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Introduction: Systems of finite freedom

Statics of one-sided mechanical constraints may be the earliest occurrence of the concept of convexity in science: A heavy solid lies upon a fixed plane; in the elementary theory, the set of contact points between them is assumed to be fini te, and the convex hull of these points is considered (i.e.: the smallest convex set containing the se points). If the slope of the plane is less than the friction angle, a necessary and sufficient condition for equilibrium is that the vertical line drawn from the centre of gravity of the solid meets that convex hull.

Concerning dynamics of one-sided constraints, however, very little is given in most of the treatises on mechanics (see, however, Bouligand [l ,[START_REF] Bouligand | Mécanique rationnelle[END_REF] and Peres [3 ]). Let be Sa mechanical system of finite freedom subject to a family of one-sided constraints, consisting of contacts between various solid parts of the system: these contacts may cease, while, on the contrary, the solid parts cannot overlap. Thus the kinematic effect of those constraints is , expressed by inequalities involving the n generalized coordinates q 1, q2, • • •, q 11 (abbreviated in the symbol q, which denotes a "point of the confi guration : space") and, perhaps, the tiJne t: fa(q, t) � 0

(ex E I)

(1.1)
where I is a set of indices (here supposed to be finite). For sake of simplicity, let us suppose that the contacts are frictionless; that means, for every point of contact between two solid parts of S, the reaction force is normal. Then the description of such a reaction requires only a scalar quantity: the measure of the reaction vector along this known direction, with an orienta tion convention such that the measure is positive when the two solicls press on each other. Let us denote by R « the scalar reaction associated in this way to the possible contact fa = 0 in (1.1 ). The universally admitted laws for the one-sided reactions are (1.2)

and RJ a (q, t) = 0

(1.3) (i.e.: as soon as a contact ceases, the corresponding reaction becomes zero).

The problem concerning such a mechanical system is put as follows: At an instant t 0 , suppose given the confi guration of S, i.e. the values q? = q;(t 0 ) implying some contacts, namely !a.(q 0 , t 0 ) = 0 for r:x E Kc I (1.4) and suppose also given the velocity state, i.e. the values of the derivatives 4? = cj;(t 0 ) essentially compatible with the contacts (1.4), i.e.:

( di a )

= a!a + I afa iJ ; = 0 for (XE K. dt 1=10 ot ; 8q;

(1.5)

To find the consequent motion, one usually proceeds by starting with the provisional hypothesis that all the contacts in (1.4) hold during an interval

[t O , t O + e ].
Thus the constraints !a. = 0, for r:x E K, are provisionally considered as two-sided and the equatio. ns of motion written according to one of the classical methods (for instance, Lagrange's equations for the n parameters q;, with multipliers associated to the constraints!a. = 0, r:x E K)� along the so described motion the values of the reactions R a , r:x E K (or, equivalently, of the multipliers, if Lagrange's equations are used) are calculated: as long as the values found in that way for the R a are � 0, the preceding hypothesis of permanent contact is accepted and then the problem is solved. If, on the contrary, some of the calculated Ra become < 0 from an instant t1 onwards (may be t1 = t0) the hypothesis is rejected: some contacts must cease at this instant. But, as Delassus [4] pointed out, the contacts !a. = 0 which cease are not necessarily those for which the above calculated R a becomes negative.

A very simple counter-example may be constructed without any calcula tion:

Two walls form an acute dihedron with horizontal edge, the slopes of the walls being such as indicated on fig. 1. A solid, homogeneous, heavy ball moves inside of the dihedron. At the initial instant t 0 , contacts are assumed between the ball and both walls, without friction, and the velocity state is compatible with a possible permanence of those contacts, i.e.: the velocity vector of the center O of the ball is parallel to the edge of the dihedron or null. Under the provisional hypothesis of durable contacts, the motion ofO is immediately found: 0 either performs a rectilinear uniform motion parallel to the edge or, in the case of null initial velocity, remains at rest. Then the algebraic measures R 1 and R 2 of the reactions in the two contact points M 1 and M 2 between the ball and the walls are easily deter mined by decomposition of the weight vector P of the ball along the two Fig. 1 radii OM 1 and OM 2 . Clearly, seeing the slopes of the walls in our case, both R 1 and R 2 are < 0, so that the hypothesis of durable contacts must be rejected. The actual motion is evident: the contact ceases between the ball and the upper wall, while it stays between it and the lower wall although the precedingly calculated reaction was < 0 for this latter contact.

A generalized Gauss' principle

Delassus' arguments towards a correct systematic solution were rather intricate. As in any dynamical problem, an essential stage consists in the following question: given, at an instant, the configuration q and the velocity state q, to find the acceleration state q (i.e. the values of the n second deriv atives q, at the considered instant). The author has proved in [START_REF] Moreau | Les liaisons unilatérales et le principe de Gauss[END_REF] that an unique solution for this problem always exists and is defined by joining the conditions (1.1), (1.2), (1.3) to dynamics equations written in a classical way (for instance, Lagrange's equations). This solution possesses a vari.ati.onal characterisation, generalizing, to systems with one-sided constraints, Gauss' variational principle (or "principle of the least deviation").

In the classical case of systems with only two-sided frictionless cons traints there is a well known formulation of Gauss' principle: given the confi guration and the velocity state of such a classical system fff at an instant t, the consequent acceleration state is, among ail the acceleration states compatible with these data and with the constraints, that one which mini mizes Appell's function (1.6) (I' denotes the acceleration of the generic element of 4; dm is the mass measure defi ned on 4, while the vectorial measure dF represents the active forces experienced by 4). For the system S considered above, with generaliz ed coordinates q;(i = 1, 2, • • •, n), the generic expression of d for an arbitrary motion defined by n fonctions q;(t) -and disregarding the sub sidiary constraints (1.1) -takes the form G(q, q, ij, t) and this function G is quadratic (non homogeneous) with respect to q (i.e. with respect to the set of the n variables q ;).

On the other hand, the one-sided constraints (1.1), together with our hypothesis (1.4) and (1.5) (configuration and velocity state compatible with the contacts fa = 0 for a E K c I) leads to:

( d 2 f,,_ ) °" af,,_ .. > 0 f K -2- = L., -q;-s ,,_ = or a E dt t=to i aq i (1.7) 
(where s,,_ is a known fonction of q, q, t). This set of inequalities defi nes, in the R" space of the variable q, a closed convex polyhedral region �-Then our generalized Gauss' principle asserts that the solution q of the above formulated problem is the minimizing point in �' of the preceding function G. As G is a strictly convex quadratic function relatively to q, this minimizing point always exists and is unique. A derivation ofthis extrema! property is given in [START_REF] Moreau | Les liaisons unilatérales et le principe de Gauss[END_REF] (an alternative proof may also be founded on the theory of multipliers ofH. W. Kuhn and A. W. Tucker).

A duality theorem (Moreau [6]) also gives an extrema! characterization of the reactions corresponding to the set of one-sided constraint .

Thus, determining the acceleration state or the values of the one-sided reactions reduces to classical quadratic programming problems.

Unilaterality of the incompressibility constraint

Our purpose, in the present contribution, is to develop a quite similar theory for one-sided constraints in a class of mechanical system with in. finite freedom, namely incompressible perfect (i.e. non viscous) jluids. In fact, the incompressibility of a perfect fluid consists of (infi nitely many) frictionless constraints and these constraints are one-sided in the sense that cavities, or bubbles, may occur inside of the fl ow. Similarly the contact between the füùd and the boundaries ( of the containing vessel or of the immersed bodies) is one-sided too: the fi. nid cannot fl ow across the bounda ries but some gaps may occur in the interspace. Those effects constitute the cavitation phenomenon. At the same time, the pressure p of the fluid, which must be considered• as the reaction associated to the incompressibility constraint, always satisfi es the inequality p � 0, or, more realistically, the inequality p � p 0 , where Po is the vaporization pressure.

The problem offorseeing whether the cavitation does appear, from a given non-cavitating state of the fl uid, may be handled by the same logical plan as in the case of fi nite freedom systems sketched above: First, using standard hydrodynamical methods, the pressure p is calculated at every point of the fi. nid (together with the acceleration of the fl uid) under the provisional hypothesis of a non cavitating flow. If that p is everywhere � p 0 the hypo thesis is accepted. If, on the contrary, this fonction takes values strictly less than p 0 in some points, one concludes that cavitation appears; however, the "intuitive" assertion that cavitation appears exactly at those points is not correct in generality. In other words, the possibility of cavitation global/y modifi es the determination of the pressure fonction in the fluid domain.

Such a discrepancy between intuitive inference and a precise analysis of the hydrodynamical phenomenon was already pointed out by Riabou chinsky [START_REF] Riabouchinsky | Remarques sur le problème des cavitations[END_REF][START_REF] Riabouchinsky | Sur quelques cas de cavitation[END_REF][START_REF] Riabouchinsky | Recherches expérimentales sur la naissance des cavitations[END_REF] and Demtchenko [START_REF] Demtchenko | Sur quelques applications bidimensionnelles de la théorie cavita tionoelle de M. Riabouchinsky[END_REF][START_REF] Demtchenko | Problèmes mixtes harmoniques en hydrodynamique des fluides parfaits[END_REF]. These authors, working in bidimensional hydrodynamics, used the representation of the flow by complex variables and analytic fonctions; they did not always succeed in solving the problem without any ambiguity. Actually we are going to show in the following pages, that, taking account of the unilaterality of the incompressibility constraint, the acceleration fi eld and the pressure fi eld of the fluid are thoroughly determined. We will give two extrema! character izations (generalized Gauss' principle and its dual) for these two fi elds.

In order to require of the reader nothing but a very superficial knowledge of hydrodynamics, we shall restrict ourselves to the one-dimension.al case of aflow in a narrow pipe.

We hope that readers not concerned with such mechanical problems will, however, be interested in the presentation of an infinite-dimensional quadratic programming device which leads to very simple effective computation (e.g. by graphical treatment).

The hydrodynamical problem for a 'narrow pipe of constant cross section

Let us consider a perfect (i.e. non viscous) incompressible fluid in laminar fl ow through a rigid pipe. In order to avoid some forma! complications we restrict ourselves to the special case where the cross section S of the pipe is constant. The general case of a section S varying along the pipe may be reduced to the same computational device by changes of variable and of unknown fonctions. Moreover, we suppose that the cross dimensions of the pipe are small with respect to its length and to the radius of curvature of a mean curve representing the pipe. Then, the approximation of unidimensional hydrodynamics holds: the velocity v of the fl uid, as well as its pressure p, depend on the tirne t and on only one space variable x, the curvilinear abscissa along the pipe (or, more precisely, along the mean curve of it).

The fluid undergoes some continuously distributed exterior forces (usually: gravity forces) at a vectorial rate F per unit of volume: the vector F may be a fonction of the variable x and we denote by F(x) its component along the oriented tangent of the mean curve. Let

U(x) = f F(x)dx. ( 4.1)
In the usual case of gravity forces, calling h(x) the height of the point x of the mean curve above a horizontal reference plane, we have The problem under consideration refers to afluid column with the follow ing data.

U(x) = -pgh(x) (4.2) 
Initictl configuration: At the initial instant 0, the fl uid column fi. Ils, without cavitation, the part of the pipe lying between the curvilinear abscissae x = a and x = b > a.

Initial velocities:

The initial distribution of velocities is assumed to be compatible with non-cavitation; that means the conservation of the fl ow along the pipe, therefore v(x, 0) = v 0 (4.5) (given, independent of x).

Boundary conditions: At one of the two extremities of the fluid column, namely for x = a, the pressure takes a given value p(a ) = Pa while the other extremity x = b is confined by a "piston" moving with the exact velocity v 0 given in (4.5) (as the initial state of velocity is assumed to be compatible with non-cavitation) and with a given acceleration

d 2 x = r. dt 2 (4.7)
Evidently, some other combinations of boundary conditions could have been imposed.

Non-cavitation assomption

If it is a priori assumed that cavitation does not occur during an interval of time (0, e) then the conservation of the flow along the pipe implies for y a value independant of x, necessarily equal to the value I' given in (4.7).

Then (4.4) is integrated as

-pI'x-p(x)+ U(x) = C (constant) (5.1)
and the constant C is determined by setting x = a and using (4.6).

If, for every x E [a, b] the fonction p(x) defi ned by (5.1) is greater than or equal to the vaporization pressure p 0 , the hypothesis of a non-cavitating flow is accepted. If, on the contrary, the preceding expression of p(x) takes values strictly less than p 0 on a region of the fluid column, one must draw the inference of inceptive cavitation. Then the computation must be carried out in a quite different way.

The problem for cavitating flows

Now we take into account the possibility of cavitation. Let us consider the part of the fluid lying, at the instant 0, between the curvilinear abscissae x 1 and x 2 > x 1 of the pipe. Since the fluid is incompressible and, at this instant, without cavitation, the volume of pipe occupied by this fl uid part cannot decrease afterwards. The time derivative of this volume, namely is zero by (4.5) so that the second derivative, namely [y(x 2 )-y(x i ) ]S is non-negative. That meaiis that y(x) is a non-decreasing function of x along the pipe.

Every region where 8y/8x > 0 is a region of inceptive cavitation: there the pressure p equals the vaporization pressure p O , so that, for every x ay ( P-Po )-= O . ax (6.1)

By putting p-p o = q(x) (6.2)
(note that p 0 may be a fonction of x if, for instance, the temperature is not the same at every point of the fluid column) that gives, for every x ay o q --:;-= (6.3) OX with q ;?; 0 (6.4) 8y ;?; o. and aJJoundary condition referring to the "moving piston": the fl uid cannot pass through the piston, but a gap may occur between them. Since the initial configuration of the system, as well as the initial'velocity distribution, are assumed to be 11011-cavitational (i.e.: there is no initial gap and the piston has the same velocity v 0 as the'fluid), the equatiori. (6.9),

We are going to show that the conditions (6.3) to (6.9) determine one and only one solution for the fonctions p(x) (or q) and y(x).

Let us first consider the new unknown fonction

W(x) = U(x)-p(x) = U(x)-p 0 (x)-q(x).

(6.10) By (6.6), the conditions (6.3), (6.4) and (6.5) respectively become, for every XE[a,b],

a 2 w (U-p 0 -W)-2 = 0, ax W� U-p 0 a z w2 � o.
ax -

The boundary condition (6. Thus, the curve [W] consists of some arcs of the known curve [G] and of some straight lines tangent to this curve, which are easy to trace with a great precision (fi gs. Fig. 4 X -0f q = p-p 0 • Clearly, from figs. 2 or 3, these intervals for x are strictly smaller than the intervals corresponding to the straight parts of the actual curve [W]. That means that, in some points where the calculation of section 5, would have givenp-p 0 < 0, cavitation actually does not appear. Such a discrepancy between intuitive inference and the actual behaviour of the fluid is exactly analogous to the case presented in section 1, for systems of finite freedom.

Extremal principle for the acceleration field

The graphical solution of section 7 already implies an extrema! character ization of the solution: clearly the function W is the largest convex function less than the given function U-p 0 and satisfying the boundary conditions (6.14), (6.15), (6.16).

In two-or three-dimensional hydrodynamics a similar property holds, but is far less easy to deal with, since convexity is then replaced by sub harmonicity. Hence, it is useful to have some other extrema! characteriza tions. We :fi. rst state once more a generalization of Gauss' extrema[ principle, concerning the accelerationfield y.

For brevity, let us put so that (6.6) is rewritten as

p_8Po= f (x) ax py+ i)q = f ax (a � X � b).
(8.1)

(8.2)
Let us denote by y 1 (x), q 1 (x) the solution of our problem, that is fonctions y and q fulfilling the conditions (6.3) to (6.9). We state: d-PRINCIPLE: Among al/ the acceleration fields y( x ) satisfying the kine matic conditions (6.5) and (6.8), the solution y 1 strictly minimizes the fanctional (generalized Appel/' s function):

d(y) = !f n 2 dx-ffydx-y(a)q a .
a a (8.3) Proof -Owing to the fact that y1 and q1 fulfi l (8.2) and (6.7), d(y) becomes

d(y) = t f py 2 dx-f ( p y 1 + :� 1 ) ydx-y(a)q 1( a)
or, integrating by parts, That also holds for y = Y i , so that or, since 'l'i and q i fulfi l (6.3) and (6.9), d (y 1 ) = -t f pyfdx-I'q 1(b).

Subtracting, we fi nd

Here, the fust integral is non-negative; the second and third terms are also non-negative by virtue of (6.4), (6.5) and (6.8). That proves the minimizing property ofy i ; and the minimization is strict since the nullity of d(y)-d(y 1 ) implies nullity of al! the three non-negative terms in the right member, in particular By continuity of the non-negative fonction (y-y 1 ) 2 we have y = y 1 •

Let us now remark that, in the fonction space i 7 i [a, b] of once differ entiable fonctions on the interval [a, b] the set of the y folfilling (6.5) and (6,8) is a convex set C. On the other hand, the fonctional dis a quadratic numerical function defined on the linear space � i [a, b]. So the problem of determining y 1, graphically solved in section 7, turns out to be an infinite dimensional quadratic programming problem.

Extrema! principle for the pressure field

With the same notations as in the preceding section, we state: �-PRINCIPLE: Among al! the dif.ferentiable functions q(x) satisfying the sthenic conditions (i.e. condition referring to forces) (6.4) and (6.7), the solution q1 strict/y minimizes the functional

�(q) =-! _..!i dx-f _..!i dx+pI'q(b). J b (ô )2 J b Ô a ÔX a ÔX
Proof Owing to the fact that y1 and q1 folfi l (8.2), �(q) turns into

�(q) = tf b (ô q ) 2 dx-J b ( PY 1 + ô q 1 ) ô q dx+pI'q(b) a ÔX " ÔX ÔX
or, integrating by parts, That also ho Ids for q = q1, so that (9.1)

�(q) = t _.!l. -2 __!lJ __!l dx+ pq --1'.!. dx + J b [ ( a 
The second and the third terms are zero, since q 1 fulfils (6.3) and (6.9); thus, subtracting, we have

�(q)-�(q 1 ) = 1 _..!i -.-5!..!: dx+ pq J'..!_ dx+p[I'-y 1 (b)]q(b). J b (ô Ô ) 2 J I, Ô a ÔX ÔX a ÔX
Here, the fi rst integral is non-negative; so is the second one by virtue of (6.4) for q and (6 .5) for y 1 ; so is the last term by virtue of (6.8) for y 1 , and (6.4) for q. That proves the minimizing property of q 1 ; and the minimization is strict since the nullity of �(q)-�(q 1 ) implies nullity of ail the three non-negative terms in the right member, in particular of

t f b ( o q -à q 1) 2 dx.
a OX OX By continuity of the integrand, that leads to a

-(q-q 1 ) = 0 ax for every x E [a, b]
and thus to q = q 1 since q(a) = q i (a) = q 0 • In the same way as in the preceding section, determining q 1 may be regarded as an infinite dimensional quadratic programming problem, for the set D of fonctions q folfilling (6.4) and (6.7) is convex in some Iinear space of fonctions, while the fonctional � is quadratic. This will be made precise in the next section.

Geometrical formulation

In order to deal only with elements of the fonction space E = 'G' [a, b] of numerical fonctions which are continuous on [a, b] we now introduce some new notations.

We put:

py = X E 'G' [ a, b] o q = YE'G'[a, b]. OX (10.1) (10.2) 
The sthenic conditions (6.4) and (6.7) for q are rewritten as one condition for Y q,, + r Y(ç)dç � 0 for every

x E [a, b] which defi nes a convex subset Q of 'G'[a, b ].
The kinematic conditions (6.5) and (6.8) for y become Similarly, using (10.2), if q fulfi ls (6.7), we have q(b) = q a + J: Y(x)dx so that (10.6)

� � (q) = t!IY!l 2 .: __(!IY)+r [ q a+ J: Y(x)dx J ( 10.7) = tllYl\ 2 -( f-pI'IY)+I' q a = -!-IIY-( f -pI')i1 2 +tll f -pI'i! 2 + I'qa .
Then, the �-principle of section 9 takes an interesting form:

The solution Y 1 = 8q 1 /8x of the problem is the nearest point in the convex set Q defined by (10.3) ji-om the l c nown point f-pI' . By the way it must be remarlced that this lcnown element f -p I' is the very value which would be found for Y= 8q/8x under the non-cavitation assumption of section 5.

The existence of this nearest point, for every Je 'G' [a, b] results from the "graphical"solution explained in section 7. The fact that Q is a closed convex set in 'G'[a, b] = E (relatively to the topology of the euclidean norm 11 Il) is not sufficient to ensure this existence, for E is not complete (i t is not a Hilbert space).

The expression (10.6) of the functional d does not lead to so simple an interpretation concerning the d-principle. Indeed, the last tenn in (10.6) is Jinear with regard to X, as is the last term of (10.7) with regard to Y, but -X(a) is not continuous for the topology of the norm Il Il (it is only lower semi-continuous on the set P) so that it cannot be expressed as a calar product of X by a fixed element of E.

Duality. between the two principles ,

Extremal characterizations of X 1 = py 1 and Y 1 = 8q 1 /8x in E may be enunciated using the "prox" formalism which we have introduced in former publications, in an abstract setting (cf. Moreau [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilber tien[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien, to appear[END_REF]). Let be <p a fonction everywhere defi ned on the space E taking values in ]-oo, + oo] (possibly the value + oo) and convex. Let be z an element of E. The numerical function (11.1) attains its infi mum in at most one point; we denote by prox,pz this point, if it exists (in the case where E is a Hilbert space, the usual sufficient condition of existence for prox "' z is lower semi-continuity of the convex numerical fonction <p ).

Here, we defi ne <p by Actually, these two principles turn out to be equivalent by means of a duality theory developed, in abstract Hilbert space context, in [START_REF] Moreau | Proximité et dualité dans un espace hilbertien, to appear[END_REF].

We fi rst state:

The two functions <p and 1/1 are superdual, i.e.: for every X and Y in E the .following inequality holds: .

-q"X(a)+I'q(b)--X(x)Y(x)dx= = -p qaX(a)+I'q(b)-p [qX]a+ p a q àx dx 1

l f b àX = -[pI'-X(b)Jq(b)+ -q � dx p p a uX
which is � 0 by virtue of (6.4), (6.7), (10.4), (10.5).

The two points XE E and Y E E are said to be conjugate relative to the pair of superdual function <p, t/1 if equality holds in (11.6).

From the above expression for the left member of (11.6) it results that this equality is equivalent to the joint conditions (6.3), (6.4), (6.7), (6.9), (10.4), (10.5). By rewriting (6.6) in terms of X, Y, f, our fundamental problem turns into the following one:

To ji.nd X and Y in E such that

X+Y=f <p(X)+t/l(Y)-(XJY) = O. (11.7) (11.8) 
Arguments from [START_REF] Moreau | Proximité et dualité dans un espace hilbertien, to appear[END_REF] prove that these two conditions are equivalent to (l l.4) and (11.5). Actually, this duality-decomposition theory attains its full effi.cacy only after completing E into the Hilbert space L 2 [a, b] and extending <p and t/1 as a pair of dual functions on this Hilbert space. Such a completion is a routine procedure in functional analysis but we think it is beyond the scope of the present book. Hilbert space techniques become a useful tool when dealing with the more diffi.cult problems of two-or three-dimensional hydrodynamics.

Here we have a nonlinear generalization of the classical idea of decomposi tion of a Hilbert space into the sum of two orthogonal complementary subspaces. As a matter of fact, the case of "bilateral" incompressibility studied in section 5 may be reduced to such linear decomposition into complementary subspaces.

In the fi nite freedom case sketched in section 2, the duality-decompo ition theory roay be carried out without topological difficulties, the corresponding space E being fi nite-dimensional.

• 12. Conclusion

Here, we have presented the simplest and most schematical case of calculating inceptive cavitation in hydrodynamics. Our aim was to develop a non-classical example of an infi nite dimensional quadratic programming device. At the same time, we have given a physical introduction to our theory of dual fonctions in Hilbert spaces, published elsewhere ( [START_REF] Moreau | Proximité et dualité dans un espace hilbertien, to appear[END_REF], where references can also be found concerning the theory of dual convex fonctions on more general topological linear spaces).

From a mechanical standpoint, we must prevent any mis use of the present theory by insisting on the various hypotheses used. First, viscosity and turbulence are neglected: that will be fairly often justifi able; in particular, at least, when the initial state of the fl uid is rest (v 0 = 0). On the other hand, in the unidimensional frame where we have worked, we disregarded whether the inceptive cavitation was diff use in thefluid (growing bubbles) or whether it consisted in getting loosefrom the pipe boundary; in the last case the longitudinal dilatation of the fluid 8y/8x > 0 results from narrowing down the fl uid vein. In both cases it seems that capillary action on the inter faces liquid-vapor or liquid-boundary may play some part as well as the statistical distribution of vaporization germs. Those elements may only be neglected in fairly large scale phenomena. There is another sort of limitation to consider: in studying the transient phenomena which take place in the large penstocks of hydroelectric power stations, one cannot generally neglect water compressibility nor elasticity of the pipe boundaries (cf. Escande [13,14]).

It must be noted, anyway, that Riabouchinsky [START_REF] Riabouchinsky | Remarques sur le problème des cavitations[END_REF][START_REF] Riabouchinsky | Sur quelques cas de cavitation[END_REF][START_REF] Riabouchinsky | Recherches expérimentales sur la naissance des cavitations[END_REF], using quite differ ent mathematical methods, for bidimensional cases, but starting with the same physical hypothesis, has obtained a good experimental confi rmation.

  (p: constant fluid density, g: gravity intensity). The acceleration of the fl uid at the point x is ôv ôv y= -+v-(4.3) Ôt ôx and we write the equation of the unidimensional hydrodynamics ôp py = --+F. (4.4) ôx

ax ( 6 . 5 ) 6 )

 656 Besides, the hydrodynamical equation (4.4) holds f or every x and leads to Finally we have to write the boundary condition (4.6) under the form q(a) =p.-p 0 (a) = q. (known positive•quantity) (6.7)

  (4.7) yields I'-y(b);?; o.

(6. 8 )

 8 If this expression is strictly positive, there is an inceptive cavitation on the surface of the piston, and in that casep�p0 = 0 for x = b. So we have q(b)[I'-y(b)] = O.

  7) becomes W(a) = U(a)-Pa while (6.8) and (6Let us draw the graph [G] of the known fonction U(x)-p0(x). By (6.12) the graph [W] of the unknown fonction W(x) lies everywhere below the curve [G]; by (6.13) the fonction W(x) is convex and (6.11) shows that the graph [W] is rectilinear in any part where it differs from the known curve [G]. Furthermore, (6.14) defi nes the starting point A (for x = a) of the curve [W]. The beliaviour of this curve at its second extremity B (for x = b) is described as follows: by (6.15), the slope of [W] at this point does not exceed the known value pI'; and, by (6.16), this slope can differ from pI' only if the curve [W] has the same extremity as [G] for x = b.

  2 and 3). It may be said that [W] has the shape of a thread going round [G] from below and stretched between the point A and a point infinitely distant ta the right, in the direction of slope pI'. The values of x for which the curve [W] differs from the curve [G] lead to strictly positive values for q = p-p0 and to nullity of 8y/8x: cavitation

  Fig. 2

  I' -y i (b) ] q(b) + pq ,, y 1 (a).
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 5 );::;; pI' which also defines a convex subset P of 'G'[a, b ].We equip the linear space 'G'[a, b] with a euclidean (or "prehilbertian") me tric by associating to any pair Z 1 , Z 2 of elements of 'G'[a, b] the scalar product which gives rise to the norm Using these notations and the relation (10.1), the functional d may be expressed as d(y) = lllXll 2 -(flX)-! q a X(a).

  p

  : P <p( u ) = -! q u ( a ) if u E P p a and we defi ne another convex fonction 1/1 by{+oo ifuef;Q i(l ( u ) = ( pI 'ju ) +I 'qa if u E Q.Then the d-principle characterizes the solution X 1 as X 1 = prox "' f and the .i?6'-principle characterizes Y 1 as Y 1 = prox "'

  <p(X)+1(!(Y)-(XIY) � O. (11.6)Proof If X ef: P or Y ef: Q the inequality is trivial since the left member takes the value + oo. Let us now suppose XE P and Y E Q; the left member is written, with the q fonction associated to Yby (10.2), as 1 f bl