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Abstract
In this paper, we propose a new architecture of 3D deep neural network called 3D Hahn Moments Convolutional Neural Network
(3D HMCNN) to enhance the classification accuracy and reduce the computational complexity of a 3D pattern recognition
system. The proposed architecture is derived by combining the concepts of image Hahn moments and convolutional neural
network (CNN), frequently utilized in pattern recognition applications. Indeed, the advantages of the moments concerning their
global information coding mechanism even in lower orders, along with the high effectiveness of the CNN, are combined to
make up the proposed robust network. The aim of this work is to investigate the classification capabilities of 3D HMCNN on
small 3D datasets. The experiment simulations with 3D HMCNN have been performed on the articulated parts of McGill 3D
shape Benchmark database and SHREC 2011 database. The obtained results show the significantly high performance in the
classification rates of the proposed model and its ability to decrease the computational cost by training low number of features
generated by the first 3D moments layer.
Keywords: Classification · 3D Hahn moments · Convolutional Neural Network · Hahn Moment Convolutional Neural
Network.

1. Introduction

In recent years, the excessive production of available 3D models in
different scientific fields, has led researchers to develop efficient
and fast classification tools for available 3D databases. Several
methods have achieved excellent results by using hand-crafted fea-
tures with a machine learning classifier [DXH15, FHK04, BSC12,
TLT11, GKF09]. However, due to the complexity of these algo-
rithms, they suffer from the lack of efficient extracted features. Ad-
ditionally, they require considerable domain expertise, engineering
skills, and theoretical foundations. Recent state-of-art methods uti-
lize convolutional neural networks (CNN) to overcome this prob-
lem. They have been shown to be greatly effective classifiers for ob-
ject data. The majority of published work has been devoted to solv-
ing 2D problems, while a few limited exceptions that treated the
3D space either as volumetric representations [WSK∗15,QSN∗16]
or by using Multi-view techniques [HMKLM15, ZWB∗16] and
other methods [QSMG17]. Conventionally the input to a convolu-
tional neural network classifier is an image patch, which increases
enormously in size for 3D object. For example, a 3D patch of
32× 32× 32 generates an input of 32 768 voxels to the classifier.
Hence, such a large big input feature vector leads to an increase
in computational cost. This can be attributed to the increased num-
bers of filters [SEZ∗14], number of layers [SZ14], smaller strides
[SEZ∗14, ZF14], and their combinations.

In this paper, we propose a new architecture called Hahn Moments
Convolutional Neural Network (HMCNN) that incorporate discrete
moments as first layer which generate features from the input object
and fed them into a corresponding 3D Convolutional Neural Net-
work. In fact, the kernel functions of Hahn moments have relatively
high spatial frequency components in lower orders. Therefore, 3D
Hahn moments have the ability to extract discriminant features in
lower orders, hence the computed descriptor vectors can capture
more information with low dimensionality and high discrimination
power. The introduction of moments layer in the architecture of the
CNN makes it possible to design HMCNN models that reduce con-
siderably the computational cost by decreasing number of layers
and parameters while achieving best classification results. The ex-
perimental results showed that our proposed architecture achieved
high classification accuracy on 3D deformable shape dataset as
compared with other methods based on moments and other algo-
rithms. additionally, the computational complexity is enormously
reduced.
The rest of this paper is organized as follows: in section 2, an
overview of 3D discrete Hahn moments is presented. The details
of our proposed model 3D HMCNN are explained in section 3.
Section 4 is dedicated to present the main results and performances
of our proposed model. Finally, summary of important conclusions
are drawn out in section 5.
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2. 3D Hahn Moments

In this section we will present the mathematical background needed
for the intro-duction of 3D Hahn moments including Hahn polyno-
mials.

2.1. Hahn polynomials

Hahn polynomials of one variable x, with the order n, defined in
the interval [0,N− 1] as given in [YPO07], respect the following
equation:

hn(α,β,N|x) = 3F2

(
−n,n+α+β,−x

α+1,−N 1

)
(1)

with n,x = 0,1, · · · ,N−1
where α and β are free parameters, and 3F2 is the generalized
hyper-geometric function given by :
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Hahn polynomials satisfy the orthogonal property:
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where wh(x) is the weighting function given by
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while ρh is the squared-norm expressed by
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To assure the numerical stability, the set of the weighted Hahn poly-
nomials is defined as
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The set of weighted Hahn polynomials obeys the three term recur-
rence relation defined as follow
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n = 2,3, · · · ,N−1

Where
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The initial values for the above recursion can be obtained from

h̃0
(

α,β,N x
)
=

√
ωh(x)
ρh(0)

(10)

h̃1
(

α,β,N x
)
=

(
1− x(α+β+2)

(α+1)N

)√
ωh(x)
ρh(1)

(11)

2.2. 3D Hahn moments

The 3D discrete Hahn moments of order m+n+l of an image inten-
sity function f (x,y,z) are defined over the cube [0,N−1]× [0,N−
1]× [0,N−1] as:
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where h̃m
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and
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denote the weighted polynomials.
Due to the orthogonal property of the weighted polynomials, the
3D image intensity function f (x,y,z) can be expressed over cube
[0,N−1]× [0,N−1]× [0,N−1] as:
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It should be noted that 3D Hahn moments can be used as a
descriptor of any 3D object, if it can be expressed as a function
f (x,y,z) defined in a discrete space [0,N−1]× [0,N−1]× [0,N−
1]. This can be achieved if the model is expressed as a binary volu-
metric function. Table 1 shows some reconstructions binary objects
up to orders 5, 15, 25 respectively by using 3D Hahn moments. The
original binary object is a 3D STL model of human head which is
converted into 128× 128× 128 volumetric representation by uti-
lizing an appropriate voxelization method as depicted in Fig. 1.
Table 2 shows some reconstructions gray scale objects up to or-
ders 15, 30, 60 respectively by using 3D Hahn moments from the
3D MRI image (Fig. 2) .To have best reconstruction results, we take
α = β=5 [MBMQ16]. We can observe more resemblance between
the original object and reconstructed ones in the early orders. The
reconstruction abilities of 3D Hahn moments indicate their capac-
ity to compact more information from image that are important for
classification.
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Figure 1: Original binary object with size of 128×128×128

Figure 2: Original gray scale object with size of 128×128×128

3. 3D Hahn Moments Convolutional Neural Network

In this work, we proposed a new architecture called Hahn mo-
ments convolutional neural network (HMCNN) for classification
tasks that incorporates the concept of orthogonal moments in 3D
CNN structure as shown in Fig.3. Indeed, these moments can rep-
resent the image more effectively for low orders as illustrated in
the previous section. This makes it possible to generate a 3D mo-
ment matrices with small size which are fed to 3D convolutional
network instead of 3D image matrices. Hence, our proposed archi-
tecture reduces considerably the complexity processing and speed
up the computational time. The HMCNN architecture is hierarchi-
cally structured as a stack of layers. It generally distinguishes four
layers types as follow:

3D Moment layer: Through this layer, the input object is trans-
formed to 3D matrix of moments by using Eq.12. The generated 3D
matrix is generally smaller than the input 3D object matrix since the
lower orders of the moments can describe well the image as demon-
strated in the previous section. This matrix of moments is then fed
to the following 3D convolutional layers.

3D Convolution layer: In this layer we applied 3D convolu-
tion operators on 3D moment matrix instead of 3D image matrix as

in the standard 3D CNN architecture. The output activation value
a(i, j,k)L at position (i, j,k) is calculated by the following equation:

a(i, j,k)L = f

(
i+N−1

∑
x=i
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∑
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∑
z=k
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∑
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)
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Where the matrix of moments M convolves with the Lth filter
with size of N×N×N, S is the number of input channels, W is
the weight matrix with size (C,N,N,N), i, j,k are the indices of
the output position, x,y,z are the indices of the input position. f is
activation function.

Activation functions ReLu and Elu: ReLu refers to rectified
linear unit that has the mathematical expression f (x) = max(0,x).
In this work, we adopt this function instead of sigmoid function
for some desirable reasons. Firstly, the use of this function over-
comes the vanishing gradient problem found in traditional sigmoid
activation functions. Secondly, convolutional neural network with
ReLu need less training time and hence increase convergence speed
[XWCL15]. Third, the use of this function increases the nonlinear-
ity and avoids network saturation [GB10]. Exponential linear units
(ELU) is a variant of ReLU activation functions that has negative
values which allows them to push mean unit activations closer to
zero. Zero means speed up learning because they bring the gradient
closer to the natural gradient unit [CUH16].

Batch normalization BN: Batch normalization is used after
each convolutional layer in order to further accelerate the training
set, as well as reducing the gradients dependencies and avoid the
risk of overfitting and divergence [IS15].

3D Max-pooling layer: is a down-sampling method applied to
reduce the size of the hidden layers of the 3D CNN by an inte-
ger multiplicative factor. Through the pooling layers, only the most
strongly activated information persists. This leads to faster training
time and to avoid overfitting.

Fully Connected Layer: Fully-connected layers are placed
generally in the last stages of the 3D CNN before the output layer
and transfer the neural network into a vector with a predefined
length. The formed vector can be used to construct the desired num-
ber of outputs or take it as a feature vector for follow-up processing
[CMS12].

4. Experiments

In the experiment, we evaluated the performance of the proposed
architecture 3D HMCNN on two databases: the articulated parts
of McGill 3D shape Benchmark database [ZKCS08] and SHREC
2011. The first one consists of 255 articulated objects distributed
over 10 classes: Ants, Crabs, Hands, Humans, Octopuses, Pliers,
Snakes, Spectacles, Spiders, and Teddy bears. Each class con-
tains 20 to 30 models. The second database contains 600 mesh
models, which are obtained from transforming 30 original mod-
els [LGB∗11].The names of these 30 classes are: alien, ant, ar-
madillo, bird1, bird2, camel, cat, centaur, dino skel, dinosaur, dog1,



4 A. Mesbah & A. Berrahou & H. Hammouchi & H. Qjidaa & M. Daoudi / Non-rigid 3D Model Classification Using 3D Hahn Moment Convolutional Neural Networks

Table 1: Reconstructed binary objects

(5,5,5) (15,15,15) (25,25,25)

Table 2: Reconstructed gray scale objects

(15,15,15) (30,30,30) (60,60,60)

dog2, flamingo, glasses, gorilla, hand, horse, lamp, man, octopus,
paper, pliers, rabbit, santa, scissor, shark, snake, spider, twoballs
and woman. Since 3D CNN requires a fixed-size representation for
the input data, we are used the voxelized format available on the
McGill website. All experiments were performed on machine with
NVIDIA Tesla K80, 12 GB of GDDRS memory.

4.1. Classification

In the classification tasks on McGill database we have randomly
selected 10 objects from each class for training and the rest for test.
Concerning the second database SHREC 2011, we have performed
the classification on the original database and two others aug-
mented SHREC 2011 datasets by applying some rotations to each
object. Thus we considered the database SHREC 2011 without any
augmentation noted S1 with 600 objects. A second database, noted
S2, that contains 1200 objects, was generated by applying one ro-
tation of 180 degree for each object in SHREC 2011 database. A
third database, noted S3, that contains 3600 objects, was generated
by applying rotations of each object from 0 to 300 degrees with
a step of 60 degrees. In the experiment, for each aforementioned
database, we have randomly selected 50% objects for the training
set and 50% objects for the test set. The utilized network architec-
ture is summarized in Table 5. The first layer generates low size

matrix of n×n×n where n represents the moment order. The fea-
tures matrix is filtered in the second layer by applying 100 filters
with size of 1× 1× 1, stride of 1. We obtained 100 feature maps
with size of n× n× n. In the third layer, we are used 60 filters
with size of 3× 3× 3 to generate 60 feature maps and 35 filters
with the same size in the followed layer. Then we dawn-sampling
the obtained features maps in the maxpooling layer with size of
2×2×2 and stride of 2. This operation generates 35 feature maps
with size of n

2 ×
n
2 ×

n
2 . Two fully connected with numbers of neu-

rones 300 and 240 are respectively used in sixth and seventh layers.
The last softmax layer outputs number of labels corresponding to
utilized classes. Table 3 presents the classification accuracy results
on the articulated 3D McGill dataset for some lower orders. It can
be seen that the high results are obtained for the moments orders up
to 12. Beyond this order, the classification rate decreases progres-
sively. The comparison to other methods is showed in Table7, we
can observe the superiority of our proposed method against 5 other
methods. Table 6 shows the confusion matrix across all 10 classes.
Most model confusions are very reasonable showing that our model
provide high quality features. The only class that we consistently
misclassify are Hands which are very similar in appearance to Oc-
topuses. The obtained results over the three databases of SHREC
2011 are depicted in table 8. It can be observed that the classifi-
cation rate increase as the order of Hahn moments increase for all
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Figure 3: 3D Hahn moments convolutional neural networks architecture

databases S1, S2 and S3. Table 9 compares the performance of our
proposed model to other methods that use the augmented SHREC
2011 database S3. It can be seen that our proposed model 3D HM-
CNN with Hahn moments layer achieves the best classification re-
sult. It should be noted that the classification rate of 89.33% is
achieved without any augmentation of the SHREC 2011 database.
This rate outperforms the results obtained by [SBR16] which used
augmentation SHREC 2011 database.

4.2. Complexity

The proposed architecture 3D HMCNN reduces drastically the
computational complexity. Indeed, many recent researches work on
small voxel grids in the order of 32× 32× 32 to reduce the com-
plexity of 3D convolutional neural networks, which generates an
input of 32 768 voxels to the classifier. The introduction of the 3D
moment layer in the 3D CNN architecture reduces the generated
parameters to 12×12×12 = 1728, where 12 is the moments order
that provides the best classification rate (see Table 3).

4.3. Visualization

The visualization technique was developed to understand the inter-
mediate layers behavior and further to improve the model utilized
[ZF14]. Indeed, the new representation for an image generated by
each layer in CNN is projected back to the pixel space for visu-
alizing constructed patches and understanding what information is
kept. In this part, we attempt to provide insight into the internal
representation of our model 3D HMCNN by visualizing objects in
the representation spaces produced by the three main layers of our
model. For this, we are utilized Eq.13 to compute the inverse trans-
formation of convolved moments matrices extracted from layers as
depicted in Table 4. The visualizations of the reconstructed objects
from the output features of the three convolutional layers show the
ability of 3D HMCNN to extract discriminant informations.

Table 3: Classification accuracy on articulated McGill dataset for
different orders of moments

Order 04 08 12 16 20
Accuracy 86.15% 84.42% 86.92% 83.85% 83.08%

Table 4: Examples of convoluted objects by using one arbitrary fil-
ter from each convolutional layer

Original object Conv1 Conv2 Conv3

5. Conclusion

This work introduces a new architecture 3D HMCNN for 3D pat-
tern classification by combining 3D Hahn moments and 3D Con-
volutional Neural Networks. This technique makes use of the main
advantages of the image expansion on its moments and the Convo-
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Table 5: Details of proposed 3D HMCNN

Layer Purpose Filter # of filters Stride Activation
0 Input object N×N×N
1 Moment layer n×n×n
2 Conv+BN+ELu 1×1×1 100 1 n×n×n×100
3 Conv+BN+ELu 3×3×3 60 1 n×n×n×60
5 Conv+BN 3×3×3 40 1 n×n×n×35
6 Maxpooling+ReLU 2×2×2 - 2 n

2 ×
n
2 ×

n
2×35

7 Fully connected 300
8 Fully connected 240
9 Softmax number of subjects

Table 6: Confusion matrix

Ants Crabs Hands Humans Octopuses Pliers Snakes Spectacles Spiders Teddy
Ants 12 0 1 0 0 0 2 0 0 0
Crabs 0 15 0 0 0 0 0 0 0 0
Hands 1 0 5 0 4 0 0 0 0 0

Humans 0 0 0 13 2 0 0 0 0 0
Octopuses 0 2 0 0 10 0 0 0 1 0

Pliers 0 0 0 0 0 10 0 0 0 0
Snakes 0 0 0 0 0 0 13 0 0 0

Spectacles 0 0 0 0 0 0 0 13 0 0
Spiders 0 1 0 0 2 0 0 0 13 0
Teddy 0 0 1 0 0 0 0 0 0 9

Table 7: Comparison of classification results on McGill dataset to other methods.

Methods Zer [NK04] LFD [CTSO03] SN [WSK∗15] Conf [GWC∗04] Sph [SM06] GI [SBR16] Our
Accuracy 63.0% 75.0% 65.0% 55.0% 62.0% 83.0% 86.92%

Table 8: Classification accuracy on S1, S2, S3 databases for differ-
ent orders of moments

Order 04 08 12 16 20
S1 74.67% 81.33% 82.67% 83.67% 89.33%
S2 88.49% 90.5% 90.5% 91.33% 92.67 %
S3 95.95% 97.57% 97.90% 98.10% 99.38%

lutional Neural Networks. The 3D moment layer is used to gener-
ate effective descriptors from the input object, which are then fed
to 3D CNN. Furthermore, since 3D Hahn moment provide more
distinctive features in the earliest orders , the complexity of 3D
HMCNN was tremendously reduced by decreasing number of lay-
ers and parameters. Experiment results showed high performance
of the proposed model on small datasets of deformable 3D models
as compared to other works. As future work, it will be interesting to
investigate the accuracy of 3D moments convolutional neural net-
works on large datasets by designing architectures that can achieve
very competitive accuracy.
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