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Abstract

In this paper, we study a class of Quadratic Backward Stochastic Differential Equa-
tions (QBSDE in short) with jumps and unbounded terminal condition. For this pro-
pose, we introduce a new class of Quadratic semimartingale. The properties arising
from this class lead us to prove existence result for the solution of a Quadratic BSDE’s.

Keywords: Backward stochastic differential equation, quadratic semimartingales, un-
bounded terminal condition.

1 Introduction

Backward stochastic differential equations (in short BSDE’s) were first introduced by Bis-
mut in 1973 [9] as an equation for the adjoint process in the stochastic version of Pontryagin
maximum principle. Pardoux and Peng [47] have generalized the existence and uniqueness
result in the case when the driver is Lipschitz continuous. Later in [38] Lepeltier and San
Martin exended the result of Peng-Pardoux to the linear growth case. Since then BSDE’s
have been widely used in stochastic control and especially in mathematical finance, as any
pricing problem by replication can be written in terms of linear BSDESs, or non-linear BS-
DEs when portfolios constraints are taken into account as in El Karoui, Peng and Quenez
[22].

When the BSDE is driven jointly by a Brownian Motion and a Poisson jump measure,
Barles, Buckdahn and Pardoux [2] introduce the Lipschitz BSDE in order to give a proba-
bilistic interpretation of viscosity solution of semilinear integral-Partial equations.
Afterwards, Becherer [7] studied bounded solution of BSDEs when the generator is lipschitz
and satisfies the condition A, for the jump component. This condition was introduced by
[?] to insure the comparison Theorem of the solution of the BSDE.
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Recently, Becherer Buttner and Kentia [?] provide a general result of existence and unique-
ness for bounded solution of BSDEs that are jointly driven by a Brownian motion and a
infinite activity random measure and time-inhomogeneous with non-deterministic compen-
sator. The generator of the BSDE is lipschitz in (y, z) and doesn’t need to satisfy classical
global Lipschitz conditions in the jump integrand.

Another direction which has attracted many works in this area, especially in connection
with applications: How to improve the existence/uniqueness of a solution under weaker
conditions on the driver and also on the terminal condition.

Overview on the quadratic BSDE problem: In the case of the filtration generated by
a Brownian motion, the first and important result for the Quadratic BSDEs with bounded
terminal condition was obtained by Kobylanski [35]. Based on analytical point of view
inspired from Boccardo, Murat and Puel [11]: From an exponential change of variable,
troncation procedure and comparison Theorem, she proved a general existence of the solu-
tion by an approximation technique. The uniqueness result is also given by adding more
stronger conditions on the coefficient. However, the main difficulty in this method is the
strong convergence of the martingale part which is not easy to prove.

In [46], Morlais extended the method of Kobylanski in the context of exponential utility
maximization problem when the model involves jumps. As a consequence, they obtain
that the state process Y and the jump components U of the BSDE solution are uniformly
bounded, and that the martingale component is a BMO-martingale. All those works as-
sume that the terminal condition is bounded and they are based on the so-called Kobylanski
method exept the work of Briand and hu [12]. They proved, in the continuous setting the
existence of solution of Quadratic BSDEs when the terminal condition have finite exponen-
tial moment. Under strong assumptions, on the coefficient they get the unigeness of the
solution.

More recently Tevzadze [44] proposed a new different method to get the existence and
uniquness of the solution of quadratic BSDE’s. The method is based on a fixed point the-
orem but for only bounded terminal condition with small L*°-norm.

This class of BSDE’s is very useful in mathematical finance especially when we deal with ex-
ponential utilities or risk measure theory especially weather derivatives (see e.g. El Karoui
and Rouge [23], Mania and Schweizer [43], Hu, Imkeller and Miiller [34], Barrieu and El
Karoui [5] and Becherer ([6], [7])). Actually it has been shown in [23] that in a market
model with constraints on the portfolios, the indifference price is given by the resolution
of a BSDE with quadratic growth coefficient. Finally let us point out that control risk-
sensitive problems turn into BSDE’s which fall in the same framework in El Karoui and
Hamadene [24].

Main countributions: Our work was also motivated by solving a utility maximization
problem of terminal wealth with exponential utility function in models involving assets with
jumps. Therefore we need to consider Backward Differential Equations with jumps of the
form

T T T
Ye = nr + / fs(Ys, Zs, Us)ds — / ZsdW, — / / Ul(s,x).n(ds,dz) (1.1)
t t t E



where [ is a martingale random measure. A solution of such BSDE associated with (f, nr)
is a triple of square integrable processes (Y%, Z¢, Up)g<y<p. Our main task in this paper is
to deal with quadratic BSDE’s with non-bounded terminal valued and jumps. Our point
of view is inspired from Barrieu and El Karoui [4] for their study in the continuous case.
By adopting a forward point of view, se shall characterize first a solution of BSDE’s as a
quadratic It6 semimartingale Y, with a decomposition satisfying the quadratic exponential
structure condition Gegp(l, ¢, 6), where the term exponential refers to the exponential feature
of the jump coefficient which appears in the generator of the BSDE. More precisely, we
assume that: there exists nonnegative processes constants ¢ , § and I such

1 1. 1 1.
—ly — cly| — 55\2]2 — gjt(—éu) < f(t,y, z,u) <l + |y + 55\z|2 + gjt(éu), a.s. (1.2)

where ji(u) = [5 (e"®) —u(z)—1)&(t, x)A\(dz). The canonical structure ge,p(0,0,d) will play
a essential role in the construction of the solution associated to generale geqp (1, ¢, §) structure
condition. The simplest generator of a quadratic exponential BSDE, called the canonical
generator, is defined as f(t,y, z,u) = qs(z,u) = %|z!2 + %j(éu). For a given random variable
Fi| which

condition

Y, we call entropic process, the process defined as ps¢(nr) = imE [exp(énT)

is a solution of the canonical BSDE’s associated to the coefficient ¢s and fina
1. This is a entropic dynamic risk measure which have been studied, by Barrieu and El
Karoui in [5].

The backward point of view of our approach permits to relate the quadratic BSDEs to a
quadratic exponential semimartingale with structure condition ge.p(l,a,d), using the en-
tropic processes. Namely, a semimartingale X with non bounded terminal condition np
and satisfying the structure condition gegp(l, a,0), yields the following dominated inequal-
ities p_s+(Up) <Y, < ps+(Ur), where Uy and Up are two random variable depending
only on [, a, § and n7. The main goal in our approach is then to deduce, from this dom-
inated inequalities, a structure properties on the martingale part and the finite variation
part of X. Indeed, we obtain the canonical decomposition of an entropic quasimartingale
which is a semimartingale which satisfies the entropy inequalities; as a canonical quadratic
semimartingale part plus an predictable increasing process. This Doob type decomposition
help us to define a general quadratic exponential semimartingale as a limit of a sequence of
canonical quadratic semimartingale plus a sequence of an increasing process. Then, from
the stability theorem for forward semimartingales given by Barlow and Protter [3], we prove
the existence of the solution of a quadratic exponential BSDE associated to (f,nr) for a
coefficient f satisfying the structure condition geyp(l,a,d) and for non-bounded terminal
condition np.

Finally, we have to mention that it is important to compare our approach with that used
by Peng in [48, 50, 51] within the representation theorem of small g-expectation in terms of
a BSDE’s with coefficient g which admits a linear growth condition in z. Peng’s approach
is based on the notion of martingale associated to a nonlinear expectation, Monotonic limit
theorem, a nonlinear Doob-Meyer’s decomposition Theorem (see e.g. [49]). Moreover, Peng
obtained the representation theorem for the nonlinear expectation which is dominated by
a structure nonlinear expectation solution of BSDE’s with coefficient given specially by
9u(y,2) = p(ly] + |2|). Barrieu and El Karoui in [5] have extended this representation



theorem for a dynamic convex risk measure in terms of quadratic BSDE’s with convex
coeflicient g which depends only in z. Our approach is an extension of the Peng’s results
in the more naturel framework of quadratic exponential semimartingale.

The paper is structured as follows: in a second section, we give a model and preliminary
notation. In the third section, we define the quadratic exponential semimartingale and we
study the entropic quadratic exponential semimartingale. In particular, we give the char-
acterization of an entropic quasimartingale and its Doob decomposition. Then, a stability
results of this class of semimartingale are given in the fourth section. The fifth section is
dedicated to give application of the quadratic exponential semimartingale to prove exis-
tence result for a class of QBSDE’s associated to (f,nr) where the coefficient f satisfies
the (SC) structure condition and for non-bounded terminal condition 7p.

2 Model and Preliminaries

2.1 Notations and Setting

We start with a stochastic basis (2, F,F,P) with finite horizon time 7" < +oc and a fil-
tration F = (‘Ft)te[o 7]
such that we can take all semimartingales to have right continuous paths with left limits.

satisfying the usual conditions of right continuity and completness

For simplicity, we assume JFy is trivial and F = Fr. Without losing any generality we shall
work with a random measure to characterize the jumps of any quasi-left continuous process
X.

We define a left continuous random measure p on the measurable space (E, &) with com-

pensator v.
The measure P ® v is define on (2, F) = (2 x [0,T] x E, F ® B([0,T]) ® £) by

Pov(B) =E , BeF.

/ 15(w,t,e)v(w,dt,de)
[0,T]xE

Let P denote the predicatble o-field on € x [0,7] and define P = P ® £. For any P-
measurable function f with values in R , we have

t ¢
f*/it = / / y(w7$7x)u(wad87dx)a Yx :/ / y(w7sax)y(w7d37d$)'
0 JE o JE
The random measure i is defined as the compensated random measure of y such that
f(w,dt,dr) = pu(w,dt,dr) — v(dt, dx)
Let denote by Gjoe(t), the set of P- measurable functions U with values in R such that
U2 < 00, a.s.

In addition, if |H|.vy < +00 a.s, Hxfi is a local martingale.

Weak predictable representation property



we assume the following representation theorem for any local martingale M:
M = My + M+ M.

where M€ is the continuous part of the martingale, M¢ is the discontinuous part defined
as M? =U.(u — v). for any U € Gjoe(1t).

Now we introduce the following spaces
ME is the set of martingale M such that My = 0 and E [sup,<p [M;[P] < +o0.

Dexp is the set of local semimartingales X such that exp(X) € D where D is the class
of optionnal processes for which the absolute value is dominated by a uniformly integrable
martingale.

Uexp 1s the set of local martingales M such that £(M) is uniformly integrable.

3 Quadratic exponential semimartingales

In all our work, we shall consider the class of quasi-left continuous semimartingales X with
canonical decomposition X = Xg — V + M, with V is a continuous predictable process
with finite total variation |V|, M is a cadlag local martingale satisfying the decomposition
M = M°¢+ M? with M€ is the continuous part of the martingale M and M% = U.ji is the
purely discontinuous part .

The quadratic exponential semimartingales are the generalization of the quadratic semi-
martingales in jump diffusion models. In fact the extra term in ” exponential” comes from
jumps and lead us to generalize the results given by [4].

Definition 3.1. The process X is a local quadratic exponential special semimartingale if
there exists two positive continuous increasing processes A and C and a positive constant §
such that the processes SM¢ + (e9V — 1)1, —SM¢ + (e 7%V — 1).7u are still local martingales
and the the finite variation of X satisfies the structure condition Q(A,C,6):

0 1 1 ) 1
A=A —| Xi|-dCi— 5 dje(~OAM?) << Vs << SA(M®)i+dA+ X |- dCt 5 djs (AM)
Here, the process j(yAM?) is the compensator of the increasing process A} == ngt(evAMd—

YAME — 1) < 400 a.s. dBy << dA; stands for A — B is an increasing process.

Remark 3.1. (About the dual predictable compensator)
e Before studying the properties of this class of local semimartingale, let first remark that for
ally € {—9, 8}, the increasing cadlag process j(0AM) is continuous applying Chap IV T[40]
Dellacherie[14]. Moreover using representation theorem of the discontinuous martingale
M =U.Li, then:

Ge(6AMY) = (Y — 65U — 1)1



o Let remark that for a = e”V — 1, b=e 2V — 1 since —2ab < a® + b?, we find
2[(e®V — U — 1)+ (e 7V +6U — 1)] < [V — 12 4 eV — 1

Since by assumption the processes M + (e°V — 1)fiand —6M¢ + (e=°Y — 1)ji are local
martingales, the processes [V — 11%.vy a.s and |e™°Y — 1|%.14 < +o00 a.s, therefore the
predictable compensator j(yAM®) of A7 is well defined for v € {—6,6}.

To understand better the class of local quadratic exponential semimartingales and theirs
properties, we divide the class in three classes:

— The canonical class: The finite variation part of X satisfies:
Vi= (M) 4 Je(BM) or Vi = —2 (M%), — ju(AMY)
— The class Q(0,0,1), where the finite variation part of X satisfies:
(DM — L (M), << Ve < (M), + Gu(AM)

— The general class Q(A,C,d)), where the finite variation part of X satisfies:

5

1 1. 6, . 1 1.
—§<Mc>t—gAt—]X]*Ct—gjt(—éAMd) <V < 5<M )t+5At+|X|*Ct+gjt(6AMd)

3.1 The canonical class
3.1.1 The exponential of Doléans-Dade

We describe the relation between the exponential transform of the first class of local
quadratic exponential semimartingale and the exponential of Doléans-Dade . Let first
recall that for any cadlag local semimartingale X, the exponential of Doléans-Dade Z of X
solving the EDS dZ; = Z,-d Xy, Zy = 1 is given by:

Zy = E(X)y = exp(X; — (X)) [J(1 + AX,)e 2%, t>0. (3.3)

s<t
This formula is given by the It6’s formula for discontinuous processes a local martingale
M with (AM > —1) is in fact a positive local martingale and there is a relation between

exponential of a canonical quadratic exponential semimartingale and Doléans-Dade of some
local martingale.

Proposition 3.1. ( Doléans Dade martingale and canonical quadratic semimartingale).
Let M = M+U.ji and M = M°+U.Ji two cadlag local martingales such that MC+(60—1).;~L
and —M°¢ + (e7Y — 1).;u are still cadlag local martingales. Let define the canonical local
quadratic exponential semimartingale:

r(N) = (o) + My — %<MG>1t (T — T~ 1),

(M) = r(Mg) + M, + %<M6>t FeldU—1)m

6



then we find the following processes:

explr(M)~r(Mo)] = € (M + (7 = 1).ji) and expl-r(M)+1(My)] = € (~M° + (™ = 1))

are positive local martingales.

Proof. We apply the Doléans-Dade exponential formula (3.3) with X = M¢ 4 (eV —1).1x
and X = —M° + (e=Y — 1).7i. and we find the expected results. O

Definition 3.2. (Q- local martingale) A local semimartingale X is a Q-local martingale if
exp(X) is a positive local martingale.

The canonical local quadratic exponential semimartingales 7#(M) and —r(M) defined
above are Q- local martingales.

3.1.2 The entropic risk measure

The canonical local quadratic exponential semimartingales 7(M) and r(M) are Q- local
martingales. In fact the uniform integrability of this class of semimartingales can be ob-
tained through the local martingales M and M.

E exp{%(Mc>T F (L + D) (L4 T) = U)an}| < +oo. (3.4)

where 7 = inf{¢t > 0,E£(M) = 0}. This condition is sufficient and not necessary, another
sufficient condition for a local semimartingale X to belong to D), is satisfying if there
exists a positive uniformly integrable martingale M such that exp(X) < M. In particular
theses sufficient conditions are satisfying for the dynamic entropic risk measure (see Barrieu
and El Karoui for more details[5]).

Proposition 3.2. Let consider the fized horizon time T > 0 and Yr € Fr such that
exp(|¢r|) € LY and consider the two dynamic risk measures:

pr(¢r) = n [E (exp(¢r)|F1)], and p, (Y1) = —In [E (exp(—1pr)|F?)]

There exists local martingales M = M¢+ U.fi and M = M° + U.Ji such that:

1 _ _
~dp(r) = 8t + A + [ (€70~ O(s,0) = (it da), prlon) =
E
1 - S,x
- dBt(d}T) = _th - §d<MC>t - /E(e Uls2) —|—Q(8,$) - 1)V(dt7 dl‘), BT(¢T) = ¢T
Moreover the local martingales M¢ + (eV — 1).1i and —M° + (e"Z — 1).7i belong to Uexp -
The dynamic risk measures p(yr) and p(vr) are uniformly integrable canonical quadratic

exponential semimartingales.

Proof. We have exp(p:(1r)) = E[exp(¢r)|Ft] which is a positive uniform integrable mar-
tingale since exp(|tr|) € L! then there exists a martingale X € Ue, satisfying AX > —1
such that exp(p:(v¥r)) = E(Xy).

Using martingale representation Theorem there exists a continuous martingale M€ and a



process U satisfying (eV — 1) € Gloc(p) such that X = Xo+ M¢+ (eV —1).1i. Therefore we
find exp(p (7)) = E(Xo + MF + (eV — 1).11¢) = exp(F(My)).

We use the same arguments to prove that there exists a martingale X = X, — M+ (e Y —
1).ft € Uexp such that exp(—gt(lﬁT)) =E&(Xg— M+ (eU —1).11¢) = exp(—r(M,)). ]

We adopt a forward and backward points of view to describe the canonical local quadratic
exponential semimartingales class. In the forward point of view, we give condition of some
martingales using Doléans-Dade exponential formula to find that for any canonical local
quadratic exponential semimartingale X, exp(X) or exp(—X) is a local martingale. In the
backward point of view, we fix a terminal condition X7 € Fr such that exp(|Xr|) € L,
then we can prove that some dynamic entropic risk measures of 7 belongs to canonical
quadratic exponential semimartingale class.

In this point of view, we do not make assumption on the martingale part of the canonical
semimartingale to satisfy the Lepingle and Mémin condition (3.4) since the exponential
condition on the terminal condition is sufficient to find uniform integrability condition.

3.2 The second class: 9Q(0,0,1)
3.2.1 The exponential transform

In the first part, we use the Doléans-Dade formula to explain how the canonical local
quadratic exponential semimartingale can be represented using an exponential transform.
The same technics can be developped for Q(0,0,1)- local semimartingale using the multi-
plicative decomposition Theorem studied by Meyer and Yoeurp [45] which stands that for
any cadlag positive local submartingale Z there exists an predictable increasing process A
(Ao = 0) and a local martingale M (AM > —1, My = 0) such that:

Zt = Z(] exp(At).S(Mt), t Z 0.

Theorem 3.1. Let X a ladlag process, X is a Q(0,0,1)-local semimartingale if and only
if exp(X) and exp(—X) are local submartingales. In both cases, X is a cadlag process.

Proof. Let consider a Q(0,0, 1)- local semimartingale X with canonical decomposition X =
Xo — V + M where V is the finite variation part of X (continuous) and M is a local
martingale, then there exists U € Gjo.(p) such that M = M€¢ 4 U.p. Applying It6’ s
formula to Z = exp(X), we find

- - _ 1
dZ = Z;- [de - / (V") —1).i(dt, dz) — dV; + UMY + / (V02 _ U(t,2) — 1)v(dt, dz)
E E
Since X is a Q(0,0, 1)- semimartingale then A = —V+21(M¢)+ (e —U—1).v is an increasing
continuous predictable process. Therefore the process Z = exp(X) is a positive local

submartingale and satisfies the following Meyer and Yoeurp multiplicative decomposition:
exp(X; — Xo) = exp(A)E(MF + (eV — 1).15;), t>0.

We use the same arguments to prove that exp(—X) is a local positive submartingale.
Let now assume that exp(X) and exp(—X) are local submartingales where X is a ladlag pro-
cess. Using Meyer and Yoeurp multiplicative decomposition, there exist local martingales



M, M and increasing predictable processes A, A such that exp(X; — Xo) = exp(A;)E (M)
and exp(—X; + Xo) = exp(4,)E(M,). Using the representation martingale Theorem,
there exist U,U € G,(u) and continuous local martingales M€, M¢ such that M =
M+ (eV —1).i and M = M+ (eZ —1).i. Hence we find exp(X — Xg) = exp(A) exp(r(M)
and exp(—X + X) = exp(A) exp(r(M) and we get

1 S 1
Xi—Xo = At—i—Mt—E(MC)—(eU—U—l).yt and —X;+Xo = At+Mt—§<MC>—(eQ—Q—1).§t.

Using the uniqueness of the representation of the semimartingale X, we deduce, M = —M,
then we find Ay + A, = (M®); + (eV —=U —1).y+ (U + U — 1).1; . The process A and A
are continuous, moreover from Radon Nikodym’s Theorem, there exists a predictable pro-
cess with 0 < ay < 2 such that dA; = %d [<M0>t + (€ -U-D+(eV+0-— 1).1/1‘}.
Therefore the process X satisfies the dynamics dX; = dM; — dV; where:

(1 — Oét) (2 — Oét)
2 2

v, = d(M°), + d [(eff —U- 1).4 ~ Yy [(e*U +0 - 1).yt]

Since 0 < oy < 2, the local semimartingale X satisfies the structure condition Q(0,0,1).
Moreover the finite variation part V' of X is a predictable continuous process. We deduce X
is Q(0,0,1)- local semimartingale and that all jumps of X come from the local martingale

part which is cadlag process. O

Definition 3.3. Let consider a local semimartingale X, if exp(X) is a local submartingale
then X is called Q- local submartingale.

From Theorem 3.1, any Q(0, 0, 1)- local semimartingale is a Q- local submartingale and
the reverse holds true.

3.2.2 The entropic submartingales

We are interested to find uniform integrability condition for Q(0,0,1)- local semimartin-
gales. Since Q(0,0, 1)- local semimartingales are Q- local submartingales, we use the same
technics developped for standard local submartingales. We recall that to prove X € Degp,
it is sufficient to prove there exists a positive martingale L € D such that exp(X) < L.

To construct the positiive martingale L, let first give some useful definitions.

Definition 3.4. A process X € Deyy, is called an entropic submartingale if for any stopping
times 0 < T:
Xo < po(X;), o<

where p stands for the usual entropic risk measure defined above. In the same point of view,
X is called a entropic supermartingale if —X is an entropic submartingale. If X and —X
are entropic submartingales, X is called entropic quasi-martingale.

Theorem 3.2. Let T > 0 the fixed horizon time and consider a semimartingale X =
Xo—V + M€ +U.Ji such that exp(|Xr|) € L' then X is a Q(0,0,1)-semimartingale € Deyyp
if and only if X and —X are entropic submartingales. Moreover, in all cases the martingales
M+ (eV — 1)1 and —M°¢ + (e=Y — 1).1i belong to Ueyp.



Proof. Let consider a Q(0,0, 1)-semimartingale X = Xo+ M¢+ U.jt —V € D¢y such that
exp(|X7|) € L. Since X is Q- submartingale we find:

exp(Xy) < E[exp(X7)|F] € D and exp(—X;) < Elexp(—X7)|F] € D
and for any stopping times: ¢ <7 < 7T :
X, <In(E[exp(X;)|Fs]) = po(X;) and — X, < In (E[exp(—X;)|Fs]) = po(—X7).

then X and —X are entropic submartingales. Let prove the reverse, assume X and —X
are entropic submartingales then for any stopping times o < 7, exp(Xy)) < E [exp(X;)|F]
and exp(—X,)) < E[exp(—X;)|Fs], then X is a uniformly integrable Q-submartingale and
from Theorem 3.1, X is a Q(0,0, 1)-semimartingale. Since X and —X belong to Dy, then
for a fixed horizon time T, exp(Xr) and exp(—Xr) belong to L' which lead to conclude
exp(|Xr]) € L.

Moreover since X and —X are O-submartingales using Meyer-Yoeurp multiplicative de-
composition Theorem, there exist increasing processes A and A (Ag = 0 and A, = 0)) such
that:

exp(Xi—Xo) = GXP(At)g(MtC‘f‘(eU—l)-ﬁt) and exp(—X;+Xo) = eXP(AQg(—MtC‘*‘(er_l)-ﬁt)-

Therefore we deduce that £(Mf+ (eV —1).11) < exp(X; — Xo) and E(—=Mf+(e7V —1).1) <
exp(—X; + Xo). Since | X — Xg| € Desp, we conclude the martingales M€ + (eV — 1). and
~M+ (e7Y —1).Ji € Upp. O

To conclude this part, we can make some links with the sublinear g-expectation of Peng
[52] since if we define the g-expectation of X by E9(X), we can define the submartingale
under the g-expectation. Therefore, we deduce that if X is Q(0,0, 1)-semimartingale such
that | X| € Degp, X and —X are submartingales under EY = In [E(exp)].

3.3 General class:Q(4, A, C)

3.3.1 The exponential transform

We use some exponential transformations for general Q(A, C, §) local quadratic exponential
semimartingale such that the new tansformed process belong to the class Q(0,0,1). There-
fore, we can apply the same methodology using in the previous sections to find general
results for Q(A, C,d) local semimartingales.

Proposition 3.3. Let consider a Q(A, C,6)-local semimartingale X = Xo—V + M +U.i
then

1. Forany X # 0, the process \X is a Q(A, C, ﬁil)-local semimartingale and a Q(AA, C, 9)-
local semimartingale when A > 1.

2. Let define the two transformations:
YA(X) = X+ A+ |X| % C and YVO(|X]) = | X| + e % A.

then the two processes YN (6X) and YA (|6X|) are Q-local submartingales.
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3. Ezponential transformation: Let UMY (X) the transformation
N ¢ t
U (eX):eXt+/ eXSdAS+/ ™| X|dCs.
0 0

then UMC (e9X) is a positive local submartingale.

Proof. 1. Let consider a Q(A, C, §)-local semimartingale X = Xo—V +M¢+ M? (where
M? = U.1) and consider A # 0, hence AX = AXg— AV +AM¢+AM? and A X satisfies
the condition

Al

1

5 A 1
AdV; << [\ d(M®); + udAt + [AXe|.dC; + |\ s djildsign(X) A M

Since j(0AM?) = ][%()\AMd] then we find

61 oy, Al Al 6
01 A A
MV; << S5 dOM )+ udAt X [AC, + ] |d]t[| N (AAMDY].

then AX is a Q(A, C, . /\‘) local semimartingale. Moreover for A > 1:

1
&de\mt « 5d<MC> and W P

J

5 SalOan)

(MAM] <

For more details on this inequality see Lemma 6.3 in Appendix .

We find that for A > 1, AX is a Q(|]A|A, C, §)-semimartingale.

2. Let consider the YA’C(5X) = 5X0+M—XZ, where M is the local martingale part given
by M = 5M¢ +5M¢ and V the finite variation part given by V=06V-A— |0.X|*C.
Since X is Q(A, C,§)-local semimartingale we have dV; << dj;(6AM%) + 52d<Mc)
We conclude d‘~/t < djt(AMd) += d(MC)t and the process A defined by dAt —th
djt(A]\Ajd) 1d<Mc>t is an increasing process and YAY(6X) = 6 X + M — 7(MC>
j(AMd) + A then we conclude exp(YA¢(6X)) is a local submartingale then it is
O-local submartingale.

Let prove now that the process YA (|X|) belong to the Q(0,0,1)-class. Applying
the Meyer-1t6’s formula, we find the decomposition:

det | Xy| = e [|X4|dCy — sign(X,-)adV; + dLyY +d [(|X= + U| — |X-|).v] + dMy)

where dM; = sign(X,-)dMf + d[(|X_ +U| — |X-|).ji] and LX stands for the lo-
cal time of X at 0. Therefore the decomposition of the semimartingale YA ([6X])
satisfies dYMC(|X|) = —dV; 4+ dM; where M = §M and

AV, = —eC [|6Xt|dC't + dA, — dsign(X,-)dV; + dLSX + d[5(|1X_ + U] — |X-|).4]| .

11



Since the process X is a Q(A, C,d)-local semimartingale, the process A defined by
dAy = 6(|1X|dCy+ rdAy —sign(X;- )dVi + §d(M€) + +djy[sign(X;- ) |6 | AMY|) + Ld LX)
is an increasing process. Therefore we get:

~ 52 e
—dV; = e —Ed<MC>t — dje[0sign(Xy- )AM;] + d (6(|X— + U| = [X-[).11) -

From Lemma 6.3 (see Appendix for details), for any k& > 1, j(kAM) > kj(AM),
therefore since C' is an increasing process with the initial condition Cy = 0, we
get js[0eesign(X - )AM,] — e jg[0sign(X,- )AM,] > 0. Moreover for any s > 0,
‘Z—Q(eCSM"’)s - %eC%MC)s > 0, then we obtain:

¥ = —%d(ecfésign(th)MC)S—djt[deCtsign(th)AMt]—i—d (G(IX_ +U| = |X_|)wn)+dAs
where A is an increasing process. Finally we get:

A1) = e asign(X, )M + [ <CHS(1X+ Uk 0)] = | X, it do)

— Sl sign (X, )M, — uf5eC (1 X, + AMy| ~ | X,-[)] + dA,
where
A= flﬁ—/ot/E [exp (6085(|X8— + U(s,z)| — | X,-])) — exp (eCSsign(éXsf)U(s,a:))] v(ds,dx)
Since |y + u| — |y| > sign(y)u we deduce A is increasing then we get:
VAC(|X]) = [6X| + M — 3 (M) — j(AM) + A

Therefore, exp(X™¢) is a local submartingale then it is Q-local submartingale.

3. Let apply Ito’s formula to find the decomposition of UM (9%X):
~ 52
dUM (e2X) = 9% | 6dME + d[(e®V = 1).71] — 6dV; + (M) + djp(SAM,) +[5X,|dCy|

Since X is Q(A, C,d)-local semimartingale then the process A defined by dA; = —dV; +
Sd(Me)+ +dji(0AM;)+|0X;|dC} is an increasing process, we deduce the process UM (e2X)
is a positive local submartingale. O

Theorem 3.3. Let X a ladlag optionnal process X. X is a Q(A, C, §)-local semimartingale
if and only if exp [YA’C((SX)] and exp [YA’C(—éX)] are submartingales or equivently if the
processes UMNC (e9X) and UMNC (e7X) are local submartingales. In all cases; X is a cadlag
process.

Proof. Let consider a Q(A, C,d)-local semimartingale X, using Proposition 3.3-2, we prove
the process exp(YC(§X)) is a local submartingale. The same arguments lead us to con-
clude also that exp(Y¢(—§X)) is a local submartingale since —X as the same structure
condition as X.

12



Let now consider that the both processes exp(Y¢(§X)) and exp(YC(—§X)) are positive
submartingales then we can apply the Yoeurp-Meyer decomposition as Theorem 3.1 and
conclude there exists continuous local martingales M€, M€, increasing processes A, A and
U,U € Gioe(pn) such that

exp[Y M (5X)] = exp(8Xo) exp(M; — é<MC>t (T —T =)+ Ay

eXp[YtA’C(—(SX)] = exp(—30Xp) exp(M, (M) — (eg -U-1)un+A4)

1
2
then we find 0X; + Ay + | Xy| * Cp = 6Xo + M; — %(Mc)t — (eU —~U - 1)y + A and
—6Xi+ M+ | Xy | xCp = —6Xo+ M, — 3(M€), — (e — U — 1). + A,. Therefore M = —M
from uniqueness of the decomposition, moreover A; + A, = (M¢) + (U —U -1+ (e ¥+
U — Dy + 2A; + 2| X4| * C;. We deduce the both processes A and A are continuous and
from Radon Nikodym Theorem, there exists a predictable process 0 < a < 2 such that
dA; = % [<M€> (=T =D+ (0 +T — Dy + 20 + 2| X + Ct} then we find the

decomposition of X = Xg—V + M where:

(2—ay)1
2 9

— (2—a1 92— .
djt((SAMt)—i—( 2at)5dAt+< 2at)|Xt\dCt—%djt(—5AMt)

SO N
dV; = 5(1—at)d<MC>t+

Since the predictable process 0 < a < 2, we find:

0
2
5§ o~ 1 1~

— 1 1 _
d{M®); — gdAt — | X[ .dCy — det[—éAMtd)] < dV,

then X is a Q(A, C, d)- local semimartingale. equivalently, we can use the same arguments
for the positive local submartingale UM (%) and UM (e9X) to find that the process
X is a Q(A,C,6)-local semimartingale. Moreover since the finite variation part of V is
continuous, jumps come from the local martingale part. Hence, the process X is a cadlag
local semimartingale. O

In all the rest of the paper, since from a multiplicative transformation (see Proposition
3.3), we can transform the general class Q(A, C, ) to the class Q(A,C,1). We can give all
results in the class Q(A,C) := Q(A, C, 1) without losing any generality.

3.3.2 Uniform Integrable Q(A, C)- semimartingales

We use the entropic submartingales to characterize the integrability condition for Q(0,0, 1)-
class. Given an fixed horizon time, we find in this part sufficient condition on the terminal
condition to have uniform integrability of general local quadratic exponential semimartin-
gales. First, let give some generalization of entropic submartingales for general Q(A, C)-
semimartingales.

Theorem 3.4. let X be a cadlag process and T a fized horizon time.
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1. Assuming, exp(|Xr|) € L, the process X is a Q(A, C)-semimartingale which belongs
to Degp if and only if for any stopping times o < 17 < T':

Xo < po(Xs+ Ao +|X[*%Cor) and — Xy < po(—Xr + Ao r + | X| xCor). (3.5)

2. Assuming UQ/}’C(6|X|) € L', the process X is a Q(A, C)-semimartingale which belongs
to Degp if and only if for any stopping times o <17 < T':

Xo < po(Xs+Aor +|X|%Cor) and — Xy < po(—X7 + Ao r + | X| % Co ).

Proof. 1. Let X a Q(A,C)-semimartingales which belongs to the class Dgyp. From
Theeorem 3.3, exp(YAY(X)) and exp(Y¢(—X)) are submartingales which belong
to the class D. Therefore for any stopping times o < 7 < T

exp(YC(X) < E [exp(YAC(X)|F,] and exp(VHC(—X) < E [exp(YMC (= X)| 7, ]

then the Q(A, C') semimartingale X satisfies the entropy inequalities (3.5). Let assume
the inequalities (3.5) are satified then we conclude exp(Y*¢ (X)) and exp(Y A% (- X))
are submartingales which belong to the class D then from Theorem 3.3, X isa Q(A, C)
semimartingales which belong to the class Degp.

2. We use the same arguments with the positive submartingales UM (eX) and UM (e=¥).
O

The Theorem 3.4 gives sufficient integrable condition for Q(A, C')-semimartingale X
such that it belongs to the class Deyp. We can find another condition using the transfor-
mation YA (]X]) since it is a Q-submartingale. Therefore, using the same arguments as
assertions in Theorem 3.4, we find YA (|X;]) < py[exp(YY (| X7|)] which is equivalent to
the condition given by [4] in the continuous case (see Hypotehsis 2.8 [4]):

T
1Xy| < pr [ecth]Yﬂ + / eCf’SdAs} , t<T. (3.6)
t

This assumption is a necessary and sufficient condition for the process YA¢(|X]) to be in
class Degyp (the proofis given in Lemma 2.9 of [4]). In the same way, assertions in Proposition
2.10 of [4] still hold since the authors give the result in the general case (without using the
continuity of processes). Moreover using the same LLogL Doob-inequality, we can find the
same sufficient condition on the terminal value Y¢(|X|) such that | X| € Degyp.

Proposition 3.4. Let consider an fized horizon time T > 0 and let L be a positive sub-
martingale such that max Ly := maxyc(o ) Lt € (1,400). For anym > 0, let u,, the convex
function defined on R defined by up,(r) = x—m—mln(z) and u(z) := uy (), the following
assertions are satisfied:

1. Using the Doléans Dade representation of positive martingale L, Ly = E(Mf + (eV —
1).p), t <T, we find:

H™ .= E[LpIn(Ly) = E [LT <;<MC>T + (UeY — eV + 1).VT>] .
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2. The following sharp inequality holds true:
w(E(max L)) < E(LyIn(Lr)).
Moreover, if L is a positive D-submartingale, the previous inequality becomes:
U (E(max L)) — wm(Lo) < E[LpIn(Ly)] — E(Ly) In [E(Ly)] .
where m = E(Lr).
Proof. :

1. To prove the assertion, let us first prove that the equality
E(max L) — 1 = E [Ly In(max L7)]

holds true in our case. From Dellacherie [16] p.375, max L;(w) = L¢(w) for every
jump time ¢ or every increasing of right of s — max Ls(w). Therefore L = max L
on the right support of dmax L. Therefore we find maxL; = 1 + fot dmax Ly =

' _Ls_dmax Ly then E(max Ly) — 1 = E[LpIn(max Lp)] . holds true. From this

0 max Lg

equality, it is sufficient that max Ly € L' to find LyIn(Ly) € L'. Let assume,
max Ly € L' and let define the stopping times Tx such that the positive local mar-
tingale Ly = &(M; + (eV — 1)f1;) < K. The stopping times Tk is increasing and goes
to infinity with K. Let define the process N€ = M¢ — (M®) + U.(ii — (eV — 1).v). is
a martingale with respect to Q = L7P and we get:

E|Lr 3<MC>T+(6U—U—1).VT =1limE | Ly 3<MC>TATK+(eU—U—1).yTATK
(s )] el G )

. 1
= h}r{nE |:LT/\TK (

5O + (& = U = D )|

Since E(LT/\TKN’%\TK) =0, we find:

1
E[Lrare In(Lrary, )] = E [LT/\TK (2<MC>T/\TK + UV = 1) vpary + (¥ —U - 1)-VTATK>]

We have E [Lyar, In(Lrary )] < E[Lrar, In(max Lyar, )] < E[max Ly — 1 < 400,
then we get the result by taking the limit when K goes to infinity.

2. The proof is done in [4], since authors used the first assertion to prove the result.
O

Let X be a Q(A, C)-semimartingale, applying the result of Proposition 3.4 to the pos-
itive submartingale exp(Y*Y(|X|)), we conclude if E (Yiﬁ\’cﬂX])exp[?ﬁ’c(]X])D e !

then we have maxE (Yﬁc(]X]) exp[YJI}’C(]X\)D € L' and the inequality (3.6) is satisfied,

therefore YA (| X|) belongs to class Deyp. To conclude this part, let recall the definition
of the class of Q(A, C)-semimartingales which belong to Desy, given by [4].
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Definition 3.5. Let np be a Fp-random variable such that

T
exp[y Y7 (Inr])] = exp[y(e" nr| + /0 e dA)]
belongs to LY, for ally > 0. We define a class of So(|nrl, A, C) of Q(A, C)-semimartingales
X such that -
X, < [ect’TrnT\ + [ ect»sdAs} as
t

4 Quadratic-exponential variation and stability result

4.1 A priori estimates

We now focus on the estimate of the martingale part of a semimartingale X € Sg(|nr|, A, C).
The estimates of the discontinuous martingales part allow us to conclude the predictable
projection j(yAM®), v € {—1,1} is well defined when the semimartingale X lives in a
suitable space.

Proposition 4.5. Let consider a semimartingale X € Sq(|nr|, A, C) which follows the
decomposition X = Xog — V + M¢ + M?, where there exists a process U € Gloc(l) such
that M?% = U.i then for any p > 1 the matingales, M = M¢ + (eV — 1).7i and M =
—M¢+ (e7Y —1).7i belong to M} .

Moreover if for any stopping times o < T there exists a constant ¢ > 0 such that

T
E [exp<eCTrnTr -/ eCsdAswfa] <.
0

then the processes M and M are BMO martingales.

Proof. As already seen, in the previous section, the martingale part of the canonical expo-
nential quadratic semimartingale given by M¢ + (eV — 1).7i belongs to Uexp which is not
verified in this general class. However, we can control M€+ (eV —1).ji in M}.

1. Let X € Sg(|nr|, A, C), from Proposition 3.3, YAY(X) = X + A + |X| % C and
YAC(—X) are Q-local submartingale. Moreover let recall the process YAC(X) =
eC.|X| + e x A satisfies YAC(X) < YAC(X) and YAC(—X) < YAC(X),
therefore since X € So(|nr|, A, C), for any p > 1, we find

T
exp(p|Y; " (IX))]) < exppV V(X)) <E [expmeCTnT\ + / eCsdAsmft} (4.7)
0
We conclude that

AC
Ekggexp@m (XD < +oe. (48)

From the submartingale property of exp(Y*¢ (X)) and exp(Y*¢ (- X)), from Yoeurp-
Meyer decomposition, there exist increasing processes A and A such that:

K, = exp(YtA’C(X)) = exp(Xo)E (M) exp(Ay)
K, = exp(Y;"(=X)) = exp(—Xo)E(M,) exp(4,)
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Since A and A are increasing, from (4.8) we conclude Z := £(M) and Z := E(M) are
uniformly integrable. Hence, M and M € Uexp-

Moreover Z and Z belong to MP, for any p > 1. Using intergration by part formula
we find dK; = K- [dA; + dMy| and dK, = K, [dA, + dM,], that leads to d[K]; =

K2 d[M]; and d[K]; = K7 d[M];. Therefore we find for any stopping times o < T,
[M] = fT dE]t and Mor = UT i[fgqt then we obtain
t

Mo < s (702) % Klor - and Mlor < swp (g5 ) (Kl (49

o<t<T o<t<T \Dy

However, using Itd’s decomposition of the submartingales K2 and K2, we find a priori
estilmates of [K]r and [K]r

dK} = 2K, dK; + d[K); = 2K2 [dM; + dA] + d[K];
dK? = 2K, dK, + d[K]; = 2K?_[dM, + dA,] + d[K];

Therefore for any stopping times ¢ < T, we find
E (Kol Fo) <E[K3F,] and  E[Kl,qlF) <E[K}F]  (410)

Now since, for any p > 1, supg<;<p K; and supg<;<7 K, belong to L, it follow from
Garsia and Neveu Lemma ([4] Lemma 3.3) that

E[[K]r)’] < +o0 and E[[K]7]’] < oo, Vp>1 (4.11)

Since supg<;<r 7 K and supg<;<r K belong to L? for any p > 1 and using 4.11, from
4.9 we conclude by Cauchy Schwartz inequalities that for any p > 1:

E[[M]] < +oo  and E[[MJ}] < +oo

Thus, using the BDG inequalities, we conclude that M and M belong to ME.
Moreover if there exists a non negative constant ¢ such that

T
E [eXp(eCT’nT‘ + / eCSdAs)\fa} <c
0
then from 4.7 the processes K and K are bounded, and using 4.9 and 4.10, we get
that the martingales M and M are BMO-martingales.

O]

4.2 Stability results of quadratic exponential semimartingale

Here, we present stability results for quadratic exponential semimartingales which we
shall use for the construction of the maximal solution of a class of quadratic BSDE’s with
jumps. For this propose, we recall a general stability theorem of Barlow and Protter [3]
for a sequence of cadlag special semimartingales converging uniformly in L'. We denote by
X* i=supgcycr [ X
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Theorem 4.5. Let X" be a sequence of special semimartingales which belongs to H' with
canonical decomposition X" = X§ + M"™ — V™, and satisfies:

T
E[/ |dv3"\] <C, and E[(M")]<C (4.12)
0
for some positive constant C. Assume that:
E [(X” —X)*] — 0, as n— oo,

where X is an adapted process, then X is a semimartingale in H' with canonical decompo-
sition X = Xo+ M — 'V satisfying:

E[/T\dm] <C, and E[(M)]<C (4.13)
0

and we have
lim E[(V"=V)] =0 and

. n _
Jim nh—>Holo ||M"™ — M| = 0. (4.14)
Lemma 4.1. Let X" a sequence of Sqg(|nr|, A, C) semimartingales which canonical decom-
position X" = X — V™ + M™ which converge in H' to some process X. Therefore the
process X which canonical decomposition X = Xg —V 4+ M is an adapted cadlag process
which belongs to So(|nr|, A, C) such that:
. n_ ¥ _ . n_ _
lim [(V*=V)]=0 and T [|M7 = M3 = 0.

Proof. Let consider X" = X — V™ 4+ (M°)" 4+ U™.x a sequence of Sg(|nr|,A,C) semi-
martingales. Firstly let prove that if the sequence X™ converge to the process X then this
limit belongs to the space Sg(|nr|, A, C).

Since, the sequence X" € Sg(|nr|,A,C), we have for each n € N and for any stopping
times o < T

—po(=nr + Aor + | X[+ Cor) < X3 < po(nir + Aor + [ X"+ Cor), as  (4.15)

and

T
X7 < po €977 Iy —l—/ eC"’SdAS] ,  a.s (4.16)
o

Therefore, using the dominated convergence and taking the limit of this subsequence in
4.15 and 4.16, we conclude that the limit X belongs to the space Sg(|nr|, A, C). Thank’s
to the Dini’s Theorem, the convergence of the sequence X™ in H! is uniform.

Hence, since the limit X is a Q(A, C')-semimartingale, from Theorem (3.3) the process X
is cadlag.

In the other hand, let us define the function v — g(u) = e* — u — 1, from Remark 3.1,
2(g9(u) + g(—u)) < (Je* —1]* + e — 1|2). Therefore from Proposition 4.5, there exist a
constant C1 > 0 and C9 > 0 such that:

o[ [l <z [ [ Jaarr [ om0+ o0 aivtas.an)] < 01
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E [<M">%] <0

Therefore, from the stability Theorem of Barlow-Protter, the limit process X have the
following canonical decomposition X := Xg — V + M satisfy for ¢ := max(C1, Cy)

E[/Tuvs@ <C, and E[(M)T]<C (4.17)
0

we get the expected result. O

5 Application of quadratic exponential semimartingales: quadratic
BSDEs with jumps

In this section, we propose an existence results for a quadratic BSDE with unbounded
terminal condition. In, [7],[?], [46] the autors studied Quadratic JBSDE with bounded
terminal condition and a specific generator related to a stochastic optimization problem.
Furthermore, Tzevadze provide a totally different approach to solve a Lipschitz-quadratic
BSDE with bounded terminal condition based on a fixed point argument. In [12], also
Briand and hu provided an existence result for the quadratic BSDE when the terminal
condition is unbounded. However all this works exept the paper of tzevadze, are based on
the seminal paper of Kobylanski. The major difficulty in the so-called Kobylanski method
is the strong convergence of the martingale part which is not easy to prove.

Furthermore, Tzevadze provide a totally different approach to solve a Lipschitz-quadratic
BSDE with bounded terminal condition based on a fixed point argument.

Our idea is completely different and based on Forward approach. In fact using charac-
terization and integrability properties of the exponential quadratic semimartingale obtained
in the previous section. Then by a general stability result, we prove the existence of solution
of Quadratic BSDE.

5.1 Quadratic Exponential BSDE
5.2 Notations and setting

On the stochastic basis defined above (2, F,F,P) with finite time horizon T" < 400, we
define W = (W}),~ a d-dimensional standard Brownian motion and y the random measure
defined above such that v is equivalent to a product measure A®dt with density & satisfying

v(w,dt,dx) = &(w,t, ) A(dx)dt,

where A is a finite measure on (E, &) satisfying [, 1 A |z[*A(dz) < +oo and where the
density £ is a measure, bounded nonnegative function such that for some constant C,:

0 <&(w,t,z) <Cy, <400, PRIANRdt— ae.

That implies in particular v ([0,7] x E) < C,TA(E).
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We introduce the following spaces

o L°*P the space of all Fpr-measurable random variables X such that Vv > 0
E [exp(v]z])] < +o0

e D;P is the space of progressively measurable processes (X = (X);)i<r with

E [eXp <’y sup !X!t>
0<t<T

e D is the space of progressively measurable processes (X = (X);)i<7 with

E [exp (7/0T|X|t>] < +00

e S? is the space of all R-valued adapted process X such that

< +00

E | sup |X:?| < +oo

0<t<T

e S is the space of all R-valued adapted process X such that

E [ sup | Xy¢|| < +o0

0<t<T

° Hip the set of all predictable processes U such that

T B\ 7
(E [/ ]U|§7)\ds] ) < 400
0

U2, = /E U (s, 2) 2€(s, 2)A(d).

e 7?7 the set of all predictable processes Z such that

(/OT |ZS\2dt> g] < oo.

We will assume the following representation Theorem: for any square integrable mar-

where

E

tingale M we have

t t
M; = My + / Zs.dWs +/ / Us(z)ii(de, ds).
0 0 JE

where Z and U are predictable processes in #H?, Hi Therefore, we consider a Backward
stochastic Differential equation with jumps of the form

—dY; = fi(Vs, Z4,Uy) — ZydW; — / Ug(z)p(dt, dx), Yr =nr, (5.18)
E

A solution of such a BSDE associated to (f, nr) is a triple of adapted processes (Yz, Z¢, Ut )o<i<T-
To get an existence result it is necessary to put some assumptions on The coefficient and
the terminal condition of the BSDE.
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5.2.1 Assumptions
— (HC) Continuous condition: for all t € [0,T], (y, z,u) — fi(y, z,u) is continuous.
— (HL-a) Lipschitz condition: there exists a non negative constant C' such that
[fe(y, z,u) = fu(y,2,0) < C(ly =yl + [z = 2[ + [u—al), Vte€[0,T]
— (HL-b) Local Lipschitz condition: there exists a non negative constant C' such that
iy zu) = fily, 2,w)| < C (L+ 2| + |]) (12 = 2]) . ¥t €[0,T]

~ (SC) Structure Condition: there exists a positive adapted processes | € D{*F, ¢ € §®
and a non negative bounded constant § such that for all (y,z,u) € R x R? x L2
t €[0,7]: P-a.s,

1. d 1. J _
Q(t7y’zvu) = g]t(iéu)7§’2|27lt*0t|y| < ft(y7zvu) < gjt(éu)+§|z|2+lt+ct|y| = q(t7y7zvu)'
(5.19)

— (IC-a) Integrability condition:
T
Vy>0, E [exp(*y(eCT]nT\ +/ eCSdAS))} < +00.
0

— (IC-b) Integrability condition: f(0,0,0) € H?

— (DC) Decompotision condition: there exist a P ® B(R% 1) measurable function f
and a P ® B(R*2) measurable function h such that:

fiwszu) = Fi(y, 2) + / haly, 2, u(@))C(t )\ (dar) (5.20)

E

where the function h is differentiable with respect to u and % > —1. When f is
Lipschitz with respect to y, we said that f satisfies the simple (DC) form.

~ (Ay) condition : there exist a P ® B(R?) measurable function + such that

fuly, zw) — iy, 2) < /E (Y, 2o (), @(2))C(t )\ (da) (5.21)

where v > —1 and for any processes Y € S?, Z € H? and U,U € ”Hi, the martingale
’Y(va Zv Ua l?)/j € UGXP'

Remark 5.2. Under (HL-a), (HI-b) , (IC-b), Becherer [7] proved the ezistence of a
solution of the BSDE (5.18) with the terminal value ny € L?(Q, Fr). The author used a
classical fixed point approach and a priori estimates.

Later, in [?] Becherer ,Buttner and Kentia, extended the result of [7] assuming (DC) and
considering the BSDE coefficient which is not Lipschitz with respect the jump part. In fact,
they work with a terminal condition bounded and since they prove the solution (Y, Z,U) of
the BSDE (5.18) is such that Y and U is bounded, they give sufficient condition on the
differential of the function h to get %(Y, Z,U).;n € BMO. Therefore, they get uniqueness
of the solution using comparison result since the condition A is satisfied.
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Definition 5.6. We call Quadratic Exponential BSDE with parameters (1, ¢,0) (qexp(l, ¢, 9)
in short terms) associated to (f,nr), the BSDE (5.17) such that f satisifies the conditions
(HC), (SC), (IC-a), (IC-b) and (DC).

The more natural quadratic exponential BSDE is the one related to the dynamic entropy
risk measure defined in first section. Let racall that, for a terminal value ny € L®P, the
dynamic entropy risk measure p(nr) is defined by:

1
pulir) = 5 I [E(exp(@nr)| F)], 0<t<T,
and follows the dynamics:

—dpi(nr) = filpe(nr), Zt, Ur) — ZedWy — /EU(@x)ﬁ(dtadiE), pr(nr) =nr  (5.22)

where the BSDE coefficient f is given by:

J .
ft(ya 2, 'LL) - §|Z’2 + jt(éu)
and satisfies the conditions (HC), (HL-b), (SC), (IC-a), (IC-b) and (DC) (the sim-
ple form). In fact, for any ¢t € [0,7], z,Z € R%, y € R and u, 4 € L*:
°
2

_ o _ _ _ d _
Fily,2u) = fily, 2,u) = (12 = 21°) < S2ll2 = 2lLs<oy + 512112 = 21505

and

ft(y,z,u)—ft(y,z,ﬂ) = ]t((SU)—jt((Sﬁ) = /

(7 gy + ™) = 110y ) €000\ ()

Therefore in this particular case:
Ye(u(z), a(z)) = [ — 11 gs<op + [ = 11550 (5.23)

Moreover the solution (p(nr), Z,U) € So(|nr|) x H* x ’Hip. In fact in a forward point
of view, the entropy risk measure defined by the BSDE (5.22) is a quadratic exponential
seminartingale and the space of solution is deduced from Proposition (4.5.) Moreover from
Theorem 3.2 the martingale §Z.W + (€°V — 1) € Ueyp hence from 5.23, the coefficient f
satisfies the (A,) confition and the solution of the BSDE (5.22) is unique.

5.2.2 Existence of solution for quadratic BSDE with jumps

Under the above assumptions we are now able to establish the main contribution of this
section. In the sample case of quadratic exponential BSDE for dynamic entropy risk mea-
sure, we characterize the space of solution using a priori estimates of quadratic exponential
semimartngales given in Proposition 4.5. In the general case, we adopt the same forward
point of view since if the a solution (Y, Z,U) of the quadratic exponential BSDE exists
then the process Y is a quadratic exponential semimartingale and its martingale satisfies
a priori-estimates. Therefore, we construct a monotone sequence of quadratic exponential
semimartingale which are solution of Lipschitz BSDEs and using a priori estimates and
stability we prove that the limit exist and it is a solution of a quadratic exponential BSDE.
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Theorem 5.6. There exists a triple (Y, Z,U) € So(|nrl, A, C) x H? x ’H2p solution of the
quadmtzc exponential BSDE associated to (f,nr) with parameters (6, c,l) where (Ay = fo s
= fo csds, t <T).

Moreover if the terminal condition nr is bounded and f satisfies the Lipschitz local
condition (HL-b) and the simple (DC) condition form then the solution (Y, Z,U) € S x
BMO x 8% is unique.

Proof. :

We follow two steps to prove the existence. Firstly, we construct a sequence of quadratic
exponential semimartingales which converges and secondly we find the convergence of the
finite variation and martingale part using stability result. Finaly we prove the unicity in a
particular case.

First step: Construction of the sequence of Sg(|nr|,A,C) semimartingales using Inf and
sup convolution

Without losing any generality, let assume ¢ = 1 and consider the gexp(l, ¢, 1)-BSDE associ-
ated to (f,nr). Since the BSDE coefficient f satisfies the decomposition condition (DC),
there exist a P @ B(R*"!) measurable function f and a P ® B(R%2) measurable function
g such that:

fuly, zu) = iy, 2) + /E ey, 2, u(@))C () M(da)

For any function k, we set kT = klp>¢ and k= = klz<o and we define for each n,m € N
the sequences of coeflicients:

;“’"(y,z,u) = glf {ft+(w,r) + njw —y| +n|r — z[}
—I-/ inf(){hzr(w,r,v( x)) + njw —y| + n|r — z| + njv(z) (z)|} ¢(t, z)A(dx)
E w,rv(x

and

Jr ™ oz, u) = sup { f(w,r) = mfw = y| = mir - 21}

w,r

—I—/E sup {ht_(w,r,v(w)) —mlw —y| — m|r — z| — m|v(x) |}C (t, z)\(dx)

w,r,v(z)

For all ¢t € [0, 7], let us define the function (y, z,u) = ¢/ (y, z,u) = 3|2*+ [}, g(u(z)){(t, 2)A(dz).
For each n,m € N | let us define the sequences of coefficients:

1
q;“’"(y, zZ,u) = 7"igfv {—Hltl +c|r| + 5’“"2 + +nly —r| +n|r — z\}

/Elnf {g(v(2)) + nlv(x) — u(x)[} C(t, ) A(dx)

v(z)

and

_ 1
G0 z00) = sup { 1] = el = Glul? = mly  r| ~ mlu ~ 51}

W,

+ / sup {—g(—v(z)) —mlo(z) — u(x)[} C(t, 2)A(dx)
E v(x)
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1. The sequence f™ and ™™ resp( the sequence f~™ and ¢—™) are increasing and
converge to f*, ¢ resp ( are decreasing and converge to f~, ¢~). Moreover the
sequence f™ g—™ fT" and ¢™" satisfy the (HL-a), (HI-b) ,(IC-b) (DC) and
A.,-conditions.

2. The sequences (f™™), -y resp( the sequence (f™™), ) satisfies 0 < fH7" < gt <
qt (resp ¢— < ¢™ < f7™ <0), for each n,m € N. Moreover

¢ <[P < gt

The point 1), the the proof is given in the Appendix (Properties of the BSDE’s coefficient
sequences). For the point 2), let consider the coefficient f associated to the gezp(l,c,1)
BSDE, for each n,m € N, 0 < ft" < ¢*" < ¢". By similar arguments we find and 0 >
7™ > g™ > g, hence we conclude 0 < fH" < ¢ < gt and ¢~ < g™ < f7™ <0.
Moreover, using the last inequalities we deduce ¢= < fH" 4 ¢ ™ < ¢, for each n,m € N.

Let now consider the sequence of coefficients f™™ = f+" 4+ f=™ which converges to f
when n,m go to infinity. We consider the BSDE associated to (™", nr):

—dY;"" = [ Y 20T U dt — 2, AW — / U™ (t,x).Ji(dt, dx), Y™ = .
E

Since for each n,m € N the coefficient f™™ satisfies the (IC-b), (IC-a) (HL-a),(HI-b)
conditions, there exists a solution (Y™™, Z"™™ U™™) of the BSDE associated to (f™™, nr).
Moreover g~ < f™™ < ¢*, hence (Y™™),, men is a sequence of Q(A, C) semimartingales.
Since g7 < f™ < ¢™" and the triple (Y7, ZT" UT") and (Y™, Z—™ U~"™) solu-
tions of the gezp(l, ¢, 1) BSDE associated to (¢, |nr|) and (g™, —|nr|) exist and satisfy
for all stopping times o < T

T
YV (Y™ < po | Co | + / eCff’sdAs],
(o2

—+,n m

The solution exists since ¢ and ¢ satisfy the continuity, the integrability and the
Lipschitz conditions for each n, m € N. Moreover since they also satisfy the (A, )-condition,
we find by comparison result in that Lipschitz BSDE’s case Y™ < Y™™ < Y and
we conclude (Y™™) . is a sequence of Sq(|nrl, A, C) semimartingales since for each
n,m €N, Y™™ is a Q(A,C) semimartingale satisfying:

T
Y™ < po €97 nr| + / eCJ’SdAS], a.s (5.24)
e

This equality is given in Appendix (Properties of the BSDE’s coefficient sequences). Since
the coefficient f™™ satisfies the (A,) condition, we can apply comparison result in the
Lipschitz BSDE case; we deduce for each n,m € N:

Yn+1,m > ynm o> Yn,m—i—l
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Second step: (Convergence of the semimartingale, the finite variation and the martin-
gale part). For each m € N, (Y™™) _, is an increasing sequence of bounded cadlag
Sq(|nrl, A, C) semimartingales, with canonical decomposition Y™™ = Y""™ —y/mm _ pfnm.
Hence, this sequence converges, let denote Y™ its limit for each m € N. From stability
result, Lemma 4.1, (Y™), is a sequence of cadlag So(|nr|,A,C) semimartingales with
canonical decomposition Y = Y™ — V"™ + M™ where

lim E[(V®™ - V™) =0 and lm |M™" — M™|;0 = 0.
n—oo n—oo
For each n,m > ¢*, since Y™™ > Y™™+l then (Y™), . is a decreasing sequence of bounded
cadlag Sg(|nr|, A, C) semimartingales. Let Y its limit, from stability result Lemma 4.1, Y
is a cadlag Sq(|nr|, A, C) semimartingale with canonical decomposition Y =Yy —V + M
where
lim E[(V"-V)"]=0 and lim

m—00 m—0o0
Let recall dV,"™ = fom (Y™™, Z;"™ U"™)dt and consider the sequence of stopping times
(Tk) g~ defined by:

|M™ — Ml =00

T
Tk =inf {¢t > 0,E {exp(eCT\nﬂ —l—/ eCSdAS)|.7-"t] > K}
0

The sequence (T )y~ converges to infinity when K goes to infinity, moreover for K >

K large enough, P(Tx < T) < f. From 5.24, we find Y, lives in a compact set
and its convergence to the cadlag process Y is uniform. The same property holds for
M??K and V’f\g{ Let Ztn’m’K = Z"™lycp, and Ut"’m’K = U™, in such that

(ZM W) a1 = ZE W and (U™ 1) a7, = U™™E i, Since the sequence Mﬁr}nK =
(Zm™M W) Ay + (U™ 10) a1y strongly converges, the sequence of orthogonal martingales
(Zznm K W) and (U™™F Ji) also converge in their appropriate space. Therefore, we can

Zn,m,K

extract a subsequence and U™ K converging a.s to some processes Z and U.

For ¢t < Ty, the sequence f™™(t,Y;"", Ztn’m’K7 Ut"’m’K) converges to f(t,Y:, Z¢, Up)dt ®
dP a.s . it remains to prove that E [f(;‘FK |fom (e, Y 2" U™ — f(t, Yy, Z, Ut)|dt} goes
to zero when n, m go to infinity. Firstly we have

Tk
E [/ |fm Y 2 U = f(4 Y Z, Ut)“{[zf’m|+Uf’m§C}dt:|
0
goes to zero when n,m go to infinity, by dominated convergence since Y™™ is bounded
and |fm(t, Y,V ZP™ UP™) — f(t, Yy, Zi, Uy)| is uniformly bounded in L by Lemma 4.1.

Moreover for s < Tk, P (|Z"™| + |Us"™| > C) < %E(|Z§m|2 + |U2™?), from Lemma 4.1,
there exists a constants Cy such that E((M"™"™);) < Cy, therefore

Tk
. Uo [fo YT 20T U = (6 Y Ze, U L zoom o s oy di

goes to zero when C' goes to infinity, uniformly in n,m. As a consequence, the process
V in the decomposition of the quadratic exponential semimartingale Y is given by dV; =
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f(t,Ys, 2, Up)dt on [0, Tk] for any K. We conclude the triple (Y, Z,U) is a solution of the
gexp(l, ¢, 1) BSDE associated to (f,nr). Moreover since Y belongs to the space Sg(nr, A, C),
then from Proposition 4.5 the martingales Z.W +(eV —1).x and —Z.W +(e~Y —1).z belongs
to the space ME.

Third step: Unicity in a particular case: Let (Y', Z',,U') and (Y2, Z2,,U?) two solutions
of the quadratic exponential BSDE with bounded terminal condition. Therefore from [7],
the processes Y!, Y2 and U!, U? are bounded. Moreover from Proposition (4.5), Z'.W and
Z2.W are BMO.
Let define the processes AY = Y — Y2 AZ =2 - 7?2 AU = U' - U?, ZY =
(z%1, ... 2% zbi 72 fori = 2,...,dand ZY' = Z'and Z%0 = (Z%1,..., 2%, ZVit o zbd)
fori =1,...,d — 1 and Z?>? = Z2. Then, we consider the following processes: for all
i=1,...,d, t<T

fto/;tl’ Ztu) — ft(}ﬁl? thz)
B2, 2¢) = 7" - 2"
0, it z)'=27".

S 7/

Then we have:
A A~ d . . .
RO ZH - fVE 2 = Bzl 2 (2 -z}
=1
with |8:(Z}, Z})| < C (1 + |Z}| + | Z}]) for all t € [0, T).

Since the coefficient f is Lipschitz with respect to y then we consider the following
bounded process: for all t<T

ft(Y;t17 Zth Utl) — ft(Y?? Zt27 Utl)

a (Y], Y7) = Y- y? 7
0, if  Y!=Y2

ity £ Y2

Moreover, since the coefficient g satisfies V¢ € [0,T] and = € E:

" 99

o Ou (Ytgl’ yUtl (x)+(1— V)Uf(x))dy,

(Ui (2), U (2)) = (Y7, U (2)) = 9 (Y, U (2)) =

Since Y, U, U? are bounded and % is continuous and % > —1, there exists a constant
C' > 0 such that:
—1 < (U} (2),U(x)) < C.

We get:
dAY% - _[(ft(yvtl7Zt17 Utl) - ft(Y17Zt27 Utl)) + (ft(th17Zt27 Utl) - ft(Y;f27Zt27 Utl)

+(ft(Yf,Zt2,Ut1)—ft(YtQ,Zf,UE))]dtJrAZt.thJr/ AUy.ji(dt, dx)
E
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Therefore we get:
—dAY; = Bi(Z}, Z2).AZdt + ay(Y,E, Y2) AYdt +/ YUk (z), U (2)) AU (2)&(t, 2)M\(dx)
E
— AthWt — / AUtﬁ(dt, dﬂ?)
E

hence let define the adjoint process dp—l} =a (Y, Y2)dt, To=1

LAY, <IE Z / D AZL(dWE — Bi(ZL, Z%)ds)

/ [ 00 @) s, ) (020, U2 @), N @) |

Define the probability measure Q with the Radon-Nikodym density Z9 with respect to P
given by:

2 = 28 (3220 - Wi+ [ (0} @), Ui, o))

Since —1 < 4} (U},U?) < C and |B(Z}, Z)| < C (1 + [Z}] + | ZF|) for all t € [0, T, we have
that 8+ W + ~ % i is BMO-martingale, hence Z? is uniformly integrable. Therefore, we
have that AY; < 0, and then Y;! < Y;? a.s. We use the same arguments to prove Y;? < Y;!

a.s. permutting the role of Y'! and Y?2. O
O
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6 Appendix

6.1 Tehnical lemma

Lemma 6.2. For any k > 1 and any local martingale M :
Je(kAMy) = kji(AM), 0<t<T

Proof. Let recall that for any local martingale M = M¢+4 M? from representation theorem,
there exists U € Gjo.(11) such that M? = U.ji , then j(AM?) = (eV — U — 1).v. Therefore
from representation theorem it is sufficient to prove the following function f: z — (e** —
kx — 1) — k(e* — x — 1) is positive to find the result. For any = € R, since f;(z) =
ke®(e®=1)* _ 1), then we conclude the function fj, is increasing on (0, +00) and decreasing
on (—00,0). Therefore, for any = € R, fi(z) > fx(0) = 0. O

6.2 Properties of the BSDE’s coefficients sequence

6.2.1 Properties for the bound sequences ¢"" and ¢~

Lemma 6.3. Let us define the following quadractic exponential coefficients by qt+(y, zZ,u) =

clyl+ 1]+ %\z|2 +je(u) and ¢; (y,z,u) = —cly| — || — %|z!2 —ji(—u) and define the sequence

g™" and ¢g—™ by the inf-convolution and sup-convolution for n,m > c¢* = SUP;e(o,77] Ct-

q""(y,z,u) = inf {¢g"(r,w,v) +nly —r[+nlz —w[+nlu—vl}, [v] = / lv(@)[§(t, 2)A(dx)
W,V E

qa " (y,z,u) = sup{q (r,w,v) —mly —r| — m|z — w| — m|u —v|}
0,V

then:

i) The sequences q*" and ¢—™ satisfy the structure condition Q(A,C).

ii) There exists a unique solution (Y1, ZT1 UT™) (resp. (Y™, Z7™ U~™)) of the
BSDE’s associated to (¢™", |ér|) (resp. to (q—™, —|¢r]).

iii) The processes Y™ and Y™ are values processes of the following robust optimiza-
tion problem,, for any o <T':

T T ZQ
Y = sup EQ Sgrlér| + / Sg |l dt + / 1Sy In —'f@ dt + Sy rIn
{Q<P,|B|<n;—1<k<n} o Zs

T Q
A
Y, ™m = inf E9 -5 / ldt—/ eSS, In =t dt + S5 1 1n
(Q<P |8 <mi—1<r<m) alérl = [ Soullddt = | eS| g T

where Sz, = exp(f;t ¢sds) and the Radon Nikodym density of Q with respect to P on Grp is
Zg, the process Z;@ =E [Z%Qt_ =E(BW + k..
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Moreover, we have the following estimates:

Y, <Y<Y o < T

and
T
Yo G < o Sl + [ Slas|. o<
g
Proof: i) We compute explicitly the sequence of functions ¢"” and g™ which satisfy the

structure condition Qexp(A, C) for every n,m > ¢*. By definition we have

Tigfv{q;’(y, w,v) +nly —r| +nlz —w| + nju —v|}

q;r’n(yv'%u) -
el e
= cly| +[I] + ngf{glwl2 +nfz —wl} +inf{j(v) +nju - v}

Obviously one can find the explicit form of ¢™™ which is given by

n 1 n
q""(y, z,u) = cly| + |1 + §|Z|21{|z\§n} +n(lzl = 5)Lz>n)
+ /E [g(u(e))l{eu(e)_lgn} + (= (n+1)In(n+ 1) + n(u(e) + 1))1{eu(e)_1>n}i| Ce(e)p(de)

where we recall g(x) = e —x — 1, using the similar arguments we find the explicitely form
g

of q,,:
1, m
—clyl = Il = 5121 L jegemy = mll2l = 5)1g25m)

¢ " (Y, z,u) =
+ /E [g(*U(e))l{eww)flgm} + ((m+1)In(m + 1) + m(u(e) - 1))1{67u(e>71>m}} Ce(e)p(de)

then we conclude for each n, m > ¢*, ¢™" and ¢~ satisfy the structure condition Qe, (A, C).
q q Yy 74

™ are Lipschitz we deduce there exists a solution

ii) Since the coefficients ¢™™ and ¢
(Yt Zz+tn Utm) resp (Y™, Z7™ U~™) associated to (¢t [ér|) resp (=™, —|é7)).

Let now prove these coefficients satisfy the (A,) condition. To prove this result let first
remark that for all x € R:
—(n+1)In(n+1)+n(z+1)=glln(n+ )] +n(z —In(n+ 1))

Let u,u, we set ' = Uj‘zl A; where
Al={z e Ee"® —1<n ™™ —1<n}, Ay={zecEe"® —1<n ™ —1>n}
Ag={x € E,e*®) —1>np, %" —1< n}, As={x¢€ E,e"® —1>n,e¥®) — 1> n}

Therefore we find for all y, z:

q+7n(y7 Z, 'LL) - q+7n(y7 Z, a)

= / l9(u(x)) — g(u(x)))Ce(x)p(dx) + /A 9(u(2)) — g(In(n + 1)) — n(a(z) — In(n + 1))]G(z)p(dz)

1

+ / [n(u(z) —In(n + 1)) + g(In(n + 1)) — g(a(x))]G(z)p(dz) + / n(u(x) — u(x))C(z)p(dr)
Az Ay
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We now find differents inequalities on every given subset of E:

On the set A1: we use the convex property of the coefffient g and we deduce:

/A [9(u(x)) = g(u(x))]Ci(x)p(dx) S/ (") = 1) (u(x) — a(x))G(2)p(d) (6.25)

Aq

On the set As: Since on Ag, the function ¢ is increasing we find Vo € As, g(u(x)) <
g(In(n + 1)), moreover we have @(z) — In(n 4+ 1) > 0 for = € Ay then we conclude:

/A l9(u(x)) — g(ln(n + 1)) — n(a(x) - In(n + )G ()p(dr) <0, (6.26)

On the set As: we use the convex property of the coefficient g and we find g(In(n + 1)) —
g(u(z)) < —n(u(x) —In(n+ 1)), Vz € As. Therefore, we find:

/ [n(u(x) —In(n+ 1) + g(In(n + 1)) — g(a(2))|¢(x)p(dx) < / n(u(z) — u(z))G(2)p(dr)
A3 As

(6.27)
Hence using (6.25), (6.26) and (6.27), we find:

7Py, 2 ) — ¢y, 2, ) = / 7 (), 1)) (u() — ()G ()pld)
E

where " (u(x),u(z)) = nl{e“(x) —1 > n}+ (e¥® —1)1,,, then —1 < 4™ < n hence
7™ € U*P. Therefore the sequence ¢™" satisfies the A, condition. We use similar argu-
ments to prove the sequence ¢~ satisfies also the A, condition. We conclude from Com-
parison Theorem, the uniqueness of the triple (Y, ZT" UT") resp( (Y™, Z7™ U~™)
solution of the BSDE associated to (¢™", [¢r|) resp((g—™, —[&7]))-

iii) Let define the cost functional of the robust optimization problems defined in Lemma
6.3-iii), J@T" and J@ =™ and define the value processes V", V=™, Assume |{7| € LP,
RS D;Xp and ¢ bounded then the value processes of the robust optimization exist see Bor-
digoni, Matoussi and Schweizer [10] for more details. Moreover we deduce for any Q < P:

t t
JOHn _ geyn / Seliy|ds + / 6,5 In(ZQ)ds — S 1n(Z9)
0, ’, (6.28)
Jemm _ gey—m _ / Seliy|ds — / ¢sSn(Z9)ds + S¢n(22)
0 0

moereover the value processes V" and V™™ are special semimartingales the following the
representation theorem there exist a predictable process Z™", U™ and an predicatble pro-
cess AV resp ( Z7™ U™ and an predictable process AV"") such that V7" = dAY "+

Z;" AW+ [, U™ (e) fildt, de) resp(dV, ™ = dAY "z AW [ U™ (e).fi(dt, de)).
we define the dynamics of Z2,

dz? =72 <Bt.th+ / mt.ﬁ(dx,dt)>
E
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For every n,m € N*, for every Q < P, J&™" resp( JL =™ ) are submartingales and
martingales for the optimal resp( surmartingales and martingale for the optimal) then we
get:

+,n t ! 1
Ay ’ :—{ max (|l |+Csv+n) / <<Z+7n_1676>8+2|68’2) dS}
0

o {IBl<n}

- {/0 max  (ks(z)(vs(x) + 1) = (1 + ks(2)) In(1 + ks(2))) Cs(x)p(d:v)ds}

E{-1<r<n}

resp

A= { ot{|}3|li%}(_“5‘ TV + /Ot <<Z_’m +8,8)s — ;\Bs!2> ds}
{/ /E min (k@) (0s(2) = 1) + (1 + r(@)) In(1 + ns<x>>>cs<x>p<dx>ds}

{- 1<n<wﬁ

Using first order condition, we find for the first optimization problem x* = (6U+’n — 1) 1{eU+’n—1§n}+

nl U _1sp) then we deduce (V7 ZT" UT") is the solution associated to the BSDE

(h ™", 1&rl):

—dV,;"" = nE (VI 2 U de — 2 dWy - U (@) ald da), VT = [ér )
where
WMy, z,u) = cy + 1] + = \2\ 1{z1<n) +1(]2] = )1{|z|>n}

+ /E [(eU(e) —u(e) = louer_1<py + (—(n+1)In(n+1)+n(u+ 1))1{eu(e_1>n}} Ce(e)p(de)
We use the same arguments of first order condition to deduce the solution of the second
optimization problem; We get the triple (V=" , Z=™ U~"™) is the solution of the BSDE
associated to (h™™, —|&7)):
—dv,™" = h_’m(V_’m,Zt’m,Ut’m)dt—Zt’m.th—/ U, " (z).p(de, dt), V™ =—|¢r].

E

where

—m 1 m
h="(y, z,u) = cy — |l — §\Z|21{|z\gm} = m(|z] = ) 1{jz15m)

[ [t =) 02y + (o D+ 1) () = D)L 15y | Gelaod)

To finish the proof, we find Y ™" > 0 and Y™™ < 0 since
comparaison theorem in Lipschitz case. Then we conclude ht" = ¢™™ and h™"™ = ¢

—[&r| < 0 by

m

for each n,m € N. By uniqueness of the solution of the BSDE associated to (¢™", |¢7]) and
(g=™, —|¢r]), we conclude V" = Y™ and V=™ = Y =™ moreover since ¢~ < fm <
g™" by Comparison Theorem, we find Y™ < Y™™ < Y*+"  However, from the dual
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representation of Y™ (resp Y ) given by V™ resp( V"), we conclude by Proposition
4.2 of [4] that for any o < T

T T
Vo < o [Sialer + [ Sgultids] and Vo< g, |Scalenl+ [ sl

O
6.2.2 Properties for the sequences ft", f~™ and f™»™
Let recall that V(t,y, z,u) € [0,T] x R x R? x L2, we have:
"y, 2,u) = f?"n(y72)*—jé)h?"”(yvz,U(w))Cdf,x)A(x) (6.29)
where
m,m

Py, 2) = f My ) (g 2),  and Ry, z,u() = by, 2, u(@))hy T (y, 2, u(@).
Since:
0< £y, z,u) < g™ (y,2,u)  and g " (y,z,u) < fi " (y,z,u) <0

we get
R ) +a
@ "y, 2u) < (Y2 u) < 6" (Y, 2 ).
Moreover the sequence f™" is increasing with respect to n and decreasing with respect
to m. To conclude, let prove for decomposition of f™™ given by 6.29, 8%27” > —1 and
8’};;”1 (Yyrm zmm UM 1€ Uexp- Let us define z € E and u(z), u(xi € L? and the follow-

ing sets:

Ay ={z € E, m(y, z,u(x)) > 0,h(y, z,u(z)) >0}, Az ={x € E h(y,z,u(z)) <0,h(y,z,u(x)) <0}
As ={z € E, (y, z,u(x)) > 0, hy(y, z,u(x)) <0}, Ay={zx € E, n(y,z,u(x)) <O0,hy,z u(x)) >0}

We know that:
0< b "y, 2 u(@) < hf (g zou(@), and by (3, 2,u(2)) < by ™ (y,z.u(2)) <O (6.30)

Therefore if hf (y, z,u(zx)) < 0 then h"(y, z,u(z)) = 0 and h; " (y,z,u(z)) < 0 and if
hi(y, z,u(x)) > 0, b "™ (y, z,u(x)) > 0 and h; "™ (y,z,u(z)) = 0. Using theses properties,
we get:

= [h{ " (y, 2, u(x)) = b (y, 2, 0(2))]1a,
= [hy " (ys 2, u(@)) — by " (y, 2, 0(x))|1a,
= [h " (y, 2, ulx)

= [hy ™ (y, 2, u(z

h’?’m(yv 2 u(x)) - h?m(% 2y ﬁ(l‘))

5 ~—
[ |
>
:\‘Jr =
s 3
—~
s =
R
S
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The functions h™" and h™™ are Lipschitz with respect to u hence differentiable. We get:

1 8h+,n
B 0.2 ula)) = i) = (ula) = @) [ T zvula) + (1 = Vi)
and
1 —,m
0 2o(w) — (22 a) = (o)~ (o) [ T . zvaa) + (1= v)aa)
Let define
1 +,n
%tl,n,m(y’ Z,u(ﬂ?),ﬂ(l‘)) = 0 822 (y’ 2, l/u(l’) + (1 - V)ﬂ(x))dy (6'32)
and
.zt aw) = [ s (i (63)

On Aj since the function h is continue with respect to u, using ”the valeurs intermdiaires
Theorem”, we can find @(x) such that h(y,2,4(z)) = 0 . Using 6.30, b, " (y, z,4(z)) =
hi™(y, z,i(z)) = 0, then on the set As:

hzﬁn(y’ z,u(:v)) - h;’m(yv Z,Z_L(."L‘)) = [h’lj’n(y’ Z?”(m)) - htJﬁn(yv 2, ﬂ(fl)))]
+ [0y ™ (g, 2 0(2)) = hy " (y, 2, u(x)]

1 +,n
= (u(@) — @) | (Wgu (y, z vu(e) + (1 = v)a(z))dv
1 —m
+ (a(x) — u(m))/o ah({;u(y, z,vi(z) + (1 — v)u(x))dv
Let
1 +,n
2 u), i) = [z o) + (- )i
0
and
Lon, "

VRCERTORIOIE /0 a2 vi@) + (1 - v)a(e))dv.

Therefore, we get

" 2 u(w) — (2, 0() = 8,2 ula) i) () () (63
where
e, 1) = [ ), ) + b = i), ) B

33



Since u(x) €u(x) Au(z),u(z) VvV a(x)[, then % € [0,1]. Hence on the set As, we

x
x

N N

have:

7t—,3ﬂ’n /\ ,Yt"‘w?)yn S ,7?7717771 S ,yt_737m \/ ,-Yt-i_73’n (635)

On the set Ay, "™ (y, z,u(x))—h;"" (y, z,u(x)) < 0 and using " the valeurs intermdiaires
Theorem”, we can find @(x) such that h(y,z,4(z)) = 0 . Using 6.30, b, " (y, 2, 4(z)) =
h ™ (y, z,4(x)) = 0, then on the set Ay:

ht_’m(yﬂzau(x)) - h:—’n(y,z,ﬁ(:ﬁ)) = [h;m(yazvu(x)) - ht_’m(y,z,&(x))]
+ b (y, 2, a(2) — by " (y, 2, (@)

. Lon, ™ .
= (o)~ i(e) [ P gzula) + (- ()
1 ath,n
+ (a(z) — u(x)) atu (y, z,vi(x) + (1 — v)u(z))dv
0
Let
1 a7 —,m
@) iw) = [T (o) + (= i)
and
1 +,n
i) i) = [ Bz vl + (1= vy

Therefore, we get

ht_’m(yv Z, u(x)) - hz_’n(yv 2, ’L_L(JI)) = ’Y;Ln’m(% 2, U(.%'), ﬁ(x))(u(x) - ’L_L(:L')) (6'36)
where
Ay (), G(@)) = |9, 2 (@), 6@) + b — e, 2 ), a(e)) )~ UE)

Since u(z) €u(x) A u(z),u(z) vV u(x)[, then % € [0,1]. Hence on the set A4, we

have:

—4,m +.,4.n 4nm —4,m +.,4.n
Yt N Yy <Y <Y VY

Using (6.31), (6.32), (6.33), (6.34) and (6.36), we get:

4
By (Y, 2z, u(x) = by gz a) = ) 1a ™" (Y, 2, u(x), a(@) [u(e) — @)
i=1
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and

2

&n,m z,u(x), ulx 4,n,m z,u(x), u(x u(x) —ulx
;1141‘%5 (3/7 ) ( )7 ( ))+1A47t (ya ) ( )7 ( ))] [ ( ) ( )] (6.37)
< Wy, 2 u(z) = BTy, 2, ()

and
3
h" (Y, 2, u(@) — b (y, 2z, u(x)) < Z1Aﬂf’"’m(y,zw(ﬂ?)»ﬂ(iv))] [u(z) —u(z)] (6.38)
i=1

Therefore, since the Lipschitz constant of A™" (resp h™"™) is bounded by n (resp m), we
a;g;,n < n (resp ahazm <m), we get from (6.32), (6.33),(6.35 and (6.38):

conclude

3
D 1ay ™"y, 2 u(x), u(z) < (nV m) (6.39)
i=1
For the other hand, let us recall that for any functions p and v, we have:
inf ¢(z) — inf p(z) > sup[P(z) — p(w)],  and inf¢(z) —inf p(x) > sup[th(z) — p(z)]

Hence, we get for any u(zx), u(x) € R:

he " (y, 2, u(@) = by, 2,0(2)) = sup{hi (y, 2z, u(x) — v(x)) = b (y, 2, a(2) = v(2))}

v(z)

(6.40)

and

hy ™ (y, 2, u(@)) = hy " (y, 2, () Z sup{hy (y, 2, u(z) —v(@)) = by (y, 2,0(x) - v(@))}

()

(6.41)
We consider

By ={x € E, h(y, z,u(xz) —v(x)) >0, he(y, z,u(x) —v(x)) > 0},
By ={z € E,h(y, z,u(z) —v(x)) <0, h(y, z,u(zx) — v(x)) < 0}
Bs ={x € E,u(y,z,u(x) —v(z)) > 0, h(y, z,a(x) — v(z)) < 0},

By ={z € E,u(y,z,u(x) —v(z)) <0, h(y, z,u(x) —v(z)) >0}

On the set Bj:
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h (g, 2, u(@) —o(@)) = b (y, 2, 0(x) = v(2)) = he(y, 2, u(z) = v(2)) = he(y, 2, a(z) — v(x))
and
h (Y, z,u(z) —v(@)) = hy (y, 2, u(z) —v(z)) =0
On the set Bs:
he (y, z,u(z) —v(@)) — B (y, 2, 4(x) — v(2)) =0
and
hy (Y, z,u(z) —v(@)) = hy (y, 2, u(@) —v(2)) = Ma(y, 2, u(z) — v(2)) — hae(y, 2, U(z) — v(2))

On the set Bs:

b (9, 2 ule) — v(a) — by (y, 2 @) — v(a)) > 0
and
he (Y, 2, u(@) — v(x)) = by (y, 2, u(z) — v(2)) =2 0

On the By:

hi (y, z,u(z) = v(@)) = b (y, 2, 9(x) — v(z)) > Py, 2, u(z) — v(2)) = hi(y, 2, 0(@) — v(2))

and

hi (4, 2, u(@) —o(@)) = by (y, 2, 0(x) = v(2) = hi(y, 2, u(z) = v(2) = hi(y, 2, u(z) —v(2))

Using (6.42) and (6.42), we get:

h:'_m(y?z'?u(x)) - hf’n(y,z,ﬂ(x)) = S?I;{lBlmB4 [ht(%zvu(w) - U(x)) - ht(y,z,ﬂ(ac) - U((L‘))]}
(6.42)

and

hy " (y, 2 u(@)) = by "y, 2, u(x)) = S?I;{le& [y, 2, u(x) — v(@)) — Mu(y, 2, u(x) — v(@))]}
(6.43)

Since

1
hi(y, 2, u(z)—v(@))=hi(y, 2, u(z)—o(z)) = (u(z)-u(z)) ; %]Z[ymV(U(w)—v(iv))Jr(l—V)(u(«%’)—v(aﬁ)))dv
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The BSDE coefficient satisfies (DC) condition then % > —1 and taking u(z) = u(x) + h,
we condlude:

82{:11 > -1 and ahatum > —1.
Therefore we get from (6.38): 8%;;”1 > —1 and we finally conclude from (6.39) —1 <
ahag;m <nVm and
Lonpm

™ (y, 2, u(x)) — b (y, 2, u(x)) = (u(z) — u(x))

. ou (y, z,vu(x) + (1 — v)u(z))dv

Therefore for any triple (Y, Z,U) € 82 x H* x H3, 8}§u,m (Y, Z,U).n € BMO then belongs

to Uexp- The sequence f™ satisfies the A, condition.
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