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Abstract—In this paper we consider space-time codes where the
code-words are restricted to either real or quaternion matrices.
We prove two separate diversity-multiplexing gain trade-off
(DMT) upper bounds for such codes and provide a criterion for
a lattice code to achieve these upper bounds. We also point out
that lattice codes based on Q-central division algebras satisfy
this optimality criterion. As a corollary this result provides a
DMT classification for all Q-central division algebra codes that
are based on standard embeddings.

I. INTRODUCTION

In [1] the authors proved that for every number of transmit

antennas n there exist a DMT optimal code in the space

Mn(C). These codes are derived from division algebras where

the center of the division algebra is a complex quadratic field.

However, this result is actually more general, and their proof

revealed that as long as a 2n2-dimensional lattice code in

Mn(C) has the non-vanishing determinant property (NVD),

it is DMT optimal. Yet, this result does not tell us anything

about space-time lattice codes that are not full dimensional in

Mn(C). Such codes naturally appear in the scenario where we

have less receive than transmit antennas and try to keep the

decoding complexity limited.

One natural class of such space-time codes are the codes

derived from Q-central division algebras. In this paper we will

measure their DMT. Unlike the case of complex quadratic

center, Q-central division algebras are divided into two cate-

gories with respect to their DMT performance. This division

is based on the ramification of the infinite Hasse-invariant

of the division algebra, which decides if the lattice code

corresponding to the division algebra can be embedded into

real or quaternionic space.

Our DMT classification holds for any multiplexing gain,

extending previous partial results in [2, 3] which were based

on the theory of Lie algebras. We note that the approach used

in this paper is quite different and more general. In the spirit

of [1] we are not just considering division algebra codes, but

all space-time codes where the code matrices are restricted

to Mn(R) (resp. Mn/2(H)), and provide two different upper

bounds for the DMT of such codes. We then prove that if

we have a degree n2-dimensional NVD lattice inside Mn(R)
(resp. Mn/2(H)) then this code achieves the respective upper

bound. As the Q-central division algebra codes are of this

type, we get their DMT as a corollary.

II. NOTATION AND PRELIMINARIES

Notation: Given a matrix X , we denote its complex

conjugate by X∗, its transpose by XT and its conjugate

transpose by X†.

We use the the dotted inequality f(ρ) ≤̇ g(ρ) to mean

limρ→∞
log f(ρ)
log ρ ≤ limρ→∞

log g(ρ)
log ρ , and similarly for equality.

A. Subspaces and lattices

In this paper we will consider space-time codes that are

subsets of certain subspaces of the 2n2-dimensional real vector

space Mn(C). The first such subspace consists of all the real

matrices inside Mn(C) and we denote it with Mn(R). The

other subspace of interest consists of quaternionic matrices.

Let us assume that 2 | n. We denote with Mn/2(H) the set

of quaternionic matrices
(

A −B∗

B A∗

)

∈Mn(C),

where ∗ refers to complex conjugation and A and B are

complex matrices in Mn/2(C). Note that quaternionic matrices

form a n2-dimensional subspace in Mn(C).
The space-time codes we consider in this work are based

on additive groups in Mn(C).
Definition 1: A matrix lattice L ⊆Mn(C) has the form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBk,

where the matrices B1, . . . , Bk are linearly independent over

R, i.e., form a lattice basis, and k is called the dimension of

the lattice.

We immediately see that if we have a lattice inside the space

Mn(R) or Mn/2(H) the maximal dimension it can have is n2.

Definition 2: If the minimum determinant of the lattice L ⊆
Mn×n(C) is non-zero, i.e. satisfies

detmin (L) := inf
06=X∈L

|det(X)| > 0,

we say that the lattice satisfies the non-vanishing determinant

(NVD) property.

Building high dimensional NVD lattices is a highly non-

trivial task. A natural source of such lattices are division
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algebras. Let D be a degree n Q-central division algebra.

We say that the algebra D is ramified at the infinite place

if D ⊗Q R ≃Mn/2(H). If it is not, then D ⊗Q R ≃Mn(R).
Let Λ be an order in D.

Lemma 1: [2, Lemma 9.10] If the infinite prime is ramified

in the algebra D, then there exists an embedding

ψ : D →Mn/2(H)

such that ψ(Λ) is a n2 dimensional NVD lattice. If D is not

ramified at the infinite place, then there exists an embedding

ψ : D →Mn(R)

such that ψ(Λ) is a n2 dimensional NVD lattice.

B. Channel model

We consider a MIMO system with n transmit and m receive

antennas, and minimal delay T = n. The received signal is

Yc =

√

ρ

n
HcX̄ +Wc, (1)

where X̄ ∈ Mn(C) is the transmitted codeword, Hc ∈
Mm,n(C) and Wc ∈ Mm,n(C) are the channel and noise

matrices with i.i.d. circularly symmetric complex Gaussian

entries hij , wij ∼ NC(0, 1), and ρ is the signal-to-noise

ratio (SNR). The set of transmitted codewords C satisfies the

average power constraint

1

|C|

1

n2

∑

X∈C

‖X‖2 ≤ 1. (2)

We suppose that perfect channel state information is available

at the receiver but not at the transmitter, and that maximum

likelihood decoding is performed.

In the DMT setting [4], we consider codes C(ρ) whose size

grows with the SNR, and define the multiplexing gain as

r = lim
ρ→∞

1

n

log |C|

log ρ
,

and the diversity gain as

d(r) = − lim
ρ→∞

logPe

log ρ
,

where Pe is the average error probability.

Spherically shaped lattice codes: Let now L be a lattice

in Mn(C). Given M , consider the subset of elements whose

Frobenius norm is bounded by M :

L(M) = {X ∈ L : ‖X‖ ≤M}.

Let k ≤ 2n2 be the dimension of L as a Z-module. As in [2],

we choose M = ρ
rn
k and consider codes of the form

C(ρ) =M−1L(M) = ρ−
rn
k L(ρ

rn
k ),

which satisfy the power constraint (2). The multiplexing gain

of this code is r.

III. REAL LATTICE CODES

In this section, we focus on the special case where C(ρ) ⊂
Mn(R), i.e. the code is a set of real matrices.

A. Equivalent real channel

First, we show that the channel model (1) is equivalent to

a real channel with n transmit and 2m receive antennas.

We can write Hc = Hr + iHi, Wc = Wr + iWi, where

Hr, Hi,Wr,Wi have i.i.d. real Gaussian entries with variance

1/2. If Yc = Yr + iYi, with Yr, Yi ∈Mm×n(R), we can write

an equivalent real system with 2m receive antennas:

Y =

(

Yr
Yi

)

=

√

ρ

n

(

Hr

Hi

)

X̄ +

(

Wr

Wi

)

=

√

ρ

n
HX̄ +W, (3)

where H ∈ M2m×n(R), W ∈ M2m×n(R) have real i.i.d.

Gaussian entries with variance 1/2.

B. General DMT upper bound for real codes

Using the equivalent real channel in the previous section,

we can now establish a general upper bound for the DMT of

real codes.

Theorem 1: Suppose that ∀ρ, C(ρ) ⊂ Mn(R). Then the

DMT of the code C is upper bounded by the function d1(r)
connecting the points (r, [(m− r)(n− 2r)]+) where 2r ∈ Z.

Proof: This part of the proof closely follows [4]. Given

a rate R = r log ρ, consider the outage probability [5]

Pout(R) = inf
Q≻0, tr(Q)≤n

P {Ψ(Q,H) ≤ R} , (4)

where Ψ(Q,H) is the maximum mutual information per

channel use of the real MIMO channel (3) with fixed H and

real input with fixed covariance matrix Q.1 Following a similar

reasoning as in [5, Section 3.2], it is not hard to see that

Ψ(Q,H) =
1

2
log det(I +

ρ

n
HQHT ).

As in [4, Section III.B], since log det is increasing on the

cone of positive definite symmetric matrices, for all Q such

that tr(Q) ≤ n we have Q
n � I and

Pout(R) ≥ P

{

1

2
log det(I + ρHHT ) ≤ R

}

.

Note that det(I + ρHHT ) = det(I + ρHTH). Let l =
min(2m,n), and ∆ = |n− 2m|. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0
be the nonzero eigenvalues of HTH . The joint probability

distribution of λ = (λ1, . . . , λl) is given by [6]2:

p(λ) = Ke
−

l
∑

i=1

λi
l
∏

i=1

λ
∆−1

2

i

∏

i<j

(λi − λj) (5)

for some constant K . Consider the change of variables λi =
ρ−αi ∀i. The corresponding distribution for α = (α1, . . . , αl)
in the set A = {α : α1 ≤ · · · ≤ αl} is

p(α)=K(log ρ)le
−

l
∑

i=1

ρ−αi

ρ
−

l
∑

i=1

αi(∆+1
2 )∏

i<j

(

ρ−αi−ρ−αj
)

(6)

1Unlike [5] and [4], we don’t use a strict inequality in the definition (4),
but our definition is equivalent since the set of H such that Ψ(Q,H) = R
has measure zero.

2We have slightly modified the expression to be consistent with our
notation. In [6], the author considers a matrix ATA where each element
of A is N (0, 1).



Then we have

Pout(R)
.
= P

{

l
∏

i=1

(1 + ρλi) ≤ ρ2r

}

= P

{

l
∏

i=1

(1 + ρ1−αi) ≤ ρ2r

}

.

To simplify notation, we take s = 2r. Note that 1 + ρ1−αi ≤
2ρ(1−αi)

+ .
= ρ(1−αi)

+

, therefore

Pout(R) ≥̇ P

{

l
∏

i=1

ρ(1−αi)
+

≤ ρs

}

≥ P(A0),

where

A0 =

{

α ∈ A : αi ≥ 0 ∀i = 1, . . . , l,

l
∑

i=1

(1 − αi)
+ ≤ s

}

=

{

α ∈ A : αj ≥ 0,

j
∑

i=1

(1− αi) ≤ s ∀j = 1, . . . , l

}

. (7)

In fact, given α ∈ A, let t = t(α) be such that αt+1 ≥ 1 ≥
αt. Then ∀j = 1, . . . , l,

∑j
i=1(1 − αi) ≤

∑t
i=1(1 − αi) =

∑l
i=1(1 − αi)

+.
Consider Sδ = {α ∈ A : |αi − αj | > δ ∀i 6= j}. Then

Pout(R) ≥̇

∫

A0

e
−

l
∑

i=1

ρ−αi

ρ
−

l
∑

i=1

(∆+1)αi
2

∏

i<j

(ρ−αi − ρ−αj )dα

≥

∫

A0∩Sδ

e
−

l
∑

i=1

ρ−αi

ρ
−

l
∑

i=1

(∆+1)αi
2

∏

i<j

(ρ−αi − ρ−αj )dα

≥
(1− ρ−δ)l

el

∫

A0∩Sδ

ρ
−

l
∑

i=1

αiNi

dα
.
=

∫

A0∩Sδ

ρ
−

l
∑

i=1

αiNi

dα,

where Ni =
∆+2l−2i+1

2 . The previous inequality follows from

the fact that ρ−αi − ρ−αj > ρ−αi(1 − ρ−δ) for α ∈ Sδ, and

e
−

l
∑

i=1

ρ−αi

≥ 1
e if αi ≥ 0. (Note that for a fixed i, there are

l − i possible values for j such that i < j.)

Lemma 2: Let f(α) =
l
∑

i=1

(q + l + 1− 2i)αi. Then

inf
α∈A0

f(α) = (−q−l+2 ⌊s⌋+1)s+ql−⌊s⌋ (⌊s⌋+1) = f(α∗),

where α∗
1 = . . . = α∗

k−1 = 0, α∗
k = k − s, α∗

k+1 = . . . =
α∗
l = 1.

The proof of Lemma 2 can be found in Appendix A.

Using Lemma 2 with q = ∆ + l, s = 2r, we find that

infα∈A0

∑l
i=1Niαi = infα∈A0

f(α)
2 is equal to

1

2
[(−∆− 2l+ 2 ⌊2r⌋+ 1)2r + (∆ + l)l− ⌊2r⌋ (⌊2r⌋+ 1)]

= (−2m− n+ 2 ⌊2r⌋+ 1)r +mn−
⌊2r⌋ (⌊2r⌋+ 1)

2
.

This is the piecewise function d1(r) connecting the points

(r, [(m− r)(n − 2r)]+) where 2r ∈ Z.

Using the Laplace principle, ∀δ > 0 we have

lim
ρ→∞

−
logPout(R)

log ρ
≥ inf

A0∩Sδ

f(α)

2
.

Note that ∀δ, the point αδ such that αδ,i = α∗
i + δi

l is in

A0 ∩ S δ
l

and when δ → 0, αδ → α
∗. By continuity of f ,

lim
δ→0

inf
A0∩Sδ

f(α)

2
=
f(α∗)

2
= d1(r).

C. DMT of real lattice codes with NVD

In this section, we show that real spherically shaped lattice

codes with the NVD property achieve the DMT upper bound

of Theorem 1. This result extends Proposition 4.2 in [3].

Theorem 2: Let L be an n2-dimensional lattice in Mn(R),
and consider the spherically shaped code C(ρ) = ρ−

r
nL(ρ

r
n ).

If L has the NVD property, then the DMT of the code C(ρ) is

the function d1(r) connecting the points (r, [(m−r)(n−2r)]+)
where 2r ∈ Z.

Proof: Since the upper bound has already been estab-

lished in Theorem 1, we only need to prove that the DMT is

lower bounded by d1(r). The following section follows very

closely the proof in [1], and thus some details are omitted. To

simplify notation, we assume that detmin (L) = 1.

We consider the sphere bound for the error probability for the

equivalent real channel (3): for a fixed channel realization H ,

Pe(H) ≤ P

{

‖W‖2 > d2H/4
}

where d2H is the squared minimum distance in the received

constellation:

d2H
.
= ρ min

X̄,X̄′∈C(ρ), X̄ 6=X̄′

∥

∥H(X̄ − X̄ ′)
∥

∥

2

= ρ1−
2r
n min

X,X′∈L(ρ
r
n ), X 6=X′

‖H(X −X ′)‖
2
.

We denote ∆X = X − X ′. Let l = min(2m,n), and ∆ =
|n− 2m|. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 be the non-zero

eigenvalues of HTH , and 0 ≤ µ1 ≤ · · · ≤ µn the eigenvalues

of ∆X∆XT . Using the mismatched eigenvalue bound and the

arithmetic-geometric inequality as in [1], for all k = 1, . . . , l

d2H
.
= ρ1−

2r
n min

X,X′∈L(ρ
r
n ), X 6=X′

tr(H∆X∆XTHT )

≥ ρ1−
2r
n

l
∑

i=1

µiλi ≥ kρ1−
2r
n

(

k
∏

i=1

λi

)

1
k
(

k
∏

i=1

µi

)

1
k

.

For all i = 1, . . . , n, µi ≤ ‖∆X‖2 ≤ 4ρ
2r
n , and

n
∏

i=1

µi = det(∆X∆XT ) ≥ 1

due to the NVD property. Consequently, for all k = 1, . . . , l

k
∏

i=1

µi =
det(∆X∆XT )
∏n

j=k+1 µj
≥

1

ρ
2r(n−k)

n

.

With the change of variables λi = ρ−αi ∀i = 1, . . . , l, we can

write

d2H ≥̇ ρ1−
2r
n ρ

− 1
k

k
∑

i=1

αi 1

ρ
2r(n−k)

n

= ρ
− 1

k

(

k
∑

i=1

αi+2r−k

)



= ρδk(α,2r) ∀k = 1, . . . , l,

where we have set α = (α1, . . . , αl) and

δk(α, s) = −
1

k

(

k
∑

i=1

αi + s− k

)

. (8)

To simplify the notation, we will take s = 2r.
Since 2 ‖W‖2 is a χ2(2mn) random variable, we have

P

{

‖W‖2 > d
}

=

mn−1
∑

j=0

e−d d
j

j!
.

Let p(α) be the distribution of α in (6). Note that for i < j,
ρ−αi ≥ ρ−αj and for a fixed i, there are l− i possible values

for j. Consequently

p(α) ≤ p′(α) = Ke
−

l
∑

i=1

ρ−αi

ρ
−

l
∑

i=1

αiNi

(log ρ)l (9)

where Ni =
∆+2l−2i+1

2 . By averaging over the channel, the

error probability is bounded by

Pe =

∫

Pe(α)p(α)dα ≤

∫

P

{

‖W‖2 >
ρδk(α,s)

4

}

p(α)dα.

Finally, we get ∀k = 1, . . . , l,

Pe ≤

∫

A

p′(α)Φ(d2H)dα ≤

∫

A

p′(α)Φ(ρδk(α,s))dα (10)

where A = {α : α1 ≤ · · · ≤ αl}, and

Φ(d) = P

{

‖W‖2 >
d

4

}

= e−
d
4

2mn−1
∑

j=0

(

d

4

)j
1

j!
. (11)

The following Lemma is proven in Appendix B:

Lemma 3:

min
k=1,...,l

(

− lim
ρ→∞

1

log ρ
log

∫

A

p′(α)Φ(ρδk(α,s))dα

)

≥ inf
α∈A0

l
∑

i=1

Niαi,

where A0 is defined in (7).

The proof of the Theorem is concluded using Lemma 2 with

q = ∆+ l, s = 2r.

IV. QUATERNION LATTICE CODES

Suppose that n = 2p is even. We consider again the channel

Yc =

√

ρ

n
HcX̄ +Wc, (12)

and we suppose that the codewords X̄ are of the form

X̄ =

(

A −B∗

B A∗

)

∈M2p(C),

where A,B ∈Mp(C).

r
0 1

2
1

1
2

2

3

9
2

3
2

2

8

d(r)

Fig. 1. DMT upper bounds for real (solid) and quaternion (dashed) codes for
n = 4 and m = 2. The dotted lines correspond to the optimal DMT.

A. Equivalent quaternion channel

First, we derive an equivalent model where the channel has

quaternionic form. We can write

Yc =
(

Y1 Y2
)

, Hc =
(

H1 H2

)

, Wc =
(

W1 W2

)

,

where Y1, Y2, H1, H2,W1,W2 ∈Mm×p(C). Then

Y1=

√

ρ

n
(H1A+H2B)+W1, Y2=

√

ρ

n
(−H1B

∗+H2A
∗)+W2,

and we have the equivalent “quaternionic channel”:
(

Y1 Y2

−Y ∗

2 Y ∗

1

)

︸ ︷︷ ︸

Y

=
√
ρ

(
H1 H2

−H∗

2 H∗

1

)

︸ ︷︷ ︸

H

(
A −B∗

B A∗

)

︸ ︷︷ ︸

X

+

(
W1 W2

−W ∗

2 W ∗

1

)

︸ ︷︷ ︸

W

B. General DMT upper bound for quaternion codes

Theorem 3: Suppose that ∀ρ, C(ρ) ⊂ Mn/2(H). Then the

DMT of the code C is upper bounded by the function d2(r)
connecting the points (r, [(m− r)(n− 2r)]+) for r ∈ Z.

Proof: The quaternionic channel can be written in the

complex MIMO channel form
(

Y1
−Y ∗

2

)

=

√

ρ

n

(

H1 H2

−H∗
2 H∗

1

)(

A
B

)

+

(

W1

−W ∗
2

)

(13)

If r is the multiplexing gain of the original system (12), then

the multiplexing gain of this channel is 2r, since the same

number of symbols is transmitted using half the frame length.

Consider the eigenvalues λ1 = λ′1 ≥ λ2 = λ′2 ≥ · · · ≥ λp =
λ′p ≥ 0 of H†H . Let l = min(m, p) the number of pairs

of nonzero eigenvalues, and ∆ = |p−m|. For fixed H , the

capacity of this channel is [5]

C(H)
.
= log det(I + ρH†H) = 2

p
∑

i=1

log(1 + ρλi).

The joint eigenvalue density p(λ) = p(λ1, . . . , λl) of a

quaternion Wishart matrix is [7]3

p(λ1, . . . , λp) = K
∏

i<j

(λi − λj)
4

l
∏

i=1

λ2∆+1
i e

−
l
∑

i=1
λi

3The quaternion case corresponds to taking β = 4 in [7, equation (4.5)].
Note that we modify the distribution to take into account the fact that each
entry of H has variance 1/2 per real dimension.



for some constantK . Considering the change of variables λi =
ρ−αi ∀i = 1, . . . , l, the distribution of α = (α1, . . . , αl) is

p(α)=K(log ρ)le
−

l
∑

i=1

ρ−αi

ρ
−2

l
∑

i=1

αi(∆+1)∏

i<j

(

ρ−αi−ρ−αj
)4

The output probability for rate R = r log ρ is given by

Pout(R)
.
= P

{

2

l
∑

i=1

log(1 + ρλi) < 2r log ρ

}

=P

{

l
∏

i=1

(1+ρ1−αi)<ρr

}

.
=P

{

l
∏

i=1

ρ(1−αi)
+

<ρr

}

≥P(A0)

where A0 =
{

α : 0 ≤ α1 ≤ . . . ≤ αl,
∑l

i=1(1− αi)
+ < r

}

.

Given δ > 0, define Sδ = {α : |αi − αj | > δ ∀i 6= j}. Then

Pout(R)

≥̇

∫

A0∩Sδ

e
−

l
∑

i=1
ρ−αi

ρ
−2

l
∑

i=1
αi(∆+1)∏

i<j

(ρ−αi − ρ−αj )4dα

≥
(1 − ρ−δ)l

el

∫

A0∩Sδ

ρ
−2

l
∑

i=1

Niαi

dα

where Ni = 2(∆ + 2l − 2i + 1). Let f(α) =
∑l

i=1 αiNi.

Using the Laplace principle, limρ→∞ − logPout(R)
log ρ ≥

2 infA0∩Sδ
f(α) ∀δ > 0. Using Lemma 2 with s = r,

q = ∆ + l, we find that 2 infα∈A0 f(α) = 2f(α∗) is

the piecewise linear function d2(r) connecting the points

(r, [2(p− r)(m − r)]
+
) = (r, [(n− 2r)(m − r)]

+
) for r ∈ Z.

Note that ∀δ, the point αδ such that αδ,i = α∗
i + δi

l is in

A0 ∩ S δ
l

and when δ → 0, αδ → α
∗. By continuity of f ,

2 limδ→0 infA0∩Sδ
f(α) = 2f(α∗) = d2(r).

C. DMT of quaternionic lattice codes with NVD

We now show that quaternionic lattice codes with NVD

achieve the upper bound of Theorem 3. This result extends

Proposition 4.3 in [3].

Theorem 4: Let L be an n2-dimensional lattice in Mn/2(H),
and consider the spherically shaped code C(ρ) = ρ−

r
nL(ρ

r
n ).

If L has the NVD property, then the DMT of the code C(ρ)
is the piecewise linear function d2(r) connecting the points

(r, [(m− r)(n − 2r)]+) for r ∈ Z.

Proof: To simplify notation, assume detmin (L) = 1. For

a fixed realization H , Pe(H) ≤ P

{

‖W‖2 > d2H/4
}

, where

d2H
.
= ρ1−

2r
n min

X,X′∈L(ρ
r
n ), X 6=X′

‖H(X −X ′)‖
2
.

Let ∆X = X − X ′. We denote by λ1 = λ′1 ≥ λ2 = λ′2 ≥
· · · ≥ λp = λ′p ≥ 0 the eigenvalues of H†H , and by 0 ≤ µ1 =
µ′
1 ≤ · · · ≤ µp = µ′

p the eigenvalues of ∆X∆X†. Both sets of

eigenvalues have multiplicity 2 since H and X are quaternion

matrices. Again we set l = min(m, p) and ∆ = |p−m|.
Using the mismatched eigenvalue bound and the arithmetic-

geometric inequality as in [1], we find that for all k = 1, . . . , l,

d2H
.
= ρ1−

2r
n min

X,X′∈C(ρ), X 6=X′

tr(H∆X∆X†H†)

≥ ρ1−
2r
n

l
∑

i=1

(2µiλi) ≥ 2kρ1−
2r
n

(

k
∏

i=1

λi

)

1
k
(

k
∏

i=1

µi

)

1
k

.

As before, for all i = 1, . . . , n, µi ≤ ‖∆X‖2 ≤ 4ρ
2r
n , and

∏n
i=1 µi = det(∆X∆X†)

1
2 ≥ 1 using the NVD property of

the code. Consequently, for all k = 1, . . . , l

k
∏

i=1

µi =
det(∆X∆X†)

1
2

∏n
j=k+1 µj

≥
1

ρ
2r(p−k)

n

=
1

ρ
r(p−k)

p

.

With the change of variables λi = ρ−αi ∀i = 1, . . . , l, we

have ∀k = 1, . . . , l

d2H ≥̇2ρ1−
r
p ρ

− 1
k

k
∑

i=1

αi

ρ−
r(p−k)

p = 2ρ
− 1

k

( k
∑

i=1

αi+r−k
)

= 2ρδk(α)

where α = (α1, . . . , αl) and δk(α) = − 1
k

(

k
∑

i=1

αi + r − k

)

.

Since 2 ‖W‖2 ∼ 2χ2(2mp), we have

Pe(H) ≤ P

{

‖W‖2 >
ρδk(α)

2

}

=

mp−1
∑

j=0

e−
ρδk(α)

4

(

ρδk(α)

4

)j
1

j!
= Φ(δk(α, r)).

By averaging with respect to the distribution p(α), we get

Pe ≤

∫

A

p(α)Φ(δk(α, r))dα ≤

∫

A

p′(α)Φ(δk(α, r))dα

where A = {α : α1 ≤ · · · ≤ αl}, and

p′(α) = K(log ρ)le
−

l
∑

i=1

ρ−αi

ρ
−

l
∑

i=1

αiNi

,

where Ni = 2(∆ + 2l − 2i + 1). Note that p′(α) and

Φ(δk(α, r)) have the same form as in (9) and (11). From

Lemma 3 we find d(r) ≥ infα∈A0 2
∑l

i=1 αi(∆+2l−2i+1),
which by Lemma 2 is the piecewise linear function connecting

the points (r, [(n− 2r)(m − r)]+) for r ∈ Z.

APPENDIX

A. Proof of Lemma 2

Let d̄(s) = (−q − l + 2 ⌊s⌋ + 1)s + ql − ⌊s⌋ (⌊s⌋ + 1).
Without loss of generality, we can suppose that k−1 ≤ s < k
for some k ∈ N, i.e. k − 1 = ⌊s⌋, k = ⌊s⌋+ 1.

First, we show that ∀α ∈ A0, we have f(α) ≥ d̄(s). In fact

f(α) = (q − l − 1)

l
∑

i=1

αi + 2

l
∑

i=1

(l − i+ 1)αi

≥ (q − l − 1) (l − s) + 2

l
∑

i=k

i
∑

j=1

αi

≥ (q − l − 1) (l − s) + 2

l
∑

i=k

(i − s)

= (q − l − 1) (l − s) + l(l + 1)− (k − 1)k − 2(l− k + 1)s

= d̄(s).



Next, we show that ∃α∗ such that f(α∗) = d̄(s).
Let α∗

1 = . . . = α∗
k−1 = 0, α∗

k = k−s, α∗
k+1 = . . . = α∗

l = 1.

Then

f(α∗) =

l
∑

i=1

(q + l + 1)αi − 2

l
∑

i=1

iαi

= (q + l + 1) (l − s)− 2k(k − s)− l(l+ 1) + k(k + 1)

= d̄(s)

B. Proof of Lemma 3

The proof closely follows [8], which is a preliminary version

of [1]. Note that Φ(ρδk(α,s)) ≤ 1 since it is a probability.

Given ε > 0, we can bound the integral (10) as follows

Pe ≤

∫

Ā

p′(α)Φ(ρδk(α,s))dα+

l
∑

j=1

∫

Aj

p′(α)Φ(ρδk(α,s))dα,

(14)

where Ā = {α ∈ A : αi ≥ −ε ∀i = 1, . . . , l} and

Aj = {α ∈ A : αj < −ε}. Note that
∫

Aj

p′(α)Φ(ρδk(α,s))dα ≤

∫

Aj

p′(α)dα

≤





∏

i6=j

∫ ∞

−∞

e−ρ−αi
ρ−αiNidαi





∫ ε

−∞

e−ρ−αj
ρ−αjNjdαj

=





∏

i6=j

∫ ∞

0

e−λiλNi−1
i

log ρ





∫ ∞

ρε

λje
−λj

log ρ
dλj

.
= ρ0

∫ ∞

ρε

λje
−λj

log ρ
dλj

which vanishes exponentially fast as a function of ρ. For the

first term in (14), we have

∫

Ā

p′(α)Φ(ρδk(α,s))dα ≤

∫

α>−ε
δ(α,s)<ε

p′(α)Φ(ρδk(α,s))dα

+
n
∑

j=1

∫

α>−ǫ,
δj(α,s)≥ε

p′(α)Φ(ρδk(α,s))dα,

where the notation α > −ǫ means αi > −ǫ ∀i = 1, . . . , l.
We have
∫

α>−ǫ,
δj(α,s)≥ε

p′(α)Φ(ρδk(α,s))dα (15)

≤

∫

α>−ǫ,
δj(α,s)≥ε

e−
ρ
δj(α,s)

4

2mn−1
∑

t=0

(

ρδj(α,s)

4

)t
1

t!

l
∏

i=1

ρ−αiNidα

≤





l
∏

i=j+1

∫

αi>−ε

ρ−αiNidαi





·

∫

α1,...,αj>−ε
δj(α,s)≥ε

e−
ρ
δj (α,s)

4

2mn−1
∑

t=0

(

ρδj(α,s)

4

)t
1

t!
ρ
−

j
∑

i=1

Ni

dα1 . . . dαj

since δj(α, s) is independent of αi for i > j. As δj(α, s) ≥ ε,
αi > −ε implies αi ≤ −jε − s + j, the second integral is

over a bounded region and tends to zero exponentially fast

as a function of ρ, while the first integral has a finite SNR

exponent. Thus, (15) tends to zero exponentially fast.

Finally, the SNR exponent of (10) is determined by the

behavior of
∫

α>−ε
δ(α,s)<ε

p′(α)Φ(ρδk(α,s))dα ≤

∫

α>−ε
δ(α,s)<ε

p′(α)dα

≤

∫

α>−ε
δ(α,s)<ε

ρ
−

n
∑

i=1

Niαi

dα

The conclusion follows by using the Laplace principle, and

taking ǫ→ 0. Note that

A0 =

{

α ∈ A : αj ≥ 0,

j
∑

i=1

(1− αi) ≤ s ∀j = 1, . . . , l

}

= {α : αj ≥ 0, δj(α, s) ≤ 0 ∀j = 1, . . . , l}.

REFERENCES

[1] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu, “Explicit
space-time codes achieving the diversity-multiplexing gain tradeoff,”
IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3869–3884, 2006.

[2] R.Vehkalahti, H.-F. Lu, and L. Luzzi, “Inverse determinant sums and
connections between fading channel information theory and algebra,”
IEEE Trans. Inform. Theory, vol. 59, pp. 6060–6082, Sept 2013.

[3] L. Luzzi, R. Vehkalahti, and A. Gorodnik, “Towards a complete DMT
classification of division algebra codes,” in IEEE International Sympo-
sium on Information Theory (ISIT), July 2016, pp. 2993–2997.

[4] L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental tradeoff
in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, pp. 1073–
1096, May 2003.

[5] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans.

Telecomm., vol. 10, no. 6, pp. 585–595, Nov.-Dec. 1999.
[6] A. Edelman, “Eigenvalues and condition numbers of random matrices,”

Ph.D. dissertation, Dept. Math., Massachusetts Inst. Technol., Cambridge,
MA, USA, 1989.

[7] A. Edelman and N. R. Rao, “Random matrix theory,” Acta Numerica,
vol. 14, pp. 233–297, 2005.

[8] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu, Explicit,

Minimum Delay Space-Time Codes Achieving the Diversity-Multiplexing

Gain Tradeoff. Technical report, Indian Institute of Science, Bangalore,
2005.


	I Introduction
	II Notation and preliminaries
	II-A Subspaces and lattices
	II-B Channel model

	III Real lattice codes
	III-A Equivalent real channel
	III-B General DMT upper bound for real codes
	III-C DMT of real lattice codes with NVD

	IV Quaternion lattice codes
	IV-A Equivalent quaternion channel
	IV-B General DMT upper bound for quaternion codes
	IV-C DMT of quaternionic lattice codes with NVD

	Appendix
	A Proof of Lemma ??
	B Proof of Lemma ??


