,” in OCP U.S. SUMMIT 2016,
San Jose, CA, March 9-10 2016. [Online]. Available:
http://files.opencompute.org/oc/public.php?service=files&t=5803e581b55
e90e51669410559b91169&download&path=//SmartNIC%20OCP%2020
16.pdf

[8] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, “Design
principles for packet parsers,” in Architectures for Networking and
Communications Systems, Oct 2013, pp. 13–24.

[9] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of frameworks for high-performance packet io,” in Ar-
chitectures for Networking and Communications Systems (ANCS), 2015
ACM/IEEE Symposium on, May 2015, pp. 29–38.

[10] Xilinx, “Xilinx virtex ultrascale+ family,” accessed: 2017-
02-21. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/fpga/virtex-ultrascale-plus.html

[11] Intel, “Intel fpga stratix 10 family,” accessed: 2017-02-
21. [Online]. Available: https://www.altera.com/products/fpga/stratix-
series/stratix-10/overview.html

[12] T. Groléat, M. Arzel, and S. Vaton, “Stretching the edges of svm traffic
classification with fpga acceleration,” IEEE Transactions on Network
and Service Management, vol. 11, no. 3, pp. 278–291, Sept 2014.

[13] G. Antichi, C. Callegari, and S. Giordano, “An open hardware im-
plementation of cusum based network anomaly detection,” in Global
Communications Conference (GLOBECOM), 2012 IEEE, Dec 2012, pp.
2760–2765.

[14] J. J. Garnica, S. Lopez-Buedo, V. Lopez, J. Aracil, and J. M. G. Hidalgo,
“A fpga-based scalable architecture for url legal filtering in 100gbe
networks,” in Reconfigurable Computing and FPGAs (ReConFig), 2012
International Conference on, December 2012, pp. 1–6.

[15] A. Bitar, M. S. Abdelfattah, and V. Betz, “Bringing programmability to
the data plane: Packet processing with a noc-enhanced fpga,” in 2015
International Conference on Field Programmable Technology (FPT),
Dec 2015, pp. 24–31.

[16] S. Hager, D. Bendyk, and B. Scheuermann, “Partial reconfiguration and
specialized circuitry for flexible fpga-based packet processing,” in 2015
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Dec 2015, pp. 1–6.

[17] V. Pus, L. Kekely, and J. Korenek, “Design methodology of configurable
high performance packet parser for fpga,” in Design and Diagnostics of
Electronic Circuits & Systems, 17th International Symposium on, April
2014, pp. 189–194.

[18] P. Bencek, V. Pu, and H. Kubtov, “P4-to-vhdl: Automatic generation of
100 gbps packet parsers,” in 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
May 2016, pp. 148–155.

[19] G. Brebner, “Packets everywhere: The great opportunity for field pro-
grammable technology,” in Field-Programmable Technology, 2009. FPT
2009. International Conference on, December 2009, pp. 1–10.

[20] M. Attig and G. Brebner, “400 gb/s programmable packet parsing on
a single fpga,” in Architectures for Networking and Communications
Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on, october 2011,
pp. 12–23.

[21] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, Jan 2014.

[22] Xilinx, “SDNet,” accessed: 2017-02-23. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html

[23] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” Micro, IEEE,
vol. 34, no. 5, pp. 32–41, October 2014.

[24] O. Salem, S. Vaton, and A. Gravey, “A scalable, efficient
and informative approach for anomaly-based intrusion detection
systems: theory and practice,” International Journal of Network
Management, vol. 20, no. 5, pp. 271–293, 2010. [Online]. Available:
http://dx.doi.org/10.1002/nem.748

[25] OVH, “Classical attack types on network link,” accessed: 2017-02-
20. [Online]. Available: https://www.ovh.com/fr/anti-ddos/principe-anti-
ddos.xml

[26] [Online]. Available: https://redmine.telecom-bretagne.eu/projects/
cyberthd packetparser

