
HAL Id: hal-01740502
https://hal.science/hal-01740502

Submitted on 22 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Compressed, Inference-enabled Encoding Scheme for
RDF Stream Processing

Jérémy Lhez, Xiangnan Ren, Badre Belabbess, Olivier Curé

To cite this version:
Jérémy Lhez, Xiangnan Ren, Badre Belabbess, Olivier Curé. A Compressed, Inference-enabled
Encoding Scheme for RDF Stream Processing. ESWC 2017, 2017, Portorož, Slovenia. pp.79-93,
�10.1007/978-3-319-58451-5_6�. �hal-01740502�

https://hal.science/hal-01740502
https://hal.archives-ouvertes.fr

A Compressed, Inference-enabled Encoding
Scheme for RDF Stream Processing

Jérémy Lhez1, Xiangnan Ren1,2,3,Badre Belabbess1,2, Olivier Curé1

1 LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, F-77454, Marne-la-Vallée,
France. {firstname.lastname}@u-pem.fr

2 Atos, Bezons France. {firstname.lastname}@atos.fr
3 ISEP - LISITE, Paris 75006, France

Abstract. The number of sensors producing data streams at a high ve-
locity keeps increasing. This paper describes an attempt to design an
inference-enabled, distributed, fault-tolerant framework targeting RDF
streams in the context of an industrial project. Our solution gives a spe-
cial attention to the latency issue, an important feature in the context of
providing reasoning services. Low latency is attained by compressing the
scheme and data of processed streams with a dedicated semantic-aware
encoding solution. After providing an overview of our architecture, we
detail our encoding approach which supports a trade-off between two
common inference methods, i.e., materialization and query reformula-
tion. The analysis of results of our prototype emphasize the relevance of
our design choices.

1 Introduction

Semantic information of the Web of data, generally represented with the Re-
source Description Framework (RDF)4 data model, is now being considered for
real time analysis. This is the case in the Waves project5, where we provide
real-time analytics of RDF data streams for an international company leading
innovation technologies for smart water network management. In particular, we
are analyzing data captured from potable water networks in major cities in the
world, e.g., studying pressure, flow, turbidity, pH, chlore and other chemical
measures, in almost real-time. Some of the key goals of this project are to iden-
tify malfunctions in these water networks, e.g., water leaks by analyzing flow and
pressure measures, to explain their origins leveraging knowledge base enrichment
and to predict potential issues within the pipeline system. With more relevant
and faster agent interventions on the network, such research and development
can have a substantial impact at both the environmental (to limit potable water
loss) and economic (to reduce financial costs) levels. In fact, one must bear in
mind that worldwide water leaks peaked to 32 billion m3/year within last years,
90% of them being invisible due to the underground nature of the network, which
makes it a burning issue for the 21st Century.

4 http://www.w3.org/TR/rdf-mt/
5 http://www.waves-rsp.org/

Detecting water leakage could be performed using quantitative data without
exploiting the possibilities of semantic web technologies. However, since we aim
to explain discovered leaks, taking advantage of RDF technologies (e.g., RDFS,
OWL and SPARQL) and functionalities (e.g., data and knowledge integration,
reasoning) becomes a necessity. Such scenarios imply the association of expres-
sive schemata, denoted as ontologies, and explicit measured data. Therefore, an
intelligent knowledge management system should enable to infer valuable infor-
mation that can help in providing sound and complete answers to a continuous
query processing component or to help in the design of efficient data analytics.

The integration of a reasoning component in Event Stream Processing (hence-
forth ESP) is a complex task due to the general cost, in terms of computing
resources and time, of inferring data using expressive ontologies. In order to
address these requirements, we have designed a prototype system based on the
following contributions: (i) we present a generic distributed streaming architec-
ture that addresses materialization and query reformulation reasoning services
(Section 2), (ii) we propose an encoding approach that minimizes system latency
and supports inferences (Section 4 and 5), (iii) we highlight the efficiency of our
compressing approach with results of an experimentation (Section 6).

2 Architecture

In Figure 1, we present an overview of our architecture. Due to the usage of
the Apache Kafka[14] and Apache Storm [12] components, we have designed a
system capable of ensuring scalability, fault-tolerance, high throughput and low
latency properties.

One characteristic of our project is its capacity to handle both static and
dynamic data and knowledge. By static, we mean data and knowledge that are
rarely updated while the dynamic aspect relates to the notion of streams arriving
at a fast pace, potentially thousands of them per second.

The static aspect of our system consists in encoding a set of ontologies and
knowledge bases that are specific to the application domain. In the case of the
Waves project, the ontologies are addressing the following topics: sensors, e.g.,
SSN6 (Semantic Sensor Network), hydrology, e.g., CUAHSI7 and modeling phys-
ical quantities, units of measure, and their dimensions, e.g., QUDT8. The system
also integrates additional knowledge bases to represent water network geograph-
ical aspects. This is supported by the Geonames9 and DBpedia10 ontologies.
These knowledge bases are stored in our external knowledge base component
which is currently handled by the Virtuoso RDF store11.

6 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
7 http://his.cuahsi.org/ontologyfiles.html
8 http://linkedmodel.org/catalog/qudt/1.1/
9 http://www.geonames.org/

10 http://wiki.dbpedia.org/
11 http://virtuoso.openlinksw.com/

Fig. 1. Architecture overview

The remaining of the architecture is concerned with dynamic, event-based
data which are handled by distributed components: Kafka as a distributed, parti-
tioned, replicated commit log service, Storm as the distributed stream processing
engine and Redis12 as a key-value memory store.

A typical scenario in our system is as follows. First, measures are captured
from a given sensor network. These streams are cleaned, filtered and possibly
sampled before being serialized in a compact RDF format. These data are per-
sisted on-demand to a Redis key-value store and sent to the Apache Kafka mes-
sage broker. The Kafka component is becoming a standard in streaming pro-
cessing engines and can be connected to most open source streaming engines
(e.g., Storm). Data are fetched from Kafka by a set of distributed nodes which
implement the so-called Storm topology, i.e., a network of so-called spouts and
bolts. A spout is the source of data streams and can read data from an external
framework like Kafka. A bolt is a processing logic unit that performs any kind
of processing such as filtering, aggregating, joining, interacting with data stores.
Each spout or bolt executes as many tasks across a Storm cluster, and each task
corresponds to one thread of execution. Topologies execute across one or more
worker processes. Each worker process is a physical Java Virtual Machine (JVM)
and executes a subset of all the tasks for the topology. In a Waves topology, each
spout subscribes to one stream represented by a Kafka topic, and each bolt de-

12 http://redis.io/

compresses data and performs a continuous SPARQL query, whose language is
inspired by C-SPARQL [2].

The streaming engine is connected to a visualization module whose only
goal is to ease the interpretation of analyzed streams through different forms
of graphics. Some of these visualizations may require some data enrichment
supported by the set of reasoning services.

In the remaining of this paper, we focus on reasoning aspects which is tightly
coupled with the RDF serialization solution.Due to space limitations, we do not
address other components of the architecture.

3 Running Scenario

In this section, we present a practical use case of the Waves project in which a
set of sensors is generating simple RDF streams corresponding to some physical
measures. In Figure 2(a), we present a simple, raw stream, denoted S, providing
a pressure measure from a sensor characterized with identifier ”Q250HP”. In
order to detect and predict interesting situations in real-time, end-users of our
platform can define continuous queries to the system. Figure 2(b) proposes such
a query expressed in C-SPARQL[2], henceforth denoted Q. Intuitively, the query
computes the pressure average, expressed in the Pascal unit, measured in fixed
windows lasting 5 minutes and sliding every 2 minutes. Moreover, these averages
are only computed for sensors situated in a certain location (a bounding box is
specified from ranges of latitude and longitude values) and for a certain sensor
type (namely Sensor2). Clearly, this raw stream S does not satisfy the WHERE

clause of the C-SPARQL query Q : neither the type of the sensor, the unit of its
measure and location are specified in the raw stream. Hence, the result set of Q
over S would be empty. We consider that given the messages sent by real-world
sensors, such situations are bound to occur frequently.

In fact, sensor ”Q250HP” is providing measures in the Pascal unit, is of
type Sensor3 and is situated in the bounding box expressed in Q. But these
information are only stored in some external knowledge base.

This knowledge base contains two components. An ontology stating that Sen-
sor3 and Sensor4 are sub classes of Sensor2, expressed in a Description Logic [1]
formalism as Sensor3 v Sensor2 and Sensor4 v Sensor2. And a set of facts
stating that sensor Q250HP provides pressure values expressed in the Pascal
unit and is located at latitude 48.59 and longitude 2.75. Thus the data stream,
if properly enriched, can satisfy the continuous query Q.

Instead of performing joins at run-time for each incoming events, we prefer
to materialize these events with the information that may satisfy a continuous
query. Intuitively, the continuous queries are retrieving events from a given set
of Kafka topics. Thus it is possible to define possible materialization when a
query is associated to a topic. The problem then amounts to define a compact
and efficient serialization for the RDF graphs corresponding to the events.

Fig. 2. (a) RDF Stream S and (b) continuous query Q

4 Compression approaches

4.1 Knowledge base encoding

With our knowledge base encoding approach, we provide an efficient encoding
scheme and data structures to support the reasoning services associated to the
terminological and assertional boxes (resp. Tbox and Abox). The input ontology
is considered to be the union of all ontologies necessary to operate over one’s
application domain (e.g., SSN, CUAHSI, QUDT, Geonames and DBpedia). In
the current version of our work, we address the ρdf[10] subset of RDFS, mean-
ing that we are only interested in the rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain and rdfs:range constructors. Our Tbox encoding scheme uses our
LiteMat system (full details in [5]). Intuitively, it provides a unique, semantic-
based identifier to each entry of the Tbox (i.e., class and properties). That is, the
identifier of each Tbox element is prefixed by the binary identifier of its super
element. This approach enables to represent the class and property hierarchies
in a compact way since the identifier of a given class (resp. property) provides
all its direct and indirect super classes (resp. properties). Moreover, to capture
all inferences related to the class hierarchy, the encoding relies on a classifica-
tion performed by an OWL reasoner. To support rdfs:domain and rdfs:range

inferences, the property dictionary is extended with the class identifiers that re-
spectively correspond to their domain and range. A final dictionary is generated
over instances of the Abox. Once all these dictionaries have been computed and
stored in a Redis key/value store, the system can encode the whole Abox, which
is then constituted of integer value triples and stored in a Virtuoso instance.

4.2 RDF Distributed Stream Compression

A distributed architecture integrating reasoning services requires low latency to
cope with massive real-time streams. However, frequent data transfers between
several components (e.g., messaging middleware, data stores, etc.) produce sig-
nificant network overhead. There are quite various methods to deal with this

complex issue and the one we focus on is compression. RDF data are particu-
larly adapted to efficient compression.

Like RDSZ[8] and ERI[6], our approach assumes that events in a given stream
share structural similarities, i.e., the RDF graph shapes are similar. We can lever-
age on this aspect to limit the stream memory footprints. As the compression
exploits structural similarities, a new graph (e.g., set of RDF triplets) can be
represented on the basis of the previous graph. Our approach breaks up each
graph into two parts, namely the graph Pattern and value/variable Bindings
that are associated to a graph pattern, hence the PatBin denotation.

In Figure 3, we present the different steps necessary to generate a pattern
signature. This deterministic approach will serve to compare stream graph sig-
nature with continuous query signatures in an efficient manner. Considering an
arriving graph event corresponding to data stream S of our running example,
Figure 2(a), we use our previously computed property dictionary, Figure 3(a),
to replace property IRIs with integer values. We thus obtain a more compact
set of triples (Figure 3(b)). The compactness of this signature takes benefits
from the facts that all events we have encountered correspond to trees. Starting
from the root node of our tree, we then sort the graph, in a level-wise manner,
according to the property integer values. This order is then used to define a
pattern signature (Figure 3(c)). Intuitively, a signature is composed of property
identifiers separated by ’:’ symbols to delimit properties occurring at the same
tree level, ’(’,’)’ symbols to describe sub-trees. Note that subjects and objects
are not necessary in these signatures since our signature language enables to
easily reconstruct the original shape of the tree, i.e., by abstracting subjects and
objects with variables.

(a) Property Dictionary extract

http://purl.oclc.org/NET/ssnx/ssn#isProducedBy : 144
http://purl.oclc.org/NET/ssnx/ssn#hasValue : 140
http://purl.oclc.org/NET/ssnx/ssn#startTime : 80
http://data.nasa.gov/qudt/owl/qudt#numericValue : 86

(b) Intermediary (sorted) pattern

_:x1 140 "2016-01-01T01:15:00"^^xsd:dateTime
_:x1 144 Q250HP
_:x1 80 _:x2
_:x2 86 1.43

(c) Output pattern signature

140:144:80:(86)

Fig. 3. Pattern signature process

Correspondences between implicit graph pattern variables and their values
(i.e., on triple subjects and objects) are represented by bindings and are sent to
Kafka. For a graph N , the bindings are compressed using a differential approach

based on the bindings of the previous graph N − 1. If the graph N shares some
bindings with the N − 1 graph, then they are replaced by blanks.

Moreover, the mechanism is still not adapted for distributed computing, since
encoding the current N graph is based on the bindings of the previously pro-
cessed N − 1 graph. However, this implies data exchange between distributed
machines if these graphs are processed in different nodes, leading to a network
overhead. To solve this, we propose to encode the current N graph based on
the bindings of the initially processed graph from which the pattern has been
extracted and stored. Hence, we create a context in which we put the pattern,
the bindings of the graph from which the pattern has been extracted and the
occurring namespaces. All the incoming graphs are encoded based on the context
with which they share the same pattern. To guarantee the access to contexts in
the distributed infrastructure, we need to store them in a centralized system.
Again, Redis has been chosen for storage due to its convenient features (e.g
key-value in-memory store, fast read/write, etc.). Each context created is au-
tomatically stored in Redis. The contexts being stored in a centralized system,
all the machines have access to compress and decompress operations of RDF
graphs. In addition, each machine benefits from its local cache LRU (Least Re-
cently Used) mechanism. That is each machine contains the latest recently used
patterns processed by this machine and serves to speed up the contexts read
access.

5 Inference solution

In this section, we present our reasoning approach which is based on a trade-
off between materialization and query reformulation. Although these inference
solutions can be used independently, i.e., materialization or query reformulation
alone, we highlight that the full potential of the approach is to combine both of
them.

5.1 Materialization

The goal of the materialization step is to enrich raw RDF streams in such a way
that they can potentially satisfy some given continuous queries. By potentially
satisfying a query, we mean that there is a graph homomorphism between a
stream and a continuous query graph pattern. It does not necessarily means
that a materialized streaming graph pattern actually satisfies the query since
some values may not satisfy certain conditions, e.g., filters, of the query. This
enrichment is based on retrieving some additional data from external knowledge
bases which are stored and possibly encoded in an RDF repository (e.g., the
Virtuoso RDF store).

Of course, the task of discovering to what extent a materialization can trans-
form an unsatisfiable raw stream into a potentially satisfiable one, must be per-
formed automatically by the system. That is, the system has to find out a set of
sound transformations according to a set of continuous queries and knowledge

base axioms. We compute such discoveries using graph matching operations over
the graph patterns of RDF streams and continuous queries. This approach is
valid since the vocabularies used in these two components correspond to our
predefined set of encoded ontologies (Section 4.2).

Given the potential high volume of different data stream types, e.g., in our use
case, measures such as pressure, flow, chlorine, turbidity, etc., and the number
of continuous queries, it is important to propose an efficient discovery approach.
Our method considers that streams are submitted to Kafka topics and that these
topics are processed to retrieve stream graph patterns. Moreover, the continuous
queries (implemented as Storm bolts) are connected to Storm Spouts which are
themselves related to Kafka topics. Hence, it is possible to reduce the space search
by matching pairs of stream and continuous query graph patterns connected to
the same Kafka topics.

Given a Kafka topic T , the graph matching discovery problem amounts to
finding if a Stream Graph Pattern SGP is a sub graph of a given continuous
query graph pattern CQ, i.e., excluding FILTER, GROUP BY and OPTIONAL
clauses and considering group graph patterns related by UNION clauses as in-
dividual queries. This search for a sub graph relationship is semantic-aware,
meaning that class and property subsumption relationships are taken into ac-
count. For instance, with our previously defined ontology, the following situation:
SGP = : x1 type Sensor3, CQ = : x4 type Sensor2 would correspond to
a sub graph relationship due to the Sensor3 v Sensor2 axiom. Note that
this is not the case for this other example: SGP = : x1 type Sensor2, CQ =

: x4 type Sensor3.

If SGP is not a sub graph of CQ then we consider that this sort of data
streams can not be enriched to satisfy the continuous query. In the case SGP
is equal to CQ then no materialization is required since SGP can potentially
satisfy CQ out-of-the-box. Finally, if SGP is a sub graph of CQ then the triple-
based difference between CQ and SGP is computed to identify the set of triples
that are missing in SGP to potentially satisfy CQ. Based on mapping assertions
between subject and object identifiers of SGP and CQ, we can instantiate a
computed triple set from external knowledge bases. In our running example,
this amounts to generating the bold lines of Figure 4(a). Basically, the unit,
location and type of sensor ”Q250HP” triples are added to the streams. Note
that the sensor type is expressed with the integer value corresponding to its
binary encoding: the binary identifiers of Sensor2, Sensor3 and Sensor4 are
respectively 101100, 101110 and 101101 which respectively correspond to the
44, 45 and 46 integer values.

The discovery of a graph match is fast due to our compact, deterministic
graph signature representation. Nevertheless, it may become a performance bot-
tleneck due to high velocity stream production. To prevent this from happening,
the system stores discovered graph pattern correspondences and only searches
for new ones when novel stream patterns are recorded in the system and/or when
continuous queries are updated or inserted. A discovered graph pattern exactly

matches the graph associated to a materialized stream and is expressed as the
original graph patterns, i.e., as defined in Section 4.2.

5.2 Query reformulation

The goal of the query reformulation component is to modify the original continu-
ous query such that subsumption relationships are properly addressed. A special
attention is given to classes specified in rdf:type triples. If any of these classes
are at some point a super class in our Tbox then some reformulation is neces-
sary. The system proceeds as follows: in each triple pattern with a rdf:type

property, replace the class C (object position) with a non previously used vari-
able (denoted Vi). In Figure 2(b), the ?s type Sensor2 triple is replaced by the
triple ?s type ?st in Figure 4(b). Then a SPARQL FILTER clause is introduced
in the reformulated query on that variable Vi. The goal is to cover all possible
sub classes of the original class C. The specification of these classes are per-
formed at the encoding level and hence benefits from the nice properties of our
ontology encoding. Due to our encoding approach, we know that sub classes of
Sensor2 are necessarily included in the ”101100” and ”101111” identifier range
which correspond to respectively to the 44 and 46 values. These lower and up-
per bound values are easily computed (using two bit shift operations) from the
binary version of C’s identifier. With this approach, we cover all sub classes of a
given class with a single FILTER query line, independently of the length of this
class subsumption relationships. The last bold line of Figure 4(b) represents this
filter clause for our running example.

A similar approach is perform for the property hierarchy. It consists of an-
alyzing whether any of the non rdf:type properties is at some point a super
property. Then the system operates in an identical manner: it replaces the prop-
erty with a new variable and inserts a FILTER line that restricts the range of
accepted property values for that variable.

Note that this approach is particularly efficient when several reformulation
(e.g., on classes and properties) are needed in a single query. With our filter ap-
proach, a reformulated query grows linearly and not exponentially as is generally
the case for standard query reformulation approaches.

6 Evaluation

In this evaluation section, we provide results of experiments about the ontology
and the stream compression components. The evaluation has been conducted on
real dataset describing some characteristics of Waves’s water network for a large
city in the Paris area (France). In the following, we present the computational
environment, the dataset and the results obtained. Due to space limitations, this
experimentation focuses on the PatBin and reasoning aspects.

Fig. 4. Materialized RDF Stream and reformulated continuous query

6.1 Computational environment

Throughout this experimentation section, we are using two different computa-
tional settings. The evaluation concerning the compression have been realized
on a laptop with a Windows 8 operating system, equipped with an Intel Core
i7 processor (2.90 GHz), 16GB of RAM, running JDK/JRE 1.8. The ontology
encoding evaluation has been performed on a Linux Ubuntu 14.04 distribution
with 16GB of RAM, Intel Core I5 quad-core processor and running a JDK 1.8.
We used the HermiT version 1.3.8 as an external reasoner and programmed the
encoding solution with Apache Jena 3.0.0. Finally, we are using Apache Spark[15]
version 1.5.2 for the encoding of the ABox. The Spark cluster consists of 3 Dell
PowerEdge machines equipped with 64GB of RAM.

6.2 Datasets

For experimentation, we use a real world dataset describing different water mea-
surements captured by sensors. Values of flow, pressure and chlorine are exam-
ples of these measurements. These data are provided in CSV format and need
to be represented in a semantic model. For this, we are annotating values using
three popular ontologies: SSN, CUAHSI-HIS and QUDT. Each sensor observes
at least one physical phenomenon or a chemical property, and hence produces
timestamped streams containing an observation.

6.3 Results

Knowledge base encoding evaluation We ran our ontology compression
Java program a total of five times and obtained an average of 18.8 seconds for the
merged ontology presented in Table 1. With respect to the low numbers of classes
and properties, this duration can be considered rather long. In fact, this can be
justified by the rather high expressivity of the resulting ontology which happens
to correspond to SROIQ(D) Description Logics. This expressiveness matches

Ontology #classes #object pr. #data pr. duration (sec.)

SSN 117 142 6 -

QUDT 229 69 29 -

CUAHSI extract 103 0 0 -

Merged ontology 449 174 35 18.8

DBPedia 814 3,035 1,310 4.1

Wikidata 213,958 255 98 118

Table 1. Compressed ontology in terms of number of classes, object and data type
properties

the OWL2 DL ontology language which is known to be the OWL fragment with
the highest computational complexity for standard inference services (apart from
OWL Full which is undecidable).

Comparatively, The same algorithm is able to encode the DBPedia OWL
ontology, which contains over 800 classes and 3000 properties, in less than 4
seconds for an expressivity corresponding to ALCHF(D) DL. The encoding of
the Wikidata ontology takes approximatively 2 minutes. This is mainly due to
the large class hierarchy (over 200,000 classes) and not to its expressiveness
which corresponds to the AL DL.

Finally, we provide an evaluation of a data instance encoding which is needed
for static knowledge bases. This processing is distributed over our Spark cluster
and the measures are presented in Table 2. These measures are about 70% faster
than state of the art compression approaches defined over Apache Hadoop [13].

Dataset #Triples Duration Throughput

DBPedia 79.1 282.2 280 943

Wikidata 242.1 1 334.8 181 394

Table 2. Duration and throughput of data instances, triples in ∗106, Duration in
seconds and throughput in triples/sec.

Signature generation performance We used RDSZ results to check the al-
gorithm’s compression performance. A specific Java class stores the algorithm
statistics in terms of performance and compression rate, thus we made some
similar measures for PatBin to ensure a fair comparison. The system time was
measured once the input file was parsed as a Java String containing all triples,
and a second time right after the compression step. The subtraction of those
values gives the compression performance. RDSZ’s statistics also provide infor-
mation about the compression rate, by giving the size of the compressed output
(in UTF-8 bytes); therefore we used this method for our algorithm again. Both
those measures are presented in Table 3; we performed a series of verification
for different input file sizes (using the turtle serialization). We used the basic
configuration of RDSZ algorithm, with no specific argument. As we can see, the

compression performance is much faster for PatBin; this is mostly due to the
fact that we only have to deal with predicates. Indeed, RDSZ must initialize its
binding table with both subject and predicates, and verify for each class if it is
not already present in the table. We have twice less work to do with only the
properties. PatBin also has better results in terms of compression rate, which
tends to decrease for big input files: this is mostly due to the fact that we used
examples files that are represented as big forests, thus having a long signature
on several lines.

RDSZ time PatBin time RDSZ size PatBin size

5 triples 383 1 312 13

10 triples 387 2 370 29

25 triples 394 3 425 89

50 triples 397 6 523 184

100 triples 401 10 750 382

Table 3. Signature generation performance for RDSZ and PatBin, time of compression
in microseconds, size of he signature in bytes

Graph matching performance The graph matching performance has been
performed by checking the equality between a newly compressed string, and an
array of stored compressed strings, acting as a cache. We made our evaluation
on several sizes of cache, to vary the number of comparison made; we also tested
different sizes of files (different numbers of triples) in order to have an output
longer or shorter. For each individual evaluation, we took files with the same
number of triples, and we also made sure that the input file was not in the cache;
this ensured each value in the cache would be verified, and thus the test would
not be biased by ending the checking too soon. Both the results in cache and
to be checked were (different) compressed results obtained from a C-SPARQL
query. The results are displayed in the Figure 5; since the results have a very
high variance, we had to do an average of different results to have valid results.
The measures concern only the matching: the signature generation for the file
to be matched is not taken in account. Each measure has been identified by
a point on its curve, for better visualization. The three measures for PatBin
appear mingled with the lower (X) axis, because the computation time is much
shorter than RDSZ. In both cases, the matching time increases when we the
cache size and/or the triple number. For PatBin, the results are much better:
with 25 triples and a cache size of 100 compressed strings, the checking time is
only about 19 milliseconds, i.e., two orders of magnitude lower than RDSZ. This
proportion cannot be established precisely because of the variance, however the
computation times remain much better for PatBin. This is due to the fact that
the signature obtained after compression is much more compact that the one of
RDSZ, since PatBin does not retain the triples in its signature. We also checked
hot and cold performances for cache searching: in both cases, we filled a cache
with 1000 random patterns, and checked if a new entry was present in the cache.
We verified that the randomness ensures the caches are completely verified in

both cases. The cold performances give an execution time of 105 microseconds
for PatBin, and 156 for RDSZ. For the hot performances, we computed the
average of five executions: PatBin is still more efficient, with 95 microseconds of
matching time against 160 for RDSZ.

Fig. 5. Materialized RDF Stream and reformulated continuous query

7 Related work

We consider two systems that integrate reasoning within a RDF streaming con-
text. IMaRS [3] incrementally maintains a materialization of ontology entail-
ments in a timely manner. The system extends the DRed [9] approach with the
use of the window operators and the introduction of an expiration time for each
triple. The system does not interact with a query reformulation component, is not
distributed and it is recognized that automatically defining efficient expiration
time is difficult in a streaming context. Finally, StreamQR[4] proposes a query
reformulation solution which is based on the kyrie rewriter. The architecture of
the system does not support scalability and interactions with a materialization
component have not been considered.

Several systems consider RDF stream compression. The Zstreamy[7] sys-
tem is presented as a scalable platform for publishing semantic streams on the
Web. The compression approach is simply based on a standard Zlib compres-
sion. CQELS Cloud [11] addresses the problem of scalable stream processing
and proposes a simple dictionary encoding approach reminiscent of RDF stores.

RDSZ [8] (RDF Differential Stream compressor based on Zlib) and ERI [6] (Ef-
ficient RDF Interchange format) correspond to lossless RDF stream compres-
sion approaches. Both take advantage of structural similarities of RDF graph
events. ERI proposes a more fine-grained approach to pattern and pattern bind-
ing representations. Moreover, ERI does make an extended usage of differential
compression as RDSZ does. In general, the compression approaches of the two
systems are comparable with RDSZ being slightly more efficient for randomly
distributed data and streams using a small set of predicates. In terms of pro-
cessing performance, ERI is more efficient than RDSZ for the compression phase
while the RDSZ is faster than ERI for the decompression operation. Concern-
ing compression, RDSZ pays the cost of the differential computing while for
decompression, ERI is slower due to the possibly large numbers of sequence of
RDF molecules. These systems are not benefiting from a compact, semantic-
aware KB encoding, do not propose a graph pattern signature nor interact with
materialization/query reformulation components.

8 Conclusion and lessons learned

In the context of the Waves project, we were confronted to a real-world use
case that is principally ingesting numerical measures from a set of sensors. At
first sight, such a scenario does not seem like the ideal playground for semantic
technologies. Nevertheless, due to the integration of external (e.g., Geonames,
DBpedia) and domain specific (e.g., SSN, CUAHSI) knowledge bases, as well as
RDF related technologies (e.g., SPARQL, RDFS, OWL), we were able to high-
light the added value of a semantic approach. The main impact was the ability to
explain some network malfunctions via the execution of inference-enabled con-
tinuous SPARQL queries. Of course, one of the key learned lesson concerns the
impact of reducing latency when reasoning over large event streams. We found
out that finding a trade-off between materialization and query reformulation was
an important factor in reducing processing latency. But this approach is reach-
ing its full potential with the kind of semantic-aware encoding and compression
presented in this work.

As future work, we aim to test Waves’s system on diverse IoT contexts and
thus emphasize that our approach can be generalized to different use cases.
Moreover, we are currently implementing an adaptive query processing engine
to guarantee the execution of optimized continuous SPARQL queries. Finally,
we will extend LiteMat’s inference capabilities with support for RDFS++ (an
ontology language supported by the Allegrograph RDF Store), i.e., supporting
RDFS as well as owl:sameAs, owl:transitiveProperty and owl:inverseOf

ontology constructs.

9 Acknowledgment

This work has been supported by the Waves project which is partially supported
by the French FUI (Fonds Unique Interministériel) call #17.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

2. D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. C-SPARQL:
SPARQL for continuous querying. In Proceedings of the 18th International Con-
ference on World Wide Web, pages 1061–1062, 2009.

3. D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. Incremental
reasoning on streams and rich background knowledge. In The Semantic Web:
Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010,
pages 1–15, 2010.

4. J. Calbimonte, J. Mora, and Ó. Corcho. Query rewriting in RDF stream process-
ing. In The Semantic Web. Latest Advances and New Domains - 13th International
Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Pro-
ceedings, pages 486–502, 2016.

5. O. Curé, H. Naacke, T. Randriamalala, and B. Amann. Litemat: A scalable,
cost-efficient inference encoding scheme for large RDF graphs. In 2015 IEEE
International Conference on Big Data, Big Data 2015, pages 1823–1830, 2015.

6. J. D. Fernández, A. Llaves, and Ó. Corcho. Efficient RDF interchange (ERI) format
for RDF data streams. In The Semantic Web - ISWC 2014 - 13th International
Semantic Web Conference, pages 244–259, 2014.

7. J. A. Fisteus, N. F. Garcia, L. S. Fernandez, and D. Fuentes-Lorenzo. Ztreamy: A
middleware for publishing semantic streams on the web. Web Semantics: Science,
Services and Agents on the World Wide Web, 25(0), 2014.

8. N. F. Garćıa, J. Arias-Fisteus, L. Sánchez, D. Fuentes-Lorenzo, and Ó. Corcho.
RDSZ: an approach for lossless RDF stream compression. In The Semantic Web:
Trends and Challenges - 11th International Conference, pages 52–67, 2014.

9. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
SIGMOD Rec., 22(2):157–166, June 1993.

10. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. J. Web
Sem., 7(3):220–234, 2009.

11. D. L. Phuoc, H. N. M. Quoc, C. L. Van, and M. Hauswirth. Elastic and scalable
processing of linked stream data in the cloud. In The Semantic Web - ISWC 2013
- 12th International Semantic Web Conference, pages 280–297, 2013.

12. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, pages 147–156, 2014.

13. J. Urbani, J. Maassen, and H. E. Bal. Massive semantic web data compression
with mapreduce. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC 2010, pages 795–802, 2010.

14. G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh, N. Narkhede,
J. Rao, J. Kreps, and J. Stein. Building a replicated logging system with apache
kafka. PVLDB, 8(12):1654–1665, 2015.

15. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud’10, 2010.

