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Abstract

In this paper, we study a class of Quadratic Backward Stochastic Differential Equa-

tions (QBSDE in short) with jumps and unbounded terminal condition. For this pro-

pose, we introduce a new class of Quadratic semimartingale. The properties arising

from this class lead us to prove existence result for the solution of a Quadratic BSDE’s.

Keywords: Backward stochastic differential equation, quadratic semimartingales, un-

bounded terminal condition.

1 Introduction

Backward stochastic differential equations (in short BSDE’s) were first introduced by Bis-

mut in 1973 [9] as an equation for the adjoint process in the stochastic version of Pontryagin

maximum principle. Pardoux and Peng [47] have generalized the existence and uniqueness

result in the case when the driver is Lipschitz continuous. Later in [38] Lepeltier and San

Martin exended the result of Peng-Pardoux to the linear growth case. Since then BSDE’s

have been widely used in stochastic control and especially in mathematical finance, as any

pricing problem by replication can be written in terms of linear BSDEs, or non-linear BS-

DEs when portfolios constraints are taken into account as in El Karoui, Peng and Quenez

[22].

When the BSDE is driven jointly by a Brownian Motion and a Poisson jump measure,

Barles, Buckdahn and Pardoux [2] introduce the Lipschitz BSDE in order to give a proba-

bilistic interpretation of viscosity solution of semilinear integral-Partial equations.

Afterwards, Becherer [7] studied bounded solution of BSDEs when the generator is lipschitz

and satisfies the condition Aγ for the jump component. This condition was introduced by

[?] to insure the comparison Theorem of the solution of the BSDE.
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Recently, Becherer Buttner and Kentia [?] provide a general result of existence and unique-

ness for bounded solution of BSDEs that are jointly driven by a Brownian motion and a

infinite activity random measure and time-inhomogeneous with non-deterministic compen-

sator. The generator of the BSDE is lipschitz in (y, z) and doesn’t need to satisfy classical

global Lipschitz conditions in the jump integrand.

Another direction which has attracted many works in this area, especially in connection

with applications: How to improve the existence/uniqueness of a solution under weaker

conditions on the driver and also on the terminal condition.

Overview on the quadratic BSDE problem: In the case of the filtration generated by

a Brownian motion, the first and important result for the Quadratic BSDEs with bounded

terminal condition was obtained by Kobylanski [35]. Based on analytical point of view

inspired from Boccardo, Murat and Puel [11]: From an exponential change of variable,

troncation procedure and comparison Theorem, she proved a general existence of the solu-

tion by an approximation technique. The uniqueness result is also given by adding more

stronger conditions on the coefficient. However, the main difficulty in this method is the

strong convergence of the martingale part which is not easy to prove.

In [46], Morlais extended the method of Kobylanski in the context of exponential utility

maximization problem when the model involves jumps. As a consequence, they obtain

that the state process Y and the jump components U of the BSDE solution are uniformly

bounded, and that the martingale component is a BMO-martingale. All those works as-

sume that the terminal condition is bounded and they are based on the so-called Kobylanski

method exept the work of Briand and hu [12]. They proved, in the continuous setting the

existence of solution of Quadratic BSDEs when the terminal condition have finite exponen-

tial moment. Under strong assumptions, on the coefficient they get the uniqeness of the

solution.

More recently Tevzadze [44] proposed a new different method to get the existence and

uniquness of the solution of quadratic BSDE’s. The method is based on a fixed point the-

orem but for only bounded terminal condition with small L∞-norm.

This class of BSDE’s is very useful in mathematical finance especially when we deal with ex-

ponential utilities or risk measure theory especially weather derivatives (see e.g. El Karoui

and Rouge [23], Mania and Schweizer [43], Hu, Imkeller and Müller [34], Barrieu and El

Karoui [5] and Becherer ([6], [7])). Actually it has been shown in [23] that in a market

model with constraints on the portfolios, the indifference price is given by the resolution

of a BSDE with quadratic growth coefficient. Finally let us point out that control risk-

sensitive problems turn into BSDE’s which fall in the same framework in El Karoui and

Hamadène [24].

Main countributions: Our work was also motivated by solving a utility maximization

problem of terminal wealth with exponential utility function in models involving assets with

jumps. Therefore we need to consider Backward Differential Equations with jumps of the

form

Yt = ηT +

∫ T

t
fs(Ys, Zs, Us)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
U(s, x).µ̃(ds, dx) (1.1)
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where µ̃ is a martingale random measure. A solution of such BSDE associated with (f, ηT )

is a triple of square integrable processes (Yt, Zt, Ut)0≤t≤T . Our main task in this paper is

to deal with quadratic BSDE’s with non-bounded terminal valued and jumps. Our point

of view is inspired from Barrieu and El Karoui [4] for their study in the continuous case.

By adopting a forward point of view, se shall characterize first a solution of BSDE’s as a

quadratic Itô semimartingale Y , with a decomposition satisfying the quadratic exponential

structure condition qexp(l, c, δ), where the term exponential refers to the exponential feature

of the jump coefficient which appears in the generator of the BSDE. More precisely, we

assume that: there exists nonnegative processes constants c , δ and l such

−lt − ct|y| −
1

2
δ|z|2 − 1

δ
jt(−δu) ≤ f(t, y, z, u) ≤ lt + ct|y|+

1

2
δ|z|2 +

1

δ
jt(δu), a.s. (1.2)

where jt(u) =
∫
E(eu(x)−u(x)−1)ξ(t, x)λ(dx). The canonical structure qexp(0, 0, δ) will play

a essential role in the construction of the solution associated to generale qexp(l, c, δ) structure

condition. The simplest generator of a quadratic exponential BSDE, called the canonical

generator, is defined as f(t, y, z, u) = qδ(z, u) = δ
2 |z|

2 + 1
δ j(δu). For a given random variable

ψT , we call entropic process, the process defined as ρδ,t(ηT ) = 1
δ lnE

[
exp(δηT )

∣∣∣Ft] which

is a solution of the canonical BSDE’s associated to the coefficient qδ and final condition

ψT . This is a entropic dynamic risk measure which have been studied, by Barrieu and El

Karoui in [5].

The backward point of view of our approach permits to relate the quadratic BSDEs to a

quadratic exponential semimartingale with structure condition qexp(l, a, δ), using the en-

tropic processes. Namely, a semimartingale X with non bounded terminal condition ηT
and satisfying the structure condition qexp(l, a, δ), yields the following dominated inequal-

ities ρ−δ,t(UT ) ≤ Yt ≤ ρδ,t(UT ), where UT and UT are two random variable depending

only on l, a, δ and ηT . The main goal in our approach is then to deduce, from this dom-

inated inequalities, a structure properties on the martingale part and the finite variation

part of X. Indeed, we obtain the canonical decomposition of an entropic quasimartingale

which is a semimartingale which satisfies the entropy inequalities; as a canonical quadratic

semimartingale part plus an predictable increasing process. This Doob type decomposition

help us to define a general quadratic exponential semimartingale as a limit of a sequence of

canonical quadratic semimartingale plus a sequence of an increasing process. Then, from

the stability theorem for forward semimartingales given by Barlow and Protter [3], we prove

the existence of the solution of a quadratic exponential BSDE associated to (f, ηT ) for a

coefficient f satisfying the structure condition qexp(l, a, δ) and for non-bounded terminal

condition ηT .

Finally, we have to mention that it is important to compare our approach with that used

by Peng in [48, 50, 51] within the representation theorem of small g-expectation in terms of

a BSDE’s with coefficient g which admits a linear growth condition in z. Peng’s approach

is based on the notion of martingale associated to a nonlinear expectation, Monotonic limit

theorem, a nonlinear Doob-Meyer’s decomposition Theorem (see e.g. [49]). Moreover, Peng

obtained the representation theorem for the nonlinear expectation which is dominated by

a structure nonlinear expectation solution of BSDE’s with coefficient given specially by

gµ(y, z) = µ
(
|y| + |z|

)
. Barrieu and El Karoui in [5] have extended this representation
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theorem for a dynamic convex risk measure in terms of quadratic BSDE’s with convex

coefficient g which depends only in z. Our approach is an extension of the Peng’s results

in the more naturel framework of quadratic exponential semimartingale.

The paper is structured as follows: in a second section, we give a model and preliminary

notation. In the third section, we define the quadratic exponential semimartingale and we

study the entropic quadratic exponential semimartingale. In particular, we give the char-

acterization of an entropic quasimartingale and its Doob decomposition. Then, a stability

results of this class of semimartingale are given in the fourth section. The fifth section is

dedicated to give application of the quadratic exponential semimartingale to prove exis-

tence result for a class of QBSDE’s associated to (f, ηT ) where the coefficient f satisfies

the (SC) structure condition and for non-bounded terminal condition ηT .

2 Model and Preliminaries

2.1 Notations and Setting

We start with a stochastic basis (Ω,F ,F,P) with finite horizon time T < +∞ and a fil-

tration F =
(
Ft
)
t∈[0,T ]

satisfying the usual conditions of right continuity and completness

such that we can take all semimartingales to have right continuous paths with left limits.

For simplicity, we assume F0 is trivial and F = FT . Without losing any generality we shall

work with a random measure to characterize the jumps of any quasi-left continuous process

X.

We define a left continuous random measure µ on the measurable space (E, E) with com-

pensator ν.

The measure P⊗ ν is define on (Ω̃, F̃) = (Ω× [0, T ]× E,F ⊗ B([0, T ])⊗ E) by

P⊗ ν(B̃) = E

[∫
[0,T ]×E

1
B̃

(ω, t, e)ν(ω, dt, de)

]
, B̃ ∈ F̃ .

Let P denote the predicatble σ-field on Ω × [0, T ] and define P̃ = P ⊗ E . For any P̃-

measurable function f with values in R , we have

f ? µt :=

∫ t

0

∫
E
y(w, s, x)µ(w, ds, dx), y ? νt =

∫ t

0

∫
E
y(w, s, x)ν(w, ds, dx).

The random measure µ̃ is defined as the compensated random measure of µ such that

µ̃(ω, dt, dx) = µ(ω, dt, dx)− ν(dt, dx)

Let denote by Gloc(µ), the set of P̃- measurable functions U with values in R such that

|U |2.νt <∞, a.s.

In addition, if |H|.νt < +∞ a.s, H.?̃µ̃ is a local martingale.

Weak predictable representation property
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we assume the following representation theorem for any local martingale M :

M = M0 +M c +Md.

where M c is the continuous part of the martingale, Md is the discontinuous part defined

as Md = U.(µ− ν). for any U ∈ Gloc(µ).

Now we introduce the following spaces

Mp
0 is the set of martingale M such that M0 = 0 and E

[
supt≤T |Mt|p

]
< +∞.

Dexp is the set of local semimartingales X such that exp(X) ∈ D where D is the class

of optionnal processes for which the absolute value is dominated by a uniformly integrable

martingale.

Uexp is the set of local martingales M such that E(M) is uniformly integrable.

3 Quadratic exponential semimartingales

In all our work, we shall consider the class of quasi-left continuous semimartingales X with

canonical decomposition X = X0 − V + M , with V is a continuous predictable process

with finite total variation |V |, M is a càdlàg local martingale satisfying the decomposition

M = M c +Md with M c is the continuous part of the martingale M and Md = U.µ̃ is the

purely discontinuous part .

The quadratic exponential semimartingales are the generalization of the quadratic semi-

martingales in jump diffusion models. In fact the extra term in ” exponential” comes from

jumps and lead us to generalize the results given by [4].

Definition 3.1. The process X is a local quadratic exponential special semimartingale if

there exists two positive continuous increasing processes Λ and C and a positive constant δ

such that the processes δM c + (eδU − 1).µ̃, −δM c + (e−δU − 1).µ̃ are still local martingales

and the the finite variation of X satisfies the structure condition Q(Λ, C, δ):

−δ
2
d〈M c〉t−

1

δ
dΛt−|Xt|.dCt−

1

δ
djt(−δ∆Md) << dVt <<

δ

2
d〈M c〉t+dΛt+|Xt|.dCt+

1

δ
djt(δ∆M

d)

Here, the process j(γ∆Md) is the compensator of the increasing process Aγt :==
∑

s≤t(e
γ∆Md

s−
γ∆Md

s − 1) < +∞ a.s. dBt << dAt stands for A−B is an increasing process.

Remark 3.1. (About the dual predictable compensator)

• Before studying the properties of this class of local semimartingale, let first remark that for

all γ ∈ {−δ, δ}, the increasing càdlàg process j(δ∆M) is continuous applying Chap IV T[40]

Dellacherie[14]. Moreover using representation theorem of the discontinuous martingale

Md = U.µ̃, then:

jt(δ∆M
d) = (eδU − δU − 1).νt.
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• Let remark that for a = e∆U − 1 , b = e−∆U − 1 since −2ab ≤ a2 + b2, we find

2[(eδU − δU − 1) + (e−δU + δU − 1)] ≤ |eδU − 1|2 + |e−δU − 1|2

Since by assumption the processes δM c + (eδU − 1)µ̃and −δM c + (e−δU − 1)µ̃ are local

martingales, the processes |eδU − 1|2.νt a.s and |e−δU − 1|2.νt < +∞ a.s, therefore the

predictable compensator j(γ∆Md) of Aγ is well defined for γ ∈ {−δ, δ}.

To understand better the class of local quadratic exponential semimartingales and theirs

properties, we divide the class in three classes:

– The canonical class: The finite variation part of X satisfies:

Vt =
1

2
〈M c〉t + jt(δM

d) or Vt = −1

2
〈M c〉t − jt(∆Md)

– The class Q(0, 0, 1), where the finite variation part of X satisfies:

−jt(−∆Md)− 1

2
〈M c〉t << Vt <<

1

2
〈M c〉t + jt(∆M

d)

– The general class Q(Λ, C, δ)), where the finite variation part of X satisfies:

−δ
2
〈M c〉t−

1

δ
Λt−|X|∗Ct−

1

δ
jt(−δ∆Md) << Vt <<

δ

2
〈M c〉t+

1

δ
Λt+|X|∗Ct+

1

δ
jt(δ∆M

d)

3.1 The canonical class

3.1.1 The exponential of Doléans-Dade

We describe the relation between the exponential transform of the first class of local

quadratic exponential semimartingale and the exponential of Doléans-Dade . Let first

recall that for any càdlàg local semimartingale X, the exponential of Doléans-Dade Z of X

solving the EDS dZt = Zt−dXt, Z0 = 1 is given by:

Zt = E(X)t = exp(Xt − 〈Xc〉t)
∏
s≤t

(1 + ∆Xs)e
−∆Xs , t ≥ 0. (3.3)

This formula is given by the Itô’s formula for discontinuous processes a local martingale

M with (∆M > −1) is in fact a positive local martingale and there is a relation between

exponential of a canonical quadratic exponential semimartingale and Doléans-Dade of some

local martingale.

Proposition 3.1. ( Doléans Dade martingale and canonical quadratic semimartingale).

Let M̄ = M̄ c+Ū .µ̃ and M = M c+U.µ̃ two càdlàg local martingales such that M̄ c+(eŪ−1).µ̃

and −M c + (e−U − 1).µ̃ are still càdlàg local martingales. Let define the canonical local

quadratic exponential semimartingale:

r(M̄t) = r(M̄0) + M̄t −
1

2
〈M̄ c〉t − (eŪ − Ū − 1).νt,

r(Mt) = r(M0) +M t +
1

2
〈M c〉t + (e−U + U − 1).νt
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then we find the following processes:

exp[r(M̄)−r(M̄0)] = E
(
M̄ c + (eŪ − 1).µ̃

)
and exp[−r(M)+r(M0)] = E

(
−M c + (e−U − 1).µ̃

)
are positive local martingales.

Proof. We apply the Doléans-Dade exponential formula (3.3) with X̄ = M̄ c + (eŪ − 1).µ̃

and X = −M c + (e−U − 1).µ̃. and we find the expected results.

Definition 3.2. (Q- local martingale) A local semimartingale X is a Q-local martingale if

exp(X) is a positive local martingale.

The canonical local quadratic exponential semimartingales r̄(M̄) and −r(M) defined

above are Q- local martingales.

3.1.2 The entropic risk measure

The canonical local quadratic exponential semimartingales r̄(M̄) and r(M) are Q- local

martingales. In fact the uniform integrability of this class of semimartingales can be ob-

tained through the local martingales M̄ and M .

E
[
exp{1

2
〈M c〉τ + ((1 + U) ln(1 + U)− U) .ντ}

]
< +∞. (3.4)

where τ = inf{t ≥ 0, E(M) = 0}. This condition is sufficient and not necessary, another

sufficient condition for a local semimartingale X to belong to Dexp is satisfying if there

exists a positive uniformly integrable martingale M such that exp(X) ≤ M . In particular

theses sufficient conditions are satisfying for the dynamic entropic risk measure (see Barrieu

and El Karoui for more details[5]).

Proposition 3.2. Let consider the fixed horizon time T > 0 and ψT ∈ FT such that

exp(|ψT |) ∈ L1 and consider the two dynamic risk measures:

ρ̄t(ψT ) = ln [E (exp(ψT )|Ft)] , and ρ
t
(ψT ) = − ln [E (exp(−ψT )|Ft)]

There exists local martingales M̄ = M̄ c + Ū .µ̃ and M = M c + U.µ̃ such that:

− dρ̄t(ψT ) = −dM̄t +
1

2
d〈M̄ c〉t +

∫
E

(eŪ(s,x) − Ū(s, x)− 1).ν(dt, dx), ρ̄T (ψT ) = ψT

− dρ
t
(ψT ) = −dM t −

1

2
d〈M c〉t −

∫
E

(e−U(s,x) + U(s, x)− 1).ν(dt, dx), ρ
T

(ψT ) = ψT

Moreover the local martingales M̄ c + (eŪ − 1).µ̃ and −M c + (e−U − 1).µ̃ belong to Uexp.

The dynamic risk measures ρ̄(ψT ) and ρ(ψT ) are uniformly integrable canonical quadratic

exponential semimartingales.

Proof. We have exp(ρ̄t(ψT )) = E [exp(ψT )|Ft] which is a positive uniform integrable mar-

tingale since exp(|ψT |) ∈ L1 then there exists a martingale X̄ ∈ Uexp satisfying ∆X̄ > −1

such that exp(ρ̄t(ψT )) = E(X̄t).

Using martingale representation Theorem there exists a continuous martingale M c and a
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process U satisfying (eU − 1) ∈ Gloc(µ) such that X̄ = X̄0 + M̄ c + (eŪ − 1).µ̃. Therefore we

find exp(ρ̄t(ψT )) = E(X̄0 + M̄ c
t + (eŪ − 1).µ̃t) = exp(r̄(M̄t)).

We use the same arguments to prove that there exists a martingale X = X0−M c+(e−U −
1).µ̃ ∈ Uexp such that exp(−ρ

t
(ψT )) = E(X0 −M c

t + (e−U − 1).µ̃t) = exp(−r(M t)).

We adopt a forward and backward points of view to describe the canonical local quadratic

exponential semimartingales class. In the forward point of view, we give condition of some

martingales using Doléans-Dade exponential formula to find that for any canonical local

quadratic exponential semimartingale X, exp(X) or exp(−X) is a local martingale. In the

backward point of view, we fix a terminal condition XT ∈ FT such that exp(|XT |) ∈ L1,

then we can prove that some dynamic entropic risk measures of ψT belongs to canonical

quadratic exponential semimartingale class.

In this point of view, we do not make assumption on the martingale part of the canonical

semimartingale to satisfy the Lepingle and Mémin condition (3.4) since the exponential

condition on the terminal condition is sufficient to find uniform integrability condition.

3.2 The second class: Q(0, 0, 1)

3.2.1 The exponential transform

In the first part, we use the Doléans-Dade formula to explain how the canonical local

quadratic exponential semimartingale can be represented using an exponential transform.

The same technics can be developped for Q(0, 0, 1)- local semimartingale using the multi-

plicative decomposition Theorem studied by Meyer and Yoeurp [45] which stands that for

any càdlàg positive local submartingale Z there exists an predictable increasing process A

(A0 = 0) and a local martingale M (∆M > −1,M0 = 0) such that:

Zt = Z0 exp(At).E(Mt), t ≥ 0.

Theorem 3.1. Let X a làdlàg process, X is a Q(0, 0, 1)-local semimartingale if and only

if exp(X) and exp(−X) are local submartingales. In both cases, X is a càdlàg process.

Proof. Let consider a Q(0, 0, 1)- local semimartingale X with canonical decomposition X =

X0 − V + M where V is the finite variation part of X (continuous) and M is a local

martingale, then there exists U ∈ Gloc(µ) such that M = M c + U.µ̃. Applying Itô’ s

formula to Z̄ = exp(X), we find

dZ̄t = Z̄t−

[
dM c

t +

∫
E

(eU(t,x) − 1).µ̃(dt, dx)− dVt +
1

2
d〈M c〉t +

∫
E

(eU(t,x) − U(t, x)− 1)ν(dt, dx)

]
Since X is aQ(0, 0, 1)- semimartingale then A = −V + 1

2〈M
c〉+(eU−U−1).ν is an increasing

continuous predictable process. Therefore the process Z = exp(X) is a positive local

submartingale and satisfies the following Meyer and Yoeurp multiplicative decomposition:

exp(Xt −X0) = exp(At)E(M c
t + (eU − 1).µ̃t), t ≥ 0.

We use the same arguments to prove that exp(−X) is a local positive submartingale.

Let now assume that exp(X) and exp(−X) are local submartingales where X is a làdlàg pro-

cess. Using Meyer and Yoeurp multiplicative decomposition, there exist local martingales
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M̄,M and increasing predictable processes Ā, A such that exp(Xt −X0) = exp(Āt)E(M̄t)

and exp(−Xt + X0) = exp(At)E(M t). Using the representation martingale Theorem,

there exist Ū , U ∈ Gloc(µ) and continuous local martingales M̄ c,M c such that M̄ =

M̄ c+(eŪ −1).µ̃ and M = M c+(eU −1).µ̃. Hence we find exp(X−X0) = exp(Ā) exp(r(M̄)

and exp(−X +X0) = exp(A) exp(r(M) and we get

Xt−X0 = Āt+M̄t−
1

2
〈M̄ c〉−(eŪ−Ū−1).νt and −Xt+X0 = At+M t−

1

2
〈M c〉−(eU−U−1).ν̃t.

Using the uniqueness of the representation of the semimartingale X, we deduce, M = −M̄ ,

then we find Āt +At = 〈M̄ c〉t + (eŪ − Ū − 1).νt + (e−Ū + Ū − 1).νt . The process Ā and A

are continuous, moreover from Radon Nikodym’s Theorem, there exists a predictable pro-

cess with 0 ≤ αt ≤ 2 such that dĀt = αt
2 d
[
〈M̄ c〉t + (eŪ − Ū − 1).νt + (e−Ū + Ū − 1).νt

]
.

Therefore the process X satisfies the dynamics dXt = dMt − dVt where:

dVt =
(1− αt)

2
d〈M c〉t +

(2− αt)
2

d
[
(eŪ − Ū − 1).νt

]
− αt

2
d
[
(e−Ū + Ū − 1).νt

]
Since 0 ≤ αt ≤ 2, the local semimartingale X satisfies the structure condition Q(0, 0, 1).

Moreover the finite variation part V of X is a predictable continuous process. We deduce X

is Q(0, 0, 1)- local semimartingale and that all jumps of X come from the local martingale

part which is càdlàg process.

Definition 3.3. Let consider a local semimartingale X, if exp(X) is a local submartingale

then X is called Q- local submartingale.

From Theorem 3.1, any Q(0, 0, 1)- local semimartingale is a Q- local submartingale and

the reverse holds true.

3.2.2 The entropic submartingales

We are interested to find uniform integrability condition for Q(0, 0, 1)- local semimartin-

gales. Since Q(0, 0, 1)- local semimartingales are Q- local submartingales, we use the same

technics developped for standard local submartingales. We recall that to prove X ∈ Dexp,
it is sufficient to prove there exists a positive martingale L ∈ D such that exp(X) ≤ L.

To construct the positiive martingale L, let first give some useful definitions.

Definition 3.4. A process X ∈ Dexp is called an entropic submartingale if for any stopping

times σ ≤ τ :

Xσ ≤ ρ̄σ(Xτ ), σ ≤ τ.

where ρ̄ stands for the usual entropic risk measure defined above. In the same point of view,

X is called a entropic supermartingale if −X is an entropic submartingale. If X and −X
are entropic submartingales, X is called entropic quasi-martingale.

Theorem 3.2. Let T > 0 the fixed horizon time and consider a semimartingale X =

X0−V +M c +U.µ̃ such that exp(|XT |) ∈ L1 then X is a Q(0, 0, 1)-semimartingale ∈ Dexp
if and only if X and −X are entropic submartingales.Moreover, in all cases the martingales

M c + (eU − 1).µ̃ and −M c + (e−U − 1).µ̃ belong to Uexp.
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Proof. Let consider a Q(0, 0, 1)-semimartingale X = X0 +M c + U.µ̃− V ∈ Dexp such that

exp(|XT |) ∈ L1. Since X is Q- submartingale we find:

exp(Xt) ≤ E [exp(XT )|Ft] ∈ D and exp(−Xt) ≤ E [exp(−XT )|Ft] ∈ D

and for any stopping times: σ ≤ τ ≤ T :

Xσ ≤ ln (E [exp(Xτ )|Fσ]) = ρ̄σ(Xτ ) and −Xσ ≤ ln (E [exp(−Xτ )|Fσ]) = ρ̄σ(−Xτ ).

then X and −X are entropic submartingales. Let prove the reverse, assume X and −X
are entropic submartingales then for any stopping times σ ≤ τ , exp(Xσ)) ≤ E [exp(Xτ )|Fσ]

and exp(−Xσ)) ≤ E [exp(−Xτ )|Fσ], then X is a uniformly integrable Q-submartingale and

from Theorem 3.1, X is a Q(0, 0, 1)-semimartingale. Since X and −X belong to Dexp then

for a fixed horizon time T , exp(XT ) and exp(−XT ) belong to L1 which lead to conclude

exp(|XT |) ∈ L1.

Moreover since X and −X are Q-submartingales using Meyer-Yoeurp multiplicative de-

composition Theorem, there exist increasing processes Ā and A (Ā0 = 0 and A0 = 0)) such

that:

exp(Xt−X0) = exp(Āt)E(M c
t +(eU−1).µ̃t) and exp(−Xt+X0) = exp(At)E(−M c

t +(e−U−1).µ̃t).

Therefore we deduce that E(M c
t +(eU −1).µ̃) ≤ exp(Xt−X0) and E(−M c

t +(e−U −1).µ̃) ≤
exp(−Xt +X0). Since |X −X0| ∈ Dexp, we conclude the martingales M c + (eU − 1).µ̃ and

−M c + (e−U − 1).µ̃ ∈ Uexp.

To conclude this part, we can make some links with the sublinear g-expectation of Peng

[52] since if we define the g-expectation of X by Eg(X), we can define the submartingale

under the g-expectation. Therefore, we deduce that if X is Q(0, 0, 1)-semimartingale such

that |X| ∈ Dexp, X and −X are submartingales under Eg = ln [E(exp)].

3.3 General class:Q(δ,Λ, C)

3.3.1 The exponential transform

We use some exponential transformations for general Q(Λ, C, δ) local quadratic exponential

semimartingale such that the new tansformed process belong to the class Q(0, 0, 1). There-

fore, we can apply the same methodology using in the previous sections to find general

results for Q(Λ, C, δ) local semimartingales.

Proposition 3.3. Let consider a Q(Λ, C, δ)-local semimartingale X = X0−V +M c +U.µ̃

then

1. For any λ 6= 0, the process λX is a Q(Λ, C, δ
|λ|)-local semimartingale and a Q(λΛ, C, δ)-

local semimartingale when λ > 1.

2. Let define the two transformations:

Y Λ,C(X) = X + Λ + |X| ∗ C and Ȳ Λ,C(|X|) = eC |X|+ eC ∗ Λ.

then the two processes Y Λ,C(δX) and Ȳ Λ,C(|δX|) are Q-local submartingales.
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3. Exponential transformation: Let UΛ,C(X) the transformation

UΛ,C
t (eX) = eXt +

∫ t

0
eXsdΛs +

∫ t

0
eXs |Xs|dCs.

then UΛ,C(eδX) is a positive local submartingale.

Proof. 1. Let consider a Q(Λ, C, δ)-local semimartingale X = X0−V +M c+Md (where

Md = U.µ̃) and consider λ 6= 0, hence λX = λX0−λV +λM c+λMd and λX satisfies

the condition
− |λ|δ

2
d〈M c〉t −

|λ|
δ
dΛt − |λXt|.dCt − |λ|

1

δ
djt[−δ sign (λ)∆Md

t ] << λdVt,

λdVt << |λ|
δ

2
d〈M c〉t +

|λ|
δ
dΛt + |λXt|.dCt + |λ|1

δ
djt[δsign(λ)∆Md

t ]

Since j(δ∆Md) = j[ δλ(λ∆Md] then we find
− δ

|λ|
1

2
d〈λM c〉t −

|λ|
δ
dΛt − |λXt|.dCt −

|λ|
δ
djt[−

δ

|λ|
(λ∆Md

t )] << λdVt,

λdVt <<
δ

|λ|
1

2
d〈λM c〉t +

|λ|
δ
dΛt + |λXt|.dCt +

|λ|
δ
djt[

δ

|λ|
(λ∆Md

t )].

then λX is a Q(Λ, C, δ
|λ|)-local semimartingale. Moreover for λ > 1:

δ

|λ|
1

2
d〈λM c〉t <<

δ

2
d〈M c〉t and

|λ|
δ
jt[

δ

|λ|
(λ∆Md

t )] <<
1

δ
jt[δ(λ∆Md)]

For more details on this inequality see Lemma 6.3 in Appendix .

We find that for λ > 1, λX is a Q(|λ|Λ, C, δ)-semimartingale.

2. Let consider the Y Λ,C(δX) = δX0+M̃t−Ṽt, where M̃ is the local martingale part given

by M̃ = δM c + δMd and Ṽ the finite variation part given by Ṽ = δV −Λ− |δX| ∗C.

Since X is Q(Λ, C, δ)-local semimartingale we have dṼt << djt(δ∆M
d) + δ2

2 d〈M
c〉t.

We conclude dṼt << djt(∆M̃
d)+ 1

2d〈M̃
c〉t and the process A defined by dAt = −dṼt+

djt(∆M̃
d) + 1

2d〈M̃
c〉t is an increasing process and Y Λ,C(δX) = δX0 + M̃ − 1

2〈M̃
c〉 −

j(∆M̃d) + A then we conclude exp(Y Λ,C(δX)) is a local submartingale then it is

Q-local submartingale.

Let prove now that the process Ȳ Λ,C(|X|) belong to the Q(0, 0, 1)-class. Applying

the Meyer-Itô’s formula, we find the decomposition:

deCt |Xt| = eCt
[
|Xt|dCt − sign(Xt−)dVt + dLXt + d [(|X− + U | − |X− |).νt] + dM̄t

]
where dM̄t = sign(Xt−)dM c

t + d [(|X− + U | − |X− |).µ̃t] and LX stands for the lo-

cal time of X at 0. Therefore the decomposition of the semimartingale Ȳ Λ,C([δX|)
satisfies dȲ Λ,C(|X|) = −dṼt + dM̃t where M̃ = δM̄ and

dṼt = −eCt
[
|δXt|dCt + dΛt − δsign(Xt−)dVt + dLδXt + d [δ(|X− + U | − |X− |).νt]

]
.
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Since the process X is a Q(Λ, C, δ)-local semimartingale, the process A defined by

dAt = δ(|Xt|dCt+ 1
δdΛt−sign(Xt−)dVt+

δ
2d〈M

c〉t+ 1
δdjt[sign(Xt−)]δ|∆Md|)+ 1

δdL
δX
t )

is an increasing process. Therefore we get:

−dṼt = eCt
[
−δ

2

2
d〈M c〉t − djt[δsign(Xt−)∆Mt] + d (δ(|X− + U | − |X− |).νt) .

]
From Lemma 6.3 (see Appendix for details), for any k ≥ 1, j(k∆M) ≥ kj(∆M),

therefore since C is an increasing process with the initial condition C0 = 0, we

get js[δe
Cssign(Xs−)∆Ms] − eCsjs[δsign(Xs−)∆Ms] ≥ 0. Moreover for any s ≥ 0,

δ2

2 〈e
CsM c〉s − δ2

2 e
Cs〈M c〉s ≥ 0, then we obtain:

−dṼt = −1

2
d〈eCtδsign(Xt−)M c〉s−djt[δeCtsign(Xt−)∆Mt]+d (δ(|X− + U | − |X− |).νt)+dĀt

where Ā is an increasing process. Finally we get:

dȲ Λ,C
t (|X|) = eCtδsign(Xt−)dM c

t +

∫
E
eCtδ(|Xt− + U(t, x)| − |Xt− |)µ̃(dt, dx)

− 1

2
d〈eCtδsign(Xt−)M c〉t − jt[δeCt(|Xt− + ∆Mt| − |Xt− |)] + dÃt

where

Ãt = Āt+

∫ t

0

∫
E

[
exp

(
eCsδ(|Xs− + U(s, x)| − |Xs− |)

)
− exp

(
eCssign(δXs−)U(s, x)

)]
ν(ds, dx)

Since |y + u| − |y| ≥ sign(y)u we deduce Ã is increasing then we get:

Ȳ Λ,C(|X|) = |δX0|+ M̃ − 1

2
〈M̃〉 − j(∆M̃) + Ã.

Therefore, exp(X̄Λ,C) is a local submartingale then it is Q-local submartingale.

3. Let apply Itô’s formula to find the decomposition of UΛ,C(eδX):

dUΛ,C
t (eδX) = eδXt−

[
δdM c

t + d[(eδU − 1).µ̃t]− δdVt +
δ2

2
d〈M c〉t + djt(δ∆Mt) + |δXt|dCt

]
.

Since X is Q(Λ, C, δ)-local semimartingale then the process A defined by dAt = −dVt +
δ
2d〈M

c〉t+ 1
δdjt(δ∆Mt)+|δXt|dCt is an increasing process, we deduce the process UΛ,C(eδX)

is a positive local submartingale.

Theorem 3.3. Let X a làdlàg optionnal process X. X is a Q(Λ, C, δ)-local semimartingale

if and only if exp
[
Y Λ,C(δX)

]
and exp

[
Y Λ,C(−δX)

]
are submartingales or equivently if the

processes UΛ,C(eδX) and UΛ,C(e−δX) are local submartingales. In all cases; X is a càdlàg

process.

Proof. Let consider a Q(Λ, C, δ)-local semimartingale X, using Proposition 3.3-2, we prove

the process exp(Y Λ,C(δX)) is a local submartingale. The same arguments lead us to con-

clude also that exp(Y Λ,C(−δX)) is a local submartingale since −X as the same structure

condition as X.
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Let now consider that the both processes exp(Y Λ,C(δX)) and exp(Y Λ,C(−δX)) are positive

submartingales then we can apply the Yoeurp-Meyer decomposition as Theorem 3.1 and

conclude there exists continuous local martingales M̄ c,M c, increasing processes Ā, A and

Ū , U ∈ Gloc(µ) such that

exp[Y Λ,C
t (δX)] = exp(δX0) exp(M̄t −

1

2
〈M̄ c〉t − (eŪ − Ū − 1).νt + Āt)

exp[Y Λ,C
t (−δX)] = exp(−δX0) exp(M t −

1

2
〈M c〉t − (eU − U − 1).νt +At)

then we find δXt + Λt + |Xt| ∗ Ct = δX0 + M̄t − 1
2〈M̄

c〉t − (eŪ − Ū − 1).νt + Āt and

−δXt + Λt + |Xt| ∗Ct = −δX0 +M t− 1
2〈M

c〉t− (eU −U − 1).νt +At. Therefore M̄ = −M
from uniqueness of the decomposition, moreover Āt +At = 〈M c〉+ (eŪ − Ū − 1)νt + (e−Ū +

Ū − 1)νt + 2Λt + 2|Xt| ∗ Ct. We deduce the both processes Ā and A are continuous and

from Radon Nikodym Theorem, there exists a predictable process 0 ≤ α ≤ 2 such that

dAt = αt
2

[
〈M c〉+ (eŪ − Ū − 1)νt + (e−Ū + Ū − 1)νt + 2Λt + 2|Xt| ∗ Ct

]
then we find the

decomposition of X = X0 − V + M̃ where:

dṼt =
δ

2
(1−αt)d〈M̃ c〉t+

(2− αt)
2

1

δ
djt(δ∆M̃t)+

(2− αt)
2

1

δ
dΛt+

(2− αt)
2

|Xt|dCt−
αt
2
djt(−δ∆M̃t)

Since the predictable process 0 ≤ α ≤ 2, we find:
− δ

2
d〈M̃ c〉t −

1

δ
dΛt − |Xt|.dCt −

1

δ
djt[−δ∆M̃d

t )] << dVt,

dVt <<
δ

2
d〈M̃ c〉t +

1

δ
dΛt + |Xt|.dCt +

1

δ
djt[δ∆M̃

d
t )].

then X is a Q(Λ, C, δ)- local semimartingale. equivalently, we can use the same arguments

for the positive local submartingale UΛ,C(eδX) and UΛ,C(eδX) to find that the process

X is a Q(Λ, C, δ)-local semimartingale. Moreover since the finite variation part of Ṽ is

continuous, jumps come from the local martingale part. Hence, the process X is a càdlàg

local semimartingale.

In all the rest of the paper, since from a multiplicative transformation (see Proposition

3.3), we can transform the general class Q(Λ, C, δ) to the class Q(Λ, C, 1). We can give all

results in the class Q(Λ, C) := Q(Λ, C, 1) without losing any generality.

3.3.2 Uniform Integrable Q(Λ, C)- semimartingales

We use the entropic submartingales to characterize the integrability condition for Q(0, 0, 1)-

class. Given an fixed horizon time, we find in this part sufficient condition on the terminal

condition to have uniform integrability of general local quadratic exponential semimartin-

gales. First, let give some generalization of entropic submartingales for general Q(Λ, C)-

semimartingales.

Theorem 3.4. let X be a càdlàg process and T a fixed horizon time.
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1. Assuming, exp(|XT |) ∈ L1, the process X is a Q(Λ, C)-semimartingale which belongs

to Dexp if and only if for any stopping times σ ≤ τ ≤ T :

Xσ ≤ ρσ(Xτ + Λσ,τ + |X| ∗ Cσ,τ ) and −Xσ ≤ ρσ(−Xτ + Λσ,τ + |X| ∗ Cσ,τ ). (3.5)

2. Assuming UΛ,C
T (e|X|) ∈ L1, the process X is a Q(Λ, C)-semimartingale which belongs

to Dexp if and only if for any stopping times σ ≤ τ ≤ T :

Xσ ≤ ρσ(Xτ + Λσ,τ + |X| ∗ Cσ,τ ) and −Xσ ≤ ρσ(−Xτ + Λσ,τ + |X| ∗ Cσ,τ ).

Proof. 1. Let X a Q(Λ, C)-semimartingales which belongs to the class Dexp. From

Theeorem 3.3, exp(Y Λ,C(X)) and exp(Y Λ,C(−X)) are submartingales which belong

to the class D. Therefore for any stopping times σ ≤ τ ≤ T :

exp(Y Λ,C
σ (X) ≤ E

[
exp(Y Λ,C

τ (X)|Fσ
]

and exp(Y Λ,C
σ (−X) ≤ E

[
exp(Y Λ,C

τ (−X)|Fσ
]

then theQ(Λ, C) semimartingaleX satisfies the entropy inequalities (3.5). Let assume

the inequalities (3.5) are satified then we conclude exp(Y Λ,C(X)) and exp(Y Λ,C(−X))

are submartingales which belong to the class D then from Theorem 3.3, X is aQ(Λ, C)

semimartingales which belong to the class Dexp.

2. We use the same arguments with the positive submartingales UΛ,C(eX) and UΛ,C(e−X).

The Theorem 3.4 gives sufficient integrable condition for Q(Λ, C)-semimartingale X

such that it belongs to the class Dexp. We can find another condition using the transfor-

mation Ȳ Λ,C(|X|) since it is a Q-submartingale. Therefore, using the same arguments as

assertions in Theorem 3.4, we find Ȳ Λ,C(|Xt|) ≤ ρ̄t[exp(Ȳ Λ,C(|XT |)] which is equivalent to

the condition given by [4] in the continuous case (see Hypotehsis 2.8 [4]):

|Xt| ≤ ρt
[
eCt,T |YT |+

∫ T

t
eCt,sdΛs

]
, t ≤ T. (3.6)

This assumption is a necessary and sufficient condition for the process Ȳ Λ,C(|X|) to be in

classDexp (the proof is given in Lemma 2.9 of [4]). In the same way, assertions in Proposition

2.10 of [4] still hold since the authors give the result in the general case (without using the

continuity of processes). Moreover using the same LLogL Doob-inequality, we can find the

same sufficient condition on the terminal value Ȳ Λ,C(|X|) such that |X| ∈ Dexp.

Proposition 3.4. Let consider an fixed horizon time T > 0 and let L be a positive sub-

martingale such that maxLT := maxt∈[0,T ] Lt ∈ (1,+∞). For any m > 0, let um the convex

function defined on R+ defined by um(x) = x−m−m ln(x) and u(x) := u1(x), the following

assertions are satisfied:

1. Using the Doléans Dade representation of positive martingale L, Lt = E(M c
t + (eU −

1).µ̃), t ≤ T , we find:

Hent := E[LT ln(LT )] = E
[
LT

(
1

2
〈M c〉T + (UeU − eU + 1).νT

)]
.
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2. The following sharp inequality holds true:

u(E(maxLT )) ≤ E (LT ln(LT )) .

Moreover, if L is a positive D-submartingale, the previous inequality becomes:

um(E(maxLT ))− um(L0) ≤ E[LT ln(LT )]− E(LT ) ln [E(LT )] .

where m = E(LT ).

Proof. :

1. To prove the assertion, let us first prove that the equality

E(maxLT )− 1 = E [LT ln(maxLT )]

holds true in our case. From Dellacherie [16] p.375, maxLt(ω) = Lt(ω) for every

jump time t or every increasing of right of s −→ maxLs(ω). Therefore L = maxL

on the right support of dmaxL. Therefore we find maxLt = 1 +
∫ t

0 dmaxLs =∫ t
0

Ls
maxLs

dmaxLs then E(maxLT ) − 1 = E [LT ln(maxLT )] . holds true. From this

equality, it is sufficient that maxLT ∈ L1 to find LT ln(LT ) ∈ L1. Let assume,

maxLT ∈ L1 and let define the stopping times TK such that the positive local mar-

tingale Lt = E(Mt + (eU − 1)µ̃t) ≤ K. The stopping times TK is increasing and goes

to infinity with K. Let define the process NQ = M c − 〈M c〉+ U.(µ̃− (eU − 1).ν). is

a martingale with respect to Q = LTP and we get:

E
[
LT

(
1

2
〈M c〉T + (eU − U − 1).νT

)]
= lim

K
E
[
LT

(
1

2
〈M c〉T∧TK + (eU − U − 1).νT∧TK

)]
= lim

K
E
[
LT∧TK

(
1

2
〈M c〉T∧TK + (eU − U − 1).νT∧TK

)]
Since E(LT∧TKN

Q
T∧TK ) = 0, we find:

E [LT∧TK ln(LT∧TK )] = E
[
LT∧TK

(
1

2
〈M c〉T∧TK + U(eU − 1).νT∧TK + (eU − U − 1).νT∧TK

)]
We have E [LT∧TK ln(LT∧TK )] ≤ E [LT∧TK ln(maxLT∧TK )] ≤ E [maxLT ] − 1 ≤ +∞,

then we get the result by taking the limit when K goes to infinity.

2. The proof is done in [4], since authors used the first assertion to prove the result.

Let X be a Q(Λ, C)-semimartingale, applying the result of Proposition 3.4 to the pos-

itive submartingale exp(Ȳ Λ,C(|X|)), we conclude if E
(
Ȳ Λ,C
T (|X|) exp[Ȳ Λ,C

T (|X|)]
)
∈ L1

then we have maxE
(
Ȳ Λ,C
T (|X|) exp[Ȳ Λ,C

T (|X|)]
)
∈ L1 and the inequality (3.6) is satisfied,

therefore Ȳ Λ,C(|X|) belongs to class Dexp. To conclude this part, let recall the definition

of the class of Q(Λ, C)-semimartingales which belong to Dexp given by [4].
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Definition 3.5. Let ηT be a FT -random variable such that

exp[γȲ Λ,C
T (|ηT |)] = exp[γ(eCT |ηT |+

∫ T

0
eCsdΛs)]

belongs to L1, for all γ > 0. We define a class of SQ(|ηT |,Λ, C) of Q(Λ, C)-semimartingales

X such that

|Xt| ≤ ρ̄t
[
eCt,T |ηT |+

∫ T

t
eCt,sdΛs

]
, a.s.

4 Quadratic-exponential variation and stability result

4.1 A priori estimates

We now focus on the estimate of the martingale part of a semimartingaleX ∈ SQ(|ηT |,Λ, C).

The estimates of the discontinuous martingales part allow us to conclude the predictable

projection j(γ∆Md), γ ∈ {−1, 1} is well defined when the semimartingale X lives in a

suitable space.

Proposition 4.5. Let consider a semimartingale X ∈ SQ(|ηT |,Λ, C) which follows the

decomposition X = X0 − V + M c + Md, where there exists a process U ∈ Gloc(µ) such

that Md = U.µ̃ then for any p ≥ 1 the matingales, M̄ = M c + (eU − 1).µ̃ and M =

−M c + (e−U − 1).µ̃ belong to Mp
0 .

Moreover if for any stopping times σ ≤ T there exists a constant c > 0 such that

E
[
exp(eCT |ηT |+

∫ T

0
eCsdΛs)|Fσ

]
≤ c,

then the processes M̄ and M are BMO martingales.

Proof. As already seen, in the previous section, the martingale part of the canonical expo-

nential quadratic semimartingale given by M̄ c + (eU − 1).µ̃ belongs to Uexp which is not

verified in this general class. However, we can control M̄ c + (eU − 1).µ̃ in Mp
0.

1. Let X ∈ SQ(|ηT |,Λ, C), from Proposition 3.3, Y Λ,C(X) = X + Λ + |X| ∗ C and

Y Λ,C(−X) are Q-local submartingale. Moreover let recall the process Ȳ Λ,C(X) =

eC .|X|+ eC ∗ Λ satisfies Y Λ,C(X) ≤ Ȳ Λ,C(X) and Y Λ,C(−X) ≤ Ȳ Λ,C(X),

therefore since X ∈ SQ(|ηT |,Λ, C), for any p ≥ 1, we find

exp(p|Y Λ,C
t (|X|)|) ≤ exp[pȲ Λ,C

t (X)] ≤ E
[
exp[p(eCT |ηT |+

∫ T

0
eCsdΛs)]|Ft

]
(4.7)

We conclude that

E

[
sup
t≤T

exp(p|Y Λ,C
t (|X|)|)

]
< +∞. (4.8)

From the submartingale property of exp(Y Λ,C(X)) and exp(Y Λ,C(−X)), from Yoeurp-

Meyer decomposition, there exist increasing processes Ā and A such that:

K̄t := exp(Y Λ,C
t (X)) = exp(X0)E(M̄t) exp(Āt)

Kt := exp(Y Λ,C
t (−X)) = exp(−X0)E(M t) exp(At)
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Since Ā and A are increasing, from (4.8) we conclude Z̄ := E(M̄) and Z := E(M) are

uniformly integrable. Hence, M̄ and M ∈ Uexp.

Moreover Z̄ and Z belong to Mp, for any p ≥ 1. Using intergration by part formula

we find dK̄t = K̄t−
[
dĀt + dM̄t

]
and dKt = Kt− [dAt + dM t], that leads to d[K̄]t =

K̄2
t−d[M̄ ]t and d[K]t = K2

t−d[M ]t. Therefore we find for any stopping times σ ≤ T ,

[M̄ ]σ,T =
∫ T
σ

d[K̄]t
K̄2
t−

and [M ]σ,T =
∫ T
σ

d[K]t
K2
t−

, then we obtain

[M̄ ]σ,T ≤ sup
σ≤t≤T

(
1

K̄2
t

)
× [K̄]σ,T and [M ]σ,T ≤ sup

σ≤t≤T

(
1

K2
t

)
× [K]σ,T (4.9)

However, using Itô’s decomposition of the submartingales K̄2 and K2, we find a priori

estilmates of [K̄]T and [K]T

dK̄2
t = 2K̄t−dK̄t + d[K̄]t = 2K̄2

t− [dM̄t + dĀt] + d[K̄]t

dK2
t = 2Kt−dKt + d[K]t = 2K2

t− [dM t + dAt] + d[K]t

Therefore for any stopping times σ ≤ T , we find

E
[
[K̄]σ,T |Fσ

]
≤ E

[
K̄2
T |Fσ

]
and E [[K]σ,T |Fσ] ≤ E

[
K2
T |Fσ

]
(4.10)

Now since, for any p ≥ 1, sup0≤t≤T K̄t and sup0≤t≤T Kt belong to Lp, it follow from

Garsia and Neveu Lemma ([4] Lemma 3.3) that

E
[
[K̄]T ]p

]
< +∞ and E [[K]T ]p] < +∞, ∀p ≥ 1 (4.11)

Since sup0≤t≤T
1
K̄t

and sup0≤t≤T
1
Kt

belong to Lp for any p ≥ 1 and using 4.11, from

4.9 we conclude by Cauchy Schwartz inequalities that for any p ≥ 1:

E
[
[M̄ ]pT

]
≤ +∞ and E

[
[M ]pT

]
≤ +∞

Thus, using the BDG inequalities, we conclude that M̄ and M belong to Mp
0.

Moreover if there exists a non negative constant c such that

E
[
exp(eCT |ηT |+

∫ T

0
eCsdΛs)|Fσ

]
≤ c,

then from 4.7 the processes K̄ and K are bounded, and using 4.9 and 4.10, we get

that the martingales M̄ and M are BMO-martingales.

4.2 Stability results of quadratic exponential semimartingale

Here, we present stability results for quadratic exponential semimartingales which we

shall use for the construction of the maximal solution of a class of quadratic BSDE’s with

jumps. For this propose, we recall a general stability theorem of Barlow and Protter [3]

for a sequence of càdlàg special semimartingales converging uniformly in L1. We denote by

X∗ := sup0≤t≤T |Xt|.
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Theorem 4.5. Let Xn be a sequence of special semimartingales which belongs to H1 with

canonical decomposition Xn = Xn
0 +Mn − V n, and satisfies:

E
[ ∫ T

0
|dV n

s |
]
≤ C, and E

[(
Mn

)∗] ≤ C (4.12)

for some positive constant C. Assume that:

E
[(
Xn −X

)∗] −→ 0, as n→∞,

where X is an adapted process, then X is a semimartingale in H1 with canonical decompo-

sition X = X0 +M − V satisfying:

E
[ ∫ T

0
|dVs|

]
≤ C, and E

[(
M
)∗] ≤ C (4.13)

and we have

lim
n→∞

E
[(
V n − V

)∗]
= 0 and lim

n→∞
‖Mn −M‖H1 = 0. (4.14)

Lemma 4.1. Let Xn a sequence of SQ(|ηT |,Λ, C) semimartingales which canonical decom-

position Xn = Xn
0 − V n + Mn which converge in H1 to some process X. Therefore the

process X which canonical decomposition X = X0 − V + M is an adapted càdlàg process

which belongs to SQ(|ηT |,Λ, C) such that:

lim
n→∞

E
[(
V n − V

)∗]
= 0 and lim

n→∞
‖Mn −M‖H1 = 0.

Proof. Let consider Xn = Xn
0 − V n + (M c)n + Un.µ̃ a sequence of SQ(|ηT |,Λ, C) semi-

martingales. Firstly let prove that if the sequence Xn converge to the process X then this

limit belongs to the space SQ(|ηT |,Λ, C).

Since, the sequence Xn ∈ SQ(|ηT |,Λ, C), we have for each n ∈ N and for any stopping

times σ ≤ T :

−ρ̄σ(−ηT + Λσ,T + |Xn| ∗ Cσ,T ) ≤ Xn
σ ≤ ρ̄σ(ηT + Λσ,T + |Xn| ∗ Cσ,T ), a.s (4.15)

and

|Xn
σ | ≤ ρ̄σ

[
eCσ,T |ηT |+

∫ T

σ
eCσ,sdΛs

]
, a.s (4.16)

Therefore, using the dominated convergence and taking the limit of this subsequence in

4.15 and 4.16, we conclude that the limit X belongs to the space SQ(|ηT |,Λ, C). Thank’s

to the Dini’s Theorem, the convergence of the sequence Xn in H1 is uniform.

Hence, since the limit X is a Q(Λ, C)-semimartingale, from Theorem (3.3) the process X

is càdlàg.

In the other hand, let us define the function u −→ g(u) = eu − u − 1, from Remark 3.1,

2(g(u) + g(−u)) ≤ (|eu − 1|2 + |e−u − 1|2). Therefore from Proposition 4.5, there exist a

constant C1 > 0 and C2 > 0 such that:

E
[∫ T

0
|dV n

s |
]
≤ E

[∫ T

0

1

2
d〈(M c)n〉s +

∫
E

[g(Un(s, x)) + g(−Un(s, x))]ν(ds, dx)

]
≤ C1.
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E
[
〈Mn〉

1
2
T

]
≤ C2.

Therefore, from the stability Theorem of Barlow-Protter, the limit process X have the

following canonical decomposition X := X0 − V +M satisfy for c := max(C1, C2)

E
[ ∫ T

0
|dVs|

]
≤ C, and E

[(
M
)∗] ≤ C (4.17)

we get the expected result.

5 Application of quadratic exponential semimartingales: quadratic

BSDEs with jumps

In this section, we propose an existence results for a quadratic BSDE with unbounded

terminal condition. In, [7],[?], [46] the autors studied Quadratic JBSDE with bounded

terminal condition and a specific generator related to a stochastic optimization problem.

Furthermore, Tzevadze provide a totally different approach to solve a Lipschitz-quadratic

BSDE with bounded terminal condition based on a fixed point argument. In [12], also

Briand and hu provided an existence result for the quadratic BSDE when the terminal

condition is unbounded. However all this works exept the paper of tzevadze, are based on

the seminal paper of Kobylanski. The major difficulty in the so-called Kobylanski method

is the strong convergence of the martingale part which is not easy to prove.

Furthermore, Tzevadze provide a totally different approach to solve a Lipschitz-quadratic

BSDE with bounded terminal condition based on a fixed point argument.

Our idea is completely different and based on Forward approach. In fact using charac-

terization and integrability properties of the exponential quadratic semimartingale obtained

in the previous section. Then by a general stability result, we prove the existence of solution

of Quadratic BSDE.

5.1 Quadratic Exponential BSDE

5.2 Notations and setting

On the stochastic basis defined above (Ω,F ,F,P) with finite time horizon T < +∞, we

define W = (Wt)t≥0 a d-dimensional standard Brownian motion and µ the random measure

defined above such that ν is equivalent to a product measure λ⊗dt with density ξ satisfying

ν(ω, dt, dx) = ξ(ω, t, x)λ(dx)dt,

where λ is a finite measure on (E, E) satisfying
∫
E 1 ∧ |x|2λ(dx) < +∞ and where the

density ξ is a measure, bounded nonnegative function such that for some constant Cν :

0 ≤ ξ(ω, t, x) ≤ Cν < +∞, P⊗ λ⊗ dt− a.e .

That implies in particular ν ([0, T ]× E) ≤ CνTλ(E).
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We introduce the following spaces

• Lexp the space of all FT -measurable random variables X such that ∀γ > 0

E [exp(γ|x|)] < +∞

• Dexp
0 is the space of progressively measurable processes (X = (X)t)t≤T with

E

[
exp

(
γ sup

0≤t≤T
|X|t

)]
< +∞

• Dexp
1 is the space of progressively measurable processes (X = (X)t)t≤T with

E
[
exp

(
γ

∫ T

0
|X|t

)]
< +∞

• S2 is the space of all R-valued adapted process X such that

E

[
sup

0≤t≤T
|Xt|2

]
< +∞

• S∞ is the space of all R-valued adapted process X such that

E

[
sup

0≤t≤T
|Xt|

]
< +∞

• H2p
λ the set of all predictable processes U such that(

E
[∫ T

0
|U |2s,λds

] p
2

) 1
p

< +∞

where

|U |2s,λ :=

∫
E
|U(s, x)|2ξ(s, x)λ(dx).

• H2p the set of all predictable processes Z such that

E

[(∫ T

0
|Zs|2dt

) p
2

]
<∞.

We will assume the following representation Theorem: for any square integrable mar-

tingale M we have

Mt = M0 +

∫ t

0
Zs.dWs +

∫ t

0

∫
E
Us(x)µ̃(de, ds).

where Z and U are predictable processes in H2, H2
λ. Therefore, we consider a Backward

stochastic Differential equation with jumps of the form

−dYt = ft(Yt, Zt, Ut)− ZtdWt −
∫
E
Ut(x)µ̃(dt, dx), YT = ηT , (5.18)

A solution of such a BSDE associated to (f, ηT ) is a triple of adapted processes (Yt, Zt, Ut)0≤t≤T .

To get an existence result it is necessary to put some assumptions on The coefficient and

the terminal condition of the BSDE.
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5.2.1 Assumptions

– (HC) Continuous condition: for all t ∈ [0, T ], (y, z, u)→ ft(y, z, u) is continuous.

– (HL-a) Lipschitz condition: there exists a non negative constant C such that

|ft(y, z, u)− ft(ȳ, z̄, ū) ≤ C (|y − ȳ|+ |z − z̄|+ |u− ū|) , ∀t ∈ [0, T ]

– (HL-b) Local Lipschitz condition: there exists a non negative constant C such that

|ft(y, z, u)− ft(y, z̄, u)| ≤ C
(
1 + |z|+ |z′|)(|z − z̄|

)
, ∀t ∈ [0, T ]

– (SC) Structure Condition: there exists a positive adapted processes l ∈ Dexp
1 , c ∈ S∞

and a non negative bounded constant δ such that for all (y, z, u) ∈ R × Rd × L2,

t ∈ [0, T ]: P-a.s,

q(t, y, z, u) =
1

δ
jt(−δu)−δ

2
|z|2−lt−ct|y| ≤ ft(y, z, u) ≤ 1

δ
jt(δu)+

δ

2
|z|2+lt+ct|y| = q̄(t, y, z, u).

(5.19)

– (IC-a) Integrability condition:

∀γ > 0, E
[
exp(γ(eCT |ηT |+

∫ T

0
eCsdΛs))

]
< +∞.

– (IC-b) Integrability condition: f(0, 0, 0) ∈ H2

– (DC) Decompotision condition: there exist a P ⊗ B(Rd+1) measurable function f̂

and a P ⊗ B(Rd+2) measurable function h such that:

ft(y, z, u) = f̂t(y, z) +

∫
E
ht(y, z, u(x))ζ(t, x)λ(dx) (5.20)

where the function h is differentiable with respect to u and ∂h
∂u > −1. When f is

Lipschitz with respect to y, we said that f satisfies the simple (DC) form.

– (Aγ) condition : there exist a P ⊗ B(R2) measurable function γ such that

ft(y, z, u)− ft(y, z, ū) ≤
∫
E
γt(y, z, u(x), ū(x))ζ(t, x)λ(dx) (5.21)

where γ > −1 and for any processes Y ∈ S2, Z ∈ H2 and U, Ū ∈ H2
λ, the martingale

γ(Y, Z, U, Ū).µ̃ ∈ Uexp.

Remark 5.2. Under (HL-a), (HI-b) , (IC-b), Becherer [7] proved the existence of a

solution of the BSDE (5.18) with the terminal value ηT ∈ L2(Ω,FT ). The author used a

classical fixed point approach and a priori estimates.

Later, in [?] Becherer ,Buttner and Kentia, extended the result of [7] assuming (DC) and

considering the BSDE coefficient which is not Lipschitz with respect the jump part. In fact,

they work with a terminal condition bounded and since they prove the solution (Y,Z, U) of

the BSDE (5.18) is such that Y and U is bounded, they give sufficient condition on the

differential of the function h to get ∂h
∂u(Y, Z, U).µ̃ ∈ BMO. Therefore, they get uniqueness

of the solution using comparison result since the condition Aγ is satisfied.
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Definition 5.6. We call Quadratic Exponential BSDE with parameters (l, c, δ) (qexp(l, c, δ)

in short terms) associated to (f, ηT ), the BSDE (5.17) such that f satisifies the conditions

(HC), (SC), (IC-a), (IC-b) and (DC).

The more natural quadratic exponential BSDE is the one related to the dynamic entropy

risk measure defined in first section. Let racall that, for a terminal value ηT ∈ Lexp, the

dynamic entropy risk measure ρ(ηT ) is defined by:

ρt(ηT ) =
1

δ
ln [E(exp(δηT )|F)t] , 0 ≤ t ≤ T ;

and follows the dynamics:

−dρt(ηT ) = ft(ρt(ηT ), Zt, Ut)− ZtdWt −
∫
E
U(t, x)µ̃(dt, dx), ρT (ηT ) = ηT (5.22)

where the BSDE coefficient f is given by:

ft(y, z, u) =
δ

2
|z|2 + jt(δu)

and satisfies the conditions (HC), (HL-b), (SC), (IC-a), (IC-b) and (DC) (the sim-

ple form). In fact, for any t ∈ [0, T ], z, z̄ ∈ Rd, y ∈ R and u, ū ∈ L2:

ft(y, z, u)− ft(y, z̄, u) =
δ

2
(|z|2 − |z̄|2) ≤ δ

2
|z̄||z − z̄|1{δ≤0} +

δ

2
|z||z − z̄|1{δ>0}

and

ft(y, z, u)−ft(y, z, ū) = jt(δu)−jt(δū) =

∫
E

(
[eδū(x) − 1]1{δ≤0} + [eδu(x) − 1]1{δ>0}

)
ξ(t, x)λ(dx)

Therefore in this particular case:

γt(u(x), ū(x)) = [eδū(x) − 1]1{δ≤0} + [eδu(x) − 1]1{δ>0} (5.23)

Moreover the solution (ρ(ηT ), Z, U) ∈ SQ(|ηT |)×H2p ×H2p
λ . In fact in a forward point

of view, the entropy risk measure defined by the BSDE (5.22) is a quadratic exponential

seminartingale and the space of solution is deduced from Proposition (4.5.) Moreover from

Theorem 3.2 the martingale δZ.W + (eδU − 1) ∈ Uexp hence from 5.23, the coefficient f

satisfies the (Aγ) confition and the solution of the BSDE (5.22) is unique.

5.2.2 Existence of solution for quadratic BSDE with jumps

Under the above assumptions we are now able to establish the main contribution of this

section. In the sample case of quadratic exponential BSDE for dynamic entropy risk mea-

sure, we characterize the space of solution using a priori estimates of quadratic exponential

semimartngales given in Proposition 4.5. In the general case, we adopt the same forward

point of view since if the a solution (Y, Z, U) of the quadratic exponential BSDE exists

then the process Y is a quadratic exponential semimartingale and its martingale satisfies

a priori-estimates. Therefore, we construct a monotone sequence of quadratic exponential

semimartingale which are solution of Lipschitz BSDEs and using a priori estimates and

stability we prove that the limit exist and it is a solution of a quadratic exponential BSDE.
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Theorem 5.6. There exists a triple (Y,Z, U) ∈ SQ(|ηT |,Λ, C)×H2p×H2p
λ solution of the

quadratic exponential BSDE associated to (f, ηT ) with parameters (δ, c, l) where (Λt =
∫ t

0 ls,

Ct =
∫ t

0 csds, t ≤ T ).

Moreover if the terminal condition ηT is bounded and f satisfies the Lipschitz local

condition (HL-b) and the simple (DC) condition form then the solution (Y,Z, U) ∈ S∞×
BMO× S∞ is unique.

Proof. :

We follow two steps to prove the existence. Firstly, we construct a sequence of quadratic

exponential semimartingales which converges and secondly we find the convergence of the

finite variation and martingale part using stability result. Finaly we prove the unicity in a

particular case.

First step: Construction of the sequence of SQ(|ηT |,Λ, C) semimartingales using Inf and

sup convolution

Without losing any generality, let assume δ = 1 and consider the qexp(l, c, 1)-BSDE associ-

ated to (f, ηT ). Since the BSDE coefficient f satisfies the decomposition condition (DC),

there exist a P ⊗ B(Rd+1) measurable function f̂ and a P ⊗ B(Rd+2) measurable function

g such that:

ft(y, z, u) = f̂t(y, z) +

∫
E
ht(y, z, u(x))ζ(t, x)λ(dx)

For any function k, we set k+ = k1k>0 and k− = k1k≤0 and we define for each n,m ∈ N
the sequences of coefficients:

f+,n
t (y, z, u) = inf

w,r

{
f̂+
t (w, r) + n|w − y|+ n|r − z|

}
+

∫
E

inf
w,r,v(x)

{
h+
t (w, r, v(x)) + n|w − y|+ n|r − z|+ n|v(x)− u(x)|

}
ζ(t, x)λ(dx)

and

f−,mt (y, z, u) = sup
w,r

{
f̂−t (w, r)−m|w − y| −m|r − z|

}
+

∫
E

sup
w,r,v(x)

{
h−t (w, r, v(x))−m|w − y| −m|r − z| −m|v(x)− u(x)|

}
ζ(t, x)λ(dx)

For all t ∈ [0, T ], let us define the function (y, z, u)→ q+
t (y, z, u) = 1

2 |z|
2+
∫
E g(u(x))ζ(t, x)λ(dx).

For each n,m ∈ N , let us define the sequences of coefficients:

q+,n
t (y, z, u) = inf

r,w,v

{
+|lt|+ c|r|+ 1

2
|w|2 + +n|y − r|+ n|r − z|

}
+

∫
E

inf
v(x)
{g(v(x)) + n|v(x)− u(x)|} ζ(t, x)λ(dx)

and

q−,mt (y, z, u) = sup
r,w,v

{
−|lt| − c|r| −

1

2
|w|2 −m|y − r| −m|w − z|

}
+

∫
E

sup
v(x)
{−g(−v(x))−m|v(x)− u(x)|} ζ(t, x)λ(dx)
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1. The sequence f+,n and q+,n resp( the sequence f−,m and q−,m) are increasing and

converge to f+, q+ resp ( are decreasing and converge to f−, q−). Moreover the

sequence f−,m, q−,m, f+,n and q+,n satisfy the (HL-a), (HI-b) ,(IC-b) (DC) and

Aγ-conditions.

2. The sequences (f+,n)n∈N resp( the sequence (f−,m)m∈N) satisfies 0 ≤ f+,n ≤ q+,n ≤
q+ (resp q− ≤ q−,m ≤ f−,m ≤ 0), for each n,m ∈ N. Moreover

q− ≤ f+,n + f−,m ≤ q+.

The point 1), the the proof is given in the Appendix (Properties of the BSDE’s coefficient

sequences). For the point 2), let consider the coefficient f associated to the qexp(l, c, 1)

BSDE, for each n,m ∈ N, 0 ≤ f+,n ≤ q+,n ≤ q+. By similar arguments we find and 0 ≥
f−,m ≥ q−,m ≥ q−, hence we conclude 0 ≤ f+,n ≤ q+,n ≤ q+ and q− ≤ q−,m ≤ f−,m ≤ 0.

Moreover, using the last inequalities we deduce q− ≤ f+,n + q−,m ≤ q+, for each n,m ∈ N.

Let now consider the sequence of coefficients fn,m = f+,n + f−,m which converges to f

when n,m go to infinity. We consider the BSDE associated to (fn,m, ηT ):

−dY n,m
t = fn;m(t, Y n,m

t , Zn,mt , Un,mt )dt− Zn,mt dWt −
∫
E
Un,m(t, x).µ̃(dt, dx), Y n,m

T = ηT .

Since for each n,m ∈ N the coefficient fn,m satisfies the (IC-b), (IC-a) (HL-a),(HI-b)

conditions, there exists a solution (Y n,m, Zn,m, Un,m) of the BSDE associated to (fn,m, ηT ).

Moreover q− ≤ fn,m ≤ q+, hence (Y n,m)n,m∈N is a sequence of Q(Λ, C) semimartingales.

Since q−,m ≤ fn,m ≤ q+,n and the triple (Y +,n, Z+,n, U+,n) and (Y −,m, Z−,m, U−,m) solu-

tions of the qexp(l, c, 1) BSDE associated to (q+,n, |ηT |) and (q−,m,−|ηT |) exist and satisfy

for all stopping times σ ≤ T :

|Y +,n
σ | ∨ |Y −,mσ | ≤ ρ̄σ

[
eCσ,T |ηT |+

∫ T

σ
eCσ,sdΛs

]
, a.s

The solution exists since q+,n and q−,m satisfy the continuity, the integrability and the

Lipschitz conditions for each n,m ∈ N. Moreover since they also satisfy the (Aγ)-condition,

we find by comparison result in that Lipschitz BSDE’s case Y −,m ≤ Y n,m ≤ Y +,n and

we conclude (Y n,m)n,m∈N is a sequence of SQ(|ηT |,Λ, C) semimartingales since for each

n,m ∈ N, Y n,m is a Q(Λ, C) semimartingale satisfying:

|Y n,m
σ | ≤ ρ̄σ

[
eCσ,T |ηT |+

∫ T

σ
eCσ,sdΛs

]
, a.s (5.24)

This equality is given in Appendix (Properties of the BSDE’s coefficient sequences). Since

the coefficient fn,m satisfies the (Aγ) condition, we can apply comparison result in the

Lipschitz BSDE case; we deduce for each n,m ∈ N:

Y n+1,m ≥ Y n,m ≥ Y n,m+1.
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Second step: (Convergence of the semimartingale, the finite variation and the martin-

gale part). For each m ∈ N, (Y n,m)n≥0 is an increasing sequence of bounded càdlàg

SQ(|ηT |,Λ, C) semimartingales, with canonical decomposition Y n,m = Y n,m
0 −V n,m−Mn,m.

Hence, this sequence converges, let denote Y m its limit for each m ∈ N. From stability

result, Lemma 4.1, (Y m)m is a sequence of càdlàg SQ(|ηT |,Λ, C) semimartingales with

canonical decomposition Y m = Y m
0 − V m +Mm where

lim
n→∞

E
[(
V n,m − V m

)∗]
= 0 and lim

n→∞
‖Mn,m −Mm‖H1 = 0.

For each n,m ≥ c∗, since Y n,m ≥ Y n,m+1 then (Y m)m is a decreasing sequence of bounded

càdlàg SQ(|ηT |,Λ, C) semimartingales. Let Y its limit, from stability result Lemma 4.1, Y

is a càdlàg SQ(|ηT |,Λ, C) semimartingale with canonical decomposition Y = Y0 − V + M

where

lim
m→∞

E
[(
V m − V

)∗]
= 0 and lim

m→∞
‖Mm −M‖H1 = 0.

Let recall dV n,m
t = fn,m(Y n,m

t , Zn,mt , Un,mt )dt and consider the sequence of stopping times

(TK)K≥0 defined by:

TK = inf
{
t ≥ 0,E

[
exp(eCT |ηT |+

∫ T

0
eCsdΛs)|Ft

]
> K

}
The sequence (TK)K≥0 converges to infinity when K goes to infinity, moreover for K >

Kε large enough, P(TK < T ) ≤ ε
K . From 5.24, we find Y n,m

.∧TK lives in a compact set

and its convergence to the càdlàg process Y is uniform. The same property holds for

Mn,m
.∧TK and V n,m

.∧TK . Let Zn,m,Kt = Zn,m1t<TK and Un,m,Kt = Un,m1t<TK in such that

(Zn,m.W ).∧TK = Zn,m,K .W and (Un,m.µ̃).∧TK = Un,m,K .µ̃. Since the sequence Mn,m
.∧TK =

(Zn,m.W ).∧TK + (Un,m.µ̃).∧TK strongly converges, the sequence of orthogonal martingales

(Zn,m,K .W ) and (Un,m,K .µ̃) also converge in their appropriate space. Therefore, we can

extract a subsequence Zn,m,K and Un,m,K converging a.s to some processes Z and U .

For t ≤ TK , the sequence fn,m(t, Y n,m
t , Zn,m,Kt , Un,m,Kt ) converges to f(t, Yt, Zt, Ut)dt⊗

dP a.s . it remains to prove that E
[∫ TK

0 |fn,m(t, Y n,m
t , Zn,mt , Un,mt )− f(t, Yt, Zt, Ut)|dt

]
goes

to zero when n,m go to infinity. Firstly we have

E
[∫ TK

0
|fn,m(t, Y n,m

t , Zn,mt , Un,mt )− f(t, Yt, Zt, Ut)|1{[Zn,mt |+|Un,mt |≤C}dt

]
goes to zero when n,m go to infinity, by dominated convergence since Y n,m is bounded

and |fn,m(t, Y n,m
t , Zn,mt , Un,mt )− f(t, Yt, Zt, Ut)| is uniformly bounded in L1 by Lemma 4.1.

Moreover for s ≤ TK , P (|Zn,ms |+ |Un,ms | > C) ≤ 2
C2E(|Zn,ms |2 + |Un,ms |2), from Lemma 4.1,

there exists a constants C2 such that E(〈Mn,m〉s) ≤ C2, therefore

E
[∫ TK

0
|fn,m(t, Y n,m

t , Zn,mt , Un,mt )− f(t, Yt, Zt, Ut)|1{[Zn,mt |+|Un,mt |>C}dt

]
goes to zero when C goes to infinity, uniformly in n,m. As a consequence, the process

V in the decomposition of the quadratic exponential semimartingale Y is given by dVt =
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f(t, Yt, zt, Ut)dt on [0, TK ] for any K. We conclude the triple (Y,Z, U) is a solution of the

qexp(l, c, 1) BSDE associated to (f, ηT ). Moreover since Y belongs to the space SQ(ηT ,Λ, C),

then from Proposition 4.5 the martingales Z.W+(eU−1).µ̃ and −Z.W+(e−U−1).µ̃ belongs

to the space Mp
0.

Third step: Unicity in a particular case: Let (Y 1, Z1, , U1) and (Y 2, Z2, , U2) two solutions

of the quadratic exponential BSDE with bounded terminal condition. Therefore from [7],

the processes Y 1, Y 2 and U1, U2 are bounded. Moreover from Proposition (4.5), Z1.W and

Z2.W are BMO.

Let define the processes ∆Y = Y 1 − Y 2, ∆Z = Z1 − Z2 , ∆U = U1 − U2, Z̄1,i =

(Z2,1, . . . , Z2,i−1, Z1,i, . . . , Z1,d) for i = 2, . . . , d and Z̄1,1 = Z1 and Z̄2,i = (Z2,1, . . . , Z2,i, Z1,i+1, . . . , Z1,d)

for i = 1, . . . , d − 1 and Z̄2,d = Z2. Then, we consider the following processes: for all

i = 1, . . . , d, t ≤ T

βit(Z
1
t , Z

2
t ) =


f̂t(Y

1
t , Z̄

1,i
t )− f̂t(Y 1

t , Z̄
2,i
t )

Z1,i
t − Z

2,i
t

, if Z1,i
t 6= Z2,i

t ,

0, if Z1,i
t = Z2,i

t .

Then we have:

f̂t(Y
1
t , Z

1
t )− f̂t(Y 1

t , Z
2
t ) =

d∑
i=1

βit(Z
1
t , Z

2
t )(Z1,i

t − Z
2,i
t )

with |βt(Z1
t , Z

2
t )| ≤ C

(
1 + |Z1

t |+ |Z2
t |
)

for all t ∈ [0, T ].

Since the coefficient f is Lipschitz with respect to y then we consider the following

bounded process: for all t ≤ T

at(Y
1
t , Y

2
t ) :=


ft(Y

1
t , Z

2
t , U

1
t )− ft(Y 2

t , Z
2
t , U

1
t )

Y 1
t − Y 2

t

, if Y 1
t 6= Y 2

t ,

0, if Y 1
t = Y 2

t .

Moreover, since the coefficient g satisfies ∀t ∈ [0, T ] and x ∈ E:

γt(U
1
t (x), U2

t (x)) := gt(Y
2
t , U

1
t (x))−gt(Y 2

t , U
2
t (x)) =

∫ 1

0

∂gt
∂u

(Y 1
s , νU

1
t (x)+(1−ν)U2

t (x))dν.

Since Y 1, U1, U2 are bounded and ∂gt
∂u is continuous and ∂gt

∂u > −1, there exists a constant

C > 0 such that:

−1 < γt(U
1
t (x), U2

t (x)) ≤ C.

We get:

d∆Yt = −[(ft(Y
1
t , Z

1
t , U

1
t )− ft(Y 1, Z2

t , U
1
t )) + (ft(Y

1
t , Z

2
t , U

1
t )− ft(Y 2

t , Z
2
t , U

1
t )

+ (ft(Y
2
t , Z

2
t , U

1
t )− ft(Y 2

t , Z
2
t , U

2
t ))]dt+ ∆Zt.dWt +

∫
E

∆Ut.µ̃(dt, dx)
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Therefore we get:

−d∆Yt = βt(Z
1
t , Z

2
t ).∆Ztdt+ at(Y

1
t , Y

2
t )∆Ytdt+

∫
E
γt(U

1
t (x), U2

t (x))∆Ut(x)ξ(t, x)λ(dx)

−∆Zt.dWt −
∫
E

∆Ut.µ̃(dt, dx)

hence let define the adjoint process dΓt
Γt

= at(Y
1
t , Y

2
t )dt, Γ0 = 1

Γt∆Yt ≤E
[ d∑
i=1

∫ T

t
Γs∆Z

i
s(dW

i
s − βis(Z1

s , Z
2
s )ds)

+

∫
E

∫ T

t
Γs∆Us(x)(µ̃(ds, dx)− γs(U1

s (x), U2
s (x))ξ(s, x)λ(dx))

∣∣∣Ft].
Define the probability measure Q with the Radon-Nikodym density ZQ with respect to P
given by:

dZQ
t = ZQ

t−

(
βt(Z

1
t , Z

2
t ) · dWt +

∫
E
γt(U

1
t (x), U2

t (x))µ̃(dt, dx)

)
.

Since −1 ≤ γit(U1
t , U

2
t ) ≤ C and |βt(Z1

t , Z
2
t )| ≤ C

(
1 + [Z1

t |+ |Z2
t |
)

for all t ∈ [0, T ], we have

that β ? W + γ ? µ̃ is BMO-martingale, hence ZQ is uniformly integrable. Therefore, we

have that ∆Yt ≤ 0, and then Y 1
t ≤ Y 2

t a.s. We use the same arguments to prove Y 2
t ≤ Y 1

t

a.s. permutting the role of Y 1 and Y 2. 2
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6 Appendix

6.1 Tehnical lemma

Lemma 6.2. For any k ≥ 1 and any local martingale M :

jt(k∆Mt) ≥ kjt(∆Mt), 0 ≤ t ≤ T

Proof. Let recall that for any local martingale M = M c+Md from representation theorem,

there exists U ∈ Gloc(µ) such that Md = U.µ̃ , then j(∆Md) = (eU − U − 1).ν. Therefore

from representation theorem it is sufficient to prove the following function fk: x −→ (ekx−
kx − 1) − k(ex − x − 1) is positive to find the result. For any x ∈ R, since f ′k(x) =

kex(e(k−1)x− 1), then we conclude the function fk is increasing on (0,+∞) and decreasing

on (−∞, 0). Therefore, for any x ∈ R, fk(x) ≥ fk(0) = 0.

6.2 Properties of the BSDE’s coefficients sequence

6.2.1 Properties for the bound sequences q+,n and q−,m

Lemma 6.3. Let us define the following quadractic exponential coefficients by q+
t (y, z, u) =

c|y|+ |l|+ 1
2 |z|

2 + jt(u) and q−t (y, z, u) = −c|y|− |l|− 1
2 |z|

2− jt(−u) and define the sequence

q+,n and q−,m by the inf-convolution and sup-convolution for n,m ≥ c∗ = supt∈[0,T ] ct:

q+,n(y, z, u) = inf
r,w,v
{q+(r, w, v) + n|y − r|+ n|z − w|+ n|u− v|}, |v| :=

∫
E
|v(x)|ξ(t, x)λ(dx)

q−,m(y, z, u) = sup
r,w,v
{q−(r, w, v)−m|y − r| −m|z − w| −m|u− v|}

then:

i) The sequences q+,n and q−,m satisfy the structure condition Q(Λ, C).

ii) There exists a unique solution (Y +,n, Z+,n, U+,n) (resp. ((Y −,m, Z−,m, U−,m)) of the

BSDE’s associated to (q+,n, |ξT |) (resp. to (q−,m,−|ξT |).

iii) The processes Y +,n and Y −,m are values processes of the following robust optimiza-

tion problem,, for any σ ≤ T :

Y +,n
σ = sup

{Q�P,|β|≤n;−1≤κ≤n}
EQ
σ

[
Scσ,T |ξT |+

∫ T

σ
Scσ,t|lt|dt+

∫ T

σ
ctS

c
σ,t ln

(
ZQ
t

ZQ
σ

)
dt+ Scσ,T ln

(
ZQ
T

ZQ
σ

)]

Y −,mσ = inf
{Q�P,|β|≤m;−1≤κ≤m}

EQ
σ

[
−Scσ,T |ξT | −

∫ T

σ
Scσ,t|lt|dt−

∫ T

σ
ctS

c
σ,t ln

(
ZQ
t

ZQ
σ

)
dt+ Scσ,T ln

(
ZQ
T

ZQ
σ

)]

where Scσ,t = exp(
∫ t
σ csds) and the Radon Nikodym density of Q with respect to P on GT is

ZQ
T , the process ZQ

t := E
[
ZQ
T |Gt

]
= E(β.W + κ.µ̃)t.
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Moreover, we have the following estimates:

Y −,mσ ≤ Y n,m
σ ≤ Y +,n

σ , σ ≤ T.

and

|Y −,mσ | ∨ |Y +,n
σ | ≤ ρσ

[
Scσ,T |ξT |+

∫ T

σ
Scσ,s|ls|ds

]
, σ ≤ T.

Proof: i) We compute explicitly the sequence of functions q̄n and qm which satisfy the

structure condition Qexp(Λ, C) for every n,m ≥ c∗. By definition we have

q+,n
t (y, z, u) = inf

r,w,v
{q+
t (y, w, v) + n|y − r|+ n|z − w|+ n|u− v|}

= c|y|+ |l|+ inf
w
{1

2
|w|2 + n|z − w|}+ inf

v
{jt(v) + n|u− v|}

Obviously one can find the explicit form of q+,n which is given by

q+,n(y, z, u) = c|y|+ |l|+ 1

2
|z|21{|z|≤n} + n(|z| − n

2
)1{|z|>n}

+

∫
E

[
g(u(e))1{eu(e)−1≤n} +

(
− (n+ 1) ln(n+ 1) + n(u(e) + 1)

)
1{eu(e)−1>n}

]
ζt(e)ρ(de)

where we recall g(x) = ex− x− 1, using the similar arguments we find the explicitely form

of qm:

q−,m(y, z, u) = −c|y| − |l| − 1

2
|z|21{|z|≤m} −m(|z| − m

2
)1{|z|>m}

+

∫
E

[
g(−u(e))1{e−u(e)−1≤m} +

(
(m+ 1) ln(m+ 1) +m(u(e)− 1)

)
1{e−u(e)−1>m}

]
ζt(e)ρ(de)

then we conclude for each n,m ≥ c∗, q+,n and q−,m satisfy the structure conditionQexp(Λ, C).

ii) Since the coefficients q+,n and q−,m are Lipschitz we deduce there exists a solution

(Y +,n, Z+,n, U+,n) resp (Y −,m, Z−,m, U−,m) associated to (q+,n, |ξT |) resp (q−,m,−|ξT |).
Let now prove these coefficients satisfy the (Aγ) condition. To prove this result let first

remark that for all x ∈ R:

−(n+ 1) ln(n+ 1) + n(x+ 1) = g[ln(n+ 1)] + n(x− ln(n+ 1))

Let u, ū, we set E =
⋃4
i=1Ai where

A1 = {x ∈ E, eu(x) − 1 ≤ n, eū(x) − 1 ≤ n}, A2 = {x ∈ E, eu(x) − 1 ≤ n, eū(x) − 1 > n}

A3 = {x ∈ E, eu(x) − 1 > n, eū(x) − 1 ≤ n}, A4 = {x ∈ E, eu(x) − 1 > n, eū(x) − 1 > n}

Therefore we find for all y, z:

q+,n(y, z, u)− q+,n(y, z, ū)

=

∫
A1

[g(u(x))− g(ū(x))]ζt(x)ρ(dx) +

∫
A2

[g(u(x))− g(ln(n+ 1))− n(ū(x)− ln(n+ 1))]ζt(x)ρ(dx)

+

∫
A3

[n(u(x)− ln(n+ 1)) + g(ln(n+ 1))− g(ū(x))]ζt(x)ρ(dx) +

∫
A4

n(u(x)− ū(x))ζt(x)ρ(dx)
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We now find differents inequalities on every given subset of E:

On the set A1: we use the convex property of the coefffient g and we deduce:∫
A1

[g(u(x))− g(ū(x))]ζt(x)ρ(dx) ≤
∫
A1

(eū(x) − 1)(u(x)− ū(x))ζt(x)ρ(dx) (6.25)

On the set A2: Since on A2, the function g is increasing we find ∀x ∈ A2, g(u(x)) ≤
g(ln(n+ 1)), moreover we have ū(x)− ln(n+ 1) ≥ 0 for x ∈ A2 then we conclude:∫

A2

[g(u(x))− g(ln(n+ 1))− n(ū(x)− ln(n+ 1))]ζt(x)ρ(dx) ≤ 0. (6.26)

On the set A3: we use the convex property of the coefficient g and we find g(ln(n + 1)) −
g(ū(x)) ≤ −n(ū(x)− ln(n+ 1)), ∀x ∈ A3. Therefore, we find:∫
A3

[n(u(x)− ln(n+ 1) + g(ln(n+ 1))− g(ū(x))]ζt(x)ρ(dx) ≤
∫
A3

n(u(x)− ū(x))ζt(x)ρ(dx)

(6.27)

Hence using (6.25), (6.26) and (6.27), we find:

q+,n(y, z, u)− q+,n(y, z, ū) =

∫
E
γn(u(x), ū(x))(u(x)− ū(x))ζt(x)ρ(dx)

where γn(u(x), ū(x)) = n1{e
u(x) − 1 > n} + (eū(x) − 1)1A1 , then −1 ≤ γn ≤ n hence

γn ∈ Uexp. Therefore the sequence q+,n satisfies the Aγ condition. We use similar argu-

ments to prove the sequence q−,m satisfies also the Aγ condition. We conclude from Com-

parison Theorem, the uniqueness of the triple (Y +,n, Z+,n, U+,n) resp( (Y −,m, Z−,m, U−,m)

solution of the BSDE associated to (q+,n, |ξT |) resp((q−,m,−|ξT |)).

iii) Let define the cost functional of the robust optimization problems defined in Lemma

6.3-iii), JQ,+,n and JQ,−,m, and define the value processes V +,n, V −,m. Assume |ξT | ∈ Lexp,

|l| ∈ D1
exp and c bounded then the value processes of the robust optimization exist see Bor-

digoni, Matoussi and Schweizer [10] for more details. Moreover we deduce for any Q� P:

JQ,+,n
t = SctV

+,n
t +

∫ t

0
Scs|ls|ds+

∫ t

0
csS

c
s ln(ZQ

s )ds− Sct ln(ZQ
t )

JQ,−,m
t = SctV

−,m
t −

∫ t

0
Scs|ls|ds−

∫ t

0
csS

c
s ln(ZQ

s )ds+ Sct ln(ZQ
t )

(6.28)

moereover the value processes V +,n and V −,m are special semimartingales the following the

representation theorem there exist a predictable process Z+,n, U+,n and an predicatble pro-

cess AV̄
+,n

resp ( Z−,m,U−,m and an predictable process AV
+,n

) such that dV̄ +,n
t = dAV

+,n

t +

Z+,n
t .dWt+

∫
E Ū

+,n
t (e).µ̃(dt, de) resp( dV −,mt = dA

V−,m
t +Z−,mt .dWt+

∫
E U

−,m
t (e).µ̃(dt, de)).

we define the dynamics of ZQ,

dZQ
t = ZQ

t−

(
βt.dWt +

∫
E
κt.µ̃(dx, dt)

)
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For every n,m ∈ N∗, for every Q � P, JQ,+,n resp( JQ,−,m ) are submartingales and

martingales for the optimal resp( surmartingales and martingale for the optimal) then we

get:

AV
+,n

t = −
{∫ t

0
max
{|β|≤n}

(|ls|+ csV
+,n
s ) +

∫ t

0

(
〈Z+,n − β, β〉s +

1

2
|βs|2

)
ds

}
−
{∫ t

0

∫
E

max
{−1≤κ≤n}

(κs(x)(vs(x) + 1)− (1 + κs(x)) ln(1 + κs(x))) ζs(x)ρ(dx)ds

}
resp

AV
−,m

t = −
{∫ t

0
min
{|β|≤m}

(−|ls|+ csV
−,m
s ) +

∫ t

0

(
〈Z−,m + β, β〉s −

1

2
|βs|2

)
ds

}
−
{∫ t

0

∫
E

min
{−1≤κ≤m}

(κs(x)(vs(x)− 1) + (1 + κs(x)) ln(1 + κs(x))) ζs(x)ρ(dx)ds

}
Using first order condition, we find for the first optimization problem κ∗ =

(
eU

+,n − 1
)

1{eU+,n−1≤n}+

n1{eU+,n−1>n}, then we deduce (V +,n, Z+,n, U+,n) is the solution associated to the BSDE

(h+,n, |ξT |):

−dV +,n
t = h+,n(V +,n, Z+,n

t , U+,n
t )dt− Z+,n

t .dWt − U+,n
t (x).µ̃(dt, dx), V +,n

T = |ξT |.

where

h+,n(y, z, u) = cy + |l|+ 1

2
|z|21{|z|≤n} + n(|z| − n

2
)1{|z|>n}

+

∫
E

[
(eu(e) − u(e)− 1)1{eu(e)−1≤n} +

(
− (n+ 1) ln(n+ 1) + n(u+ 1)

)
1{eu(e−1>n}

]
ζt(e)ρ(de)

We use the same arguments of first order condition to deduce the solution of the second

optimization problem; We get the triple (V −,m, Z−,m, U−,m) is the solution of the BSDE

associated to (h−,m,−|ξT |):

−dV −,mt = h−,m(V −,m, Z−,mt , U−,mt )dt−Z−,mt .dWt−
∫
E
U−,mt (x).µ̃(dx, dt), V−,mT = −|ξT |.

where

h−,m(y, z, u) = cy − |l| − 1

2
|z|21{|z|≤m} −m(|z| − m

2
)1{|z|>m}

+

∫
E

[
g(−u(e))1{e−u(e)−1≤m} +

(
(m+ 1) ln(m+ 1) +m(u(e)− 1)

)
1{e−u(e)−1>m}

]
ζt(x)ρ(dx)

To finish the proof, we find Y +,n ≥ 0 and Y +,m ≤ 0 since |ξT | ≥ 0 and −|ξT | ≤ 0 by

comparaison theorem in Lipschitz case. Then we conclude h+,n = q+,n and h−,m = q−,m.

for each n,m ∈ N. By uniqueness of the solution of the BSDE associated to (q+,n, |ξT |) and

(q−,m,−|ξT |), we conclude V +,n = Y +,n and V −,m = Y −,m moreover since q−,m ≤ fn,m ≤
q+,n by Comparison Theorem, we find Y −,m ≤ Y n,m ≤ Y +,n. However, from the dual
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representation of Y +,n (resp Y −,m) given by V +,n resp( V −,m), we conclude by Proposition

4.2 of [4] that for any σ ≤ T :

Y +,n
σ ≤ ρσ

[
Scσ,T |ξT |+

∫ T

σ
Scσ,s|ls|ds

]
and Y −,mσ ≤ ρσ

[
Scσ,T |ξT |+

∫ T

σ
Scσ,s|ls|ds

]
.

2

6.2.2 Properties for the sequences f+,n, f−,m and fn,m

Let recall that ∀(t, y, z, u) ∈ [0, T ]× R× Rd × L2, we have:

fn,mt (y, z, u) = f̂n,mt (y, z) +

∫
E
hn,mt (y, z, u(x))ζt(t, x)λ(x) (6.29)

where

f̂n,mt (y, z) = f̂+,n
t (y, z)+f̂−,mt (y, z), and hn,mt (y, z, u(x)) = h+,n

t (y, z, u(x))+h−,mt (y, z, u(x)).

Since:

0 ≤ f+,n
t (y, z, u) ≤ q+,n

t (y, z, u) and q−,mt (y, z, u) ≤ f−,mt (y, z, u) ≤ 0

we get

q−,mt (y, z, u) ≤ fn,mt (y, z, u) ≤ q+,n
t (y, z, u).

Moreover the sequence fn,m is increasing with respect to n and decreasing with respect

to m. To conclude, let prove for decomposition of fn,m given by 6.29, ∂hn,m

∂u > −1 and
∂hn,m

∂u (Y n,m, Zn,m, Un,m).µ̃ ∈ Uexp. Let us define x ∈ E and u(x), ū(xi ∈ L2 and the follow-

ing sets:

A1 = {x ∈ E, ht(y, z, u(x)) ≥ 0, ht(y, z, ū(x)) ≥ 0}, A2 = {x ∈ E, ht(y, z, u(x)) < 0, ht(y, z, ū(x)) < 0}
A3 = {x ∈ E, ht(y, z, u(x)) > 0, ht(y, z, ū(x)) < 0}, A4 = {x ∈ E, ht(y, z, u(x)) < 0, ht(y, z, ū(x)) > 0}

We know that:

0 ≤ h+,n
t (y, z, u(x)) ≤ h+

t (y, z, u(x)), and h−t (y, z, u(x)) ≤ h−,mt (y, z, u(x)) ≤ 0 (6.30)

Therefore if h+
t (y, z, u(x)) ≤ 0 then h+,n

t (y, z, u(x)) = 0 and h−,mt (y, z, u(x)) ≤ 0 and if

h+
t (y, z, u(x)) > 0, h+,n

t (y, z, u(x)) ≥ 0 and h−,mt (y, z, u(x)) = 0. Using theses properties,

we get:

hn,mt (y, z, u(x))− hn,mt (y, z, ū(x)) = [h+,n
t (y, z, u(x))− h+,n

t (y, z, ū(x))]1A1

= [h−,mt (y, z, u(x))− h−,mt (y, z, ū(x))]1A2

= [h+,n
t (y, z, u(x))− h−,mt (y, z, ū(x))]1A3

= [h−,mt (y, z, u(x))− h+,n
t (y, z, ū(x))]1A4

(6.31)
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The functions h+,n and h−,m are Lipschitz with respect to u hence differentiable. We get:

h+,n
t (y, z, u(x))− h+,n

t (y, z, ū(x)) = (u(x)− ū(x))

∫ 1

0

∂h+,n
t

∂u
(y, z, νu(x) + (1− ν)ū(x))dν

and

h−,mt (y, z, u(x))− h−,mt (y, z, ū(x)) = (u(x)− ū(x))

∫ 1

0

∂h−,mt

∂u
(y, z, νu(x) + (1− ν)ū(x))dν

Let define

γ1,n,m
t (y, z, u(x), ū(x)) =

∫ 1

0

∂h+,n
t

∂u
(y, z, νu(x) + (1− ν)ū(x))dν (6.32)

and

γ2,n,m
t (y, z, u(x), ū(x)) =

∫ 1

0

∂h−,mt

∂u
(y, z, νu(x) + (1− ν)ū(x))dν (6.33)

On A3 since the function h is continue with respect to u, using ”the valeurs intermdiaires

Theorem”, we can find û(x) such that ht(y, z, û(x)) = 0 . Using 6.30, h−,mt (y, z, û(x)) =

h+,n
t (y, z, û(x)) = 0, then on the set A3:

h+,n
t (y, z, u(x))− h−,mt (y, z, ū(x)) = [h+,n

t (y, z, u(x))− h+,n
t (y, z, û(x))]

+ [h−,mt (y, z, û(x))− h−,mt (y, z, ū(x))]

= (u(x)− û(x))

∫ 1

0

∂h+,n
t

∂u
(y, z, νu(x) + (1− ν)û(x))dν

+ (û(x)− ū(x))

∫ 1

0

∂h−,mt

∂u
(y, z, νû(x) + (1− ν)ū(x))dν

Let

γ+,3,n
t (y, z, u(x), û(x)) =

∫ 1

0

∂h+,n
t

∂u
(y, z, νu(x) + (1− ν)û(x))dν,

and

γ−,3,mt (y, z, û(x), ū(x)) =

∫ 1

0

∂h−,mt

∂u
(y, z, νû(x) + (1− ν)ū(x))dν.

Therefore, we get

h+,n
t (y, z, u(x))− h−,mt (y, z, ū(x)) = γ3,n,m

t (y, z, u(x), û(x))(u(x)− ū(x)) (6.34)

where

γ3,n,m
t (y, z, u(x), ū(x)) =

[
γ+,3,n
t (y, z, u(x), û(x)) + [γ−,3,mt − γ+,3,n

t ](y, z, û(x), ū(x))
(û(x)− ū(x))

u(x)− ū(x)

]
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Since û(x) ∈]u(x)∧ u(x), u(x)∨ ū(x)[, then (û(x)−ū(x))
u(x)−ū(x) ∈ [0, 1]. Hence on the set A3, we

have:

γ−,3,mt ∧ γ+,3,n
t ≤ γ3,n,m

t ≤ γ−,3,mt ∨ γ+,3,n
t (6.35)

On the set A4, hn,mt (y, z, u(x))−hn,mt (y, z, u(x)) ≤ 0 and using ”the valeurs intermdiaires

Theorem”, we can find û(x) such that ht(y, z, û(x)) = 0 . Using 6.30, h−,mt (y, z, û(x)) =

h+,n
t (y, z, û(x)) = 0, then on the set A4:

h−,mt (y, z, u(x))− h+,n
t (y, z, ū(x)) = [h−,mt (y, z, u(x))− h−,mt (y, z, û(x))]

+ [h+,n
t (y, z, û(x))− h+,n

t (y, z, ū(x))]

= (u(x)− û(x))

∫ 1

0

∂h−,mt

∂u
(y, z, νu(x) + (1− ν)û(x))dν

+ (û(x)− ū(x))

∫ 1

0

∂h+,n
t

∂u
(y, z, νû(x) + (1− ν)ū(x))dν

Let

γ−,4,nt (y, z, u(x), û(x)) =

∫ 1

0

∂h−,mt

∂u
(y, z, νu(x) + (1− ν)û(x))dν,

and

γ+,4,n
t (y, z, û(x), ū(x)) =

∫ 1

0

∂h+,n
t

∂u
(y, z, νû(x) + (1− ν)ū(x))dν.

Therefore, we get

h−,mt (y, z, u(x))− h+,n
t (y, z, ū(x)) = γ4,n,m

t (y, z, u(x), û(x))(u(x)− ū(x)) (6.36)

where

γ4,n,m
t (y, z, u(x), ū(x)) =

[
γ−,4,mt (y, z, u(x), û(x)) + [γ+,4,n

t − γ−,4,nt ](y, z, û(x), ū(x))
(û(x)− ū(x))

u(x)− ū(x)

]

Since û(x) ∈]u(x) ∧ u(x), u(x) ∨ ū(x)[, then (û(x)−ū(x))
u(x)−ū(x) ∈ [0, 1]. Hence on the set A4, we

have:

γ−,4,mt ∧ γ+,4,n
t ≤ γ4,n,m

t ≤ γ−,4,mt ∨ γ+,4,n
t

Using (6.31), (6.32), (6.33), (6.34) and (6.36), we get:

hn,mt (y, z, u(x))− hn,mt (y, z, ū(x)) =
4∑
i=1

1Aiγ
i,n,m
t (y, z, u(x), ū(x))[u(x)− ū(x)]
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and[
2∑
i=1

1Aiγ
i,n,m
t (y, z, u(x), ū(x)) + 1A4γ

4,n,m
t (y, z, u(x), ū(x))

]
[u(x)− ū(x)]

≤ hn,mt (y, z, u(x))− hn,mt (y, z, ū(x))

(6.37)

and

hn,mt (y, z, u(x))− hn,mt (y, z, ū(x)) ≤

[
3∑
i=1

1Aiγ
i,n,m
t (y, z, u(x), ū(x))

]
[u(x)− ū(x)] (6.38)

Therefore, since the Lipschitz constant of h+,n (resp h−,m) is bounded by n (resp m), we

conclude ∂h+,n

∂u ≤ n (resp ∂h−,m

∂u ≤ m), we get from (6.32), (6.33),(6.35 and (6.38):

3∑
i=1

1Aiγ
i,n,m
t (y, z, u(x), ū(x)) ≤ (n ∨m) (6.39)

For the other hand, let us recall that for any functions ρ and ψ, we have:

inf
x
ψ(x)− inf

x
ρ(x) ≥ sup

x
[ψ(x)− ρ(x)], and inf

x
ψ(x)− inf

x
ρ(x) ≥ sup

x
[ψ(x)− ρ(x)]

Hence, we get for any u(x), ū(x) ∈ R:

h+,n
t (y, z, u(x))− h+,n

t (y, z, ū(x)) ≥ sup
v(x)
{h+

t (y, z, u(x)− v(x))− h+
t (y, z, ū(x)− v(x))}

(6.40)

and

h−,mt (y, z, u(x))− h−,mt (y, z, ū(x)) ≥ sup
v(x)
{h−t (y, z, u(x)− v(x))− h−t (y, z, ū(x)− v(x))}

(6.41)

We consider

B1 = {x ∈ E, ht(y, z, u(x)− v(x)) ≥ 0, ht(y, z, ū(x)− v(x)) ≥ 0},

B2 = {x ∈ E, ht(y, z, u(x)− v(x)) < 0, ht(y, z, ū(x)− v(x)) < 0}

B3 = {x ∈ E, ht(y, z, u(x)− v(x)) > 0, ht(y, z, ū(x)− v(x)) < 0},

B4 = {x ∈ E, ht(y, z, u(x)− v(x)) < 0, ht(y, z, ū(x)− v(x)) > 0}

On the set B1:
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h+
t (y, z, u(x)− v(x))− h+

t (y, z, ū(x)− v(x)) = ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))

and

h−t (y, z, u(x)− v(x))− h−t (y, z, ū(x)− v(x)) = 0

On the set B2:

h+
t (y, z, u(x)− v(x))− h+

t (y, z, ū(x)− v(x)) = 0

and

h−t (y, z, u(x)− v(x))− h−t (y, z, ū(x)− v(x)) = ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))

On the set B3:

h+
t (y, z, u(x)− v(x))− h+

t (y, z, ū(x)− v(x)) ≥ 0

and

h−t (y, z, u(x)− v(x))− h−t (y, z, ū(x)− v(x)) ≥ 0

On the B4:

h+
t (y, z, u(x)− v(x))− h+

t (y, z, ū(x)− v(x)) ≥ ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))

and

h−t (y, z, u(x)− v(x))− h−t (y, z, ū(x)− v(x)) ≥ ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))

Using (6.42) and (6.42), we get:

h+,n
t (y, z, u(x))− h+,n

t (y, z, ū(x)) ≥ sup
v(x)
{1B1∩B4 [ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))]}

(6.42)

and

h−,mt (y, z, u(x))− h−,mt (y, z, ū(x)) ≥ sup
v(x)
{1B2∩B4 [ht(y, z, u(x)− v(x))− ht(y, z, ū(x)− v(x))]}

(6.43)

Since

ht(y, z, u(x)−v(x))−ht(y, z, ū(x)−v(x)) = (u(x)−ū(x))

∫ 1

0

∂ht
∂u

[y, z, ν(u(x)−v(x))+(1−ν)(u(x)−v(x)))dν
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The BSDE coefficient satisfies (DC) condition then ∂ht
∂u > −1 and taking u(x) = ū(x) + h,

we condlude:
∂h+,n

t

∂u
> −1 and

∂h−,mt

∂u
> −1.

Therefore we get from (6.38): ,
∂hn,mt
∂u > −1 and we finally conclude from (6.39) −1 <

∂hn,mt
∂u ≤ n ∨m and

hn,mt (y, z, u(x))− hn,mt (y, z, ū(x)) = (u(x)− ū(x))

∫ 1

0

∂hn,mt
∂u

(y, z, νu(x) + (1− ν)ū(x))dν

Therefore for any triple (Y,Z, U) ∈ S2×H2×H2
λ,

∂hn,mt
∂u (Y, Z, U).µ̃ ∈ BMO then belongs

to Uexp. The sequence fn,m satisfies the Aγ condition.
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gales. Séminaire de Probabilités (Strasbourg) XIII 1977/78, LNM 721, Springer-Verlag

371-377 (1979).

[17] Dellacherie, C., Meyer, P.A. Probabilités et Potentiel. Chap. V-VIII. Hermann, Paris

(1980 ).

[18] Delbaen, F., Tang, S. Harmonic analysis of stochastic equations and backward stochas-

tic differential equations, Probability theory and Related Fields, 146, 291-336 (2010).

[19] Duffie, D. and Epstein, L. G. Stochastic differential utility. Econometrica 60, 353-394

(1992).

[20] El Karoui, N. Les aspects probabilites du contrôle stochastique, in Ecole d’été de Saint-
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[45] Meyer, P.A, Yoeurp, C. Sur la décomposition multiplicative des sous-martingales pos-
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