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Abstract: Groups of permutable operations is a well-known robust scheduling method that
represents a particular set of schedules to be used in a real-time human-machine decision
system where the aim is to absorbe uncertainties. This method guarantees a minimal quality
corresponding to the worst-case. The best-case quality is also of interest; associated with the
worst-case, it will provide a range of all possible qualities of the final schedule. The best-case
quality is an NP-hard problem that can be solved optimally using an exact method. The
performance of this exact method relies on the accuracy of its lower bounds. In this paper,
we propose new improved lower bounds for the best-case quality of the groups of permutable
operations. These lower bounds can either be used in an exact method to seek for the optimal
best solution or can be used in a real-time human-machine decision system. The experiments
made on very well-known job shop instances, using the makespan objective, exhibit very good
performances.

Keywords: Groups of permutable operations, Best-case, Scheduling, Uncertainty, Job Shop,
Lower bounds.

1. INTRODUCTION

In an industrial context the most classical scheduling sit-
uation is the predictive scheduling where variables, con-
straints, all the data are considered as known. The problem
is that manufacturing systems are not so deterministic.
They present a lot of uncertainties, e.g., the breakdown of
a machine, late material, new orders to proceed immedi-
ately, etc. During the execution of the schedule, it is fre-
quently necessary to repair the schedule while preserving
the solutions quality. In this context, scheduling methods
which provide flexible solutions taking into account the
uncertainties of the workshop should be very interesting.
Groups of permutable operations (GoPO) is one of the
most studied methods which provides flexibility.

GoPO is used according to two stages: a predictive phase
and a reactive phase. The predictive phase is done offline.
It aims at introducing flexibility in the sequence of oper-
ations by creating groups of permutable operations which
enables to describe a set of schedules without enumerating
them. Then, the reactive phase is done online on the floor.
It needs the intervention of a human, named the operator,
who chooses during the execution of the GoPO the opera-
tion to be executed in each group of permutable operations
that fits best the real state of the system. This method has
been successfully addressed in the literature Erschler and
Roubellat (1989); Billaut and Roubella (1996); Esswein
(2003); Pinot (2008).

GoPO guarantees a minimal quality corresponding to the
worst-case schedule; this value can be computed using a
polynomial time algorithm for min-max regular objectives,
see Esswein (2003); Artigues et al. (2005). However, taking
a decision using only the worst-case value can lead to
prioritize lower quality solutions over the good ones. The
best-case quality of GoPO should also be interesting by
providing to the operator the next operation to be chosen
for the optimal final solution. The best-case quality Zbest
can be associated with the worst-case quality Zworst to
present the range of all possible qualities of the final
schedule [Zworst...Zbest].

Finding the best-case quality in GoPO is an NP-Hard
optimization problem. It can be solved optimally using
an exact method like the Branch and Bound approach,
see Pinot and Mebarki (2009); Yahouni et al. (2014) . The
efficiency of this method relies directly on the quality of
its lower bounds.

Over the years, several adjustment techniques were pro-
posed for the computational of the job shop lower bounds,
most of them based on the one machine relaxation problem
: Carlier and Pinson (1990, 1994); Baptiste and Le Pape
(1996); Nuijten and Pape (1998). Sourd and Nuijten
(2000) proposed two classes of adjustment techniques; the
first class is the one-machine problems, the second class
concerns the conjunctive constraints between operations
and consequently machines. Pinot and Mebarki (2008) de-
veloped an adaptative lower bounds for GoPO taking into



account the precedence properties between operations and
groups on the same machine. In this paper, we take into
consideration that operations, groups and machines are
connected to each other through precedence constraints
to exploit the potential of improving the lower bounds
proposed by Pinot.

The remainder of the paper is structured as follows: in
Section 2, groups of permutable operations method is
described in detail. Next, in Section 3, we present the lower
bounds developed by Pinot and Mebarki (2008) and we
propose an improvement of these lower bounds. Section
4 is devoted to the evaluation of our lower bounds by
a simulation study on a benchmark job shop instances.
Finally, main conclusions are summarized in Section 5.

2. GROUPS OF PERMUTABLE OPERATIONS

Groups of permutable operations (GoPO) also called
group sequence method was first introduced by LAAS-
CNRS laboratory, Toulouse, France Erschler and Roubel-
lat (1989). this approach has been used in the ORDO
software, it describes a set of valid schedules, without enu-
merating them. The objective of this method is to provide
to the decision-maker a sequential flexibility during the
execution of the schedule and to ensure a certain quality
that is represented by the worst-case Artigues et al. (2005);
Alloulou and Artigues (2007).

A GoPO schedule is composed of groups Gi, each group
contains one or many operations that will be executed in
the same resource Gi := {Oi, O2, ..., On}, Oi denotes the
operation number i, n! denotes the number of permuta-
tions that can be represented from this group. A GoPO
schedule is said feasible if any permutation among all the
operations of the same group gives a feasible schedule that
satisfies all the problem constraints.

To illustrate this definition, let us study a job shop
example where the problem is described in Table 1, ji,
pi, Mi and Γ−(i) denote respectively the job number
i, the processing time, the machine assignment and the
predecessor of the current operation)

Table 1. Example of a Job shop problem

ji j1 j2 j3
Oi O1 O2 O3 O4 O5 O6 O7 O8 O9

Mk M1 M2 M3 M2 M3 M1 M1 M3 M2

Γ−(i) / O1 O2 / O4 O5 / O7 O8

pi 1 4 1 2 3 1 4 2 3

Table 1 presents a job shop problem with three machines
and three jobs, while Fig. 1 presents a feasible GoPO
schedule solving this problem for the makespan objective.
This GoPO schedule is made of seven groups: two groups
of two operations and five groups of one operation. It
describes four different semi-active schedules shown in Fig.
2. Note that these schedules do not always have the same
makespan: the best-case quality is with Cmax=10 and the
worst-case quality is with Cmax=12.

The execution of a GoPO schedule consists in choosing
a particular schedule among the different possibilities
described by the GoPO. It can be viewed as a sequence of
decisions: each decision consists in choosing an operation

M1 O1 O7 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. GoPO Schedule

to execute in a group when this group is composed of
two or more operations. For instance, for the schedule
described on Fig. 1, there are two decisions to be taken: on
M1, at the beginning of the scheduling, either operation
O2 or O7 has to be executed. Let us suppose the decision
taken is to schedule O2 before O7, on M2, there is another
decision: scheduling operation O5 or O8 first, so at the end
we have four semi-active schedules.

GoPO has an interesting property: the quality in the
worst-case can be computed in real-time for minmax
regular objective functions like makespan Esswein (2003);
Artigues et al. (2005); Alloulou and Artigues (2007). Thus,
this method can be used to compute the worst-case quality
in real-time during the execution of the schedule even for
large scheduling problems.

To summarize, it can be said that GoPO enables the
description of a set of schedules in an implicit manner
(i.e. without enumerating the schedules) and guarantees
a minimal performance that corresponds to worst-case
quality. But the best-case quality should also be interesting
to know which operation to choose from a current group
to get possibly the best optimal schedule.

3. LOWER BOUNDS FOR THE BEST-CASE
STARTING/COMPLETION TIME OF AN

OPERATION

To compute the best-case quality, Pinot and Mebarki
(2008) proposed a branch and bound method to solve
the problem, which needs the computational of the lower
bounds. The accuracy of these lower bounds is very im-
portant for two reasons: The most accurate are the lower
bounds, the more efficient will be the branch and bound
procedure. Also, as the best-case quality is an NP-hard
optimisation problem, it is sometimes very useful to use
these lower bounds directly to take the scheduling deci-
sions during the reactive phase.

Pinot and Mebarki (2008) compute such lower bounds
using a relaxation on the resources by making the as-
sumption that each resource has an infinite capacity. In
this case, the best-case lower bound for starting time of
an operation (θi) is computed as the maximum of the
best-case (lower bound) completion time (χj) of all its
predecessors: for an operation Oi, its predecessors include
the predecessors given by the problem (Γ−(i)) but also the
group predecessor of this operation on the same machine.
Thus, it needs the computation of the optimal makespan of



M1 O1 O7 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10

M1 O1 O7 O6

M2 O4 O2 O9

M3 O8 O5 O3

1 2 3 4 5 6 7 8 9 10 11

M1 O7 O1 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12

M1 O7 O1 O6

M2 O4 O2 O9

M3 O8 O5 O3

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. Set of Semi-active schedules

a group (named as γgl,k). First we compute θi as a release
date so we can generate a 1|ri|Cmax problem instance that
corresponds to our problem, with ri = θi ,see equation(
1). This problem is polynomially solvable by ordering
the operations in ascending release date Lawler (1973);
Brucker and Knust (2007).


θi = max(ri, γg−(i), max︸︷︷︸

j∈Γ−(i)

χj
)

χi = θi + ρi

γgl,k = Cmaxof1|ri|Cmax,∀Oi ∈ gl,k, ri = θi

(1)

In our Job shop example, the predecessors of operation
O6 executed on M1 are: operation O5 (executed on M3)
because of the precedence constraints, and the optimal
makespan of the ending time of the group containing O1

and O7 (executed on the same machine M1 because they
are in the previous group (g−(6)). So we have:

Table 2. Lower bounds

Oi θi χi γgl,k
O1 0 1

5
O7 0 4

O4 0 2 2

O2 2 6 6

O5 2 5
7

O8 4 6

O3 7 8 8

O6 5 6 6

O9 6 9 9

Table 2 represents the lower bounds best-case start-
ing/completion time of our job shop example. The max-
imum lower bound completion time of operations is nine
which is not the optimal value.

3.1 Precedence dominance constraint

In this section, we present an improvement of the previous
lower bounds using an adjustment technique based on the
combination between precedence constraints and disjun-
tive constraints between groups on the same machine.

This improvement is based on a property concerning any
two operations (Oi and Oj) that belongs to two successor
groups (G−

i and Gi) in the same machine and have their
predecessors (direct or indirect) in the same group (O−

i

and O−
j ∈ Gl,k). In this case, one of the operations O−

i

or O−
j has to start before the other one. Executing one of

these operations at first and delaying the other operation
will have an influence on the completion time of Gi. Fig. 3
and Fig. 4 shows this precedence property for our job-shop
example:

M1 O7 O1 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3. Precedence dominance constraint between O8 and
O3



M1 O7 O1 O6

M2 O4 O2 O9

M3 O5 O8 O3

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4. Precedence dominance constraint between O2 and
O9

From the example shown on Fig. 4, we have on Machine
M2 operation O9 that has to start after O8 because of the
precedence constraint, and after operation O2 because of
the group precedence in the same machine. Both predeces-
sors of these operations O1 and O7 are in the same group,
executing one of them first will have an influence on the
starting time of operation O9.

Computing the best-case starting time of O9 using equa-
tion (1) will lead to put O2 and O8 on their both best
starting time, as well as O7 and O1 by transitivity, which
is impossible, we know for fact that O7 and O1 cannot
start togheter at their best starting time on the same time
(only one of them can starts at it best-case), This is why
using equation (1) to compute θ9 has given six on Table
2, which is not the optimal solution = seven as shown on
Fig. 2.

To take into account this situation, we propose an adjust-
ment technique, the calculation of the new lower bounds
requires two times the calculation of the makespan using
equation (1), one time for the case when O1 is executed be-
fore O7 and the other one when O7 is executed before O1.
The new makespan lower bound will be the minimum value
between these two evaluations. The new lower bounds for
our job shop example are shown on table 3.

Table 3. Improved Lower bounds

r1 < r7 r7 < r1
Oi θ1i χ1i γ1gl,k θ2i χ2i γ2gl,k min

(γ1gl,k , γ2gl,k )

O1 0 1
5

4 5
5 5

O7 1 5 0 4

O4 0 2 2 0 2 2 2

O2 2 6 6 5 9 9 6

O5 2 5
7

2 5
7 7

O8 5 7 4 6

O3 7 8 8 9 10 10 8

O6 5 6 6 5 6 6 6

O9 7 10 10 9 12 12 10

Our new lower bounds give the optimal value for the best-
case schedule of our job shop example as shown on Table
3. θi can be computed on polynomial time using equation
(1), it complexity is equal to O(n2) (n being the number
of operations). We suppose that for the worst-case the
precedence constraints property is found k-time (k < n)
when computing θi. So we have a complexity of kO(n2) =

O(n3). In the next section we will present an experiment
on a benchmark job shop instances to evaluate our new
lower bounds.

4. COMPUTATIONAL TESTS

We took a well-known set of benchmark instances called
la01 to la40 from Lawrence (1984) with known optimal
values. These instances are widely used in the job shop
literature. For each instance, we generate a group se-
quences with known flexibility value using a greedy al-
gorithm called EBJG Esswein (2003) that merges two
successive groups according to different criteria until no
group merging is possible. This algorithm begins with a
one-operation-per-group sequence. We refer to the lower
bounds used in Pinot and Mebarki (2008) by LB1 and
the improved ones LB2. We study the accuracy of each
of these lower bounds compared to the optimal solution,
outcomes of the experiment are shown on the next table.

Table 4. LB1 VS LB2

GAP error LB1 GAP error LB2

La1 35 0

La2 0 0

La3 9 3

La4 2 2

La5 0 0

La6 0 0

La7 17 17

La8 0 0

La9 0 0

La10 0 0

La11 0 0

La12 0 0

La13 0 0

La14 0 0

La15 0 0

La16 0 0

La17 23 10

La18 0 0

La19 1 1

La20 1 1

La21 0 0

La22 0 0

La23 0 0

La24 1 1

La25 1 0

La26 0 0

La27 0 0

La28 0 0

La29 6 3

La30 0 0

La31 0 0

La32 0 0

La33 0 0

La34 0 0

La35 0 0

La36 1 1

La37 2 0

La38 1 1

La39 1 1

La40 0 0∑
101 41

Based on the results, LB1 gives optimal values on 26
instances, where LB2 has an advancement of six instances



over LB1. Table 4 shows that LB2 provides a lower
maximum gap error for almost all instances. The sum gap
error for the test problems is 41, which is more than two
times smaller than the sum gap error of LB1 = 101. Our
lower bounds always performed either the same or better
than LB1 depends on whether the precedence dominance
constraint between groups is present on the GoPO or not.
The improvement of the results are shown on six instances
(La01,La02,La17,La25,La29 and La37).

The computational time for all instances together for LB1

and LB2 is less than one second. For almost all instances
this value converge to zero for both lower bounds.

In our next experiment, we use these lower bounds in a
branch and bound method B&B on the same instances.
The protocole experiment is described in Yahouni et al.
(2014). The results of this experiment are shown on Table
5. The columns are representing the number of processed
nodes to find the optimal best solution using LB1 and
LB2. The number of visited nodes to find the best-case
is the sum of the number of nodes to find the optimal
solution in the tree and the number of nodes to prove it
optimality.

The results of experiment shows that B&B LB2 has an
advance over B&B LB1 on three instances (La17, La25
and La 29) where the number of visited nodes has been
improved more than ten times. The sum number of visited
nodes for the best-case schedule for all instances using
B&B LB1 and B&B LB2 are consecutively 254498 and
247593 (GAP = 6905).

5. CONCLUSION

In this paper we have proposed an adjustment technique
to improved the lower bounds for the computational of
the best-case schedule in groups of permutable operations
for the makespan objective. Our improved lower bound is
based on the precedence dominance constraints between
two successive groups on the same machine. Experiements
were done on benchmark job-shop instances showed the
efficiency of our improved lower bounds compared with
the one developed by Pinot and Mebarki (2008).

These lower bounds can either be used implicitly in a real-
time human-machine decision system or in a branch and
bound algorithm. However, the effectiveness of the branch
and bound method relies directly on the accuracy of its
lower bounds. For this, we may explore in further research
more dominance rules to improve these lower bounds
by extending our precedence dominance constraints on
multiple groups instead of only two successive groups.

REFERENCES

Alloulou, M. and Artigues, C. (2007). Worst-case eval-
uation of flexible solutions in disjunctive scheduling
problems. Computational Science and Its Applications
- ICCSA 2007 International Conference, Proceedings,
Part III, 1205, 1027–1036.

Artigues, C., Billaut, J., and Esswein, C. (2005). Maxi-
mization of solution flexibility for robust shop schedul-
ing. European Journal of Operational Research, 165,
314–328.

Table 5. B&B LB1 VS B&B LB2

B&B LB1 B&B LB2

La01 15 15

La02 9 9

La03 15 15

La04 16 16

La05 18 18

La06 27 27

La07 214862 214862

La08 26 26

La09 30 30

La10 29 29

La11 33 33

La12 34 34

La13 33 33

La14 31 31

La15 36 36

La16 23 23

La17 837 521

La18 21 21

La19 248 248

La20 22 22

La21 36 36

La22 32 32

La23 36 36

La24 34 34

La25 5793 36

La26 50 50

La27 52 52

La28 58 58

La29 891 59

La30 55 55

La31 102 102

La32 106 106

La33 100 100

La34 100 100

La35 99 99

La36 8487 8487

La37 42 42

La38 21651 21651

La39 370 370

La40 39 39∑
254498 247593

Baptiste, P. and Le Pape, C. (1996). Edge-finding con-
straint propagation algorithms for disjunctive and cu-
mulative scheduling. In Scheduling, Proceedings 15 th
Workshop of the U.K. Planning Special Interest Group.

Billaut, J.C. and Roubella, F. (1996). A new method for
workshop real time scheduling. International Journal of
Production Research, 34, 1555–1579.

Brucker, P. and Knust, S. (2007). Complexity results
for scheduling problems. URL http://www.mathematik.
uni-osnabrueck.de/research/OR/class/.

Carlier, J. and Pinson, E. (1990). A practical use of
jacksons preemptive schedule for solving the job shop
problem. schedule for solving the job shop problem.
Annals of Operations Research, 26, 269287.

Carlier, J. and Pinson, E. (1994). Adjustment of heads and
tails for the job-shop problem. European J. Operational
Research, 78, 146161.

Erschler and Roubellat (1989). An approach for real
time scheduling for activities with time and resource
constraints. In Slowinski, R. and Weglarz, J., editors,
Advances in project scheduling. Elsevier.



Esswein, C. (2003). Un apport de flexibilité séquentielle
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