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One of the most used methods to schedule manufacturing systems is to use
priority dispatching rules (pdrs). It is frequently desired to distinguish the
behavior of pdrs in regards with tardiness based performance measures. But,
the relation among these performance measures is generally not obvious even
for the simple scheduling strategies such as pdrs. In this paper, we first focus
on the maximum tardiness that is a very interesting performance measure
for the decision-maker in the shop. However, because of its singularity, it is
not trivial to assess it. We conducted a simulation study on a benchmark
model of a dynamic job-shop system to evaluate the relative performance of a
set of pdrs chosen either because these are extensively used or because these
exhibit very good performance. Based upon the distribution of the maximum
tardiness of these benchmark pdrs, we identify two sub-sets of pdrs. From this,
we conducted experiments on the root-mean-square tardiness, which is used
to distinguish a system with a few highly tardy jobs from a system with a lot
of little tardy jobs. The experiments made show a positive correlation between
maximum tardiness and root-mean-square tardiness. Because of the fact that
the root-mean-square tardiness is an aggregate measure, it is much more easier
to assess it than the maximum tardiness. This provides an opportunity to
predict the relative performance of pdrs in regards with the maximum tardiness
as well as the width of the tardiness by evaluating root-mean-square tardiness
only.
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1. Introduction

Priority dispatching rules are widely used to dynamically schedule the operations
in a shop. However, their efficiency depends on the performance criteria of interest
(Dominic et al. 2004). Tardiness is an important criteria in real systems which can be
measured through several performance measures. These measures are used to rank dif-
ferent scheduling strategies under different conditions. However, the superiority of one
strategy over the other is not obvious in general, for a mix of performance measures and
conditions (Mattfeld and Bierwirth 2004).
A priority dispatching rule determines a value of priority index, κj , for any job j

in a given scheduling situation, allowing a procedure to use these priority indices for
selecting one of the schedulable jobs waiting to be started next on an idle machine (Baker
1974, Panwalker and Iskander 1977). For identifying the characteristics and making a
comparative study of the behavior of different priority dispatching rules, it is important
to classify and establish a relative ranking of the priority dispatching rules especially in
regards with the performance measures for which these are intended to be used.
In this paper we are only interested in tardiness based performance and especially with

the maximum tardiness which gives the worst-case performance regarding the tardiness
and thus can be of great interest for the decision-maker in the shop. We present an analy-
sis of tardiness based performance measures for a set of frequently used priority dispatch-
ing rules is made using simulation in order to highlight the similarities/dissimilarities in
the behavior of these priority dispatching rule. The worst-case behavior in regards with
tardiness is very difficult to identify due to its value at a single-point only. However, it is
possible to establish some guidelines in predicting this worst-case behavior. For this, we
use the properties of root-mean-square tardiness to identify two different sets of rules.
The rest of the paper is organized as follows. We will first discuss different tardi-

ness based performance measures frequently used in literature on job shop scheduling
problem. This follows with a description of experimental setup and the simulation proce-
dure used to evaluate the performances of the priority dispatching rules chosen in regards
with tardiness based performance measures. In Section 4, results showing the correlation
among two very important measures, maximum tardiness (Tmax) and root-mean-square
tardiness (Trms) are presented along-with discussion on these results. Finally, some con-
clusions are drawn which are presented in the last section.

2. Tardiness in Dynamic Scheduling

Dynamic scheduling of manufacturing systems for due-date based objectives has re-
ceived considerable attention from practitioners and researchers due to the importance
of meeting due-dates in most industries (Raman et al. 1989, Mainieri and Ronconi 2010).
Unfortunately, the study of due-date based objectives is much more complicated than
the flow-time based objectives (Baker and Bertrand 1982). To what extent the goal of
keeping the due-dates is achieved, is judged by tardiness based measures (French 1982).
However, there is no single universally accepted measure on this dimension.
The tardiness of a job is computed as Tj = max(0, Cj − dj) with Cj as the completion

date and dj is the due-date of the job j. It causes potential losses in terms of bad
reputation, higher stock-holdings, rush shipping costs and possibly contractual penalties.
To measure the effective performance of the system in regards with the tardiness, there
are several performance measures of interest. Generally it is not sufficient to assess the



performance of a schedule with a single tardiness based performance measure alone
(Laslo et al. 2008, Laslo 2010). In the following subsection, the mostly used tardiness
based performance measures are described. This follows with a derivation of a relation
between two very important tardiness based measures, i.e. Tmax and Trms, for stochastic
models.

2.1. Tardiness Based Measures

The most used performance measure to evaluate the tardiness is the total tardiness
(i.e., ΣjTj). While using simulation to compare two different scheduling strategies, the
number of completed jobs is usually fixed. Thus, in that case, the mean tardiness (i.e., T̄ )
is equivalent to the total tardiness. This measure represents an average level of customer
satisfaction in terms of delivery performance (Lejmi and Sabuncuoglu 2002).
The number of tardy jobs (ΣUj) or an equivalent measure namely percentage tardiness

(%T = ΣUj/n×100), is also extensively used in literature on comparative study of pdrs.
However this measure is risky as standalone measure due to its discrete nature and
resulting instability (Kemppainen 2005).

The conditional mean tardiness (i.e., CMT = ΣjTj

ΣUj
) measures the average amount of

tardiness for the completed jobs which are found to be tardy. This performance measure
is, however, not regular. It means that it can decrease while the completion times are
not decreasing (French 1982).
For the judgment of relative performance of pdrs in regards with tardiness, the shape of

the tardiness distribution must be considered. Overall performance of the system will be
disturbed heavily due to a very large delay for a job in comparison with a small constant
(or varying very little) tardiness values among several jobs (Moser and Engell 1992). In
this case, the maximum tardiness can be of great interest for the decision-maker in the
shop. It is defined as

Tmax = max
j

Tj .

It is an indication of a worst-case behavior of a rule during a particular experiment. When
there are tardy jobs, the maximum tardiness is equivalent to the maximum lateness. The
lateness of a job j, Lj = Cj−dj which is positive when job j is completed late and negative
when it is completed early (Pinedo 2008). Chang and Su (2001) state that “Minimizing
maximum lateness (Lmax) is important if all preceding activities must be completed
before the rest can begin in a project”. Moreover, (Malve and Uzsoy 2007) show that
this performance measure can be of great interest for the semiconductor industry “since
this will avoid making some jobs early at the expense of others being extremely late-it
tends to spread the deviations evenly across all jobs”. This objective can also be measured
by the root-mean-square tardiness, defined as

Trms =

√

1

n
ΣjT2j .

It permits to differentiate a system which presents a little number of tardy jobs with
higher tardiness from a system which presents a lot of tardy jobs with low tardi-
ness. This performance measure exhibits higher values for the first kind of systems
(Moser and Engell 1992).



2.2. Relating Tmax and Trms in stochastic models

With stochastic models, tardiness (T ) being a real-valued random variable, its ex-
pectancy is the first central moment and its variance is the second central moment.
It is estimated from the results of the simulation model and the estimation is computed
as

s2T =
1

n− 1

n
∑

j=1

(Tj − T̄ )2,

n being the number of jobs, T̄ being the estimation of the expectancy (i.e. T̄ = ΣjTj

n
).

Thus we have

s2T =
1

n− 1

n
∑

j=1

(T2j + T̄ 2
− 2T̄ Tj)

=
1

n− 1
(

n
∑

j=1

T2j + nT̄ 2
− 2T̄

n
∑

j=1

Tj)

=
1

n− 1
(

n
∑

j=1

T2j + nT̄ 2
− 2T̄ nT̄ )

=
1

n− 1
(nT 2

rms − nT̄ 2)

=
n

n− 1
(T 2

rms − T̄ 2).

This implies that with the root-mean-square tardiness and mean tardiness, we can
compute immediately an unbiased estimate of the variance of the tardiness.
We want to distinguish the behavior of different pdrs in regards with tardiness based

performance measures. In this study, we are interested in the maximum tardiness (Tmax)
that is of much practical significance for the decision-makers in the shop. In the next
section, we first present a set of experiments conducted on a set of pdrs for Tmax and
Trms in a job shop scheduling environment.

3. Experiments

In order to try to make a comparison as relevant as possible, our sample model is
a job-shop model used by several researchers. For example, (Eilon and Cotterill 1968)
have used this model to test the effects of the SIx rule, (Baker and Kanet 1983) to
demonstrate the benefits of the MOD rule, (Baker 1984) to examine the interaction
between dispatching rules and due-dates assignment methods, (Russell et al. 1987) to
analyze the effects of the CoverT rule comparing with several other pdrs, and (Schultz
1989) to demonstrate the benefits of the CEXSPT rule, (Pierreval and Mebarki 1997)
to evaluate the benefits of their pdrs shifting strategy.
The system is a four machine job-shop. Each machine can perform only one operation

at a time. The number of operations of the jobs processed in the system follows a discrete



uniform distribution between 2 and 6. The routing of each job is fixed and assigned
randomly with limited revisits policy. More precisely, when a job leaves a machine and
needs another machine for the execution of subsequent operation, each machine has the
same probability to be the next, except the one just released, which cannot be chosen. The
processing times of operations on machines follow a negative exponentially distribution
with a mean of one.
The arrival of jobs in the system is modeled as a Poisson process and are simulated

over long time periods. Since shop utilization, η is given as

η =
λ

µ
,

where λ is the job arrival rate and µ is the service rate of jobs, given as

µ =
1

p̄
= 1, (p̄ being the average processing time of jobs),

the shop utilization becomes a function of the job arrival rate. This means that by
manipulating the job arrival rates, the job shop can be maintained at a particular uti-
lization level. For this particular mode, due to the its configuration (number of machines,
operating times) the average shop utilization rate is equal to the average arrival rate.
Due-dates of jobs are determined using the Total Work Content (TWK) method (Baker
1984). Operation due-dates are set in proportion to the operation processing times. We
have selected 12 rules which are either extensively used (such as FIFO, EDD, SLACK)
or which perform very well for tardiness based measures (see Table 5 for a list and defi-
nition of these rules). Table 1 summarizes the parameter settings used in the simulation
model.

Table 1.: Simulation model parameters

Parameter Value
Number of machines 4
Number of completed jobs 5,000 and 500,000
Number of operations U[2,6]
Warm-up period 1,000 time units
Number of replications 100 and 1
Job routings random with limited revisiting
Job release policy Immediate
Release dates EXP[ 1

η
]

Operation processing times EXP[1]
Tie-breaking rule First in Queue
Due-date assignment method TWK

Research investigations have focused primarily on the relative effectiveness of various
priority dispatching rules in job shops. For due-date based objectives, the relative perfor-
mance of these pdrs is affected by the quality of the due-date assignment methods (such
as Total Work Content (TWK))(Baker 1984), the due-date tightness (τ) and due-date
variation (ρ)(Cheng and Gupta 1989, Lejmi and Sabuncuoglu 2002). The TWK method



is given as

dj = rj + ω

oj
∑

i=1

pj(i),

where rj is the release date of the jth job, dj is the due-date of the jth job,
∑oj

i=1 pj(i) is

the sum of processing times of all the operations of jth job and ω is a multiplier given as
ω = UNIF [τ − ρ, τ + ρ]. τ represents the due-date tightness whereas ρ is the due-date
variability. This allows job due-dates to be generated within a desired range of tightness
and variability.
As in this study, we consider only due-date tightness as a varying condition for the

due-dates, we have ω = τ , implying no due-date variation. The relative ranking of pdrs
is affected by such varying conditions for some specified tardiness based measure. For
example, tighter due-dates tend to produce larger values for T̄ and %T , while keeping
other conditions unchanged (Carroll 1965).
There are 2 × 3 = 6 configurations to be simulated (see Table 2) for each pdr. Two

levels of shop load are defined. A moderate shop load level, which corresponds to a
utilization rate of 80% for the resources, and a high level of shop load, which corre-
sponds to utilization rate of 90%. For each load level, three different levels of due-date
were established. Each given due-date tightness (e.g., tight, moderate or loose) is com-
puted in a proportion depending on the utilization rate of the resources (Schultz 1989,
Pierreval and Mebarki 1997). This means that the allowance for a job depends on the
utilization rate of the resources and the desired due-date tightness. Thus, for the FIFO
rule, with tight due-dates 60% of the jobs are found late in our model.
This job shop model is a hypothetical model but it presents some advantages: as it is a

generic stochastic model, it is not dependant on a particular kind of industry. Moreover,
it is also quite complex model since the routings are random (as well as the arrival rate
and the processing times) and the average number of operations is equal to the number
of machines.
Firstly, the performance measures for the set of pdrs were collected for 5,000 jobs over

100 replications with a warm-up period of 1,000 time units (corresponding approximately
to 500 jobs) under given operating conditions. Then one long simulation for 500,000 jobs
is carried out to obtain the distributions of tardiness values for these pdrs under the same
operating conditions. The 12 rules were chosen either beacuse they exhibit very good
performance for tardiness based performance (CRSI, COVERT, MOD, CEXSPT, ATC,
MF) (Kemppainen 2005) or because they are standard pdrs largely used in industry and
in the literature (FIFO, SI, SPT, EDD, SLACK, CR).

4. Results and Discussion

Fig. 1 presents the box-plots of Tmax for the set of pdrs under different operating con-
ditions for 100 replications. For each rule, there are 6 box-plots, each one corresponding
to a particular operating condition.
From these box-plots, we can identify two sets of rules based on their behavior in

regards with Tmax.

• FIFO, EDD, SLACK, CR noted as set 1 for which Tmax is quite low with less degree
of dispersion and there are very few outliers.



Table 2.: Operating conditions tested.

Factor Levels Number of levels
Utilization rate of the re-
sources (η)

80%, 90% 2

Due-date tightness (τ)

tight due-dates

ω =7.5 for η=90%,
ω =5 for η=80%.
moderate due-

dates

ω =12.5 for η=90%,
ω =7.5 for η=80%.
loose due-dates

ω =9.5 for η=90%,
ω =8.75 for η=80%.

3

Pdrs tested

FIFO, SI, SPT, EDD,
SLACK, CR, CRSI,
COVERT, MOD,
CEXSPT, ATC, MF

12

• SI, SPT, MOD, MF noted as set 2 for which there is a much higher degree of dispersion
for Tmax with larger number of extreme outliers.

For example, in the case of SI rule under high load and tight due-date conditions,
inter-quartile range (IQR is the range within which the middle 50% of the ranked data
is found) is 301.5 (=744.3-442.5) with two extreme outliers at 2369.3 and 2446.5. On the
other hand, for SLACK rule under similar conditions, IQR is merely 19.8 with only one
mild outlier at 97.6.
For the other rules (CR/SI, COVERT, CEXSPT, ATC) it can be observed that these

rules change their behavior in regards with the varying conditions of load and due-date
tightness. For tight due-date settings, the behavior of these rules compares to rules of
set 1. However, as the due-dates get looser, these rules tend to behave like rules of set
2. This behavior is inherent to the structure of these rules (and hence generally referred
as trade-off heuristics). For example CR/SI does not take into account the amount of
relative lateness and it has two different behaviors for late jobs and non-late jobs.
Under higher loading conditions, the performance of the pdrs deteriorate however,

there is no significant impact on the relative ranking of the pdrs.
The corresponding distribution plots of the tardiness values, obtained through a single

long simulation run, for these two sets of rules are shown in Fig. 2 and Fig. 3. These
distribution plots for a single long simulation run clearly show two different kinds of
behaviors for rules of set 1 and rules of set 2. Our measures show that for rules of
set 1, the tardiness values are quite evenly distributed in contrast to the rules of set 2
where the concentration of tardiness is only on a few jobs, that are very tardy, justifying
the high value of maximum tardiness for rules of set 2. This is a typical behavior that
is measured by Trms, as mentioned earlier. In order to check if the two sets of rules
previously identified in regards with the Tmax, can also be discriminated by using the
Trms, it is decided to measure the relative performance of these benchmark pdrs in
regards with the Trms.
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Figure 1.: Box-plots of Tmax with corresponding (τ, η)

Fig. 4 present a comparison of Tmax and Trms under different operating conditions
within the two sets of rules previously identified and other rules. Rules of set 1 perform
significantly well for Tmax, with SLACK rule as always the best performing rule. For
rules of set 1, EDD and SLACK exhibit quite a similar behavior, however for FIFO,
Tmax and Trms are not as strongly correlated as the other two pdrs of this set. Probably,
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Figure 2.: Tardiness distribution for rules of set 1 with corresponding (τ, η)
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Figure 3.: Tardiness distribution for rules of set 2 with corresponding (τ, η)

this is due to the fact that, in FIFO there is neither the involvement of due-date factor



nor the processing times resulting in higher values for tardiness (as compared to other
two rules of set 1).

Table 3.: Confidence Interval for Correlation between Tmax and Trms

(ω,η) (7.5,90%) (12.5,90%) (15,90%) (5,80%) (7.5,80%) (8.75,80%)

FIFO
0.85529 0.85963 0.85604 0.74663 0.75248 0.75248

[0.7926,0.89986] [0.79261,0.90482] [0.78931,0.90291] [0.64096,0.84518] [0.64177,0.86386] [0.64177,0.86386]

SI
0.89076 0.90969 0.91798 0.82116 0.85957 0.85957

[0.81299,0.94655] [0.84568,0.95843] [0.85023,0.96146] [0.73265,0.89054] [0.7919,0.91477] [0.7919,0.91477]

SPT
0.87495 0.88438 0.88884 0.77426 0.80669 0.80669

[0.81709,0.91214] [0.83268,0.91846] [0.84133,0.92192] [0.68927,0.83444] [0.73219,0.86285] [0.73219,0.86285]

EDD
0.87681 0.91346 0.89915 0.82829 0.88431 0.88431

[0.80323,0.92411] [0.87314,0.93581] [0.85284,0.92789] [0.73672,0.89456] [0.84067,0.91658] [0.84067,0.91658]

SLACK
0.87442 0.92353 0.9143 0.82894 0.92511 0.92511

[0.80542,0.91772] [0.89158,0.9479] [0.88377,0.94044] [0.74006,0.89895] [0.89416,0.94954] [0.89416,0.94954]

CR
0.88691 0.94371 0.94926 0.80228 0.92711 0.92711

[0.81835,0.92796] [0.91115,0.96202] [0.91001,0.96929] [0.71576,0.86626] [0.88473,0.959] [0.88473,0.959]

CR/SI
0.92886 0.95837 0.98692 0.87255 0.95654 0.95654

[0.88921,0.96166] [0.91968,0.97568] [0.96101,0.99877] [0.80903,0.91708] [0.93018,0.97198] [0.93018,0.97198]

CoverT
0.91365 0.9529 0.93416 0.85643 0.90983 0.90983

[0.8615,0.94638] [0.92114,0.97366] [0.88398,0.97113] [0.77751,0.91454] [0.83947,0.95133] [0.83947,0.95133]

MOD
0.88924 0.93424 0.95677 0.86473 0.89796 0.89796

[0.83239,0.93016] [0.89132,0.96964] [0.93001,0.96886] [0.80519,0.90954] [0.85873,0.92713] [0.85873,0.92713]

CEXSPT
0.92407 0.95033 0.95927 0.83688 0.90615 0.90615

[0.88205,0.96247] [0.90848,0.97623] [0.91218,0.98616] [0.7736,0.88755] [0.8533,0.93747] [0.8533,0.93747]

ATC
0.92855 0.95065 0.9859 0.8715 0.94496 0.94496

[0.89352,0.95382] [0.91384,0.96863] [0.9693,0.99507] [0.81272,0.91484] [0.91124,0.96844] [0.91124,0.96844]

MF
0.9091 0.92447 0.925 0.80034 0.83919 0.83919

[0.84872,0.95256] [0.86551,0.96275] [0.86443,0.96358] [0.70001,0.87661] [0.75322,0.90042] [0.75322,0.90042]

For stochastic models, it is required to construct a confidence interval for a param-
eter estimate in statistical inferences. Bootstrapping procedure is used to obtain 95%
confidence intervals for the correlation coefficients between Tmax and Trms, which are
presented in Table 3. For SI rule, for example, under high load and tight due-date condi-
tions (i.e. (7.5,90%)), the confidence limits for the correlation coefficient is 0.813 (lower
limit) and 0.947 (upper limit). Table 3 presents strong quantitative evidence that Tmax

and Trms are positively correlated. Moreover, this evidence does not require any strong
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assumptions about the probability distribution of the correlation coefficient. It is also
observed that this correlation is stronger under High load and loose due-date settings
for all the rules.
As a matter of fact, the root-mean-square tardiness (Trms) is a very interesting mea-

sure. It has three advantages. First, and this is its usual use, it permits to differentiate
a system with a little number of tardy jobs having higher values for tardiness from a
system with a lot of tardy jobs having low tardiness. Second, we have demonstrated that
it can also be used along with mean tardiness to compute an estimate of the variance
of the tardiness. And third, we have also tried to show that it gives an indication of the
relative performance of the rules for Tmax as Trms is found to be strongly correlated with
the maximum tardiness.



5. Conclusions

In this article, we have discussed tardiness based performance measures using a set of
pdrs that are extensively used in the literature on scheduling. Based on the behavior of
pdrs in regards with maximum tardiness, two sets of rules have been identified; FIFO,
EDD, SLACK and CR from one side and SI, SPT, MOD and MF on the other side.
The behavior for the rules of the first set is to exhibit a large number of tardy jobs with
low tardiness, which is exactly opposite to that for the rules of the second set. There
are some rules (CRSI, COVERT, CEXSPT, ATC) exhibiting these two behaviors under
different conditions. For tight due-date setting, these rules behave more like the rules
of set 1 while under loose due-date setting, their behavior tends towards rules of set 2.
This kind of discrimination is typically found through the Trms.
We found results that show a strong correlation between the Tmax and the Trms in our

experiments. This correlation is found to be relatively stronger in congested shops. The
worst case performance in regards with tardiness of a particular priority dispatching rule
may therefore be predicted by evaluation of Trms which can be used along with the mean
tardiness to compute the variance of the tardiness. So, the Trms can be used to rank the
priority dispatching rules in regards with the Tmax and the width of the tardiness. For a
company which wants to put a limit on the tardiness, this study shows the effectiveness
of the pdrs described in set 1 (i.e., FIFO, EDD, SLACK and CR). These rules are quite
easy to implement and are already frequently used in industrial manufacturing systems.
This study also shows that depending on the operating conditions (i.e., tight due dates
or not, moderate shop load or not), it can be interesting to use more sophisticated rules
such as CRSI, COVERT, CEXSPT or ATC in order to put a limit on the tardiness. In
all cases, it is valuable to simulate the manufacturing system using priority dispatching
rules to evaluate the maximum tardiness along with the root-mean square tardiness in
order to put a limit on the tardiness.
The results presented in this study are based on a simulation model that has become

a benchmark for job shop configuration. The set of priority dispatching rules used in
this study are not tied to some specific scheduling environment. Thus this can be safely
assumed that results are not specific to this particular model or limited to a particular set
of priority dispatching rules. However an extended study on the behavior of these priority
dispatching rules in regards with other parameters (e.g. due-date variability, due-date
methods and anticipated waiting times) would give more insights to the inter-relation
of these tardiness based measures. This would result in a more general classification
scheme of priority dispatching rules for the tardiness based measures. It would also be
an interesting research topic to study the effects of different routing schemes on these
results.
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Appendix A

Table 4.: Glossary of Notations

Symbol Definition

i Index for an operation
j Index for a job
k Index for a machine
n Number of jobs
rj Release date of jth job
dj Due-date of jth job
pj Sum of processing times of all operations of jth job
Cj Completion time of last operation of jth job
Tj Tardiness of jth job
Wj Expected waiting time of jth job
λ Arrival rate of jobs
µ Service rate of jobs
η Shop utlization level
ρ Due-date variability factor
τ Due-date tightness factor
ω Due-date allowance multiplier
(x)+ =max(x,0)



Table 5.: Definitions of Benchmark Priority Dispatching Rules

Rule Definition Rank Priority Index
FIFO First In First Out min Cj(i−1)

SI Shortest Imminent
processing time

min pj(i)

SPT Shortest Processing
Time

min pj

EDD Earliest Due-Date min dj
SLACK Slack min dj − t−

∑oj
i=l pj(i)

CR Critical Ratio min dj−t
∑oj

i=l pj(i)

CRSI Critical Ratio/Shortest
Imminent

min pjk ×max( dj−t
∑oj

i=l pj(i)

, 1)

MOD Modified Operation
Due-date

min max(djk, t+ pjk)

COVERT Cost Over Time max 1
pj(i)

(

1−
(dj−t−

∑oj

i=l pj(i))+

h1

∑oj

l=i Wj(l)

)+

ATC Apparent Tardiness
Cost

max 1
pj(i)

exp

(

−
(dj−t−pj(i)−h2

∑oj

i=l+1 pj(i))

h3

∑oj

i=l pj(i)

)+

MF Multi-Factor max 1
pj(i)

(

Wj(i) − (dj − t−
∑oj

i=l pj(i))
)

where
Wj(q) =

∑n( 6=k)
i=k

∑q
j=1 pj(i) −

∑q−1
j=1 pj(i).

CEXSPT Conditionally
Expedited SPT

−

Partition into three queues, late queue, opera-
tionally late queue and ahead-of-schedule queue,
with SI as selection criterion within queues. Shift-
ing of job to other queues is not allowed.


