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Abstract

Set-membership (SM) estimation implies that the computed solution sets are guaran-

teed to contain all the feasible estimates consistent with the bounds specified in the

model. Two issues often involved in the solution of SM estimation problems and their

application to engineering case studies are considered in this paper. The first one is the

estimation of derivatives from noisy signals, which in a bounded uncertainty frame-

work means obtaining an enclosure by lower and upper bounds. In this paper, we

improve existing methods for enclosing derivatives using Higher-Order Sliding Modes

(HOSM) differentiators combining filtering. Our approach turns the use of high order

derivatives more efficiently especially when the signal to differentiate has slow dynam-

ics. The second issue of interest is solving linear interval equation systems, which is

often an ill-conditioned problem. This problem is reformulated as a Constraint Satis-

faction Problem and solved by the combination of the constraint propagation Forward
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Backward algorithm and the SIVIA algorithm. The two proposed methods are tested

on illustrative examples. The two methods are then used in a fault detection and iso-

lation algorithm based on SM parameter estimation that is applied to detect abnormal

parameter values in a biological case study.

Keywords: , Uncertain dynamic systems, Bounded noise, Nonlinear
systems, Conditioning problem, Fault Detection and Diagnosis

1. Introduction

This paper focuses on two mathematical problems encountered in several engi-

neering problems: the calculus of uncertain derivatives and conditioning problems in-

volved in solving linear interval equation systems. These two issues are addressed in

a set-membership (SM) framework in which uncertainties are characterized by simple5

bounds. SM estimation methods advantageously provide guaranteed solutions, mean-

ing that the computed set estimates are guaranteed to contain all the feasible estimates

consistent with the specified bounds. SM estimation methods have been successfully

applied to many tasks ([1, 2, 3, 4]). SM estimation can be based on interval analysis

that was introduced by [5] and several algorithms have been proposed along this line10

for nonlinear systems (for more details, see [6, 4, 7]). The approaches dedicated to

linear systems are rather based on ellipsoid shaped methods (for example [8]), paral-

lelotope or zonotope based methods [9]. The advantage of providing guaranteed results

is unfortunately often stained by the overestimation of the results. In this respect, it is

mandatory to carefully analyse every single step of SM estimation methods to com-15

pensate for possible spurious uncertainty propagation. In particular, the resolution of

estimation problems often requires to evaluate successive derivatives of signals, which

is known to be a tedious numerical problem, and/or to solve systems of linear interval

equations, which must often handle ill-conditionment. This paper deeply inspects these

two problems and proposes improved solution methods.20

Derivative estimation from noisy signals given by discrete measurement samples is an

important and difficult task in numerical analysis, signal processing and control. It is

well-known that it is an ill-posed problem. In the literature, several classes of deriva-

tive estimation methods have been proposed. The first class consists in approximating
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the signal by polynomials using least-square estimation and adding a regularization25

criterion [10, 11]. Another class consists in approximating the signal by a truncated

Taylor expansion and to operate in either the Mikusinski field [12, 13] or the distribu-

tion space [14]. Yet another class is based on sliding-mode differentiators [15, 16]. In

the frame of interval analysis, apart from the classical finite difference that has been

extended [17], there are few works guaranteeing enclosures of successive derivatives.30

Nevertheless, the estimation of derivatives is essential in many basic algorithms such

as the evaluation of centered inclusion functions, Newton contractors, etc. In [18],

the Higher-Order Sliding Modes (HOSM) differentiators developed by Levant in 1998

have been used to obtain an exact enclosure of derivatives required by a fault detection

method. The drawback of these differentiators is that only the first derivative is calcu-35

lated with reasonable overestimation contrary to higher order derivatives. In this paper,

we propose to combine the methods developed by Levant with a zero-phase low-pass

filtering algorithm, guaranteeing a robust enclosure of the successive derivatives even

for high orders. Some examples are given and confirm the robustness of the method.

40

The problem of solving a linear interval system is considered in the second part of

the paper. Although the system is linear, this problem is NP-hard due to the presence

of interval matrices [19]. Some algorithms for solving interval linear systems return

a box containing the convex hull of the solutions, which is not the minimal enclosure

[20]. Unlike direct algorithms for enclosing the solution of an interval linear system45

[21, 22], we rely on an iterative method [20] because it advantageously allows one to

control the computation time. Our method assumes that an initial enclosure is known

from the knowledge of the system and applies contractions using the Forward Back-

ward Propagation algorithm [23] based on interval Gauss-Seidel iterations. Then we

use this solution to initialize a branch and bound algorithm, based on Set Inversion Via50

Interval Analysis (SIVIA), which further improves the result. Some details on contrac-

tors and the SIVIA algorithm can be found in [23], [6] and [24].

The last part of the paper integrates the two proposed methods to improve an off-

line previously developed FDI procedure for nonlinear dynamical systems based on55
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SM parameter estimation [25]. The developed FDI procedure requires the estimation

of derivatives, sometimes of high order, from discrete measurement samples and the

solution of linear systems of interval equations involving blocks of parameters.

The paper is organized as follows. Section 2 briefly introduces the problem of en-60

closing successive derivatives of a signal corrupted by bounded noise and the new

method that we propose based on HOSM differentiation and filtering is presented.

Bounded noises are a natural way to model the realistic stochastic fluctuations of a bi-

ological system, for example, that are caused by its interaction with the external world.

Bounded noise is also well-adapted to sensors tolerances. The proposed method is65

applied to classical examples which highlight its advantages. Section 3 explains the

problem of solving linear interval systems, and exhibits the sources of ill-conditioning.

Our method based on contractors and set inversion is presented. Through some exam-

ples, the results obtained by the proposed scheme are compared with those obtained by

classical solvers. In section 4, the previously developed methods are applied in a SM70

algorithm for FDI in nonlinear dynamical systems. The application of this algorithm to

a cell exchange model is reported. Finally, section 5 concludes the paper and provides

some perspectives.

2. Derivative estimation

The aim of this section is to present a differentiator that provides robust exact in-75

tervals containing the successive derivatives of a signal corrupted by a bounded noise

whose bounds are supposed known. Bounded noise is a convenient way to character-

ize uncertainty when a more informative statistical model is not known. It accounts

for nonlinear phenomena like saturation which are often encountered in practice. For

example, bounded noise is a natural way to model the realistic stochastic fluctuations80

of a biological system, for example, that are caused by its interaction with the external

world [26].

The differentiator has been proposed by Levant in 1998 [15] under the name of

the Higher-Order Sliding Modes (HOSM) differentiator. It is presented in the first part
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of this section. Although other differentiators like the asymptotic differentiator [27]85

or the high gain observer [28] have been proposed, the differentiator of [15] advan-

tageously provides exact differentiation in finite-time of noise-free signals satisfying

some Lipschitz constraint. That is why we have built on this work.

Despite its advantages, the Higher-Order Sliding Modes (HOSM) differentiator has

the drawback that for a high derivative order or for a significant noise, the intervals90

containing the derivative estimates are very overestimated. Thus we propose an original

approach that provides tighter interval enclosures of derivatives thanks to a low pass

filter. This smoothing makes the enclosure of high order derivatives more efficient

specially when the signal to be differentiated has slow dynamics.

Let us consider the following standard notations and definitions [6]. A real interval95

[x] = [x, x̄] is a connected and closed subset of R. The notation x defines the real

vector x = (x1, . . . , xn)T , where T stands for the transpose of the considered vector

whereas [x] defines an interval vector, also called a box. w represents the interval width.

If [x] = [x, x̄] then w([x]) = x̄− x. In the same manner w([x]) = max (x̄− x).

2.1. HOSM differentiator100

In the works [15], [29], [16] concerning HOSM differentiators, the signal y(t) to

be differentiated is considered as a function defined on [0, +∞[. It is supposed to

be composed of a bounded Lebesgue-measurable noise e(t) (bounded by a positive

constant α) with unknown features and an unknown base signal y0(t) with the mth

derivative having a known Lipschitz constant C > 0. The m successive derivatives of

the signal y(t), i.e. y(1)(t), ..., y(m)(t) are estimated by z1(t), ..., zm(t) for t ≥ tc as
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described below:

ż0 = v0,

v0 = −λ0 |z0 − y|
m

(m+1) sign(z0 − y) + z1,

ż1 = v1,

v1 = −λ1 |z1 − v0|
(m−1)

m sign(z1 − v0) + z2,
...

żm−1 = vm−1,

vm−1 = −λm−1 |zm−1 − vm−2|
1
2 sign(zm−1 − vm−2)

+zm,

żm = −λm sign(zm − vm−1),

(1)

where λj ∈ R, j = 0, . . . ,m, represent the differentiator parameters and tc is the

convergence time of the differentiator which depends on λj . Generally, the parameters

λj , j = 0, . . . ,m, are chosen experimentally (for more details, see [15], [29]). In

other words, these parameters must be re-evaluated for every new signal. This is not

surprising because it is well known that an ideal differentiator, i.e. that can differentiate105

any signal, does not exist.

In the case of an additive bounded measurement noise, i.e. y(t) = y0(t)+e(t) with

|e(t)| ≤ α, Levant [29] proposes the following theorem:

Theorem 1 ([29]). The following inequalities hold after a finite convergence time tc

for some positive constants ηk depending exclusively on the parameters of the differen-

tiator:

|zk(t)− y(k)0 (t)| ≤ ηkα
m+1−k
m+1 , k = 1, 2, ...,m. (2)

Therefore, if zk is computed by (1), then the interval containing the kth exact derivative

of y0(t), i.e. [y
(k)
0 (t)], is given by:

[y
(k)
0 (t)] = [zk(t)− acck, zk(t) + acck], k = 1, 2, ...,m t ≥ tc, (3)

where acck = ηkα
m+1−k
m+1 , and ηk and the convergence time tc depend exclusively on

λj , j = 0, ...,m.
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Thus if zk is computed by (1), then the interval containing the kth exact derivative of

y(t) is given by:

[zk(t)− acck, zk(t) + acck]. (4)

The drawback of this differentiator is that for a high derivative order or for signif-110

icant noise, the intervals containing the derivative estimates [y
(k)
0 (t)] are quite over-

estimated. Thus to partially overcome this problem, we propose to combine HOSM

differentiators with a low-pass filter which is described in the following subsection.

2.2. Cascading an HOSM differentiator with a low-pass filter

To tighten the interval containing the kth exact derivative [y
(k)
0 (t)], the first solution115

seems to be to reduce acck, or in other words to reduce ηk (see Equation 3). However,

ηk depends on λi such that to reduce ηk, one has to decrease λi. Unfortunately, smaller

λi result in larger convergence time tc which is not desirable because, in the targeted

FDI framework, it increases the time window on which faults cannot be detected (we

recall that these derivatives are intended to be used in a FDI scheme).120

Another way to tighten [y
(k)
0 (t)] is to cascade the differentiator with a low-pass filter

and that is the approach that is proposed here. It is first shown that the bounds obtained

with the proposed method are also rigorous and guaranteed.

The inequality (3) in discrete time form is given by:

zk(n)− acck ≤ y(k)0 (n) ≤ zk(n) + acck, n ≥ nc, (5)

where zk(n) := zk(nTs), y(k)0 (n) := y
(k)
0 (nTs), Ts is the sampling period and the

convergence sample time nc is given by the ceil of t/Ts.

For any positive integer number K, the following relation also holds:

zk(n)− acck ≤ y(k)0 (n) ≤ zk(n) + acck, nc ≤ n ≤ K + nc,

which can be rewritten as the following K relations:

zk(nc + i)− acck ≤ y(k)0 (nc + i) ≤ zk(nc + i) + acck, i = 1, ...,K.

Averaging through these K relations and remembering that acck is constant, we obtain

1

K

K∑
i=1

zk(nc + i)− acck ≤
1

K

K∑
i=1

y
(k)
0 (nc + i) ≤ 1

K

K∑
i=1

zk(n1 + i) + acck. (6)
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Assume that y(k)0 (n) is sufficiently slow-varying, then the HOSM output zk(n) is also

slow-varying. In this case, the terms 1
K

∑K
i=1 y

(k)
0 (nc + i) and 1

K

∑K
i=1 zk(nc + i) are

in fact filtered versions of y(k)0 (nc + i + 1) and of zk(nc + i + 1), respectively. The

filter is a low-pass FIR filter of orderK. Finally, using the notation F(.) for the filtered

signal, relation (6) can be rewritten as

F(zk(n))− acck ≤ F(y
(k)
0 )(n) ≤ F(zk(n)) + acck, n ≥ nc +K + 1, (7)

showing that the bounds are really guaranteed outer bounds.

Unfortunately, the proposed method rises some issues. It is well known that every125

realizable (causal) filter introduces phase and hence time delay. Among all causal low-

pass filters, it is only for low-pass Finite-Impulse-Response (FIR) filters that the delay

can be computed explicitly because the phase of this filter is linear with respect to the

frequency. In fact, there exists a direct relationship between the number of parameters

of the filter and the delay. However, the drawback of FIR filters is their large number130

of parameters. Indeed, evaluating each filtered sample requires K previous samples

or in other words K.Ts seconds delay. In addition, for higher order derivatives, the

input noise is further amplified and then K must be extremely high to filter it effi-

ciently, which means reducing the cut-off frequency of the low-pass filter. However,

very low pass-band removes essential information of the signal. The trade-off between135

the maximum derivation order and the minimum cut-off frequency is much easier to

achieve when the signal to be differentiated is already slow-varying. In this case, it is

sure that even high order derivatives remain low-pass. This trade-off can be achieved

experimentally and generally leads to higher Ks for the successive derivatives. This

means that higher order derivatives may involve higher time delays. This can be harm-140

ful for the use in an FDI method (cf. Section 4): first because the inherent time delay

of the method may not be acceptable for online FDI applications, second because the

Analytical Redundant Relations to be evaluated for FDI involve several higher order

derivatives (cf. Section 4), which rises a difficult synchronization problem.

To prevent the delay and synchronization problems caused by a causal filter, a non145

causal low-pass filter can be used. However, because such filter cannot be implemented

online, one must then accept to run the FDI application offline. We propose to use a
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class of low-pass filters called zeros-phase low-pass digital filters. These low-pass fil-

ters are not causal but they are numerically implementable and they allow one to elim-

inate the synchronization issue by processing discrete input data in both the forward150

and inverse directions. They also minimize start-up and ending transients by matching

initial conditions. The FDI method presented in Section 4) uses this kind of filter and

is applied offline.

2.3. Examples of derivative estimation enclosure

Hereafter, a second-order zero-phase Butterworth digital filter with cutoff155

frequency 5 Hz is used. Butterworth filters are characterized by a magnitude response

that is maximally flat in the pass-band and monotonic overall [30]. The sampling pe-

riod is chosen as Ts = 10−4 s. The simulations are carried out with the 2nd-order

Runge-Kutta method with an integration step equal to 10−4 s.

160

In the following examples taken from [15], we compare the results obtained with

the differentiator of Levant [15] and with the improved version of this differentiator

that we propose.

Example 2.1. Let y(t) = sin(t)+5t+1 be a noiseless signal to be differentiated. The

parameters of the differentiator are chosen as λ0 = 2, λ1 = 6 and λ2 = 8.165

Figure 1 displays the first and second derivatives.
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Second derivative
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 (b)
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Exact

Figure 1: First derivative (left) and second derivative (right) for Example 2.1.
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Example 2.2. Consider now the noisy signal y(t) = y0(t) + e(t) = sin(t) + 5t+ 1 +

e(t) with |e(t)| ≤ α = 0.04 to be differentiated. The variables η1 and η2 are given

by η1 = 2.1211 and η2 = 8.5136. The other parameters are the same as in the last

example.170

Figure 2 represents the derivative enclosures obtained with HOSM and Figure 3 repre-

sents the derivative enclosures obtained with our method that includes a filter. In these

figures, the dashed black line stands for the exact noise free derivative while light and

dark gray lines represent the upper and lower bounds respectively. The width reduces

from 2×0.52 to 2×0.23 for the first derivative and from 2×5 to 2×2.9 for the second175

derivative. In other words, the widths are reduced by 55.8% and 42% for the first and

the second derivative, respectively.
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Figure 2: First derivative enclosure (left) and second derivative enclosure (right) with HOSM for Example

2.2.
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Figure 3: First derivative enclosure (left) and second derivative enclosure (right) with our method for Exam-

ple 2.2.
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These figures show the efficiency of the proposed approach to tighten the enclosure

intervals without changing the convergence time tc ≈ 5.8s, particularly for the second

derivative.180

Example 2.3. This example considers determining the five first derivative enclosures

for the signal y(t) = y0(t) + e(t), where y0(t) = sin(t) + 5t and |e(t)| ≤ α = 10−6.

Figure 4 represents the five enclosures of the five first derivatives of y0(t) obtained by

using the HOSM differentiator cascaded with a filter. As it can be seen, the filter does

not introduce any delay and tc remains about 2.28 seconds.185
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Figure 4: Derivative enclosures with our method for Example 2.3, noiseless case.

Figure 5 represents the five enclosures of the five derivatives of y(t) obtained by

using the HOSM differentiator. The fourth and fifth derivatives are unusable.
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Figure 5: Derivative enclosures with HOSM for Example 2.3, noisy case.

Figure 6 represents the envelopes obtained by our approach. By using this ap-

proach, we obtain a meaningful envelopes even for the fifth derivative and tc = 2.28 is190

always preserved everywhere.
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Figure 6: Derivative enclosures with our method for Example 2.3, noisy case.

The next section switches to another important and common issue, which echoes

many practical problems. It consists in solving systems of interval linear equations.

Like the previously considered problem of robust exact differentiation, this problem

is also involved in the FDI method based on SM parameter estimation presented in195

Section 4.

3. Linear systems of interval equations

Interval analysis was first introduced [5] to take into account the quantification

errors introduced by the floating point representation of real numbers in computers.

Later, it has been extended to validate numeric procedures. Indeed, interval analysis200
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permits to obtain guaranteed results in the sense that they enclose all the results con-

sistent with the accounted uncertainty, and this in a finite number of operations. Very

naturally, methods based on interval analysis have hence been applied for the resolution

of linear systems [31].

A linear system of interval equations [A][x] = [b], where [A] is an (m × n)-

dimensional interval matrix and is not hence necessarily a square matrix, can be rewrit-

ten as 0 ∈ [A][x]− [b]. Classically, solving such systems is formulated as a set inver-

sion problem [6]. In its general form, the set inversion problem consists in determining

the solution set S for the unknown quantities x defined by:

S = {x ∈ Rn|f(x) ∈ [y]} = f−1([y]), (8)

where f is a possibly nonlinear function from Rn to Rm and y is known a priori and

is a subset of Rm. If f is linear, Equation (8) involves computing an inverse or pseudo-

inverse matrix. This is a set inversion problem which can be solved using the recursive

algorithm SIVIA [24]. This algorithm explores all the search space without loosing

any solution and makes it possible to derive a guaranteed enclosure of the solution set

S such that

S ⊆ S ⊆ S.

The inner enclosure S is composed of the boxes that have been proved feasible. To205

prove that a box [x] is feasible it is sufficient to prove that f([x]) ⊆ [y]. Reversely,

if it can be proved that f([x]) ∩ [y] = ∅, then the box [x] is unfeasible. Otherwise,

no conclusion can be reached and the box [x] is said undetermined. The latter is then

bisected in two sub-boxes that are tested if their size is greater than a user-specified

precision threshold ε > 0. Such a termination criterion ensures that SIVIA terminates210

after a finite number of iterations.

In the following section, we propose a method to solve interval equation systems

that involves SIVIA but proposes an important preliminary step to initialize it properly.
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3.1. A new algorithm to solve [A][x] = [b]215

In interval analysis, the problem [A][x] = [b], where [A] is square or not, is equiv-

alent to the problem 0 ∈ [A][x] − [b] denoted Problem 1 in the following. Problem 1

can be solved directly by using the SIVIA algorithm [24]. The obtained solution con-

sists in a list of solution boxes denoted {[x]}1 that includes feasible and undetermined

boxes, providing an outer enclosure of the solution set. The proposed algorithm is, on220

the contrary, based on the solution of the two following problems1:

• Problem 2: 0 ∈ [A][x]−]−∞, b̄],

• Problem 3: 0 ∈ [A][x]− [b, +∞[,

where b and b̄ are the lower and upper bounds of [b], i.e. [b] = [b, b̄].

It can indeed be easily shown that any solution [x∗] of Problem 1 is a solution of225

Problem 2 and Problem 3 and conversely:

[A][x∗] = [b] = [b, b̄] =]−∞, b̄] ∩ [b, +∞[

⇔ 0 ∈ [A][x∗]−
(

]−∞, b̄] ∩ [b, +∞[
)

⇔ 0 ∈
(

[A][x∗]−]−∞, b̄]
)
∩
(

[A][x∗]− [b, +∞[
)

230

⇔ 0 ∈
(

[A][x∗]−]−∞, b̄]
)

and 0 ∈
(

[A][x∗]− [b, +∞[
)

.

Another way to show the equivalence is to formulate the three problems in terms

of linear inequalities:

−∞ ≤ [A][x∗] ≤ b

and

b ≤ [A][x∗] ≤ ∞

⇔ b ≤ [A][x∗] ≤ b

The algorithm hence consists in the two following steps.

1In practice, these two problem are posed as:

• Problem 2: 0 ∈ [A][x]− [−aIn×1, b̄],

• Problem 3: 0 ∈ [A][x]− [b, aIn×1],

where a� 0 and In×1 is the identity matrix of dimensions n by 1.
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• Step 1: Given a large initial box [xinitial], use the Forward Backward Propaga-

tion (FBP) algorithm [23]. The solution is denoted [xFB ].235

• Step 2: Solve Problem 2 and Problem 3 with the SIVIA algorithm taking [xFB ]

as the initial box. Denote {[x]}2 and {[x]}3 the list of solution boxes (feasible

and undetermined) for the Problem 2 and Problem 3, respectively. In addition,

define:

• [xmin] as the convex union of [x] ∈ {[x]}2 satisfying 0 ∈ [A] [xmin]− [b],240

• [xmax] as the convex union of [x] ∈ {[x]}3 satisfying 0 ∈ [A] [xmax]−[b].

The solution for the problem 0 ∈ [A] [x]− [b] is given by:

[xnew] = [xmin]
⋂

[xmax].

Step 1 of the algorithm aims at accelerating the computation time of the whole

algorithm and at improving the results in terms of overestimation. Indeed, after a few

number of tests, the Forward Backward Propagation (FBP) algorithm has been shown

to be more robust than other classical subsolvers like Gauss elimination specially when245

one (or several) of the matrices A ∈ [A] is (are) ill-conditioned.

Step 2 decomposes the problem in two less constrained sub-problems, which makes

their solution easier to determine and puts together the results to provide the solution

of the original problem. We explain through the following examples why the solution

box is much tighter thanks to Step 2.250

To compare the solution obtained by solving Problem 1 and the one obtained with

our algorithm, SIVIA is initialized with [xFB ] in Problem 1.

3.2. Examples of solving linear systems of interval equations

In the following examples, the precision threshold of SIVIA ε is taken equal to

0.002.255

Example 3.1. In the first example, we consider the linear system:2x1 + 4x2 = 8,

x1 + x2 = 2.5,

(9)
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whose solution is x∗1 = 1 and x∗2 = 1.5 and we corrupt the involved matrices A and b

by some small perturbations such that:

[A] =

 [1.9999 2.0004] [3.9989 4.0006]

[0.9999 1.0001] [0.9999 1.0002]

 , [b] =

 [7.9819 8.0228]

[2.4964 2.5039]

 ,

We search for the solution [x] of [A][x] = [b] in the initial domain [xinitial] = [0, 2]

[0, 3]

 .
Notice that the determinant of the matrices A ∈ [A] are in [−2.0013, −1.9977] and260

this interval does not contain 0.

The solutions are:

• Step 1: The FBP algorithm gives [xFB ] =

 [0.9798, 1.0179]

[1.4862, 1.5163]

,

• Step 2: [xnew] =

 [0.9869, 1.0108]

[1.4909, 1.5116]


The widths of the solution boxes provide a good indication of the overestimation. We265

have w([xFB ]) = (0.0381, 0.0301)T and w([xnew]) = (0.0239, 0.0207)T , and can

appreciate a reduction of at least (0.0301−0.0207)/0.0301×100 = 31.2% (operated

along the second component) operated by Step 2 of the algorithm.

In Figure 7, the set of solution boxes of {[x]}1, {[x]}2 and {[x]}3 can be com-

pared. If one drew the convex union of {[x]}1, it would result in a larger box than the270

intersection of the convex union of {[x]}2 and the convex union of {[x]}3, which is the

expected result.
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Figure 7: {[x]}1 (top), {[x]}2 (bottom, light gray) and {[x]}3 (bottom, dark gray).

Example 3.2. Let us now consider the following matrices for the linear system of in-

terval equations:

[A] =

 [1.9997 2.0009] [3.9924 4.0029]

[1.8948 2.1005] [3.8964 3.9060]

 , [b] =

 [7.8169 8.0125]

[7.4235 8]



Like for the previous example, we search for the solution in [xinitial] =

 [0, 2]

[0, 3]

.275

Notice that the determinant of the matrices A ∈ [A] are in [−0.6165, 0.2832],

which contains 0 indicating that some of the matrices are singular.
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The algorithm provides the following results:280

• Step 1: The FBP algorithm gives [xFB ] =

 [
10−5, 2

]
[0.9531, 2.0069]

,

• Step 2: [xnew] =

 [
10−5, 1.25

]
[1.375, 1.9905]

.

The widths of the solution boxes are:

w(xFB) = (2, 1.0538)T ,

w[xnew] = (1.25, 0.6155)T .

In Figure 8, the set of solution boxes of {[x]}1, {[x]}2 and {[x]}3 can be compared.

Like for the previous example, although the convex unions are not reported on the

figures, it is easy to see that the convex union of {[x]}1 results in a larger box than the285

intersection of the convex union of {[x]}2 and the convex union of {[x]}3.

Remark– When there is a problem of ill-conditioning, classical methods can fail

contrary to FBP which shows to be more robust. Indeed, for this example, the Gauss

elimination approach fails.
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Figure 8: {[x]}1 (top), {[x]}2 (bottom, light gray) and {[x]}3 (bottom, dark gray).

4. Application to fault detection and isolation290

In this section, we propose an algorithm for fault detection and isolation (FDI) of

nonlinear dynamical systems that makes use of the two algorithms presented in sec-

tions 2 and 3. Fault detection and identification are achieved via parameter estimation

[25]. The method, based on differential algebra, makes use of relations also known

as Analytical Redundancy Relations (ARR) linking the outputs (measurements), the295

inputs, their derivatives, and the unknown parameters of the system. The ARRs are

used to estimate the parameters of the model in a set-membership framework through

an analytical solution with the method presented in section 3. The estimation comes
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back to the set inversion problem that solves [A][x] = [b] for [x], where [x] repre-

sents the parameter blocks and [A] and [b] are an interval matrix and interval vector,300

respectively. The components of matrix [A] and vector [b] are in the form of differen-

tial polynomials with respect to the system’s output, input and their derivatives. These

latter signals are estimated as bounded signals thanks to the method provided in section

2, which allows us to evaluate [A] and vector [b].

The FDI method is an adaptation to the set-membership framework of the standard305

fault detection and isolation method based on parameter estimation. It assumes that

the nominal parameter values are known within specified error bounds. The system

is considered healthy when the parameter estimated values intersect the pre-specified

nominal interval box. An anomaly is detected when at least one parameter estimated

value has empty intersection with its nominal interval value.310

In practice, the nominal parameter interval box is provided as the initial box

[xinitial] of the set inversion problem that solves [A][x] = [b] for [x] with the method

explained in section 3. If a solution interval box [xnew] is returned, it means that the

parameter estimated values intersect the pre-specified nominal interval box and the

system is healthy. On the contrary, if the returned solution is the empty set, the system315

is faulty. The faulty parameter values can then be determined by replacing [xinitial] by

a box that is likely to include the faulty parameter values.

4.1. FDI algorithm

Let us consider a nonlinear model of the form:

ẋ(t, p) = f(x(t, p), u(t), p),

y(t, p) = h(x(t, p), p),

x(t0, p) = x0 ∈ X0,

p ∈ P ⊂ UP , t0 ≤ t ≤ T,

(10)

where :

• x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state variables and the outputs at time320

t respectively,

21



• u(t) ∈ Rr is the input vector at time t; in the case of uncontrolled models, u(t)

is equal to 0,

• the initial conditions x0, if any, are assumed to belong to a bounded set X0 and

one assumes that X0 does not contain equilibrium points of the system,325

• the parameter vector p belongs to a connected set P assumed to be included

in UP , where UP ⊆ Rp is an a priori known set of admissible parameters; the

components of p are denoted pi.

• the functions f and h are real and analytic2 on M , where M is an open set of Rn

such that x(t, p) ∈ M for every t ∈ [t0, T ] and p ∈ P , T is a finite or infinite330

time bound.

ARRs are relations deduced from the model that link the system inputs and outputs

and their derivatives. Provided that derivatives can be estimated, ARRs can be evalu-

ated with the measurements and used to estimate the parameters of the model as shown

in [25]. For nonlinear model like (10), ARRs can be obtained from the Rosenfeld-335

Groebner algorithm implemented in Maple [32].

For any vector ϑ, let us define ϑ̄ to stand for ϑ and its time derivatives up to some

(unspecified) order. Then ARRs can be put in the following form:

wi(ȳ, ū, p) = m0,i(ȳ, ū, p)−
∑ni

k=1 γ
i
k(p)mk,i(ȳ, ū) (11)

where:

• (γik(p))1≤k≤ni
are rational in p and so-called "parameter blocks",

• γiv 6= γiw (v 6= w) and (mk,i(ȳ, ū))1≤k≤ni are differential polynomials with

respect to ȳ and ū.340

The first part of the polynomial m0,i(ȳ, ū, p) is not identically equal to zero and it does

not involve the parameter vector p.

By using the Rosenfeld-Groebner algorithm with a specific elimination order, it

has been proven that the ARRs are linear in some combinations of parameters [33].

The ARRs can be rewritten under the form 0 ∈ [A][x] − [b], where [x] represents a345

2In particular, f and h are considered infinitely differentiable. This assumption is important for the use

of differential algebra.
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vector of parameter blocks that we want to estimate. Besides, let us assume that in

the initial state the system to diagnose is in a free-fault situation. Data between ncTs

and (nc + nd)Ts seconds are used to construct [A] and [b], where ndTs denotes the

length of the time window during which the parameter estimation takes place. [A] and

[b] depend on the input and output signals and their derivatives, which are estimated350

by using the approach presented in Section 2. By using FBP, a first estimation of the

parameters is done starting with an a priori chosen initial box [xinitial]. The result

noted [xFB ] is used to solve the linear system using the method presented in section 3

that provides [xnew]. [xnew] is considered as the solution within the time window, i.e.

between ncTs and (nc + nd)Ts seconds. [xinitial] is then replaced by [xnew] and the355

procedure iterates with the data on the next time window, i.e. between (nc+nd+ 1)Ts

and (nc + 2nd + 1)Ts.

With the above procedure, if a fault occurs at time tf , where nTs ≤ tf ≤ (n +

nd)Ts, then the corresponding linear interval system formed from the faulty data be-

tween nTs and (n + nd)Ts does not admit a solution in [xinitial] because [xinitial]360

characterizes a healthy situation. Therefore, obtaining an empty set for [xnew] indi-

cates the occurrence of a fault. To isolate the fault, we have to search for the solution

of the faulty linear interval system in a faulty box [xf ]. Notice that this may result

in the absence of estimation during a few seconds during which the system transitions

from a normal to a faulty situation caused by the fault.365

The proposed FDI procedure is implemented by the Algorithm I in which N is the

total number of sampling times. A cascade HOSM differentiator with low pass-filter is

used to obtain [A] and [b], although it remains implicit in Algorithm I.

The notations [x]2i and [x]3j stand for the ith and jth elements of the sorted lists

{[x]}2 and {[x]}3, respectively.370

Remark 1. As already mentioned in Section 2.1, the convergence time tc depends upon

differentiator parameters, which must be chosen experimentally. Therefore, some tests

including healthy and faulty scenarios must be performed to determine tc and the faulty

initial box [xf ].
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Algorithm I
Algorithm 1 FDI Algorithm.

Input: [y
(k)
0 (n)], nc, N, Ts, [xinitial], [xf ], ε

Output: [x]t, t = ncTs, . . . , NTs

Initialization: nt = nc

while nt + nd ≤ N do

1: form [A] and [b] from [y
(k)
0 (n)], nt ≤ n ≤ nt + nd

2: [xFB ] =FBP.([A], [b], [xinitial])

3: {[x]}2 =SIVIA([A], [−∞, b̄], [xFB ], ε)

4: {[x]}3 =SIVIA([A], [b, ∞], [xFB ], ε)

5: [xmin] = [x]21, [xmax] = [x]31, i = 1, j = 1

while [A] [xmin] ∈ [b] do

i = i+ 1

[xmintemp
] = [xmin]

[xmin] = [xmin]
⋃

[x]2i ,

end while

[xmin] = [xmintemp
]

while [A] [xmax] ∈ [b] do

j = j + 1

[xmaxtemp
] = [xmax]

[xmax] = [xmax]
⋃

[x]3j ,

end while

[xmax] = [xmaxtemp ]

if [xmin]
⋂

[xmax] = ∅ then

Faulty state

[xinitial] = [xf ]

go back to step 2

else [xnew] = [xmin]
⋂

[xmax]

[x]ntTs→(nt+nd)Ts
= [xnew]

end if

nt = nt + nd + 1

end while
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4.2. Application to a cellular model375

The following example concerns the detection of abnormal situations and identifi-

cation of some parameters in the process of absorption of glucose oxydase by a cell.

Glucose oxydase can be easily detected and measured through spectrophotometric, po-

tentiometric [34] or immunologic techniques [35].

Thus glucose oxydase is easily measurable in practice and is provided continuously to380

the cell. For this reason, it is assumed to be observed outside the cell.

The model is: 

χ̇1 = α1(χ2 − χ1)− Vmχ1

1+χ1
,

χ̇2 = α2(χ1 − χ2),

χ1(0) = 0.62, χ2(0) = 0,

y0 = χ1,

(12)

where χ1 (resp. χ2) is the concentration of glucose oxydase outside (resp. inside) the

cell and p = (α1, Vm, α2)T is the vector of unknown parameters that have to be iden-

tified. The normal values of parameters are α1 = 0.011, α2 = 0.02 and Vm = 0.1.

The study has been conducted in simulation in Matlab. The simulated output y0 is dis-385

turbed by an additive Gaussian noise e, which is bounded by 10−4. The measurements

are done at discrete times nTs, n = 0, . . . , N , on the interval [0, 60] with a sampling

period equal to 1s. N is the total number of sampling times 3.

The following ARR R(y0) is obtained with the Rosenfeld-Gröbner algorithm imple-390

mented in Maple 16 [32]:

R(y0) = ÿ0(1 + y0)2 + γ1ẏ0(1 + y0)2 + γ2y0(1 + y0) + γ3ẏ0, (13)

where γ1 = α1 + α2, γ2 = α2Vm and γ3 = Vm.

By using the Rosenfeld-Groebner algorithm with a specific elimination order, the

obtained ARR R(y0) is linear in some combinations of parameters (parameter blocks)

3Using this model and assumptions for emulation of a biological system may rise some issues, in partic-

ular the assumption of bounded and known measurement noise characteristics should be carefully assessed.

Recent biological experiments suggest that this can be quite reasonable in some cases.
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[33] and it can be put in the form [A][x] = [b] with A =
[
ẏ0(1 + y0)2, y0(1 + y0), ẏ0

]
395

and b = −ÿ0(1 + y0)2 and the unknown vector of blocks of parameters is x =

[γ1, γ2, γ3]T = [α1 + α2, α2Vm, Vm]T .

As it can be seen in Equation (13), the first and second derivatives of y0 are in-

volved. After simulation tests, the parameters of the HOSM differentiator are chosen400

such that λ0 = 3, λ1 = 0.2, λ2 = 0.1, η1 = 0.0427 and η2 = 0.0038.

The involved intervals [yk0 (n)] with k = 0, 1, 2, ... and n = 0, ..., 60 are computed by

filtering the intervals found by the HOSM differentiator. A second-order low-pass But-

terworth zero-phase filter of cutoff frequency 5 Hz is used. The convergence time is

considered as tc = 5 s. Algorithm I is hence used to detect and identify abnormalities405

occurring between 5 and 60 seconds.

Two abnormal scenarios are considered:

Scenario 1: Vm jumps from its normal value 0.1 to 0.15 at t = 22 s.

Scenario 2: α2 jumps from its normal value 0.02 to 1.5 at t = 17 s.410

In the FDI algorithm, we choose the bisection precision threshold as ε = 0.05,

nd = 2, and

[xinitial] =


[
10−5, 0.04

][
10−5, 0.003

][
10−5, 0.2

]
 .

Case of scenario 1: the abnormal value is detected at t = 1.01s after its occurrence.

Once the abnormality value is detected, the estimation algorithm is initialized with:

[xf ] =


[0.031, 0.04][
10−5, 0.006

][
10−5, 0.4

]
 ,
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and we obtain at t = 26s, the box:

[xnew] =


[0.031, 0.04][
10−5, 0.006

]
[0.1271, 0.1985]

 ,
which leads to the following parameter set values α1 = [0, 0.0399], α2 = [0, 0.0473]

and Vm = [0.1271, 0.1985].

The interval values for α1 and α2 contain the normal values whereas the one for415

Vm contains the abnormal value, hence the abnormality is confirmed. These results are

presented in Figure 9. In the graphs providing the estimations for α1, α1, and Vm, the

gap in the data comes from switching from the detection to the identification algorithm.

5 10 15 20 25 30 35 40 45 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

α1

time (s)

 

 

upper bound

lower bound

exact

5 10 15 20 25 30 35 40 45 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

α2

time (s)

 

 

upper bound

lower bound

exact

5 10 15 20 25 30 35 40 45 50

0.05

0.1

0.15

0.2

0.25

0.3
Vm

time (s)

 

 

upper bound

lower band

exact

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

time (s)

 

 

[Fy
n
]

20× [Fdy
n
/dt]

50×[Fd
2
y

n
/dt2]

Figure 9: Abnormality detection and identification for scenario 1. The bottom right graph provides the signal

y0 and the estimation of its 1st and 2nd derivatives used in the FDI algorithm.

Case of scenario 2: the abnormal value is detected in t = 2.59s after its occurence.
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Once the abnormality is detected, the estimation algorithm is initialized with:

[xf ] =


[
10−5, 2

][
10−1, 0.18

][
10−1, 0.114

]
 ,

and gives at t = 23s the following estimation:

[xnew] =


[1.0192, 1.781]

[0.1, 0.18]

[0.0726, 0.114]

 ,
thus α1 = [0, 0.9039], α2 = [0.8771, 2.4794] and Vm = [0.0726, 0.14]. At t = 52s,

the algorithm gives the following estimation:

[xnew] =


[1.0177, 1.4445]

[0.1, 0.1378]

[0.0752, 0.114]

 ,
and we obtain the parameter set values α1 = [0, 0.5674], α2 = [0.8771, 1.8325]420

and Vm = [0.0752, 0.114]. The interval values for α1 and Vm contain the normal

values whereas the one for α2 contains the abnormal value, hence the abnormality is

confirmed. These results are presented in Figure 10.
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Figure 10: Abnormality detection and identification for scenario 2. The bottom right graph provides the

signal y0 and the estimation of its 1st and 2nd derivatives used in the FDI algorithm.

Remark – Notice that if the initial box for the abnormal situation does not contain

the exact value of the abnormal parameter, the estimation solution is empty. Thus the425

conclusion is that the initial box must be changed.

5. Conclusion

This paper considers two problems which take often part of the solutions pro-

posed for SM estimation and its applications to engineering problems. The first one

is the problem of estimating high order derivatives of noisy signals. Considering a430

low pass signal corrupted by bounded noise, the problem of the HOSM differentiator

that provides wide enclosures is improved by smoothing the upper and lower bound-

aries. It is shown that this enhancement enables one to provide useful enclosures of

relatively high-order derivatives. The second problem is encountered when solving

ill-conditioned linear interval equations. Initializing the SIVIA based optimization al-435

gorithm by Forward Backward Propagation iterations is shown to reduce the overesti-
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mation of the linear interval system solution box. This property is specially appreciated

in the case of linear systems with badly conditioned matrices. It is also shown that for-

mulating the problem in two equivalent subproblems and combining their solutions

interestingly reduces the overestimation of the solution.440

The two proposed methods are integrated in a recursive SM estimation algorithm

for FDI of nonlinear systems with bounded uncertainty. The application to a cell ex-

change model illustrates the efficiency of the algorithm.

It should be noticed that the two problems that find improved solutions in this paper

are quite generic and take part in the methods providing solutions to many engineering445

tasks. These two problems are quite generic and then our solutions can be used in many

other similar engineering context

In particular, estimating derivatives may be an elegant solution to turn a differential

problem into an algebraic form, hence avoiding the difficulty of integration in a set-

membership framework.450
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