
HAL Id: hal-01740526
https://hal.science/hal-01740526v1

Submitted on 22 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal concept analysis and semantic query expansion
cooperation to refine health outcomes of interest

Olivier Curé, Henri Maurer, Nigam Shah, Paea Le Pendu

To cite this version:
Olivier Curé, Henri Maurer, Nigam Shah, Paea Le Pendu. A formal concept analysis and semantic
query expansion cooperation to refine health outcomes of interest. BMC Medical Informatics and
Decision Making, 2015, 15 (S1), �10.1186/1472-6947-15-S1-S8�. �hal-01740526�

https://hal.science/hal-01740526v1
https://hal.archives-ouvertes.fr
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Abstract

Background: Clinicians and researchers often use Electronic Health Records
(EHRs) to search for, extract, and analyze groups of patients by defining health
outcome of interests. Their definition is generally considered a complex and time
consuming task for health care professionals.

Methods: In our work on pharmacovigilance using clinical notes, we operate over
potentially hundreds of ontologies at once, expand the input query, and increase
the search space over clinical text as well as structured data. This method
requires specifying an initial set of seed concepts, based on concept unique
identifiers. This paper presents a new method based on formal concept analysis
and semantic query expansion to assist the end-user in defining their seed queries
and in refining the expanded search space that it encompasses.

Results: We evaluate our method over a gold-standard corpus from the 2008
i2b2 Obesity Challenge. This experimentation emphasizes positive results for
sensitivity and specificity measures. Our new approach provides better recall with
high precision of the obtained results. The most promising aspect of this approach
is the discovery of positive results not present our Obesity NLP reference set.

Conclusions: Together with a Web graphical user interface, our Formal Concept
Analysis and Semantic Query Expansion cooperation end up being an efficient
approach for refining health outcome of interest using plain terms. We consider
that this approach can be extended to support other domains such as cohort
building tools.

Keywords: Health outcome of interest; Ontology; Semantic Query Expansion;
Formal Concept Analysis

Background
In applications that use Electronic Health Records (EHRs), such as in drug safety

surveillance or observational studies, groups of patients are selected, extracted, com-

pared, and analyzed based on definitions of certain health outcomes of interest

(HOIs) [1, 2]. Common examples of HOIs include myocardial infarction (MI), juve-

nile idiopathic arthritis, acute renal failure, chronic obstructive pulmonary disease

(COPD), or peripheral artery disease. While the entry points for a search may at

times be obvious, their full definitions are anything but easy to obtain. In work

that also incorporates clinical text as data inputs, such as discharge summaries

or nurses notes, these definitions should also capture variations of terms that are

likely to appear in written notes so that the text-mining process has good recall [3].
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For example, there are at least 47 distinct ways that we have seen so far for say-

ing ‘myocardial infarction’ that appears with frequency in real clinical notes. The

challenge in defining an HOI arises because medical and health terminologies are

numerous and complex. There are currently over 160 terminologies in the Unified

Medical Language System (UMLS) Metathesaurus with over 2-million distinct Con-

cept Unique Identifiers (CUIs) and over 6-million distinct strings related to health

and medicine. Some of these, like the International Classification of Diseases, Ninth

Revision, Clinical Modification (ICD-9-CM), are well-known and often used to de-

fine the selection criteria for health outcomes of interest. We have found that most

clinicians and researchers will say that choosing from lists of ICD-9 or SNOMED

CT codes, is not a good way to perform this task. The problem is that the organi-

zation and presentation of concepts in any one of these terminologies, let alone 160

of them, might be intuitive for one person yet completely obtuse to another.

This work addresses these challenges by enabling the user to specify their HOI

using plain terms, much like an ordinary search query. We use Semantic Query

Expansion (SQE) and Formal Concept Analysis (FCA) [4] to induce a lattice of

concepts over hundreds of ontologies and terminologies at once and to find the

best-matching concepts. Briefly, a lattice is a partially ordered set where every

two elements have a least and greatest upper bounds. FCA is a machine learning

technique that uses a lattice to reveal associations between elements of some pre-

defined structure – in this case, a set of ontologies with hierarchies and mappings.

SQE leverages the hierarchies and mappings to expand concepts to include all sub-

sumed ones. The system aims for broad coverage initially and asks for feedback on

the furthest matches at the highest points of the lattice so that the search space

can be rapidly refined with minimal input from the user. At the same time the user

is issuing queries and confirming or denying concept matches, we display search re-

sults that highlight snippets from clinical notes matching their HOI, which provides

instant feedback for the user as they refine their HOI. We have implemented these

tools as REST service Web APIs. Used together, FCA and SQE make it possible to

order concepts semantically and search for matches that best reflect the intension of

the user, i.e., the medical concepts she wants to express through a set of proposed

terms. Intuitively, the system aims initially for greater coverage and relies on user

feedback to improve relevance. The user’s search query and feedback essentially

helps to pinpoint and prune sections of the lattice until only those concepts that

fit their intension remain. The amount of feedback can be minimized by measuring

coverage of concepts at each major branch.

A previous method for myocardial infarction HOI

In [3], a query-driven approach called “2-hop” was used to create a set of HOIs

for detecting drug-adverse event associations and adverse events associated with

drug-drug interactions. The algorithm takes a set of concepts C and derives all

subconcepts C ′ in each ontology O available in an ontology repository. This process

is repeated one more time for all derived concepts C ′ to obtain another set of

concepts denoted C ′′. Because concepts are mapped across ontologies, the process

traverses simultaneously all ontologies that contain C (and C ′), thereby “hopping”

across ontologies twice. With this approach, C ′′ can capture more concepts from the
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adjacent ontologies that would have otherwise been missed with a single iteration.

In principle, recursion with a least fixed-point semantics would apply; however,

recursion does not work well in practice because of differing abstraction levels among

ontologies, which induce cycles. We have found that two hops achieve an adequate

balance between soundness and completeness for the current use case.

This method was able to recognize events and exposures with enough accuracy for

the drug safety use case. This accuracy was determined using a gold-standard corpus

from the 2008 i2b2 Obesity Challenge. This corpus has been manually annotated by

two annotators for 16 conditions and was designed to evaluate the ability of NLP

systems to identify a condition present for a patient given a textual note. Moreover,

this corpus was extended by manually annotating each of the events. Using the set

of terms corresponding to the definition of the event of interest and the set of terms

recognized by our annotation workflow in the i2b2 notes, we evaluate the sensitivity

and specificity of identifying each of the events.

Although efficient, this method requires a significant amount of manual effort, i.e.,

some medical experts have to provide concept identifiers, implying a deep knowledge

of some ontologies. The goal of this work is to increase automation by only requiring

from the medical experts to provide terms associated to their search. Our goal is

also to retain/improve previous results.

Semantic Query Expansion Theory

One of the major assets of ontologies is the set of hierarchical relationships they

often include. For every concept, a set of parent or super-concepts will usually

induce a directed acyclic graph (DAG) structure for most biomedical ontologies.

We can use standard graph traversal algorithms to compute the transitive closure

and store the set of all ancestors and descendants of every concept.[1] SQE is the

process of taking a set of concepts as a query and utilizing the transitive closure to

expand that set to include all descendants or ancestors depending on whether the

goal is to generalize or specialize the query.

Formal Concept Analysis Theory

FCA is the process of abstracting conceptual descriptions from a set of objects

described by some attributes and finds practical application in fields such as data

and text mining, machine learning, and knowledge management. Given a set of

ontologies, we represent all objects and their attributes – including hierarchical

relations – as a binary matrix. Using the standard machinery of FCA, a concept

lattice can be generated from this matrix. Because every lattice is a partial order,

FCA will group similar objects according to their attributes in an ordered manner.

We utilize these properties to identify improbable relations that are not explicitly

stated in the ontology as a means of ranking questions to the user that will cover

the greatest benefit in narrowing the SQE search space.

More formally, FCA is based on the notion of a formal context, which is a triple

K = (G,M, I), where G is a set of objects, M is a set of attributes and I is a binary

[1]We should note that ontologies in general can be more structurally complex than a

DAG, in which case inference engines should be used to compute the subsumptions

hierarchy in place of graph traversal algorithms.
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relation between G and M, i.e., I ⊆ G ×M . For an object g and an attribute m,

(g,m) ∈ I is read as “object g has attribute m.” Given a formal context, we can

define the notion of formal concepts, where, for A ⊆ G, we define A′ = {m ∈M |∀g ∈
A : (g,m) ∈ I} and for B ⊆ M , we define B′ = {g ∈ G|∀m ∈ B : (g,m) ∈ I}. A

formal concept of K is defined as a pair (A,B) with A ⊆ G, B ⊆ M , A′ = B and

B′ = A. The hierarchy of formal concepts is formalized by (A1, B1) ≤ (A2, B2)⇐⇒
A1 ⊆ A2 and B2 ⊆ B1. The concept lattice of K is the set of all its formal concepts

with the partial order ≤.

This hierarchy of formal concepts obeys the mathematical axioms defining a lat-

tice, and is called a concept lattice since the relation between the sets of objects and

attributes is a Galois connection. A Galois connection plays an important role in

lattice theory, universal algebras, and recently in computer science [5]. Let (P,�)

and (Q,�) be two partially ordered sets (poset). A Galois connection between P

and Q is a pair of mappings (Φ,Ψ) such that Φ : P → Q, Ψ : Q→ P and: (i) x � x′

implies Φ(x) � Φ(x′), (ii) y � y′ implies Ψ(y) � Ψ(y′) and (iii) x � Ψ(Φ(x)) and

y � Ψ(Φ(y)), for x,x’ ∈ P and y,y’ ∈ Q.

Methods
Expansion using SQE

The user inputs a free-text query representing their HOI, such as ’pituitary cancer’.

The query is tokenized and matched against all synonyms of every concept from

our set of ontologies. For UMLS, this results in a set of matching CUIs. This step

is purely lexical and does not use any semantics. We utilize the structure of the

ontologies to expand the search and identify matches such as ’neoplasm’ or ’tumor’

that are closely related to the search. We perform this expansion by navigating

to all super-concepts in each ontology incrementally until we achieve a minimal

cover of lexical matches. Broadening the query using SQE in this way will identify

many closely related terms (i.e., increase coverage), but it may also introduce many

unrelated ones (i.e., decrease relevance). Thus, we have to prune the expanded set

aggressively to improve relevance, which we facilitate using FCA (described in more

detail below).

In Figure 1, we provide an abstract representation of the ontology resulting from

our methodology where the nodes mi, di, pi and ci are all ontology concepts and

respectively correspond to matching concepts, derived concepts using our method,

potential concepts (i.e., derived ones that present sufficient qualities to be con-

sidered for further processing) and the remaining concepts. For example, the m

concepts at the bottom represent the initial lexical matches, and the p concepts

are the set of super-concepts that cover them. Based on the ‘poor’ coverage of d1
(perhaps because c1 and c2 seem too unrelated to m1 and m2) the user may be

asked whether d1 is a fit, and if not, it is pruned (which automatically eliminates c1
and c2 and everything else subsumed by d1) otherwise it would become a potential

one, i.e., just like p1 and p2.

Pruning using FCA

Table 1 provides an FCA lattice example using only hierarchical relations for a

query on Hypertriglyceridemia. In the lattices we are producing with our ap-

proach, both objects (left value at each row) and attributes (top value of each
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column) are ontology concepts with the attributes corresponding to the super coc-

nepts of the objects. This lattice uses internal identifiers: 10365 stands for the

Hyperpoproteinemia type IV concept and 0 correspond to the top concept of

our set of ontologies. Hence 10365 is a sub-concept of the concepts 0, 19118 and

740154. Intuitively, FCA can identify rectangles such as the one made of columns

{0,19118,740154} and rows {10365,12115} or the one made of columns {0,19118}.
These rectangles are formal concepts as introduced in Section . The FCA lattice

is defined over these rectangles. Figure 2 displays the extract of the lattice corre-

sponding to the table in Table 1.

One advantage of the FCA lattice is to provide a compact representation of the

hierarchy that enables us to efficiently find the highest cut among concepts in our

ontologies. Using this appraoch, we are able to obtain the maximal coverage of

terms identified via lexical matching. It also enables us to identify concepts worth

pruning in the following manner:

Let Fi = 〈Oi, Ai〉 be a formal concept traversed with Oi and Ai respectively the

set of objects and attributes. For each Fi traversed during our top-down navigation

of the lattice, we create the two following lists: one denoted LA
i , corresponding to

the transitive closure of the sub-concepts for each element of Ai and another one

denoted LO, corresponding to the transitive closure of the sub-concepts of all Oi. We

compute the intersection of LO
i with each LA

i and we use the ratio |LA
i ∩LO

i |/|LA
i |.

If this value is below a predefined threshold (denoted pruning threshold), e.g., 75%,

then we consider that the considered Ai concept is not relevant to the search, i.e.,

it has too many sub-concepts not corresponding to sub-concepts of the matched

concepts. Otherwise it is relevant and we store it in a candidate list which will be

proposed later on to the physician.

Example (hypercholesterolemia): Using hypercholesterolemia as an ex-

ample search query and a set of 18 ontologies, we identify 20 objects and 102

attributes initially, as in Figure 1. This induces a lattice of 67 formal concepts. Its

top most formal concept contains all 67 objects with an empty attribute set. The

lattice’s second level has 2 formal concepts, one with 23 objects (and one attribute)

and another one with 17 objects (and one attribute). Both of these concepts have

too many sub-concepts not corresponding to the set of sub-concepts of our 20 orig-

inal objects, hence they are pruned. At the fourth level of the lattice, we discover

a first potential concept contained in a formal concept containing 9 objects and 9

attributes one of which has a 75% ratio, i.e., satisfying our pruning threshold. It

has 16 sub-concepts out of which only 4 are not covered by the sub-concepts of the

9 objects sub-concepts. Some of these 4 concepts could be unrelated, so we drill

down futher, identify the specific area of the lattice with the smallest ratio, and

ask the user whether this concept is a fit, if not, we prune the lattice above and

work at this lower level instead until the user is satisfied. In the example, the labels

of the 4 non-covered concepts are: hypercholesterolemia, cholesterolosis, secondary

hypercholesterolemia and hyperlipidemia.

Web-based API

Figure 3 presents a web-based interface using the APIs for SEQ and FCA based

search and refinement. The user provides and receives feedback in multiple ways
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(numbered from 1 to 4). First of all, the physician enters some terms associated to

her search (area #1) and runs the query (area #2). The terms are sent to REST

service APIs, which uses SQE and FCA to identify those concepts that best fit the

query, and those that require confirmation from the user. The concepts are also

simultaneously matched against a pre-indexed set of clinical notes (area #3), which

place those concepts within the context of their real-world use. The user can then

confirm or deny the correctness of the match and update the search (area #4). The

number of patients is also displayed in area #3, informing the euse on how many

hits are being discovered.

Results
In [3], the online Supplementary Data S3 reports that the “2-hop” method identifies

HOIs with a sensitivity of 74% and a specificity of 96% for the i2b2 Obesity NLP

reference set, henceforth i2b2 obesity. Our evaluation is performed on this same

dataset in order to enable a comparison of our method. As such, we consider the

set of terms associated to the 16 different conditions surveyed in i2b2 Obesity and

retrieve from our database the corresponding concept identifiers. Given this setting,

we are able to compute the sensitivity and specificity of our approach. This is

presented in Table 2. The experiments have been conducted on commodity hardware

running a Java implementation using a MySQL database instance, we thus consider

that there are rooms for performance gains.

The analysis of our method results is given in 3 dimensions: sensitivity, speci-

ficity and processing duration (not including end-user interactions). The obtained

statistical measures are encouraging with averages of sensitivity and specificity of

respectively 77.3 and 99.1%, hence improving on the results of the less automatized

“2-hop” solution. In the first hand, these values have to be considered in the con-

text of a fast processing of potential terms, i.e., duration in seconds range from 0.6

to 67.3. The 2 order of magnitude between the slowest and fastest executions are

explained by the size of the matching concepts retrieved from the query patterns,

the size of their subsumption relationship transitive closure and the structure of

the associated FCA lattice. The slowest, i.e. Diabetes mellitus, involves the com-

putation of matrix of more than 330 objects and 7000 attributes resulting in an

FCA lattice of more than 3000 formal concepts out of which most candidates con-

cepts are pruned. In the second hand, the matching and candidate concepts are

proposed to the physician for acceptance and rejection. Hence, through an intuitive

and user-friendly interface, she is able to easily improve the sensitivity measure.

An evaluation on the efficiency and interactivity of the Web interface has yet to be

conducted on with physicians on real case scenarios.

Finally, we consider for some of the false negative concepts discovered by our

method may end up being positive propositions. Moreover, these propositions come

from both the matching (e.g., ”Sitosterolemia for hypercholesterolemia” for hyper-

cholesterolemia) and potential (e.g., ”h/o: raised blood, familial hyperlipoproteine-

mia”, ”fh: raised blood lipids” for hypercholesterolemia while the gold standard

contains concepts such as ”hyperlipoproteinemia type ii”) concepts which confirms

the relevance of using a semantic approach. Note that among our true positive,

depending on the use case, a significant number of items have been retrieved from

the potential concept set, i.e., using our FCA statistical approach.
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Conclusions
We have presented a novel, semi-automatic solution for defining health outcomes

of interest. Our work is inspired by previous, manually-intensive work done for

the purpose of text-mining clinical notes from EHRs. Our approach is composed

of a cooperation between Semantic Query Expansion, to leverage the hierarchical

structure of ontologies, and Formal Concept Analysis, to organize, reason, and prune

discovered concepts. We implemented a RESTful API and a graphical Web-based

interface to illustrate the process that users would follow to browse data and refine

their HOI query rapidly. A preliminary evaluation of this work emphasizes positive

results for sensitivity and specificity measures. The most promising aspect of this

approach is the discovery of positive results not present our i2b2 Obesity NLP

reference set. Thus, this approach provides better recall with high precision of the

obtained results.

Some of our future goals include (i) conducting user driven evaluation of the Web

interface, (ii) analyzing the acceptance/rejection of physicians in several practical

scenarios, (iii) using active learning over past query refinements to improve future

queries, and (iv) studying our method impact’s on mining EHRs clinical notes or

cohort building tools.
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Figure 1 Overview of ontology concept hierarchy
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Figure 2 Extract of Hypertriglyceridemia FCA matrix and lattice
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Figure 3 Example graphical interface based on API

0 19118 740154 6260 ...
10365 1 1 1 0
12115 1 1 1 0
10406 1 1 0 0
191723 1 1 0 0
...

Table 1 Hypertriglyceridemia FCA matrix extract

Table 2 i2b2 Obesity NLP reference evaluation

Condition Se Sp D(s)
Asthma 92.7% 99.1% 3.8
CAD 75.5% 99.4% 5.0
Congestive heart failure (CHF) 74.2% 99.4% 5.5
Depression 69.9% 100% 5.6
Diabetes mellitus 82.0% 99.2% 67.3
Gallstones / Cholcystectomy 81.2% 98.7% 4.9
GERD 56.2% 100% 4.8
Gout 94.4.% 100% 8.7
Hypercholesterolemia 82.4% 100% 4.9
Hypertension 82.6 % 98.6% 8.4
Hypertriglyceridemia 60.0% 98.8% 0.9
Obstructive sleep apnea (OSA) 100 % 100 % 1.5
Osteoarthritis 61.2% 98.9% 2.3
Peripheral vascular disease 66.3 % 99.4% 1.1
Venous insufficiency 77.8% 99.1% 2.8
Obesity 86.1% 99.2% 0.6
Average 77.3% 99.1% 8.0

Notes: Se (Sensitivity), Sp (Specificity), D (Duration), CAD (Atherosclerotic cardiovascular disease),
GERD (Gastoresophageal reflux disease)


