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1. Introduction
Our main interest is the following system of semilinear stochastic PDE with value in R,
dug(z) + [Lur(x) + fi(z,ue(x), Vugo(z))]dt + he(z, ue(z), Vuio(x)) ~d1</\_/t =0, (1.1)

over the time interval [0, 7). The final condition is given by upr = ®, f, h are non-linear random
functions and £ is the second order differential operator which is defined component by component
by

d 2

Cole) = Do)z + %Z_ (a) gl (1.2
The integral term with th refers to the backward stochastic integral with respect to a d-
dimensional Brownian motion on (Q,]—" P, (Wt)tzo)- We use the backward notation because in
the proof we will employ the backwards doubly stochastic framework introduced by Pardoux and
Peng [34].
Such SPDEs appear in various applications like pathwise stochastic control problems, the Zakai
equations in filtering and stochastic control with partial observations. It is well known now that
BSDEs give a probabilistic interpretation for the solution of a class of semi-linear PDEs. By in-
troducing in standard BSDEs a second nonlinear term driven by an external noise, we obtain
Backward Doubly SDEs (BDSDEs in short) [34] (see also [3], [29]), which can be seen as Feynman-
Kac representation of SPDEs and provide a powerful tool for probabilistic numerical schemes [1]
for such SPDEs. Several generalizations to investigate more general nonlinear SPDEs have been
developed following different approaches of the notion of weak solutions, namely, Sobolev’s solu-
tions [12, 16, 20, 37, 40|, and stochastic viscosity solutions [25, 26, 27, 7, §].

Given a convex domain D in R¥, our paper is concerned with the study of weak solutions to the
reflection problem for multidimensional SPDEs (1.1) in D by introducing the associated BDSDE.
Inspired by the variational formulation of the obstacle problem for SPDEs and Menaldi’s work [32]
on reflected diffusion, we consider the solution of the reflection problem for the SPDEs (1.1) as
a pair (u,v), where v is a random regular measure and u € L*(Q x [0,T]; H'(R?)) satisfies the

following relations :

(i) ug(r) € D, dP®dt®dr— a.e.,

(i1) duy(z) + [ Lue(z) + fi(z, ui(x), Vugo(x)) | dt + he(z, ui(2), Vugo () - dwt = —v(dt,dz), a.s.,
(7i1) v(u ¢ OD) =0, a.s.,

(i) up =@, dx—ae..

(1.3)

v is a random measure which acts only when the process u reaches the boundary of the domain
D. The rigorous sense of the relation (i7¢) will be based on the probabilistic representation of the
measure v in terms of the bounded variation processes K, a component of the associated solution
of the reflected BDSDE in the domain D. This problem is well known as a Skorohod problem for
SPDEs.

In the case of diffusion processes in a domain, the reflection problem has been investigated by
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severals authors (see [38], [41], [9], [28]). In the case of a convex domain this reflection problem
was treated by Tanaka [39] and Menaldi [32] by using the variational inequality and the convexity
properties of the domain.

In the one dimensional case, the reflection problem for nonlinear PDEs (or SPDEs) has been
studied by using different approaches. The work of El Karoui et al [14] treats the obstacle problem
for viscosity solution of deterministic semilinear PDEs within the framework of backward stochastic
differential equations (BSDEs in short). This increasing process determines in fact the measure from
the relation (i7). Bally et al [2] (see also Matoussi and Xu [31]) point out that the continuity of
this process allows the classical notion of strong variational solution to be extended (see Theorem
2.2 of [5] p.238) and express the solution to the obstacle as a pair (u,v) where v is supported by
the set {u = g}.

Matoussi and Stoica [30] have proved an existence and uniqueness result for the obstacle problem
of backward quasilinear stochastic PDE on the whole space R? and driven by a finite dimensional
Brownian motion. The method is based on the probabilistic interpretation of the solution by us-
ing the backward doubly stochastic differential equation. They have also proved that the solution
u is a predictable continuous process which takes values in a proper Sobolev space and v is a
random regular measure satisfying the minimal Skohorod condition. In particular, they gave for
the regular measure v a probabilistic interpretation in terms of the continuous increasing process
K where (Y, Z, K) is the solution of a reflected generalized BDSDE.

On the other hand, M.Pierre [35, 36] has studied parabolic PDEs with obstacles using the
parabolic potential as a tool. He proved that the solution uniquely exists and is quasi-continuous
with respect to the analytical capacity. Moreover he gave a representation of the reflected measure
v in terms of the associated regular potential and the approach used is based on analytical quasi-
sure analysis. More recently, Denis, Matoussi and Zhang [11] have extended this approach for the
obstacle problem of quasilinear SPDEs when the obstacle is regular in some sense and controlled
by the solution of a SPDE.

Nualart and Pardoux [33] have studied the obstacle problem for a nonlinear heat equation on the
spatial interval [0, 1] with Dirichlet boundary conditions, driven by an additive space-time white
noise. They proved the existence and uniqueness of the solution and their method relied heavily
on the results for a deterministic variational inequality. Donati- Martin and Pardoux [13] gener-
alized the model of Nualart and Pardoux. The nonlinearity appears both in the drift and in the
diffusion coefficients. They proved the existence of the solution by penalization method but they
did not obtain the uniqueness result. And then in 2009, Xu and Zhang solved the problem of the
uniqueness, see [42]. We note also that Zhang established in [43] the existence and uniqueness of
solutions of system (1.3) in the forward case when z belongs to [0, 1]. He approximated the system
of SPDEs by a penalized system and used a number of a priori estimates to prove the convergence
of the solutions. However, in all their models, they do not consider the case where the coefficients

depend on Vu.

Our contributions in this paper are as following: first of all, reflected BDSDEs in the convex
domain D are introduced and results of existence and uniqueness of such RBDSDEs are estab-

lished. Next, the existence and uniqueness results of the solution (u,r) of the reflection problem
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for (1.1) are given in Theorem 3.1. Indeed, a probabilistic method based on reflected BDSDEs and
stochastic flow technics are investigated in our context (see e.g. [3], [29], [24, 23] for these flow
technics). The key element in [3] is to use the inversion of stochastic flow which transforms the
variational formulation of the SPDEs to the associated BDSDEs. Thus it plays the same role as
It6’s formula in the case of the classical solution of SPDEs.

We also mention the works [10], [17] and [18] where they have studied a Reflected BSDEs with
oblique reflection in multi-dimensional case and their relations to switching problems.

This paper is organized as following: in Section 2, first the basic assumptions and the defini-
tions of the solutions for Reflected BDSDE in a convex domain are presented. Then, existence and
uniqueness of solution of RBDSDE (Theorem 2.1) is given under only convexity assumption for
the domain without any regularity on the boundary. This result is proved by using penalization
approximation. Thanks to the convexity properties we prove several technical lemmas, in particular
the fundamental Lemma 2.2. In Section 3, we study semilinear SPDE’s in a convex domain. We
first provide useful results on stochastic flow associated with the forward SDEs, then in this setting
as in Bally and Matoussi [3], an equivalence norm result associated to the diffusion process is given.
The main result of this section Theorem 3.1 is the existence and uniqueness results of the solution
of reflected SPDEs in a convex domain. The proof of this result is based on the probabilistic inter-
pretation via the Reflected Forward-BDSDEs. The uniqueness is a consequence of the variational
formulation of the SPDEs written with random test functions and the uniqueness of the solution
of the Reflected FBSDE. The existence of the solution is established by an approximation penal-
ization procedure, a priori estimates and the equivalence norm results. In the Appendix, technical
lemmas for the existence of the solution of the Reflected BDSDEs and SPDEs in a convex domain

are given.

2. Backward Doubly Stochastic Differential Equations in a domain
2.1. Hypotheses and preliminaries

The euclidean norm of a vector # € R* will be denoted by |z|, and for a k x k matrix A, we define
|All = VTrAA*. In what folllows let us fix a positive number T > 0.
Let (2, F,P) be a probability product space, and let {Wy,0 < s <T} and {Bs,0 < s < T} be two
mutually independent standard Brownian motion processes, with values respectively in R? and in
R. For each t € [0, 7], we define

Fo=FP VI VN

where 7P = 0{B,,0 < r <t}, F'%p = o{W, = W;,t <r < T} and NV the class of P null sets of
F. Note that the collection {F;,t € [0,T]} is neither increasing nor decreasing, and it does not
constitute a filtration.

2.1.1. Convexity results

Besides, we need to recall properties related to the convexity of a nonempty domain D in R¥. Let

OD denote the boundary of D and 7(x) the orthogonal projection of x € R* on the closure D. We
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have the following properties:

(2' —2)"(z —n(zx)) <0, Yz eRF V2’ €D (2.1)
(2 — )" (x —n(x) < (¢' —7(2)*(x — 7(2)), Vr,2’ €RF (2.2)
Ja € D,y > 0, such that (z — a)*(z — w(x)) > |z — 7(x)|, Ve e R (2.3)

For x € 0D, we denote by n(x) the set of outward normal unit vectors at the point .

To avoid technical complications, we will focus our study on domain D which satisfy the following

assumption:
Assumption 2.1. (i) D is a reqular domain (i.e. a convex domain with class C* boundary).

(i) 0 € D.

Remark 2.1. If not we can approximate our convex domain D by regular conver domains In-
deed, we define a sequence of regular convexr domains which approzimate uniformly D. Indeed,

the function h(x) = d(x, D):= in]g|:v —y| is convex and uniformly continuous in R¥. If we denote
ye

(9s)o<s<s, the approximation identity with compact supports, then hs = gs * h is a sequence of
regular convex functions which tends uniformly to h as § — 0. For a fized n > 0, {x, hs(x) < n}
are regular conver domains that converge uniformly in the Hausdroff metric to {z,d(z, D) < n}
when § tends to 0. Letting n — 0, we conclude that for all € > 0 there exists a reqular convex

domain D, such that

supd(xz,D.) <e and sup d(z,D)<e (2.4)
zeD €D,

One can find all these results in Menaldi [32], page 737.
2.1.2. Functional spaces and assumptions

Hereafter, let us define the spaces and the norms which will be needed for the formulation of the
BDSDE in a domain.

- LY (Fr) the space of k-dimensional Fr-measurable random variables £ such that
€11 == E(IE]7) < +o00;

- H3,,([0,T7) the set of (classes of dP®@dt a.e. equal) kx d-dimensional jointly measurable processes

such that Z; is F;-measurable for a.e. t € [0,7] and

T
122, = E| / \Z4/2dt) < +oo:
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- S%([0,T)) the space of R¥-valued processes Y = (Y;);<7, with continuous paths such that Y; is
Fi-measurable and

1Y [|Z := E[sup [V;|*] < +o00;
t<T

- A2([0,T)) the space of R¥-valued processes K = (K¢ )i<r, with continuous and bounded variation
paths such that K; is F;-measurable, Ky = 0 and

| K% := E[sup |K;|*] < +o0.
t<T

We next state our main assumptions on the terminal condition £ and the functions f and h:
Assumption 2.2. ¢ € L3(Fr) and £ € D a.s.

Assumption 2.3. f:Q x [0,T] x RF x RF*d 5 RF | h: Q x [0,T] x RF x R¥*4 — RF*L gre two
random functions verifying:

(i) For all (y,z) € RF x R¥*4 fi(w,y,2) and he(w,y, z) are F;- measurable.

T T
(ii) E[/O |f:(0,0)Pdt] < 400, E[/O [[¢(0,0)[]?dt] < +o0.

(iii) There exist constants c > 0 and 0 < o < 1 such that for any (w,t) € Qx[0,T]; (y1,21), (y2,22) €
RF x Rkxd

A

|fe(yr,21) = fe(y2, 22)7 < e(lyn — vol® + 21 — 22/%)
he(yrs 21) — he(y2, 22) I < clyr — yal* + allz1 — 22|

We denote by ff := fi(w,0,0) and h? := hy(w,0,0).

We add the following further assumption:
Assumption 2.4. (i) £ € L (Fr).

(ii) There ezist ¢ >0 and 0 < 3 < 1 such that for all (t,y,z) € [0,T] x RF x Rk*d
hehi(y, z) < e(Idgx +yy*) + B 22"

(iii) f and h are uniformly bounded in (y, z).

Remark 2.2. 1. The Assumption 2.4 (i) and (ii) are needed to prove the uniform L*-estimate
for (Y™, Z"™) solution of BDSDE (2.10) (see estimate (C.1) in the Appendix C). This is
crucial for our proof of the fundamental Lemma 2.2.

2. The Assumption 2.4 (iii) is only added for simplicity and it can be removed by standard
technics of BSDEs. The natural condition instead of (iii) is f© and h° in L*(Q, F,P).

Now we introduce the definition of the solution of BDSDESs in a domain.

Definition 2.1. The triplet of processes (Yi, Zi, Ki){o<i<ty 15 a solution of the backward doubly

stochastic differential equation in a convexr domain D, with terminal condition & and coefficients f

and h, if the following hold:
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(i) Y € S([0,T]) . Z € HE,4([0,T]) and K € AZ([0,T]),
(ii)
T T T
Y, =§+/ fs(YS,ZS)ds—i—/ hs(yg,zs)dfa_/s—/ Z,dB+Kr—K;, 0<t<T a.s. (2.5)
t t t

(iii) e D, 0<t<T, as.

(iv) for any continuous progressively measurable process (z;)o<i<T valued in D,
T
/ (Y — 2)"dK, <0, a.s. (2.6)
0

The triplet (Y:, Zt, Kt){o<i<1} 15 called a solution of RBDSDE with data (&, f,h).

Remark 2.3. From Lemma 2.1 in [15], the condition (2.6) implies that the bounded variation pro-
cess K acts only when'Y reaches the boundary of the conver domain D and the so-called Skorohod

condition is satisfied:
T
/ liyv,epydKy = 0. (2.7)
0

Moreover there exits an Fi-measurable process (ou)o<i<r valued in R* such that
t
K; :/ asd|Ksllvr  and — as € n(Ys).
0

In the following, C' will denote a positive constant which doesn’t depend on n and can vary from

line to line.

2.2. Ezistence and uniqueness of the solution

In this section we establish existence and uniqueness results for RBDSDE (2.5).

Theorem 2.1. Let the Asumptions 2.1, 2.2, 2.8 and 2.4 hold. Then, the RBDSDE (2.5) has a
unique solution (Y, Z,K) € S([0,T]) x Hz, ,([0,T]) x AZ([0,T7).

Proof.
a) Uniqueness: Let (Y1, Z1 K1) and (Y2, Z2%, K?) be two solutions of the RBDSDE (2.5). Ap-
plying generalized It6’s formula (Lemma 1.3 in [34] p.213) yields
T T
YE-vER o+ [lzi-ZPas=2 [ (oY (Y2 - fAYE ZD)ds
t t
T

T
+ 2/ (V) = Y2) (ha(V2, Z8) — ha(V2, Z2))dWV, — 2 | (v —¥2)(2! — 22)dB,
t

t

T T
b [0y aR - )+ [z - 2P (29
t ¢
Moreover, under the minimality condition (iv) we have
T
/ (Y} - YH*(dK! —dK?) <0, forall tel0,T]. (2.9)
t

Then, plugging (2.9) in (2.8) and taking expectation we obtain
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T T
mﬁ—ﬁm«+Evnﬂ—ﬁWMsmM<w—ﬁﬂmwzb<mﬁzmm
t t
T
+ B[ (2D - b2 ZD)|ds)
t

Hence from the Lipschitz Assumption on h and the inequality 2ab < ea? + ¢~ 12, for all € > 0, it
follows that

T T
BV} - Y2 + B[ |2 Z2Pds) < (c+ OB |VY - V2P
t t

T T
—%eﬂm/ ma$Zb—ﬁ0ﬁZbﬁm+am/|M§—£W@L
t t

2
where 0 < a < 1. Choosing € = T ° and using the Lipschitz Assumption on f, we get

2c +1—a
l—« 2

T T
mﬁ—ﬁm«+ﬁvnﬂ—£WMs@+ mv|m—ﬁWﬂ
t t

11—«
+

T T
B[ 112} - Z2Pds) + o[ |12} - 227
t t
Consequently

1- T 2 1- r
B, ~ Y2+ (B[ 12 - Z21Pds) < (et 1o+ SB[ Y- V2P,
t - t

+

T
From Gronwall’s lemma, E[|Y,! — Y}2|?] =0, 0 <t < T, and IE[/ |ZL — Z2||?ds] = 0.
0

b) Existence: The existence of a solution will be proved by penalisation method. For n € N, we
consider for all ¢ € [0, T,

T

T T T
yn — §+/ fs(ysn,zg)dH/ ha(Y, Z0dIW s —n [ (Y2 — 2(Y))ds —/ ZmdB,. (2.10)
t t t

t
From Pardoux and Peng [34] (Theorem 1.1), we know that the above equation admits a unique

solution with coefficient f™ and h, where f™(t,x,y) = f(t,z,y,2) — n(y — 7 (y)).
¢
Denote by K7* := —n [ (V)" — n(Y)'))ds. In order to prove the convergence of the sequence

0
(Y™ Z™ K™) to the solution of our RBDSDE (2.1), we need several lemmas.

We start with the following lemma:
Lemma 2.1. There exists a constant C' > 0 such that

T
C
Vn € N IE[/ d*(Y D)ds] < — (2.11)
0
Proof. For the sake of simplicity, we treat only the case where D is a convex set with class C?

boundary implying that the function p(x) = d?(z, D) = |z — m(z)|? belongs to C? (see Subsection
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2.1.1 and Appendix A). Thus, we apply generalized 1t6’s formula (Lemma 1.3 in [34] p.213) to
p(Y;") to obtain

T T
o7 45 [ tracel 2 2 Hessp(V)lds = &)+ [ (VoY) (V2 23)ds
T T
- / (Vp(Y)* Z7dB, + / (Vp(Y™) ha(Y2, Z0)dIT, (2.12)

! T
g [ tracellha ) (V2 Z2) Hessp(V2))ds = 2n [ (V7 = m(V2)) (47 = m(V2))ds.

Since ¢ € D a.s., we have that p(¢) = 0. We get from the fact that |Vp(z)[? = 4p(x) and the
boundedness of h and the Hessian of p

1 (7 T
p00) 45 [ tracel 22 Hessp(vlds +2n [ 2052, Dy
¢ ¢

T T
<2 / (YN 21 F (YD, 20)\ds — 2 / (V7 — (Y") Z1dB, (2.13)

T
b2 [ = w2+ C
t
Now the inequality 2ab < a? + b? with a = gp(ysn) yields

(PYI)IL 2] < TV 4 O 2D

Then it follows that,
n 1 T n r7n* n 3n T 2 n
p(Y) + B trace[Z? Z?* Hessp(Y])]ds + - d“(Y)',D)ds
t t
T4 T
<2 [ R0z -2 [ (7 - w0y 2348, (214)
t N t
T
w2 [ = ) b 22+
t
By taking expectation and using the boundedness of f, we have

T T
E[p(Y;")] + %E[/t trace[Z7 Z™* Hessp(Y")]ds] + %"E[/ d*(Y)', D)ds] < C(1+ %). (2.15)

t

Hence, the required result is obtained. O

The next lemma plays a crucial role to prove the strong convergence of (Y™, 2™ K™).

Lemma 2.2.

E[ sup (d(Yt",D))“} 0. (2.16)

0<t<T n—-4o0o

Proof. We denote by p(x) = d?(x, D) and p(x) = p?(x). By applying Itd’s formula to ¢(Y;*) =
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d*(Y;*, D), we obtain that
1 T T
P+ 5 [ tracel 222y HesspV)lds = o(€) + [ (Vv 1.7 22)ds
t t
T T
- [ ey zias [Ty havr 2l (2.17)
t t
1 T T
by [ tracel(hahd) (V2 22 HesspYds —n [ (Vv (2 = m(V))ds,
t t

Since &€ € D a.s., we have that ¢(£) = 0 and the chain rule of differentiation gives that

V(@) = 2p(x)Vp(z) = 4p(z)(z — 7(z)) (2.18)
2Vp(z)(Vp(z))" + 2p(x)Hessp(x). (2.19)

Hessp(z)
Then it follows that
1 T T
D)+ [ tracel 222 HesspY2)ds =4 [ (o) (V2 = (V) (V2 22)ds
t t
T T
[ = R () 2B 4 [ (Y = mY) b2, 22T (220)
t t
1 T T
+ 5/ trace[(hshi) (YY), Z2)Hesso(Y)]ds — 4n/ p*(Y)ds.
t t

By taking expectation we have
1 T T
Elo(Y;")] + QE[/ trace[Z1 Z* Hessp(Y")|ds] +4nIE[/ (Y.)ds]
¢ ¢
T
=1 [ (7 = (V) £ 22 221
t
1 T
+ §IE[/ trace[(hsh2) (Y, Z7)Hessp(Y])]ds].
¢
For the last term, we get from the fact that |Vp(x)|? = 4p(z) and the boundedness of h and Hessp
T T
B[ [ tracel(h ) (7, Z) Hesso(v2)ds) < 28] [ (2, 22), () s
t t

+8[ [ " 2p(Y 2 tracel(hu ) (Y, Z2) Hessp(Y2))ds]

. ., (2.22)
< e[ [ [wpvrPas] + e[ [ o
t t
T
< CE{/ @y, D))%zs]
0
Now the inequality 2ab < a? + b2 with a = (d(Y*, D))? and the boundedness of f yield
4V D) Ifs (Y Z0)| < 2(d(Y, D)) +2(d(Y]", D)) fs (Y], Z7)|? (2.23)

< 20(Y") +2C(d(Y]", D))
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By plugging the estimate (2.23) and (2.22) in (2.21), we obtain thanks to lemma 2.1
1 T T
Elo(Y;")] + EE[/ trace[Z} Z1* Hessp(Y)")|ds| + (4n — Q)E[/ o(Y")ds]
t t

Ly

n2

(2.24)

<cm] [ oy pytas) <ot +
0 n

Notice also that Hessian of ¢(Y") is a positive semidefinite matrix since ¢ is a convex function, so

we get that K| / trace[Z Z1* Hessp(Y.")|ds] > 0 and consequently,
Ji

1

sup Elp(Yy")] < C(= + —). (2.25)
0<t<T non

Moreover, we can deduce from (2.24) that, for every ¢t € [0,T]
T
IE[/ trace[Z1 Z7* Hessp(Y]")]ds] — 0, asn — oo. (2.26)
0

On the other hand, taking the supremum over ¢ in the equation (2.20), by Burkholder-Davis-

Gundy’s inequlity and the previous calculations it follows that

E[ sup o(¥/")] < CE| /0 ) p(YS")ds] + CE[ /0 T(d(ysn7 D))? ds}

T
+CE[ swp [ (o )Vv)) 22aB
0<t<T Jt

T
+ CE[ sup / (V7T (V)) ha (Y7, 22T
0st<T Ji (2.27)

< CE[ / " o(vds] + CE| / (v, Dy

+oE[( /OT<p<Y;”>>2<Vp<Y;">7 z;)%ds) 1/2}

v om[( [ ootz zoras)

From the boundedness of h and the fact that |Vp(z)|? = 4p(x), we have

1/2 1/2}

e[( [ toomrmorn. o znyas) ] < cul( [ omaorn)

< CE[ swp (p(v1)"*( / Covmas) ] (2.28)

0<s<T

< EE[OEEET%Y;")} + CQE[ /O T(d(Y;ﬂ,D))?ds].

By the Holder’s inequality, we obtain

1/2} 1/2

< e[ s (o)"*( [ (Valvm), Z3)s)

0<s<T 0

< EE[O?;ET@O@")} + CQE{/OT<VP(52")=Z?>2dS]

([ totv o 22
(2.29)
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Substituting (2.28) and (2.29) in (2.27) leads to

T T
Bl sup (7)) < CE[ | o(v?)ds] + CE[ [ (d(vy,D)ds
0<t<T 0 0 (2'30)

T
+ C2]E[/ (Vp(Y), ZS”)st}.
0
In the other hand, Hessian of p(Y") is a positive semidefinite matrix since p is a convex function, so
we get that ]E[/ trace[Z1 Z1* p(Y))Hessp(Y]")]ds] > 0. By the equation (2.19), we can deduce

Jt
that
T T
QE[/ <Vp(YSn),Z§>2ds} < E[/ trace[Z" Z™ Hessp(Y")]ds], (2.31)
JO 0

and from (2.26), we get
T
E[/ (Vo(Y™), Zg>2ds} 3 0asn — oo.
0

Finally, by using (2.25), (2.30) and Lemma 2.1, we get the desired result. O

Remark 2.4. Contrary to Gegout-Petit and Pardouz [15], we have to prove the fundamental lemma
with power 4 instead of 2. In fact, if we apply the genelized 1t6’s formula to p(Y;*) = d*(Y,", D)

we obtain that

1 T T
p(7) 45 [ tracel 22 Hessp(¥2)ds =p(€) + [ (Vo)) (V2 22)ds
t t
T T
- [ oty zaB. [ (Tp) Yy, 22T (2.32)

43 [ tracel (hh) (7. 22 Hessp(V)lds = [ (Vo) 07 = =(2))ds.

To prove the fundamental lemma, we need to estimate all the terms in the right hand side of the
above equation in terms of quantities which depend on n. But, since Hessp is bounded we get

T T
B[ [ tracel(huh) (v 20 Hessp(¥?lds) < CE[ [ na(vy, 20)|ds].
t t

Then, there is no hope to obtain the required convergence to 0.

Lemma 2.3. The sequence (Y™, Z") is a Cauchy sequence in S([0,T]) x H3, 4([0,T1), i.e.
T
E[ sup |Y,* — Y™ —|—/ 12 — Z™||?dt] — 0 as n,m — +oo.
0<t<T 0

Proof. For all n,m > 0, we apply Ito formula to |Y,;* — Y;™|?

T T
Y=Y [ 12 - 2p s =2 [0 - Y00 20 - £ ZT)ds
t t

T T
2 [ vy 2 2 — vzl -2 [ vz - 2.
t t
! . (2.33)
b [ e 2~ b 22 s = 2 [ = Yy (s
t t

T
am [ YO - R (),
t



Matoussi, Sabbagh and Zhang /BDSDEs in a convex domain 13

By the property (2.2), we have

T T
o / (Y = V™) (V7 — m(Y7))ds + 2m / (V7 — Y (V" — (Y™))ds

(2.34)

— S S S S

T
<2(n+ m)/t (Y7 — a(Y)* (Y — n(Y™))ds.

Hence, from the Lipschitz continuity on f and h, and taking expectation yields

T T
E[IW—K’”IQHE[/ 123 — Z|2ds] < 21E[/ CY! =Y + v = Y| 28 — 27 ds]
t t

T
VB[ oY - YR+ alzy - 2 (2.35)
t

T
+2(n + m)E[ / (Y7 — m(Y) (Y — w(Y™))ds).

For the last term, we need the following lemma whose proof is postponed in the Appendix.

Lemma 2.4. There exists a constant C' > 0 such that, for each n > 0,

E[(n /OT d(YS",D)ds)2] <cC (2.36)

Now we can deduce from the Holder inequality and Lemma 2.4 that

T T
nE| / (Y7 — w(Y2)* (V2" — w(Y;"))ds] < nE] / d(Y, D)A(Y™, D))ds]

S S

T
< nB[ sup d(v",D) [ (v, D)ds)
0<s<T t

T 2.\ 1/2 1/2 (2.37)
< (E[(n [ d(Y, D)ds E[ sup d*(Y,",D
< (El(n [ 02 D)as) 1) (Bl sup 7. D)
1/2
< C(El swp a*(v;",D)]) "
0<s<T
Substituting (2.37) in the previous inequality (2.35), we have
T 1 T
By~ ¥+ (1 - o - O9B( | 1127 - Z7Pas) < v DE([ vy -
t t
1/2 1/2
+C(IE[ sup dQ(YS",D)]) +C(E[ sup d2(YS’”,D)]) .
0<s<T 0<s<T
Choosing 1 — a — Cy > 0, by Gronwall’s lemma, we obtain
1/2 1/2
sup EI|Y;" - ¥;" | < O(E[ sup d*(v;".D)]) " +C(E[ sup (V) D)) . (238)
0<t<T 0<s<T 0<s<T

We deduce similarly

T 1/2 1/2
E| / 12— zp|Pas) < 0(BL sup (v, D))"+ O(B[ swp (D)) (239)
0 0<s<T 0<s<T
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Next, by (2.33), the Burkholder-Davis-Gundy and the Cauchy-Schwarz inequalities we get

T
Bl sup Y7~ ¥/ < CE[[ Y2 = YA Y2 22) = £V 2]
0<t<T 0

T T
+ CE( / VI — Y Pl (Y, Z0) — ho(Y™, Z)|2ds) 4+ CE( / YR Yr Pz - 27 Pds)
0 0

T T
B[ OV = YR+ |27 = ZP)ds)+ 20+ m)B[ [ (] = m(¥7) (1" = m(V")ds)
0 0
Then, it follows by the Lipschitz Assumption 2.3 on f and h and (2.37) that for any n,m >0

1/2 1/2
E[ sup |V~ < C(E[ swp d*(v;", D)) +C(E[ sup a*(¥", D))
0<t<T 0<s<T 0<s<T

T
+CE( sup Y7~ Y [ 27 - 27 sy
0<t<T 0

1/2 1/2
< C(E[ sup a(v;",D)]) " +C(E[ swp d*(v)", D))
0<s<T 0<s<T

T
+CB( sup [V = Y) 4 ([ 122 - 2Pds),
0<t<T 0

Choosing 1 — Ce > 0 and from the inequality (2.39) we conclude that

1/2 1/2
E[ sup |V~ < C(E[ swp d*(v;", D))~ +C(E[ swp a*(¥;",D)))

0<t<T 0<s<T 0<s<T
1/4 1/4
< C(E sup a'(v;",D)]) " +C (B[ sup d*(v?,D)]) " —0,
0<s<T 0<s<T
as n,m — oo, where Lemma 2.2 has been used. O

Finally, we conclude that (Y™, Z") is a Cauchy sequence in S7([0,7]) x H3,4([0,T]) and therefore

there exists a unique pair (Y;, Z;) of Fi- measurable processes which valued in R* x R**4_ satisfying

T
E( sup |V} - Y;|? +/ |Z — Zy?dt) = 0 as n — oo. (2.40)
0<t<T 0

Consequently, since for any n > 0 and 0 <t < T,

t
KP KD =Y Y Y7 Yy - / (Y7, Z0) — oY, Z)ds

t ' (2.41)
- [z - nm zmytv. s [z - zmas..
0 0
we obtain from (2.40) and Burkholder-Davis-Gundy inequality,
E( sup |K}' — K{"|*) =0 as n,m — oo. (2.42)

0<t<T

Hence, there exists a F- adapted continuous process (Ky)o<t<r ( with Ko = 0) such that

E( sup |K; — K'[*) =0 as n — oo.
0<t<T
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Furthermore, (2.36) shows that the total variation of K™ is uniformly bounded. Thus, K is also of
uniformly bounded variation. Passing to the limit in (2.10), the processes (Y3, Z, Kt)o<i<r satisfy

T T T
Yt=§+/ fs<Ys,Zs)ds+/ hs(Y;,ZS)dWS—/ Z,dBy + Kr—K;, 0<t<T.
t t t

Since we have from Lemma 2.2 that Y; is in D, it remains to check the minimality property for

(K:), namely i.e., for any continuous progressively measurable process (z;) valued in D,

T
/ (th — Zt)*th S 0.
0

We note that (2.1) gives us

T T
[ = ayary = —n [ =y = m()ie <o,
0 0

T
Therefore, we will show that we can extract a subsequence such that / (Y — z)*dK}' converge
0

T
a.s. to / (Y; — z¢)*dK;. Following the proof of Lemma B.1 in Appendix, we have
0

T T
2K v < l6-aP 42 [ (07 - @fRZDds +2 [0 - ahu (v 22T
0 0

T T
b [ zds -2 [ - a2z, (2.43)
0 0

Notice that the right hand side tends in probability as n goes to infinity to

T T T T
eaPs2 [ (i) Ve Z0ds2 [ (Vimaha (Ve Z0alT ot [ (¥ Z0)Pds—2 [ (Vi) Z.dB.
0 0 0 0
Thus, there exists a subsequence (¢(n)),>0 such that the convergence is almost surely and || K¢ ||y 7

is bounded. Moreover, due to the convergence in L2 of sup |V, —Y;|? to 0, we can extract a sub-
0<t<T

sequence from (¢(n))n>0 such that Y¢# () converges uniformly to Y. Hence, we apply Lemma
5.8 in [15] and we obtain

T T
Y¢(¢(n)) — *dK¢>(w(n))) N Y; — z)*dK; a.s. as n— o0
( t t
0 0

which is the required result. |

3. Weak solution of semilinear SPDE in a convex domain

The aim of this section is to give a Feynman-Kac’s formula for the weak solution of a semilinear
reflected SPDEs (1.3) in a given convex domain D via Markovian class of RBDSDEs studied in
the last section. As explained in the introduction, the solution of such SPDEs is expressed as a
pair (u,r) where u is a predictable continuous process which takes values in a Sobolev space and v
is a signed Radon regular measure. The bounded variation processes K component of the solution
of the reflected BDSDE controls the set when u reaches the boundary of D. In fact, this bounded
variation process determines the measure v from a particular relation by using the inverse of the
flow associated to the diffusion operator.
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3.1. Notations and Hypothesis

Let us first introduce some notations:

- C7%(RP,RY) the set of C"-functions which grow at most linearly at infinity and whose partial
derivatives of order less than or equal to n are bounded.

- L2 (Rd) will be a Hilbert with the inner product,

(), = / @) v (@) wia)da, [lul, = ( / () w(x)dx) .

Assumption 3.1. We assume that w is the weight function that satisfy the following conditions:

e w is a continuous positive function.

1
e w 1is integrable and — is locally integrable.
w

In general, we shall use for the usual L2-scalar product
(u,v) :/ u(z)v(zx) de,
Rd

where u, v are measurable functions defined in R? and uv € L (R9).
Our evolution problem will be considered over a fixed time interval [0,7] and the norm for an
element of L2 ([0,7] x R?) will be denoted by

T 3
||u||2,2—</O /Rd|u(t,:c)|2w(a:)da:dt> .

We assume the following hypotheses :
Assumption 3.2. & : R? — R* belongs to L2 (RY) and ®(x) € D a.e. Vo € RY;

Assumption 3.3. (i) f:[0,T] xR x RF x R¥*4 — R* and h : [0,T] x R% x RF x R¥*d — RFxI
are measurable in (t,x,y,z) and satisfy f°,h° € L2, ([0,T] x R?) where f(z) := f(t,z,0,0),
hY := h(t,,z,0,0).

(ii) There exist constants c > 0 and 0 < o < 1 such that for any (t,x) € [0, T]xR?; (y1,21), (ya, 22) €
RF x Rkxd

A

\fe(z,y1,21) = fr(zyz, )P < e(lyr — vol® + |21 — 22/%)
[he(z, 1, 21) — hu(z, 2, 22)[17 < clyn — y2f® + allzn — 2.

Assumption 3.4. The coefficients b and o of the second order differential operator L (1.2) satisfy
be Cﬁb(Rd;Rd), o€ Cﬁb(Rd;RdXd).

Assumption 3.5. (i) ® € L (R9).
(ii) There ezist ¢ >0 and 0 < 3 < 1 such that for all (t,z,y,z) € [0,T] x R*¥ x Rk*d

he by (z,y, z) < c(Idgr + yy*) + B 22"

(iil) f and h are uniformly bounded in (x,y, z).
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3.2. Weak formulation for a solution of Stochastic PDEs
The space of test functions which we employ in the definition of weak solutions of the evolution
equations (1.1) is Dy = C>([0,T]) ® C° (R?), where

e C>™(]0,T]) denotes the space of real functions which can be extended as infinitely differen-
tiable functions in the neighborhood of [0, 7],

e CX (Rd) is the space of infinite differentiable functions with compact supports in R<.

We denote by Hp the space of f%-progressively measurable processes (u;) with values in the
weighted Sobolev space H} (R?) where

Hy(RY) == {v € LZ(R?) | Vvo € L2 (R%)}

endowed with the norm

T
g, =E[ sup Juelg+ [ [ [Vu(@o@Pdsu(is],
0<t<T R Jo

where we denote the gradient by Vu(t, z) = (1u(t, z), -, dqu(t, x)). Here, the derivative is defined

in the weak sense (Sobolev sense).

Definition 3.1 (Weak solution of regular SPDE). We say that u € Hr is a Sobolev solution
of SPDE (1.1) if the following relation holds, for each v € Dr,

T T
/t (u(s,2), up(s, 2))ds + (u(t, 2), (b, 2)) — (B(), (T, x)) — / (u(s,2), L (s, 7))ds

T T
= / (fs(z,u(s,x), Vu(s,x)o(x)), p(s,z))ds —|—/ (hs(:v,u(s,:v),Vu(s,x)a(x)),go(s,x))dlws.
t t
(3.1)
where L* is the adjoint operator of L. We denote by u := U(D, f, h) the solution of SPDEs with
data (D, f, h).

The existence and uniqueness of weak solution for SPDEs (3.1) is ensured by Theorem 3.1 in Bally
and Matoussi [3] or Denis and Stoica [12].

3.3. Stochastic flow of diffeomorphisms and random test functions

We are concerned in this part with solving our problem by developing a stochastic flow method
which was first introduced in Kunita [21], [22] and Bally, Matoussi [3]. We recall that {X; s(x),t <
s < T} is the diffusion process starting from x at time ¢ and is the strong solution of the equation:

Xis(x)=z+ /: b( Xy r(x))dr + /ts o(X;r(x))dB,. (3.2)

The existence and uniqueness of this solution was proved in Kunita [21]. Moreover, we have the

following properties:



Matoussi, Sabbagh and Zhang /BDSDEs in a convex domain 18

Proposition 3.1. Under Assumption 3.4 and for eacht > 0, there exists a version of { X, s(z); z €
R%, s >t} such that X, 5(+) is a C?(R?)-valued continuous process which satisfies the flow property:
Xir(z) = Xsr 0 Xy s(x), 0 <t <s<r. Furthermore, for all p > 2, there exists M, such that for
all0 <t <s, z, €RY b, b € R\{0},

B( sup [Xer(@) = al?) < My(s = t)(1 +[al?),

E( up [ X1 () = Xor (&) = (& = 2')") < My(s = 1) (| — '],

E( sup A} [Xe(x) —2]l?) < My(s — 1),

E( sup A}, Xer (@) = Ay X (2)7) < My(s = 1)(|a =2/} +[h = W]?),

where Al g(z) = £ (g(x + he;) — g(x)), and (e1, -+ ,eq) is an orthonormal basis of R?.

For all v € L?(R%), the process (v o X s(z))i<s<r defined as the composition of v with the
stochastic flow (X¢ ¢(2))i<s<7 is well defined thanks to the following equivalence norms results
(see [4] and [3] for the proofs).

Proposition 3.2. There exists two constants ¢ > 0 and C > 0 such that for everyt < s <T and
o € LY(RY, dx),

e[ le@lo@iar < [ Elei@hu@dr < [ @ 63)

Moreover, for every ¥ € L*([0,T] x R?, dt ® dx),

/R/ (s, 2)|dsw(a da;</Rd/ (1(s, X, o(2))])dsw(z dx<O/Rd/ (s, o) dsw(x) .

(3.4)

This equivalence of norms result plays also an important role in the proof of the existence of the
solution for SPDE as a connection between the functional norms for such solutions and random
norms from BDSDE solutions.

Under regular conditions (Assumption 3.4) on the diffusion, it is known that the stochastic flow
solution of a continuous SDE satisfies the homeomorphic property (see Bismut [6], Kunita [21],
[22]). We have the following result whose proof can be found in [21].

Proposition 3.3. Let Assumption 3.4 holds. Then {X; s(x);z € R4} is a C?-diffeomorphism a.s.
stochastic flow. Moreover the inverse of the flow satisfies the following backward SDE

Xl =v- [ B () dr / (X )d B (3.5)

for any t < s, where

We denote by J (thsl (2)) the determinant of the Jacobian matrix of thsl(:t), which is positive and
J(tht1 (z)) = 1. For p € C°(R?), we define a process ¢, : Q x [t,T] x R? — R by

pils, 1) = (X (2)) (X (2)). (3.7)



Matoussi, Sabbagh and Zhang /BDSDEs in a convex domain 19

By a change of variable formula, we have for all v € L2(R9),

voXia(hp) = [ oXia@)plads = [ o)oK )T )y = (.61(s.), P=as
T

Since (¢¢(s, T))i<s is a process, we may not use it directly as a test function because | (u(s,-), Ospe(s,-))ds

t
has no sense. However ¢;(s,2) is a semimartingale and we have the following decomposition of
©i(s, z) where the proof can be found in [3] (proof of Lemma 2.1. p.135), see also Kunita [24], [23]

for the use of such random test functions.

Lemma 3.1. For every function ¢ € C°(R%),

s d s d
als.0) =o@)+ [ Latnaar-3 [ (Z %(a”(zm(r,x))) WL G8)

where L* is the adjoint operator of L.

Thanks to the above lemma, we can replace 0, ds by the Itd stochastic integral with respect to

dp¢(s, x). This allows us to give the following

Definition 3.2. For every s € [t,T], u € Hr and ¢ € C°(R?), we define

/ " urdn(r,)) = / ) <u,-.,£*w,.>>dr—§; / ) <§jj (dim)@()))) a3,

(3.9)

3.4. Existence and uniqueness of solutions for the reflected SPDE

In order to provide a probabilistic representation to the solution of the RSPDEs (1.3), we introduce
the following Markovian RBDSDE:

T T
(1) V2" = 8(Xr(e)) + [ 500 @)Y 204 [ (X (o), Y0 200l + K - K

T
—/ ZMdB,, P-a.s., Vs € [t,T)
(i) Y}* € D P-a.s.
T
(zu)/ (YE" —0e( Xy s(2)))*dKE™ < 0., P-a.s.,
0

for any continuous F; — random functionv : [0,7] x Q x R* — D.

3.10
Moreover, using Assumptions 3.2 and 3.3 and the equivalence of norm results (3.3) and (32), Wi
get
(X 1r(x)) € L*(Fr) and ®(X; r(x)) € D,
£ (Xis(2)) € HE(,T) and hi(Xys()) € Hixa(t, T).
Therefore under Assumption 3.2-3.5 and according to Theorem 2.1, there exists a unique triplet
(Yte Ztz Kt®) solution of the RBDSDE (3.4) associated to (®, f, h).

We now consider the following definition of weak solutions for the reflected SPDE (1.3):
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Definition 3.3 (Weak solution of RSPDE). We say that (u,v) := (u®,v%)1<i<y is the weak
solution of the reflected SPDE (1.8) associated to (®, f,h), if for each 1 <i <k

(i) w € Hr, uy(z) € D,dr @ dt @ dP a.e., and u(T,x) = ®(z).
(i) V' is a signed Random measure on [0,T] x R? concentrated on {u € 0D} such that:

a) V' is adapted in the sense that for any measurable and |v'|-integrable function 1 :

T
[0,T] x RY — R< and for each s € [t, T],/ / Y(r,z)v (dr, dz) is FV.-measurable.
s JRd ’

T
b) E[/O /]Rd w(z) |V |(dt, dz)] < co.

(ii) For every ¢ € Dr,

/tT/Rdui(S,:E)as@(S,w)dxds + / (ui(t,;v)cp(t,:v) — (I)i(x)(p(T, x))dx — /tT/Rdui(SaUC)ﬁ*so(S,:v)dxds

Rd

T T
:/ / fs(a:,u(s,a:),Vu(s,a:)a(:r))(p(s,x)dajds+/ /hs(x,u(s,x),Vu(s,x)a(x))ga(s,x)ddes
t R4 t Rd

T
—l—/ / o(s, 7)1 ueapy (s, )" (ds,dz), P — a.s. (3.11)
t JRd
For the sake of simplicity we will omit in the sequel the subscript i.

The main result of this section is the following:

Theorem 3.1. Let Assumptions 2.1 and 3.2-8.5 hold and w(x) = (1 + |z|)"P with p > d + 1.
Then there exists a weak solution (u,v) of the reflected SPDE (1.8) associated to (®, f,h) such
that, u(t,z) = Y;"*, dt ® dP @ w(z)dz — a.e., and

YEY = u(s, Xi.4(2)), 70" = (Vuo)(s, Xy (7)), ds®dP® w(z)dr — a.e.. (3.12)

Moreover, v* is a regular measure in the following sense: for every measurable bounded and positive

functions ¢ and 1,
T .
L] et X @I @)t o) weon) (5,00 (s, do)

T .
:/Rd/t (s, 2)Y(s, Xy 5(2))dKE" dw, a.s. (3.13)

where (Y%, Z0% K%< <1 is the solution of RBDSDE (8.4) and satisfying the probabilistic in-
terpretation (3.13).

If (u,?) is another solution of the reflected SPDE (1.3) such that U satisfies (3.13) with some K
instead of K, where (K?I)tgsgqp is a conlinuous finite variation process for all (t,z), then T = u
andV =v.

In other words, there is a unique Randon regular measure with support {u € 0D} which satisfies

(3.13).

Remark 3.1. The expression (3.13) gives us the probabilistic interpretation (Feymamn-Kac’s
formula) for the measure v via the nondecreasing process K%* of the RBDSDE. This formula was
first introduced in Bally et al. [2] (see also [31]) in the context of obstacle problem for PDEs. Here

we adapt this notion to the case of SPDEs in a convex domain.
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We give now the following result which allows us to link in a natural way the solution of RSPDE with
the associated RBDSDE. Roughly speaking, for each test function ¢ € C°(R?), the variational
formulation (3.11) written with the random test functions ¢y (+,-) gives the RBDSDE integrated
against the test function ¢ , this dictionary can be understood as the dual formulation of the
variational equation for SPDE. Pardoux and Peng [34] have proved the probabilistic representation
of classical solution u for semilinear SPDE’s via BDSDEs by using the classical 1to’s formula for
u(s, Xy s(z)). However, since we consider Sobolev solutions for RSPDEs, the following proposition

plays the rule of It6’s formula applied to the random test function @;(s, ).

Proposition 3.4. Let Assumptions 3.2-3.5 hold and (u,v) be a weak solution of the reflected
SPDE (1.3) associated to (®, f, h), then for s € [t,T] and ¢ € C°(RY),

T T
[ | stradgrade + s s, ) = @0 @) = [ [ utna) oo ra)ards
S T T S
z/ / fr(:z:,u(r,:z:),Vu(r,x)o(z))cpt(r,z)drdz+/ / hr(:z:,u(r,:z:),Vu(r,x)o(z))cpt(r,z)dwrdx
Rd Js Rd Js

T
—|—/ / ot(r, )L ueapy (1, x)v(dr,dr)  a.s.
Rd Js
(3.14)

T
where / / u(r, x)dpt(r, )dx is well defined in the semimartingale decomposition result (Lemma
Rd Js
3.1).

The proof of the proposition is the same as the proof of Proposition 2.3, p. 137 in Bally and
Matoussi [3]. This latter is based on Lemma 4.1 p.147 and Lemma 4.2. p.148 which involve the
Wong-Zakai approximation of the It6 stochastic integral appearing in the semimartingale decom-
position of the random test functions given by (3.7) (see [19], chap. 6, section 7 , p.480-517). The
main idea is to use (¢¢(s,)) as a test function in the (3.11). The problem is that (p:(s,x)) is not
differentiable in the time variable s, so that [ /tT usOsp1 (s, x)dsdz has no sense. However (¢4(s, x))
a semimartingale and one can use Wong-Zakai approximation (see [3], Lemma 4.2 p.148) to handel
with this point . Of course, the WZ approximation converges to Stratonovitch stochastic integral,
but thanks to regularity assumption on the diffusion coefficient o(x), one can write the result ex-
plicitly as Itd’s stochastic integral with drift term which disappear with a part of the drift term in
the semimartingale decomposition of (Xf,sl (x)). We note that Kunita ([24], [23]) has developed a
theory of distribution valued semimartingales to study a class of linear SPDEs using these random
test functions.

Proof of Theorem 3.1.

a) Existence: The existence of a solution will be proved in two steps. For the first step, we sup-
pose that h doesn’t depend on y, z, then we are able to apply the classical penalization method. In
the second step, we study the case when h depends on y, z with the result obtained in the first step.

Step 1 : We will use the penalization method. For n € N, we consider for all s € [¢t,T],

T T
YT — o(X, () + / Fo(Xe (@), Y00, 2000 dr 4 / o (X ()T,

T T
_ TL/ (Kn,t,z _ ﬂ.()/rn,t,z))dr _ / Z:L’t’der.
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From Theorem 3.1 in Bally and Matoussi [3]|, we know that u,(t,z) := Y;"’t’m, is a solution of the
SPDE (@, f,,,h) (1.1), with f,(¢t,z,y) = f(t,x,y,2) — n(y — 7(y)), i.e. for every ¢ € Dr
T

T
~/t (un(su ')7 as(p(sa ))ds + (un(tv ')7 (p(t, )) - ((I)(-), @(Tv )) - \ (un(sv ')7 C*cp(s, ))dS
T

T
- / (Falr ™ (5,), 0" Fuun(s, ), (s, ))ds + / (ha(), (s, )T,

t
T
- n/ ((u™ = 7(u™))(s,), p(s,))ds. (3.15)
¢
Moreover from Theorem 3.1 in Bally and Matoussi [3], we also have

YT = (s, Xy o(7)) , 209" = (Vuno)(s, Xi.s(7)), ds ® dP ® w(z)dr — a.e.
(3.16)

Set K™mH* = —n/ (Y5% — (Y, ™5%))dr. Then by (3.16), we have that
t

K}h =—n / (1t — () (. X1 () (3.17)

Following the estimates and convergence results for (Y% Zmte Km62) in Section 2 and estimate
(B.1), we get :

supE[ sup_ [y te)? —l—ft |Zrte | ds + ||K"”||VT] <C(T,x), (3.18)
n t<s<
where r
2 2
CT.a) = CE[[#(Xua @) + [ (12| + o)) ],
and

T
IE[ sup |st)t7m _Ysm,t,m‘2] —i—E[/ ||Z;1,t,ac _ Z;mt,acuzds]
t

t<s<T

+E[ <su£)T [Kmbe K;nxt@ﬁ — 0, as n,m — 400.
t<s<

Moreover, the equivalence of norms results (3.4) yield:

/]Rd/ 2) (|t (8, 2) — (5, 2)]* 4+ |(Vuno) (s, 2) — (Vumo)(s, z)|*)dsdz

w(x)E/ (Jyete — yrbe|? || zmbe — zmbe|[*)dsdz — 0.
kQ Rd t

Thus (un)nen is a Cauchy sequence in Hr, and the limit u = hm 0 U, belongs to Hr.
Moreover, using standard computations from BSDEs and SPDES technics we can prove that

E[ sup ||u? —u™|3] — Oasn,m — oo.
s€[0,T]
Denote vy, (dt, dz) = —n(u, — m(uy,)) (¢, z)dtdx and m,(dt, dx) = w(z)v, (dt, dz), then by the equiv-

alence norm result (3.4) we get

T
E[|7Tn|([f,T] X Rdﬂ = /Rd/t E[n|(un —W(un))(s,x)ﬂdsw(x)dx
1 T
k_2/]Rd/t E[n|(un —w(un))(s,Xt,s(a:))ﬂdsw(x)dg;_
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Finally, using (3.17) and (3.18), we obtain
1
E[|m|([0,T] x RY)] < k—/ w(@)E || K™%, do < C/ w(x)dr < oo.
2 Jrd R

It follows that
sup E[|7,,|([0, T] x RN)] < oc. (3.19)

Moreover by Lemma D.1 (see Appendix D), the sequence of measures (7, (w,ds, dz))nen is tight
P-a.s. in w € Q. Therefore, there exits a subsequence such that (m,(w, ds, dz)),en converges weakly
to a measure 7(w, ds, dz). Define v := w7, it remains now to prove that the limit v(w, ds, dz) is
measurable with respect to w and satisfying Definition 3.3-(ii). We note first that from (3.19) and
Fatou’s Lemma, we get E[|7[([0,7] x R%)] < co. We have also for ¢ € Dy with compact support

T T 4 T 4 T
R J¢ R Jy W R Ji W re Jt

Passing to the limit in the SPDE (®, f,,, k) (3.15), we get that (u, v) satisfies the following equation,

i.e. for every ¢ € Dy, we have

in x,

T T
/t (us. ), (s, Nds + (ult, ), olt, ) — (B(). o(T, ) - / (uls, ), L5 (s, ))ds

T T T
- /t (fs(,u(s, ), 0" Vu(s,-)), o(s,-))ds — /t (hs(+), (s, -))dWs = /t /]Rd (s, x)v(ds,dz), P — a.s.
(3.20)

Thus, the term in the right hand side of the last equation is measuble with respect to w since it is
the sum of measurable terms obtained as the limit of sequence of measurable processes. Therefore,
the pair (u, V) satisfies the reflected SPDE associated to (P, f,h).

The last point is to prove that v satisfies the probabilistic interpretation (3.13). Since K™%*
converges to K%* uniformly in ¢, the measure dK™%% converges to dK"% weakly in probability.
Fix two continuous functions ¢, ¥ : [0,7] x R? — R* which have compact support in z and a
continuous function with compact support § : R* — R*, from Bally et al [2] (The proof of Theorem
4), we have (see also Matoussi and Xu [31])

T
L] s X @na (s @)uts. aptapvids. do)

n—00 ’

T
= lim — 8, X; Hw Lz s, 2)0(x)n(u, — m(uy))(s, x)dsdx
= i [ e X ) TG ) s, 0 i — () 5 s

T
— lim - / d / (5,205, X0 (@))0( XKoo (1)t = (1)) (8, X ()t

n—oo

T
= lim /]Rd/t o(s,2)(s, Xt o(2))0(Xe s(x))dK " dx

n—r oo

T
/Rd /t 5, 2)0 (5, X, ())0( X5 () dK " da.

We take 6 = 0 to be the regularization of the indicator function of the ball of radius R and pass
to the limit with R — oo, to get that

T T
/ / <p(s,XtTSl (I))J(thsl () (s, x)v(ds,dx) = / / o(s, )0 (s, Xy .s(7))dK dr.  (3.21)
Rd Jt R Jt
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From Section 2, it follows that dK!* = 1{,copy(s, X¢,s(x))dKL*. Again by regularization proce-
dure we can set ¢ = 1y,eop} in (3.21) to obtain

T
L] et X2 @I @) ueon) (s ds. da)

T
- /Rd/t 90(5,Xt_,sl(ﬂi))J(thsl(z))u(ds,da:), a.s.

Note that the family of functions A(w) = {(s,z) — cp(s,XtTSl (x)) : ¢ € C} is an algebra which
separates the points (because r — X 2(z) is a bijection). Given a compact set G, A(w) is dense in
C(]0,T] x G). It follows that J(thsl(z))l{ueaD}(s,az)u(ds,d:z:) = J(thsl(x))u(ds,dz) for almost
every w. While J(X; ' (z)) > 0 for almost every w, we get v(ds,dz) = 1{,eop}(s,2)v(ds, dz), and
(3.13) follows.

Then we get easily that Y/* = u(s, X; s(z)) and ZL* = (Vuo)(s, X;s(z)), in view of the con-
vergence results for (Y/4% Z™h%) and the equivalence of norms. So u(s, X; s(z)) = Yi* € D.

Specially for s = ¢, we have u(t,x) € D.

Step 2 : The nonlinear case where h depends on y and z.

Let (Y}, Zb* K1*) the unique solution of RBDSDE (2.5) associated to (®, f, k). In order to avoid
standard fixed point arguments, we define H(s,x) = h(z, X; s(z), Y*, Z5%). Due to the fact that
h is Lipschitz with respect to (y, z), we have

[H (s, )| < |hg(Xps(2))] + CYET| + 127D,

Besides, by standard computations similar to estimate (3.18) we get

E <C(T,z), (3.22)

T
|Yst’m|2+/ ||Zf~’IHQdT+||Kt’IHVT
t

where -
CT.2) = CE[0(Xer(@)*+ [ (7Kl + WK uta))]” ) ds].

Integrating the estimate (3.22) over = with respect to the measure w(z)dz and thanks to the
equivalence norm results, we conclude that H belongs to L2([0,T] x Q x R%;dt @ dP @ w(z)dx).
Then, applying the result of Step 1 yields that there exists (u, v) where u(t,z) := Y;"*, dt @ dP ®
w(z)dr — a.e. and satisfying the SPDE with obstacle (®, f, H), i.e. for every ¢ € Dy, we have

T T
/t (u(s, ), Bup(s,))ds + (ult, ), plts ) — (B(), (T, )) — / (u(s, ), £7p(s,))ds
T T
- / (Faru(s, ), 0" Vuls, ). o(s, ))ds + / (HL(). o5, )diT,

T
+ /t /Rd #(s,2)1uecopy (s, x)v(ds, dx). (3.23)

Then by the uniqueness of the solution to the RBDSDE (®(X; r(z)), f, h), we get easily that
YEe = u(s, Xy s(x)), ZL* = (Vuo)(s, X;s(z)), and v satisfies the probabilistic interpretation
(3.13). So u(s, Xy s(z)) = YH® € D. Specially for s = t, we have u(t,z) € D, which is the desired
result.
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b) Uniqueness : Set (u,7) to be another weak solution of the reflected SPDE (1.3) associ-
ated to (®, f, h); with T verifies (3.13) for a continuous finite variation process (?i’r)tgsgp We
fix ¢ : R? — R a smooth function in C?(RY) with compact support and denote ¢;(s,z) =
(X, (2))J (X} (x)). From Proposition 3.4, one may use ¢;(s, ) as a test function in the SPDE
(®, f,h) with Os¢(s,x)ds replaced by a stochastic integral with respect to the semimartingale
©t(s,x). Then we get, for t < s < T

/ / Txd(pt(rx)dx—F/ (sx(ptsajdaj—/ O(x thxdx—/ / (ryx) Loy (r, x)drde
R4 R4 Rd Rd

T
fr(z,u(r, z), (Vuo)(r, z))e(r, x)drdx —|—/ /Rd he(z,u(r, z), (Vuo)(r, z))e(r, x) dde

- .

—I—/ /d ei(r, x)lgeapy (r, x)7(dr, dx). (3.24)
s R

By (3.9) in Lemma 3.1, we have

/Rd /ST u(ry z)dipy (r, )dr = /ST(/Rd(VM)(T )i (r, x)dz)dB, +/ / (r, )L o1 (r, @) drdz.

Substituting this equality in (3.24), we get
T

/]Rd u(s,x)pi(s,x)de = /Rd O (z) (T, z)dx —/s (/Rd(Vua)(r, x )y (r, z)dx)dB,

T T

r(x,u(r,x), (Vao)(r, x))e:(r, x)drdz hy(x,u(r, x), (Vuo)(r, x))e(r, x da:dwr

[ [ et (Vuo) e o) radrds + [ hGeatra), (Va6 o))

T
—I—/S /Rd o1 (r, 2)Lzeapy (r, )T (dr, dx).

—1
t,r

Then by changing of variable y = X, . (z) and applying (3.13) for 7, we obtain

/ﬂ(s,Xt,s(y))w(y)dy=/ (Xt,7(y))e(y)dy

Rd Rd
T

[ X 00,00 X (), (F0) 1 X )y
T

[ e (X )50 Xe ). (V) . X ()l

/ ) d(Y)fueany (1, Xe,s(y) th Ydy — / /d VY(Vao)(r, X¢r(y))dyd By
R R

Since @ is arbitrary, we can prove that for w(y)dy almost every y, (a(s, Xts(y)), (Vuo)(s, Xt.s(y)),
K'¥) solves the RBDSDE (®(X;.1(y)), f, k). Here Klv— / Limeopy (r, Xt (y))dK,". Then by

¢

the uniqueness of the solution of the RBDSDE, we know u(s, X;s(y)) = Y5 = u(s, Xt.5(y)),

(Vo) (s, Xis(y)) = Z1Y = (Vuo)(s, Xy.s(y)), and K1Y = K. Taking s = ¢ we deduce that
u(t,y) = u(t,y), w(y)dy-a.s. and by the probabilistic interpretation ( 3.13), we obtain

/ [ o100 o (.o, do) = / [ eitra)tucan) (ra)wdr.do).
s R
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So 1{H€8D}(T7 J,')g(dT, d(E) = 1{u€6D} (’f‘, ,CC)I/(dT‘, d.’L’)

Appendix A: Some properties of convexity

In this section, we will list some properties of convex domains. Denote p(z) £ (d(x, D))? = |z —

7(x)|?, the square of the distance to the domain D and 7 the projection on the closure D. If D is
a convex domain, then the function p is convex. Moreover, if D is a regular domain, p is two times

differentiable on the complement of D and we obtain:
Ve ¢ D, Vp(z)=2x—n(x)).

From this expression of gradient Vp, we remark that the hessian matrix Hessp(x) has the following

form:
20 --- 0

0
Hessp(x) = o)

0
where M is a positive semidefinite matrix. We deduce also that:

Vz € R¥*?  trace[zz*Hessp(z)] > 0 (A1)

Since Hess is a positive matrix we have for every unit outward normal n(z)

2.0 - 0
* (2 1 * 0
[z(n(x))*]* < C§ trace [zz ' o) }
0
< C trace[zz"Hessp(x)] (A.2)

Lemma A.1. If D, is a conver domain which satisfies (2.4), then 3c > 0 such that Ve < 1,Vx € R¥
|m(z) — me(x)] < en/e? +ed(x,De) and |n(z) — m(x)| < c\/e2 +ed(x, D)

where . (x) is the projection of x € R* on the closure D,

Lemma A.2.
Je >0 such that Ve <1, Vo € R |r(x) — m.(2)| < ev/E(l + d(z, D.))

Je >0 such that Ve <1, Vax € RF |7(x) — e (2) 1 {4(e,D.)>e} < cﬁ\/d(x,Da)l{d(x7D5)>s}

Appendix B: A priori estimates

In this section, we provide a priori estimates which are uniform in n on the solutions of (2.10).
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Lemma B.1. There exists a constant C > 0, independent of n, such that for all n large enough

sup E [

T T
sup Y72 + / 1Z21Pds + | K™ lve] < CE[|€%] + / (f°F + [hOP)ds].  (B.)
0<t<T ¢ t

Proof. For a given point a € D, that satisfies condition (2.3), we apply generalized Itd’s formula

to get
T T T

Ve —aP o [ZPds = - 42 [ (2 -y fvr s 12 [V - a) b (7, 22l
t t t

T T T
2 [ ey Bt [z s 20 [0 - @ (7 - w ()
t t t
(B.2)

The stocastic integrals have both zero expectations since (Y, Z™) belongs to S7 ([0, T') xHz.,. ,([0, T).
We take expectation in (B.2) and we use conditions (2.1), (2.3) and the Lipschitz Assumption 2.3

in order to obtain

T T
EnYt"—aFHE[/t IIZ;’Hst]SE[If—aFHZCE[/t Y7~ al(fa(a, 0)] + Y7 — o] + | Z2])ds]

T T T
+ E[/t Iha(a, 0)|2ds] + cxa[/t Y™ — af?ds] + aIE[/t 127|2ds]
T T
<C(1+ E[/ (| fs(a,0)|? + |hs(a,0)[*)ds] + C(1 + 5_1)IE[/ [V — al?ds)

+ (a—i—a)E[/t 1272ds).

(B.3)
. 11—«
Thus, if we choose ¢ = — we have
n 2 l-a T n(|2 T n 2
E[Yy" —a"]+ (—5—)E[| [Z{[Pds] < CA+E[| [V{" — al7ds)).
t t
Then, it follows from Gronwall’s lemma that
sup E[|[Y;" — af?] < CeCT.
0<t<T
Therefore we can deduce
T
sup E[|Y;"]?] < C and IE[/ | Z2|1ds] < C. (B.4)
0<t<T 0

On the other hand, the uniform estimate on Y is obtained by taking the supremum over ¢ in the
equation (B.2), using the previous calculations and Burkholder-Davis-Gundy inequality. Thus, we
get for alln >0

E[ sup |Y* —al’] <C and E[ sup |Y*|)] <C.
0<t<T 0<t<T

Finally, the total variation of the process K™ is given by

T
1K vz = n / Y7 (V) ds.
0
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But from the property (2.3) and the equation (B.2) we have
T T
20 [ Al = A ds <20 [ |7 = @) (Y - n(v2)lds
t t
T T
<le—aP 2 [ 07 - oy Az 2 [ 7 - 0 ha(vy 22T
t t

T T
2 [ —ayzzans [ zn)Pas
t t
Hence it follows from previous estimates that
E[|&"vr] < C,

and the proof of Lemma B.1 is complete. O

Appendix C: Proof of Lemma 2.4

Let first recall that (Y™, Z") is solution of the BDSDE (2.10) associated to (&, f™,h) where
My,2) = fs(y,2) — n(y — w(y)), for each (y,z) € R* x R¥*9. Note that , since we have as-
sumed that 0 € D (Assumption 2.1), 7(0,0) = f4(0,0) := f2. Therefore, thanks to LP-estimate
for BDSDE (Theorem 4.1 in [34] applied for p = 4), we have the following estimate

T 9 T
supE[ sup (V71 + ([ 1220Pds) ] < CB[lgit+ [ (01t 4 121as] <00 (C)
0 0

n 0<t<t

Now, we apply generalized It6’s formula to get

T T T
Y2+ / 122)2ds + 2n / (Y2 (V2 — w(Y))ds = [ +2 / (YI)* fo (Y, Z7)ds
t t t

T

T T
2 [ ZndV -2 [y zzass [0 zplPes. (©2)
t t

t

Without loss of generality we apply the property (2.3) for a = 0 since 0 € D (If not, we apply the

generalized It6 formula to |Y;" — a|?) to obtain
T T
on [ Al = s <20 [ |02 (0 - ) lds
0 0
T T
WP+ [ O nr s+ [y, znlr.
0 0

T T
9 / (V)" Z"dB, + / Iha(Y, 20| 2ds.
0 0

Then, taking the square and the expectation yields
(o [ vz~ n02ias)] < cmfie] + cr[( [ ooy zas)
T 2 T 2
ou(( [ omrnrznar)] +cs[( [ oy za.)]

wer[([ o zoras)’]
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By using the isometry property and the boundedness of f and h, we obtain

B(n Civr - mvmyias) ] < ol + ce[( / vrias)’]
+ OJE[/T Y hy (Y, Zg)|2ds] + OJE[/T |YS"Z§|2ds} +C.
0 0
Finally, we deduce from Holder inequality and boundedness of h that
B(n [ Cvr - avyias) ] < ol + / " s + s v ( Clzzas)] +c

Thus, from the estimate (C.1) we get the desired result. O

Appendix D: Proof of the tightness of the sequence (7, )nen

Recall first that v, (dt,dx) = —n(u, — 7(uy))(t, x)dtdr and m,(dt, dz) = w(x)v,(dt, dx) where u,
is the solution of the SPDEs (3.15).

Lemma D.1. P-a.s. in w € Q, the sequence of random measure (7, (w, ds, dz))nen is tight.

Proof. We shall prove that for every € > 0 , there exists some constant K such that

T
E[/O /Rd 1{|I|22K}|7Tn|(ds,d:r)] <e VneN. (Dl)

We first write

T
/ / 1{jz>2k} ™0 l(ds, d)
0o Jra

T
- / / Leiz20) (1 x5 20)efic) + 1|35 0-eforc} ) 17l (05, 2)

=Ig+ L%, P-—as
Taking expectation yields
T
IE[/ /d L{jz>2k)n(ds, dz)] = E[I}] + E[L%]. (D.2)
0o JR

From Definition 3.3(ii)a), we have 7, (w, ds, dz) is a fs%—adapted measure and we know that the
inverse of the flow depends only on the noise B. Then, since W and B are mutually independant
we get by (3.19) and for K > 2||b||sT, we get

T
E[Lkx] < P <02«15T ‘X(;rl(z) - I| > K) E[/O /]Rd || (ds, dz))
< (C1 exp(—C2K?) + C3 exp(—C4K)) E[|m,|([0, T] x RY)]

< O} exp(—C2K?) + Cf exp(—CyK).
Finally, for K sufficiently large we obtain

E[Lk] <e.
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On the other hand, if |2| > 2K and |X0_751 (z) — 2| < K then ‘Xo_sl(:t)’ > K. Therefore

T
E[/o /Rdl{lxa;<m>|zz<}ww)Iunl(ds,dx)]
T
E[/O ~/Rd 1{|XJ;(I)|2K}w(x)n|un - W(un)l((g, x)de:E]

E[lk]

IN

which, by the change of variable y = X & (z), becomes
T
E /O /R 1z (X)) (Ko, ()l — o) 5, X 0(y) sy

<B| [ @) (w) Lnisi s 0K, (0T (Xor(0) ) IK" vrde]

S (E |:/ HKn,O,ac|
]Rd

<IE /Rd <'(U(I>11{I|ZK}OEEETU)(X0,T({E))J(XOJ«(I))) w@)m])

gc@

where the last inequality is a consequence of (B.1). It is now sufficient to prove that

KGR

E [( sup w(Xo,r(fU))J(Xo,r(fE)Oz]

proi])”

1/2

1/2

2
/ (’LU(,’E)_11{|QC|>K} sup w(X07T(;v))J(X07T(x))) w(x)dx])
R4 0<r<T

(023£Tw(XO’T(w))J(XO’T(x))> 1 dx < 0. (D.3)

Note that

0<r<T
1/2

=|E <OEEI<)T|w(XO’T(x))|)4 ) l]E <0225T|J(X07T(x))|)4]
<C|E (OztrlgT IW(XO,T(JJ))|>4] "

Therefore it is sufficient to prove that:

/Rd ﬁ (E LEEET |w(Xt,r(l’))l4} ) v dz < oo.

Since w(x) < 1, we have

IN

E [ sup |w(Xt,r<:c))l4]

t<r<T t<r<T

E | sup |w(Xt7T(:E))|41{

+P( sup X (z) — 2] > m)
t<r<T 2

= : A(x) + B(x).
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-p
If sup | X, (2) — 2] < 2 then | X, () > 2l and so [w(X,.(2))] < (1+%) . Thus we
t<r<T

—dp
have that A(z) < (1 + %) and s0 [, (14 |z[)” A(x)'/?dz < co. On the other hand, if |z| >
4||b||co T, then (the same argument as in the existence proof step 2 of Theorem 4 in [2] for the Itd

 lsl
- 8

integral with respect to the Brownian motion)

B(z) <P ( sup

t<s<T

/OS o(Xo,r(x))dW,

< Cy exp(—Calz]?)

and so [pq (14 |z|)” B(z)?dz < co.
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