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Abstract. Real-time processing of data streams emanating from sensors is be-
coming a common task in Internet of Things scenarios. The key implementa-
tion goal consists in efficiently handling massive incoming data streams and sup-
porting advanced data analytics services like anomaly detection. In an on-going,
industrial project, a 24/7 available stream processing engine usually faces dy-
namically changing data and workload characteristics. These changes impact the
engine’s performance and reliability. We propose Strider, a hybrid adaptive dis-
tributed RDF Stream Processing engine that optimizes logical query plan accord-
ing to the state of data streams. Strider has been designed to guarantee important
industrial properties such as scalability, high availability, fault tolerance, high
throughput and acceptable latency. These guarantees are obtained by designing
the engine’s architecture with state-of-the-art Apache components such as Spark
and Kafka. We highlight the efficiency (e.g., on a single machine machine, up
to 60x gain on throughput compared to state-of-the-art systems, a throughput of
3.1 million triples/second on a 9 machines cluster, a major breakthrough in this
system’s category) of Strider on real-world and synthetic data sets.
Keywords: RDF Stream Processing, SPARQL, Adaptive Query Processing, Dis-
tributed Computing, Apache Spark

1 Introduction

With the growing use of Semantic Web Technology in Internet of Things (IoT) contexts,
e.g., for data integration and reasoning purposes, the requirement for almost real-time
platforms that can efficiently adapt to large scale data streams, i.e., continuous SPARQL
query processing, is gaining more and more attention. In the context of the FUI (Fonds
Unique Interministeriel) Waves project1, we are processing data streams emanated from
sensors distributed over the drinking water distribution network of a resource manage-
ment international company. For France alone, this company distributes water to over 12
million clients through a network of more than 100.000 kilometers equipped with thou-
sands (and growing) of sensors. Obviously, our RDF Stream Processing (RSP) engine
should satisfy some common industrial features, e.g., high throughput, high availability,
low latency, scalability and fault tolerance.

Querying over RDF data streams can be quite challenging. Due to fast generation
rates and schema free natures of RDF data streams, a continuous SPARQL query usu-
ally involves intensive join tasks which may rapidly become a performance bottleneck.

1 http://www.waves-rsp.org/



Existing centralized RSP systems like C-SPARQL [4], CQELS [13] and ETALIS [3] are
not capable of handling massive incoming data streams, as they do not benefit from task
parallelism and the scalability of a computing cluster. Besides, most streaming systems
are operating 24/7 with patterns, i.e., stream graph structures, that may change overtime
(in terms of graph shapes and sizes). This can potentially have a performance impact
on query processing since in most available distributed RDF streaming systems, e.g.,
CQELSCloud [17] and Katts [9], the logical query plan is determined at compile time.
Such a behavior can hardly promise long-term efficiency and reliability, since there is
no single query plan that is always optimal for a given query.

A general approach for large scale data stream processing is performed over a dis-
tributed setting. Such systems are better designed and operated upon when implemented
on top of robust, state-of-the-art engines, e.g., Kafka [10] and Spark [26,27]. Moreover,
the system has to adapt to unpredictable input data streams and to dynamically up-
dated execution plans while ensuring optimal performance. A time-driven/batch-driven
[5] approach could be a solution for adaptive streaming query. In that context, it be-
comes possible to reconstruct the logical plan for each query execution. Furthermore,
compared to data-driven systems [5], time-driven/batch-driven provides a more coarse
operation granularity. Although this mechanism inevitably causes higher query latency,
it also brings high system throughput, inexpensive cost and low latency to achieve fault
tolerance and system adaptivity [27].

Our system, Strider, possesses the aforementioned characteristics. In this paper, we
present three main contributions concerning this system: (1) the design and implemen-
tation of a production-ready RSP engine for large scale RDF data streams processing
which is based on the state-of-the-art distributed computing frameworks (i.e., Spark and
Kafka). (2) Strider integrates two forms of adaptation. In the first one, for each execu-
tion of a continuous query, the system decides, based on incoming stream volumes, to
use either a query compile-time (rule-based) or query run-time (cost-based) optimiza-
tion approach. The second one concerns the run-time approach and decides when the
query plan is optimized (either at the previous query window or at the current one). (3)
an evaluation of Strider over real-world and synthetic data sets.

2 Background Knowledge

Strider follows a classical streaming system approach with a messaging component
for data flow management and a computing core for real-time data analytics. In this
section, we present and motivate the use of Spark Streaming and Kafka as these two
components. Then, we consider streaming models and adaptive query processing.

Kafka & Spark Streaming. Kafka is a distributed message queue which aims to
provide a unified, high-throughput, low-latency real-time data management. Intuitively,
producers emit messages which are categorized into adequate topics. The messages are
partitioned among a cluster to support parallelism of upstream/downstream operations.
Kafka uses offsets to uniquely identify the location of each message within the partition.

Spark is a MapReduce-like cluster-computing framework that proposes a paral-
lelized fault tolerant collection of elements called Resilient Distributed Dataset (RDD)
[26]. An RDD is divided into multiple partitions across different cluster nodes such that
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operations can be performed in parallel. Spark enables parallel computations on unreli-
able machines and automatically handles locality-aware scheduling, fault-tolerant and
load balancing tasks. Spark Streaming extends RDD to Discretized Stream (DStream)
[27] and thus enables to support near real-time data processing by creating micro-
batches of duration T . DStream represents a sequence of RDDs where each RDD is
assigned a timestamp. Similar to Spark, Spark Streaming describes the computing log-
ics as a template of RDD Directed Acyclic Graph (DAG). Each batch generates an
instance according to this template for later job execution. The micro-batch execu-
tion model provides Spark Streaming second/sub-second latency and high throughput.
To achieve continuous SPARQL query processing on Spark Streaming, we bind the
SPARQL operators to the corresponding Spark SQL relational operators. Moreover, the
data processing is based on DataFrame (DF), an API abstraction derived from RDD.

Streaming Models. At the physical level, a computation model for stream process-
ing has two principle classes: Bulk Synchronous Parallel (BSP) and Record-at-a-time
[25]. From a logical level perspective, a streaming model uses the concept of a Tick
to drive the system in taking actions over input streams. [5] defines a Tick in three
ways: data-driven (DD), time-driven (TD) and batch-driven (BD). In general, the phys-
ical BSP is associated to the TD and/or BD models, e.g., Spark Streaming [27] and
Google DataFlow with FlumeJava [1] adopt this approach by creating a micro-batch
of a certain duration T . That is data are cumulated and processed through the entire
DAG within each batch. The record-at-a-time model is usually associated to the logical
DD model (although TD and BD are possible) and prominent examples are Flink [6]
and Storm [23]. The record-at-a-time/DD model provides lower latency than BSP/T-
D/BD model for typical computation. On the other hand, the record-at-a-time model
requires state maintenance for all operators with record-level granularity. This behavior
obstructs system throughput and brings much higher latencies when recovering after
a system failure [25]. For complex tasks involving lots of aggregations and iterations,
the record-at-a-time model could be less efficient, since it introduces an overhead for
the launch of frequent tasks. Given these properties and the fact that in [7], the authors
emphasize that latencies in the order of few seconds is enough for most extreme use
cases at Facebook, we have decided to use Spark Streaming.

Adaptive Query Processing (AQP) is recognized as a complex task, especially
in the streaming context [8]. Moreover, AQP for continuous SPARQL query needs to
cope with some cross-field challenges such as SPARQL query optimization, stream pro-
cessing, etc.. Due to structure unpredictability, schema-free and real-time features of
RDF data streams, conventional optimizations for static RDF data processing through
data pre-processing, e.g., triple indexing and statistic summarizing, become impractical.
However, the perspectives from [16,21] show that most parts of RDF graphs have tabu-
lar structure, especially in the IoT domain. This opens up several perspectives concern-
ing selectivity/cardinality estimation and the possibility to use Dynamic Programming
(DP) approaches. Inspired by [22,14,11,24,25], we propose a novel AQP optimizer for
RDF stream processing.

3 Strider overview
In this section, we first present a Strider query example, then we provide a system’s
overview, detail the data flow and query optimization components.

3



3.1 Continuous query example
Listing 1.1 introduces a running scenario that we will use throughout this paper. The
example corresponds to a use case encountered in the Waves project, i.e., query Q8

continuously processes the messages of various types of sensor observations.
We introduce new lexical rules for continuous SPARQL queries which are tailored

to a micro-batch approach.The STREAMING keyword initializes the application con-
text of Spark Streaming and the windowing operator. More precisely, WINDOW and
SLIDE respectively indicate the size and sliding parameter of a time-based window.
The novelty comes from the BATCH clause which specifies the micro-batch interval
of discretized stream for Spark Streaming. Here, a sliding window consists of one or
multiple micro-batches.

STREAMING { WINDOW [10 Seconds] SLIDE [10 Seconds] BATCH [5 Seconds] }
REGISTER { QUERYID [Q8] SPARQL [
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn/>
prefix cuahsi: <http://www.cuahsi.org/waterML/>
SELECT ?s ?o1 ?o2 ?o3
WHERE { ?s ssn:hasValue ?o1 (tp1); ssn:hasValue ?o2 (tp2);

ssn:hasValue ?o3 (tp3).
?o1 rdf:type cuahsi:flow (tp4).
?o2 rdf:type cuahsi:temperature (tp5).
?o3 rdf:type cuahsi:chlorine (tp6). }] }

Listing 1.1: Strider’s query example (Q8)

The REGISTER clause is used to register standard SPARQL queries. Each query
is identified by an identifier. The system allows to register several queries simultane-
ously in a thread pool. By sharing the same application context and cluster resources,
Strider launches all registered continuous SPARQL queries asynchronously by different
threads.

3.2 Architecture
Strider contains two principle modules: (1) data flow management. In order to ensure
high throughput, fault-tolerance, and easy-to-use features, Strider uses Apache Kafka
to manage input data flow. The incoming RDF streams are categorized into different
message topics, which practically represent different types of RDF events. (2) Comput-
ing core. Strider core is based on the Spark programming framework. Spark Streaming
receives, maintains messages emitted from Kafka in parallel, and generates data pro-
cessing pipeline.

Figure 1 gives a high-level overview of the system’s architecture. The upper part
of the figure provides details on the application’s data flow management. In a nutshell,
data sources (IoT sensors) are sending messages to a publish-subscribe layer. This layer
emits messages for the streaming layer which executes registered queries. The sensor’s
metadata are converted into RDF events for data integration purposes. We use Kafka
to design the system’s data flow management. Kafka is connected to Spark Streaming
using a Direct Approach2 to guarantee exactly-once semantics and parallel data feeding.
The input RDF event streams are then continuously transformed to DataFrames.

2 https://spark.apache.org/docs/latest/streaming-kafka-integration.html
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Fig. 1: Strider Architecture

The lower part of Figure 1 presents components related to the implementation of the
computing core. The Request layer registers continuous queries. Currently, we consider
that the input queries are independent, thus a multi-query optimization approach (e.g.,
sub-query sharing) is not in the scope of the current state of Strider. These queries are
later sent to the Parsing layer to compute a first version of a query plan. These new
plans are pushed to the Optimization layer which consists of four collaborating sub-
components: static and adaptive optimizations as well as a trigger mechanism and a
Decision Maker for adaptation strategy. Finally, the Query Processing layer sets the
query execution off right after the optimized logical plan takes place.

4 Strider’s continuous SPARQL processing

In this section, we detail the components of the Strider’s optimizer layer. Two optimiza-
tion components are proposed, i.e., static and adaptive, which are respectively based
on heuristic rules and (stream-based) statistics. The trigger layer decides whether the
query processing adopts a static or an adaptive approach. Two strategies are proposed
for AQP: backward (B-AQP) and forward (F-AQP). They mainly differ on when, i.e.,
at the previous or current window, the query plan is computed.

4.1 Query processing outline & trigger layer

Intuitively, Strider’s optimizers search for the optimal join ordering of triple patterns
based on collected statistics. Both static (query compile-time) and adaptive (query run-
time) optimizations are processed using a graph GU = (V,E), denoted Undirected
Connected Graph (UCG) [22] where vertices represent triple patterns and edges sym-
bolize joins between triple patterns. Naturally, for a given query q and its query graph
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GQ(q), GU (q) ⊆ GQ(q). A UCG showcases the structure of a BGP and the join pos-
sibilities among its triple patterns. That query representation is considered to be more
expressive [14] than the classical RDF query graph. The weight of UCG’s vertices and
edges correspond to the selectivity of triple patterns and joins, respectively. Once the
weights of an UCG are initialized, the query planner automatically generates an opti-
mal logical plan and triggers a query execution. For the sake of a better explanation, the
windowing operator involved in this section is considered as a tumbling window.

Strider’s static optimization retains the philosophy of [24]. Basically, static opti-
mization implies a heuristics-based query optimization. It ignores data statistics and
leads to a static query planner. In this case, unpredictable changes in data stream struc-
tures may incur a bad query plan. The static optimization layer aims at giving a ba-
sic performance guarantee. The predefined heuristic rules set empirically assign the
weights for UCG vertices and edges. Next, the query planner determines the shortest
traversal path in the current UCG and generates the logical plan for query execution.
The obtained logical plan represents the query execution pipeline which is permanently
kept by the system. More details about UCG creation and query logical plan generation
are given in Sec. 4.2.

The Trigger layer supports the transition between the stages of static optimization
and adaptive optimization. In a nutshell, that layer is dedicated to notify the system
whether it is necessary to proceed with an adaptive optimization. Our adaptation strat-
egy requires collecting statistical information and generating an execution logical plan.
The overhead coming with such actions is not negligible in a distributed environment.
The Strider prototype provides a set of straightforward trigger rules, i.e., the adaptive
algebra optimization is triggered by a configurable workload threshold. The threshold
refers to two factors: (1) the input number of RDF events/triples; (2) the fraction of the
estimated input data size and the allocated executors’ heap memory.

4.2 Run-time query plan generation

Here, we first briefly introduce how we collect stream statistics and construct query
plan. Then, we give an insight into the AQP optimization, which is essentially a cardinality-
based optimization.

Unlike systems based on greedy and left-deep tree generation, e.g., [22,13], Strider
makes a full usage of CPU computing resources and benefits from parallel hardware
settings. It thus creates query logical plans in the form of general (bushy) directed trees.
Hence, the nodes with the same height in a query plan pn can be asynchronously com-
puted in a non-blocking way (in the case where computing resources are allowed).
Coming back to our Listing 1.1 example, Figure 2 refines the procedure of query pro-
cessing (F-AQP) at wn, n ∈ N . If wn contains multiple RDDs (micro-batches), the
system performs the union all RDDs and generates a new combined RDD. Note that
the union operator has a very low-cost in Spark. Afterward, the impending query plan
optimization follows three steps: (a) UCG (weight) initialization; (b) UCG path cover
finding; (c) query plan generation.

UCG weight initialization is briefly described in Algorithm 1 and Figure 3 (step
(a), step (b)). Since triple patterns are located at the bottom of a query tree, the query
evaluation is performed in a bottom-up fashion and starts with the selection of triple
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patterns σ(tpi), 1 ≤ i ≤ I (with I the number of triple patterns in the query’s BGP).
The system computes σ(tpi) asynchronously for each i and temporally caches the cor-
responding results (Rσ(tpi)) in memory. Card(tpi), i.e., the cardinality of Rσ(tpi), is
computed by a Spark count action. Thence, we can directly assign the weight of vertices
in GU (Q). Note that the estimation of Card(tpi) is exact.

Fig. 2: Dynamic Query Plan Generation for Q8

Once all vertices are set up, the system predicts the weight of edges (i.e., joined
patterns) in GU (q). We categorize two types of joins (edges): (i) star join, includes
two sub-types, i.e., star join without bounded object and star join with bounded object;
(ii) non-star join. To estimate the cardinality of join patterns, we make a trade-off be-
tween accuracy and complexity. The main idea is inspired by a research conducted in
[22,14,11]. However, we infer the weight of an edge from its connected vertices, i.e., no
data pre-processing is required. The algorithm begins by iteratively traversing GU (q)
and identifies each vertex v ∈ V and each edge e ∈ E. Then we can decompose GU (q)
into the disjoint star-shaped joins and their interconnected chains (Figure 3, step (b)).
The weight of an edge in a star join shape is estimated by the function getStarJoin-
Weight. The function first estimates the upper bound of each star join output cardinality
(e.g., , Card(tp1 ./ tp2 ./ tp3)), then assigns the weight edge by edge. Every time
the weight of the current edge e is assigned, we mark e as visited. This process repeats
until no more star join can be found. Then, the weight of unvisited non-star join shapes
is estimated by the function getNonStarJoinWeight. It lookups the two vertices of the
current edge, and chooses the one with smaller weight to estimate the edge cardinality.
The previous processes are repeated until all the edges have been visited in GU (q).

UCG path cover finding & Query plan generation. Figure 3 step (c) introduces
path cover finding and query plan generation. The system starts by finding the path
cover in GU (q) right after GU (q) is prepared. Intuitively, we search the undirected
path cover which links all the vertices of GU (q) with a minimum total edge weight.
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The path searching is achieved by applying Floyd–Warshall algorithm iteratively. The
extracted path Card(GU (q)) ⊆ GU (q), is regarded as the candidate for the logical
plan generation. Finally, we construct pn, the logical plan of GU (q) at wn, in a top-
down manner (Figure 3, step (c)). Note that path finding and plan generation are both
computed on the driver node and are not expensive operations (around 2 - 4 milliseconds
in our case).

Fig. 3: Initialized UCG weight, find path cover and generate query plan

Algorithm 1: UCG weight initialization
Input: query q, GU (q) = (V,E) ⊆ GQ(q), current buffered window wn
Output: GU (q) with weight-assigned

1 while ∃v unvisited ∈ V do
2 mark v as visited, Rσ(v)← compute (v) ;
3 buffer (v, Rσ(v)) ∧ v.weight← Card(v) ;

4 while ∃e unvisited ∈ E do
5 mark e as visited ;
6 if (∃ star join SJ ) ∧e ∩ SJ 6= ∅ then
7 locate each SJ ∈ GU (q)
8 foreach ∀eS ∈ SJ do
9 mark eS as visited ;

10 eS .weight← getStarJoinWeight(SJ , eS .vertices) ;

11 else e.weight← getNonStarJoinWeight(SJ);

4.3 B-AQP & F-AQP

We propose a dual AQP strategy, namely, backward (B-AQP) and forward (F-AQP).
B/F-AQP depict two philosophies for AQP, Figure 4 roughly illustrates how B/F-AQP
switching is decided at run-time, i.e., this is the responsibility of the Decision Maker
component. Generally, B-AQP and F-AQP are using similar techniques for query plan
generation. Compared to F-AQP, B-AQP delays the process for query plan generation.

Our B-AQP strategy is inspired by [25]’s pre-scheduling. Backward implies gath-
ering, feeding back the statistics to the optimizer on the current window, then the op-
timizer constructs the query plan for the next window. That is the system computes
the query plan pn+1 of a window wn+1 through the statistics of a previous window
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wn. Strider possesses a time-driven execution mechanism, the query execution is trig-
gered periodically with a fixed update frequency s (i.e., sliding window size). Between
two consecutive windows wn and wn+1, there is a computing barrier to reconstruct
the query plan for wn+1 based on the collected statistics from a previous window wn.
Suppose the query execution of wn consumes a time tn (e.g., in seconds), then for all
tn < s, the idle duration δn = s − tn allows to re-optimize the query plan. But δn
should be larger than a configurable threshold Θ. For δn < Θ, the system may not have
enough time to (i) collect the statistic information of wn and (ii) to construct a query
plan for wn+1. This potentially expresses a change of incoming steams and a degrada-
tion of query execution performance. Hence, the system decides to switch to the F-AQP
approach.

Fig. 4: Decision Maker of Adaptation Strategy

F-AQP applies a DP strategy to find the optimal logical query plan for the current
window wn. The main purpose of F-AQP is to adjust the system state as soon as pos-
sible. The engine executes a query, collects statistics and computes the logical query
plan simultaneously. Here, the statistics are obtained by counting intermediate query
results, which causes data shuffling and DAG interruption, i.e., the system has to tem-
porally cut the query execution pipeline. In Spark, such suspending operation is called
an action, which immediately triggers a job submission in Spark application. However,
a frequent job submission may bring some side effects. The rationale is, for a master-
slave based distributed computing framework (e.g., Spark, Storm) uses a master node
(i.e., driver) to schedule jobs. The driver locally computes and optimizes each submit-
ted DAG and returns the control messages to each worker node for parallel process-
ing. Although the “count” action itself is not expensive, the induced side effects (e.g.,
driver job-scheduling/submission, communication of control message between driver
and workers) will potentially impact the system’s stability. For instance, based on our
experience, F-AQP’s frequent job submission and intermediate data persistence/unper-
sistence put a great pressure on the JVM’s Garbage Collector (GC), e.g., untypical GC
pauses are observed from time to time in our experiment.

Decision Maker. Through experimentations of different Strider configurations, we
understood the complementarity of both the B-AQP and F-AQP approaches. Real per-
formance gains can be obtained by switching from one approach to another. This is
mainly due to their properties which are summarized in Table 1.

We designed a decision maker to automatically select the most adapted strategy
for each query execution. The decision maker takes into account two parameters: a
configurable switching threshold Θ ∈ ]0, 1[; γn = tn

s , the fraction of query execution
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Strategy Advantage Drawback

B-AQP No dynamic programming overhead Approximate query plan generation
through previously-collected statistics

F-AQP Query plan generation through Overhead for dynamic programming,
real-time collected statistics side-effects caused by pipeline interruption

Table 1: B/F-AQP summarization

time t over windowing update frequency s. For the query execution at wn, if γn < Θ,
the system updates the query plan from pn to pn+1 for the next execution. Otherwise,
the system recomputes pn+1 by DP at wn+1 (see Algorithm 2). We empirically set
Θ = 0.7 by default.

Algorithm 2: B-AQP and F-AQP Switching in Decision Maker
Input: query q, switching threshold Θ, sliding window W = {wn}n∈N ,

update frequency s of W
1 foreach wn ∈W do
2 tn ← getRuntime { execute (q) } // executionTime ;
3 λn ← getAdaptiveStrategy (Θ,tn,s) // adaptiveStrategy;
4 if λn == Backward then
5 update query plan pn of q at wn
6 pn+1 ← update (pn);

7 if λn == Forward then Recompute pn+1 at wn+1;

The decision maker plays a key role for maintaining the stability of the system’s per-
formance. Our experiment (Sec. 5.3) shows that, the combination of F/B-AQP through
decision maker is able to prevent the sudden performance declining during a long run-
ning time.

5 Evaluation
5.1 Implementation details

Strider is written in Scala, the code source can be found here3. To enable SPARQL
query processing on Spark, Strider parses a query with Jena ARQ and obtains a query
algebra tree in the Parsing layer. The system reconstructs the algebra tree into a new
Abstract Syntax Tree (AST) based on the Visitor model. Basically, the AST represents
the logical plan of a query execution. Once the AST is created, it is pushed into the
algebra Optimization layer. By traversing the AST, we bind the SPARQL operators to
the corresponding Spark SQL relational operators for query evaluation.

5.2 Experimental Setup

We test and deploy our engine on Amazon EC2/EMR cluster of 9 computing nodes
and Yarn resource management. The system holds 3 nodes of m4.xlarge for data flow
management (i.e., Kafka broker and Zookeeper [12]). Each node has 4 CPU virtual
cores of 2.4 GHz Intel Xeon E5-2676, 16 GB RAM and 750 MB/s bandwidth. We use

3 https://github.com/renxiangnan/strider
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Apache Spark 2.0.2, Scala 2.11.7 and Java 8 as baselines for our evaluation. The Spark
(Streaming) cluster is configured with 6 nodes (1 master, 5 workers) of type c4.xlarge.
Each one has 4 CPU virtual cores of 2.9 GHz Intel Xeon E5-2666, 7.5 GB RAM and
750 MB/s. The experiments of Strider on local mode, C-SPARQL and CQELS are all
performed on a single instance of type c4.xlarge.

Datasets & Queries. We evaluated our system using two datasets that are built
around real world streaming use cases: SRBench [28] and Waves. SRBench, one of
the first available RSP benchmarks, comes with 17 queries on LinkedSensorData. The
datasets consists of weather observations about hurricanes and blizzards in the United
States (from 2001 to 2009). Another dataset considered in our evaluation comes from
aforementioned project Waves. The dataset describes different water measurements
captured by sensors. Values of flow, water pressure and chlorine levels are examples of
these measurements. The value annotation uses three popular ontologies: SSN, CUAHSI-
HIS and QUDT. Each sensor observes and records at least one physical phenomenon
or a chemical property, and thus generates RDF data stream through Kafka producer.
Our micro-benchmark contains 9 queries, denoted from Q1 to Q9

4. The road map of
our evaluation is designed as follow: (1) injection of structurally stable stream for ex-
periment of Q1 to Q6. Q1 to Q3 are tested by SRBench datasets. Here, a comparison
between Strider and the state of the art RSP systems e.g., C-SPARQL and CQELS are
also provided. Then we perform Q4 to Q6 based on Waves dataset. (2) Injection of
structurally unstable stream. We generate RDF streams by varying the proportion of
different types of Kafka messages (i.e., sensor observations). For this part of the evalu-
ation, queries Q7 to Q9 are considered.

Performance criteria. In accordance with Benchmarking Streaming Computation
Engines at Yahoo! 5, we choose the system throughput and query latency as two primary
performance metrics. Throughput indicates how many data can be processed in a unit
of time. Throughput is denoted as “triples per second” in our case. Latency means how
long does the RSP engine consumes between the arrival of an input and the generation
of its output. The reason why we abandoned existing RSP performance benchmarking
systems [18,2] is that, none of them is tailored for massive data stream. This limitation
is contrary to our original intention of using distributed stream processing framework to
cope with massive RDF stream. We did not record the latency of C-SPARQL, CQELS
and Strider in local mode for two reasons: (1) given the scalability limitation of C-
SPARQL, we have to control input stream rate within a low level to ensure the engine
can run normally [18]. (2) due to its design, based on a so-called eager execution mech-
anism and DStream R2S operator, the measure of latencies in CQELS is unfeasible
[18]. Moreover, given reasons provided in Sec. 4.3, we have not done any comparisons
of B/F-AQP versus F-AQP approaches.

Performance tuning on Spark is quite difficult. Inappropriate cluster configuration
may seriously hinder engine performance. So far we can only empirically configure
Spark cluster and tune the cluster settings step by step. We briefly list some impor-
tant performance settings based on our experience. First of all, we apply some basic

4 Check the wiki of our github page for more details of the queries and datasets
5 https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-

engines-at
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optimization techniques. e.g., using Kryo serializer to reduce the time for task/data se-
rialization. Besides, we generally considered adjustments of Spark configuration along
three control factors to achieve better performance. The first factor is the size of micro-
batch intervals. Smaller batch sizes can better meet real-time requirements. However,
it also brings frequent job submissions and job scheduling. The performance of a BSP
system like Spark is sensitive to the chosen size of batch intervals. The second factor
is GC tuning. Set appropriately, the GC strategy (e.g., using Concurrent Mark-Sweep)
and storage/shuffle fraction may efficiently reduce GC pressure. The third factor is the
parallelism level. This includes the partition number of Kafka messages, the partition
number of RDD for shuffling, and the upper/lower bound for concurrent job submis-
sions, etc..

5.3 Evaluation Results & Discussions

Figures 5 and 6 respectively summarize the RSP engines throughput and latency. Note
that CQELS gives a parsing error forQ5. This is due, at least for the version that we have
evaluated, to the lack of support for the UNION operator in the source code. In view of
the centralized designs of C-SPARQL and CQELS, a direct performance comparison
to Strider with distributed hardware settings seems unfair. So we also evaluated Strider
in local mode, i.e., running the system on a single machine (although it should not be
its forte, Strider still gets an advantage from the multi-core processor). Based on this
preliminary evaluation, we try to give an intuitive impression and reveal our findings
about these three RSP systems.

Fig. 5: RSP engine throughput (triples/second). D/L-S: Distributed/Local mode Static
Optimization. D/L-A: Distributed/Local mode Adaptive Optimization. SR: Queries for
SRBench dataset. W: Queries for Waves dataset.

In Figure 5, we observe that Strider generally achieves million/sub-million-level
throughput under our test suite. Note that both Q1 and Q4 have only one join, i.e., opti-
mization is not needed. Most tested queries scale well in Strider. Adaptive optimization
generates query plans based on the workload statistics. In total, it provides a more effi-
cient query plan than static optimization. But the gain of AQP for the simple queries that
have less join tasks (e.g., Q1, Q5) becomes insubstantial. We also found out that, even
if Strider runs on a single machine, it still provides up to 60x gain on throughput com-
pared to C-SPARQL and CQELS. Figure 6 shows Strider attains a second/sub-second
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delay. Obviously, for queries with 2 triple patterns in the query’s BGP, we can observe
the same latency between static and adaptive optimizations,Q1 andQ4. QueryQ2 is the
only query where the latency of the adaptive approach is higher than the static one. This
is due to the very simple structure of the BGP (2 joins in the BGP). In this situation,
the overhead of DP covers the gain from AQP. For all other queries, the static latency is
higher than the adaptive one. This is justified by more complex BGP structures (more
than 5 triple patterns per BGP) or some union of BGPs.

Fig. 6: Query latency (milliseconds) for Strider (in distributed mode)

On the contrary, the average throughput of C-SPARQL and CQELS is maintained
in the range of 6.000 and 50.000 triples/second. The centralized designs of C-SPARQL
and CQELS limit the scalability of the systems. Beyond the implementation of query
processing, the reliability of data flow management on C-SPARQL and CQELS could
also cause negative impact on system robustness. Due to the lack of some important
features for streaming system (e.g., back pressure, checkpoint and failure recovery)
once input stream rate reaches to certain scale, C-SPARQL and CQELS start behaving
abnormally, e.g., data loss, exponential increasing latency or query process interrup-
tion [18,19]. Moreover, we have also observed that CQELS’ performance is insensitive
to the changing of computing resources. We tested CQELS on different EC2 instance
types, i.e., with 2, 4 and 8 cores, and the results evaluation variations were negligible.

(a) (b)

Fig. 7: Record of throughput on Strider. (a)-throughput for q7; (b)-throughput for q8

Figure 7 and Figure 8 concern the monitoring of Strider’s throughput for Q7 to Q9.
We recorded the changes of throughput over a continuous period of time (one hour).
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The source stream produces the messages with different types of sensor observations.
The stream is generated by mixing temperature, flow and chlorine-level measurement
with random proportions. The red and blue curves denote query with respectively static
and adaptive logical plan optimization. For Q7 and Q8 (Figure 7), except when some
serious throughput drops have been observed in 7b, static and adaptive planners return
a close throughput trend. For a more complex query Q9 (Figure 8), which contains
9 triple patterns and 8 join operators. Altering logical plans on Q9 causes significant
impact on engine performance. Consequently, our adaptive strategy is capable to handle
the structurally unstable RDF stream. Thus the engine can avoid a sharp performance
degradation.

Fig. 8: Throughput for q9 on Strider

Through this experiment, we iden-
tified some shortcomings in Strider that
will be addressed in future work: (1) the
data preparation on Spark Streaming is
relatively expensive. It costs around 0.8
to 1 second to initialize before trigger-
ing the query execution in our experi-
ment. (2) Strider has a more substan-
tial throughput decreasing with an in-
creasing number of join tasks. In order
to alleviate this effect, the possible so-
lution is enlarging the cluster scale or
choosing a more powerful driver node.
(3) Strider does not support well high
concurrent requests, although this is not

at the moment one of our system design goals. E.g., some use cases demand to process
a big amount of concurrent queries. Even through Strider allows to perform multiple
queries asynchronously, it could be less efficient.

6 Related Work

In the recent years, a variety of RSP systems have been proposed which can be divided
into two categories: centralized and distributed.

Centralized RSP engines. For the last few years, some contributions have been done
to satisfy the basic needs of RDF stream processing. RSP engines like C-SPARQL,
CQELS, ETALIS, etc., are developed to run on a single machine. None of them targets
the scenario that involves massive incoming data stream.

Distributed RSP engines. CQELS-Cloud [17] is the first RSP system which mainly
focuses on the engine elasticity and scalability. The whole system is based on Apache
Storm. Firstly, CQELS-Cloud compresses the incoming RDF streams by dictionary en-
coding in order to reduce the data size and the communication in the computing clus-
ter. The query logical plan is mapped to a Storm topology, and the evaluation is done
through a series of SPARQL operators located on the vertex of the topology. Then,
to overcome the performance bottlenecks on join tasks, the authors propose a parallel
multiway join based on probing sequence. From the aspect of implementation, CQELS-
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Cloud is designed as the streaming service for high concurrent requests. The capability
of CQELS-Cloud to cope with massive incoming RDF data streams is still missing. Fur-
thermore, to the best of our knowledge, CQELS-Cloud is not open source, customized
queries and data feeding are not feasible. Katts is another RSP engine based on Storm.
The implementation of Katts [9] is relatively primitive, it is more or less a platform for
algorithm testing but not an RSP engine. The main goal of Katts is designed to verify
the efficiency of graph partitioning algorithm for cluster communication reduction.

Although the SPARQL query optimization techniques have been well developed
recently, CQELS is still the only system which considers query optimization to process
RDF data stream. However, the greedy-like left-deep plan leads to sequential query
evaluation, which makes CQELS benefit from few additional computing resources. The
conventional SPARQL optimization for static data processing can be hardly applied in
a streaming context. Recent efforts [22,15,14,20] possess long data preprocessing stage
before launching the query execution. The proposed solutions do not meet real-time or
near real-time use cases. The heuristic-based query optimization in [24] totally ignores
data statistics and thus does not promise the optimal execution plan for 24× 7 running
streaming service.

7 Conclusion and Future Work

In this paper, we present Strider, a distributed RDF batch stream processing engine
for large scale data stream. It is built on top of Spark Streaming and Kafka to sup-
port continuous SPARQL query evaluation and thus possesses the characteristics of a
production-ready RSP. Strider comes with a set of hybrid AQP strategies: i.e., static
heuristic rule-based optimization, forward and backward adaptive query processing.
We insert the trigger into the optimizer to attain the automatic strategy switching at
query runtime. Moreover, with its micro-batch approach, Strider fills a gap in the cur-
rent state of RSP ecosystem which solely focuses on record-at-a-time. Through our
micro-benchmark based on real-word datasets, Strider provides a million/sub-million-
level throughput and second/sub-second latency, a major breakthrough in distributed
RSPs. And we also demonstrate the system reliability which is capable to handle the
structurally instable RDF streams.

There is still room for improving the system’s implementation. As future work, we
aim to add stream reasoning capacities and the ability of combining static data.
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