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Abstract 31 

 32 

Background - Triggers of multiple sclerosis (MS) relapses are essentially unknown. PM10 33 

exposure has recently been associated with an increased risk of relapses. 34 

 35 

Objectives - We further explore the short-term associations between PM10, NO2, benzene 36 

(C6H6), O3, and CO exposures, and the odds of MS relapses’ occurrence. 37 

 38 

Methods - Using a case-crossover design, we studied 424 MS patients living in the Strasbourg 39 

area (France) between 2000 and 2009 (1,783 relapses in total). Control days were chosen to 40 

be ±35 days relative to the case (relapse) day. Exposure was modeled through ADMS-Urban 41 

software at the census block scale. We consider single-pollutant and multi-pollutant 42 

conditional logistic regression models coupled with a distributed-lag linear structure, stratified 43 

by season ("hot" vs. "cold"), and adjusted for meteorological parameters, pollen count, 44 

influenza-like epidemics, and holidays. 45 

 46 

Results - The single-pollutant analyses indicated: 1) significant associations between MS 47 

relapse incidence and exposures to NO2, PM10, and O3, and 2) seasonality in these 48 

associations. For instance, an interquartile range increase in NO2 (lags 0-3) and PM10 49 

exposure were associated with MS relapse incidence (OR = 1.08; 95%CI: [1.03-1.14] and OR 50 

= 1.06; 95%CI: [1.01- 1.11], respectively) during the "cold" season (i.e., October-March). We 51 

also observed an association with O3 and MS relapse incidence during "hot" season (OR = 52 

1.16; 95%CI: [1.07-1.25]). C6H6 and CO were not significantly related to MS relapse 53 

incidence. However, using multi-pollutant models, only O3 remained significantly associated 54 

with the odds of relapse triggering during "hot" season. 55 

 56 

Conclusion - We observed significant single-pollution associations between the occurrence of 57 

MS relapses and exposures to NO2, O3 and PM10, only O3 remained significantly associated 58 

with occurrence of MS relapses in the multi-pollutant model. 59 

 60 

Keywords: Multiple sclerosis; Relapse; Air pollution; Socioeconomic position. 61 

62 
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1. Introduction 72 

Multiple Sclerosis (MS) is the most frequent neuro-inflammatory disease of the central 73 

nervous system (CNS), affecting almost 2.3 million people worldwide (1). The prevalence in 74 

France is about 1.5 individuals for 1,000 (2). In about 85% of cases, patients experience 75 

relapse(s) (1), that is, patients experience exacerbations of neurologic disabilities followed by 76 

partial or complete remission. Relapses characterize the relapsing-remitting MS course. 77 

The etiology of MS remains unclear, yet clearly multifactorial (3). Genetic predispositions 78 

(HLA-DRB1, IL2RA and IL7R most associated genes) may represent only one quarter of 79 

estimated heritability of MS (4). Main environmental factors found to be influencing 80 

susceptibility to experience an MS onset are Epstein-Barr virus infection, tobacco 81 

consumption (either passive or active) and reduced levels of vitamin D increase or low 82 

sunlight exposure. In addition, women appear to be at greater risk than males (5–7). Relapses 83 

predisposing risk factors have been investigated to a lesser extent and associations reported 84 

are discordant, namely young age, short MS duration, low serum vitamin D levels, smoking, 85 

psychological and other stress, vaccination, infections, post-partum, breast feeding and 86 

assisted reproduction (3,8).  87 

Relapses' incidence varies across seasons (9–17), suggesting a possible role of season-88 

dependent factors such as meteorological variables (18) and ambient air pollution (19–21). 89 

A few studies have investigated the role of air pollution in the development of MS, reporting 90 

mixed results (22–24). In Teheran, significant clustered patterns (p<0.001) and difference in 91 

exposure to sulfur dioxide (SO2), PM10, NO2 and nitrogen oxides (NOx) were observed in MS 92 

cases compared to random controls (Heydarpour et al. 2014). Gregory et al. (2008) also 93 

suggested that PM10 might play a role in MS onset (Gregory et al. 2008). However, these 94 

studies suffered from a number of limitations (e.g. small sample size, imprecise exposure 95 

assessment etc.). Recently, Chen et al. 2017 observed, using a Cox proportional hazards 96 

model adjusted for individual features and latitude, that proximity living to heavy traffic was 97 

not associated with a higher incidence of MS (Chen et al. 2017). Concerning relapses, some 98 

studies investigated the link between air pollution and the odds of relapses triggering 99 

(17,20,21,25,26), MS-related hospitalization (19) and MS inflammatory activity (27). 100 

Associations were observed in several studies between PM10 exposure and MS relapse risk 101 

(19–21,27). Among studies that examined possible influence of other air pollutants such as 102 
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CO, O3, SO2 and NOx (17,20,25), one study reported exposure to acidic gas (NO2, NO and 103 

SO2) to be associated with risk of relapse (20). Overall, the authors did not take into 104 

consideration pertinent confounding factors such as meteorological parameters, infections etc. 105 

There is a need to consider multi-pollutant models in environmental epidemiology, especially 106 

in studies relating MS occurrence to air pollutants’ concentrations. The environmental health-107 

related associations are complex to investigate in observational studies due to the high 108 

correlations and possible interactions between pollutants, as well as the seasonality of the 109 

pollutants’ concentrations. To our knowledge, no study has yet considered multi-pollutant 110 

analyses to estimate the associations between air pollution and MS.  111 

In the present study, we estimate the associations of PM10 and other ambient air pollutants 112 

(NO2, benzene (C6H6), CO and O3) using a multi-pollutant models to address the confounding 113 

issue due to the high correlations between pollutants originating from the same source.  114 

2. Materials and Methods 115 

 116 

2.1. Study design 117 

We conducted a time-stratified case-crossover design to explore the associations between 118 

short-term air pollutants variations (i.e., PM10, NO2, C6H6, O3, and CO) and multiple sclerosis 119 

relapses occurrences (28). This study design consists in within-subject comparisons by 120 

selecting for each patient his/her own control, i.e., the air pollutant exposure levels of the 121 

same patient will be compared between days of relapse onset (case) and days without any 122 

relapse (control). A time-stratified approach was chosen to define control days (29). That is, 123 

control days were chosen to be ±35 days relative to the case (relapse) day. This 35-days 124 

interval choice was motivated by the relapse clinical definition which confined a minimum of 125 

30 days between two relapses. Every control day between the 30
th

 and 35
th

 day was excluded, 126 

justifying the reason why 158 case days only have a single control instead of two.  127 

Time-invariant or long-term varying confounders, such as individual characteristics and 128 

behaviors, are controlled through within-subject comparisons. This approach also permits to 129 

tackle time trends such as seasonality, between days of the week variation, and the temporal 130 

autocorrelation (29).  131 
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2.2. Study setting 132 

The Strasbourg Metropolitan Area (SMA), located in North-Eastern France, aggregates 28 133 

municipalities, 21 of which are rural and seven urban. The SMA sprawls over 316 km² with 134 

450,000 inhabitants. It is subdivided into 186 French census blocks, defined as a sub-135 

municipal division and designed by French National Institute for Statistics and Economic 136 

Studies (INSEE). Census blocks are devised according to land use, homogeneity of 137 

population size and socio-economic features. They are the smallest spatial unit in France for 138 

which socio-economic data are made available due to French confidentiality regulations. In 139 

average, a census block is 2,000 inhabitants (ranging from 2 to 4,885), with a surface from 140 

0.05 km² up to 19.6 km². 141 

2.3. Study population and environmental data 142 

2.3.1. Patients' and relapses' inclusion criteria 143 

Patients' data were provided by the multiple sclerosis network alSacEP based in Alsace 144 

North-Eastern region, since 2006. All patients were managed through the European Database 145 

for Multiple Sclerosis (EDMUS) using a standardized definition and management of patients' 146 

data (30).  147 

Study period was January 1, 2000 to December 31, 2009. Inclusion criteria for patients were: 148 

i) clinical definition fitting McDonalds' MS criteria; ii) first symptoms of MS occurred before 149 

December 31
th

, 2009; iii) patients were affected with relapsing-remitting and secondary 150 

progressive forms; iv) residence address within Strasbourg Metropolitan Area.  151 

When the day of relapse occurrence was doubtful (uncertain or unknown), the relapse (i.e., 152 

case day) was excluded, leading to additional patients exclusions. 153 

The French Authority for Data Confidentiality (CNIL) approved the present protocol (DR-154 

2015-504). 155 

2.3.2. Air pollution data 156 

Air pollution concentrations of PM10, NO2, C6H6, O3, and CO were estimated throughout the 157 

study period on an hourly basis at the census block scale. The deterministic ADMS-Urban air 158 

dispersion model was used considering different parameters, namely background pollution 159 
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measurements, emissions inventories, meteorological data but also land use or surface 160 

roughness (Atmospheric Dispersion Modeling System) (31). Details of parameters and model 161 

performance have been previously discussed (Havard et al. 2009; Bard et al. 2014). Previous 162 

works have shown that air pollution assessment performance proved excellent results (35): 163 

coefficients for the modeled and effectively measured ambient concentrations were highly 164 

correlated 0.87 for NO2, 0.73 for PM10 and 0.84 for O3. 165 

We did not assess the plausible role of sulfur dioxide (SO2) which was suggested in the recent 166 

literature (24) because i) Strasbourg Metropolitan Area concentrations are low (≤11 µg/m
3
) in 167 

the Alsace region, and ii) it originates from a single location, which altogether decrease the 168 

preciseness of the modelling. Concentrations of PM2.5, which represents a substantial 169 

proportion of PM10 (36), were not measured routinely during the study period. PM10 is a proxy 170 

measure of PM2.5. The potential interventions to reduce PM10 and PM2.5 involve similar 171 

sources. However, benzene, rarely measured by air pollution monitoring systems, was 172 

properly measured and modeled in our study setting.  173 

 174 

2.3.3. Established or likely confounding variables 175 

According to the literature on the link between air pollution and different health outcomes 176 

occurrence and especially MS, we considered different time-varying confounders in our 177 

study. Meteorological parameters (daily temperature, relative humidity and atmospheric 178 

pressure) were obtained from the French meteorological service (Météo France). Daily pollen 179 

counts were provided by the National Network of Aerobiological Surveillance (37). Weekly 180 

influenza-like case count was given by the "Sentinelles" network (38) of the French National 181 

Institute of Health and Medical Research (INSERM). We considered holidays, which could 182 

potentially influence industrial activities and road traffic, as well as stress level, fatigue or 183 

being at home or not. 184 

2.4. Data analysis 185 

Associations between exposures to air pollutants and the occurrence of relapses were 186 

estimated by fitting distributed-lag linear models within conditional logistic regressions. We 187 

examined how the associations between lagged exposures and the outcomes varied across 188 

lags. This methodology, previously developed for the analysis of time-series data (39), was 189 

performed here in the context of case-crossover data.  190 
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Seasonal variations occur for both air pollutants concentrations and MS incidence (12). 191 

Therefore, we fitted regression models separately for “hot” (April 1
st
 to September 30

th
) and 192 

“cold” seasons (October 1
st
 to March 31

th)
. We estimated odds ratios corresponding to an 193 

interquartile range (IQR) increment of concentration (µg/m
3
). An association was considered 194 

significant if the p-value was less or equal to 0.05. All statistical analyses were performed 195 

using R software (v. 3.2.3) (40) and the “dlnm” R package (41). 196 

An unconstrained (i.e. nonparametric) lag structure was used for the initial analysis. Then, we 197 

considered another choice of distributed-lag function that assumes a constant lag effect within 198 

days. The constant lag modeling prevents overfitting of the data. This assumption is 199 

equivalent to fitting a constrained model that includes consecutive daily exposure moving 200 

average. Because some pollutants were highly correlated, we fitted multi-pollutant models to 201 

determine which pollutant(s) explained the single-pollutant associations. The collinearity 202 

between the independent variables of the multi-pollutant models was assessed with the 203 

Generalized Variance Inflation Factor (GVIF
(1/[2df])

)(42). To assess collinearity, values of 204 

GVIF were compared to the threshold of 10, which was considered as a maximum value 205 

according to the literature  (43). Each model was adjusted on all lagged (including lag 0) daily 206 

concentrations and daily temperature to also take into account the exposure correlation 207 

between the lags.  208 

3. Results 209 

 210 

3.1. Individual demographic and clinical patients' characteristics  211 

We obtained carefully verified data for 1,783 relapses and selected 3,408 control days from 212 

424 patients. Data were analyzed separately for "cold" and "hot" seasons (i.e., 888 case days 213 

and 1,703 control days during the "hot" season and 895 case days and 1,705 controls during 214 

the "cold" season) over the 2000-2009 study period. All of them were living in 145 French 215 

census blocks of the Strasbourg Metropolitan Area (SMA) at some time over the study period.  216 

Patients' characteristics are presented in Table 1. Sex ratio (Female:Male) was 2.93 and 217 

patient's mean age at MS clinical onset was 30.5 (±10.0) years old. Throughout the study 218 

period, patients experienced in average 4.2 relapses (2.11 in cold season and 2.09 in hot 219 

season).  220 
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Most of the patients included were affected with relapsing-remitting MS form (83.0%). The 221 

others were affected with secondary progressive form (17.0%). 222 

3.2. Environmental data and flu-like infections 223 

A description of environmental data is detailed in Table 2. Over the study period, mean 224 

concentrations of PM10, NO2, C6H6, and CO in the SMA were higher during "cold" than "hot" 225 

season. By contrast, mean concentrations of O3 were higher during "hot" than "cold" seasons 226 

(respectively 86.8±30.9 µg/m
3 

and 37.3±20.2 µg/m
3
,
 
p<001). As expected, pollutants were 227 

highly correlated (Table 3, Figure 1). Concentrations of PM10, NO2, CO and benzene were 228 

highest in the center of the CUS and concentrations of O3 were highest in the periphery 229 

(Figure 1). We observed seasonal variations in pollen counts (higher in the "hot" season) and 230 

flu-like infections (higher in the "cold" season) (Table 2).  231 

3.3. Relation between air pollutants and the occurrence of relapses 232 

3.3.1. Unconstrained distributed-lag single pollutant models  233 

Figure 2 presents the associations between air pollutants concentrations (for every lag of the 234 

week preceding the relapse) and the occurrence of relapses, separately for "hot" and "cold" 235 

seasons. We observed significant negative and positive associations on several distinct days, 236 

when adjusting individually on lagged daily air pollutants concentrations, lagged daily 237 

maximum temperature, day of relapse maximum relative humidity, maximum atmospheric 238 

pressure, as well as pollen count, influenza-like epidemics, and holidays.  239 

We observed a significantly increased risk (about 40%) with NO2 exposure at lag 1 in "hot" 240 

season, but no association during "cold" season. For PM10, we found an increased risk at lag 1 241 

in "hot" season (OR = 1.26 [1.03-1.54]) whereas lag 2 was significant in "cold" season (OR= 242 

1.28 [1.05-1.55]). Exposure to benzene was significantly associated with 30% excess risk in 243 

the “cold” season only, at lag 2 (OR = 1.32 [1.05-1.67]). We found that CO exposure 244 

increased the odds of MS relapse to a lesser extent in both "cold" (20%, lag 3) and "hot" 245 

season (30%, lag 2). The strongest association (roughly 60%) was observed with O3 exposure 246 

during "hot" season at lag 2. However, we noticed significant inverse associations at lag 3 in 247 

"hot" season for NO2 (OR = 0.82 [0.68-0.99]) and for benzene (OR = 0.81 [0.67-0.98]), which 248 

motivated the multi-pollutant approach presented in Section 3.3.3. 249 

3.3.2. Constrained distributed-lag single pollutant models  250 
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We also assumed a constant lag effect within days (Table 4 and Figure 3). Finally, we 251 

checked whether the associations we observed were still significant when considering a 252 

longer period (i.e. lags 0-6, one-week period) (Table 4). As compared to the unconstrained 253 

models, we observed a much lower increased risk (less than 10%) for both NO2 and PM10 and 254 

only in "cold" season for lag 0-3 (respectively, OR = 1.08 [1.03-1.14] and OR = 1.06 [1.01- 255 

1.11]) (Table 4 and Figure 3). In contrast, O3 exposure was significantly associated with an 256 

excess MS relapse risk of 16% in "hot" season only, lag 0-3 (OR = 1.16 [1.07-1.25]). 257 

Exposure to C6H6  yielded borderline significant excess risk estimates, during "cold" season, 258 

lag 0-3 (OR = 1.05 [1.00-1.10]) and inversely in "hot" season (OR = 0.98 [0.94-1.02]). We 259 

found no association with CO exposure. Associations with PM10 and NO2 exposures were no 260 

longer significant when one week of exposure (lag 0-6) was considered (respectively, OR = 261 

1.02 [0.99-1.05]; and OR = 1.03 [1.00-1.07]) (Table 4). However, associations with O3 262 

remained significant although weaker when one week of exposure was considered (OR = 1.13 263 

[1.07-1.19]). 264 

3.3.3. Constrained distributed-lag multiple-pollutant models  265 

Table 5 displays the multi-pollutant analyses results using the same constrained adjusted 266 

models as above. We estimated the associations between the odds of relapses using the all-267 

pollutant model (MFull/p=5) and PM10 exposure during "cold" season. The estimate was no 268 

longer significant (OR = 1.02 [0.95-1.11]) as compared to the results from single pollutant 269 

models (Table 4). The NO2-MS relapse associations were borderline significant (OR = 1.08 270 

[1.00-1.18]). In the "hot season", only the PM10-MS relapse association remained borderline 271 

significant (OR = 1.07 [1.00-1.15]).  272 

When the model was fitted with all the pollutants except NO2, the risk of relapses with PM10 273 

exposure became significant in "hot" season (OR = 1.08 [1.03-1.13]) as compared to the 274 

single pollutant analysis (Table 4) where no association was observed. An equivalent 275 

magnitude of risk was observed from single to multi-pollutant models with O3 exposure. 276 

When the model was run excluding PM10, the risk of relapse associated with NO2 exposure in 277 

"cold" season was very close to the single pollutant results. While benzene and CO exposures 278 

in “hot” season were not associated with risk in the single pollutant analyses, we observed 279 

inverse significant associations using multi-pollutant models: for benzene, excluding NO2, 280 

OR = 0.96 [0.93-0.99]; for CO, excluding O3, OR = 0.89 [0.81-0.99].  281 
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Collinearity between pollutant variables across multi-pollutant models was considered as 282 

moderate (all GVIF
(1/[2df])

 < 10, and most of them < 2) (Table 6). 283 

4. Discussion  284 

 285 

We have shown significant associations between short-term exposure to ambient air pollutants 286 

(NO2, PM10 and O3) and the occurrence of MS relapses in a French population-based study 287 

spanning 10 years (2000-2009) (Table 4). We confirmed our previous results (21) on PM10-288 

associated risk using a more sound statistical approach. In particular, our model-adjustments 289 

were more precise, i.e., we consider all lagged (including day 0 to 3 instead of 1 to 3) of daily 290 

concentrations and daily temperature instead of the single day of relapse, and therefore took 291 

into account the correlation between the lag exposures. We estimated odds ratios 292 

corresponding to an interquartile range (IQR) increment of concentration (µg/m3) instead of a 293 

one-unit increment of ln PM10. These differences in methodology might explain the variation 294 

of magnitude observed between both studies (present analysis OR = 1.06 [1.02-1.11]: 295 

previous OR = 1.40 [1.08-1.81]) (21). We investigated the relation between air pollutants and 296 

the occurrence of relapses on each day of a one-week period before onset, which is supposed 297 

to be the maximum air pollution effect (19). When fitting the models considering one week of 298 

exposure to air pollutants, we observed no association beyond lag 3 (except a “protective” 299 

effect for CO at lag 5 in "hot" season) (Figure 2). These observations yield to conduct analysis 300 

considering only 3 days (instead of 6) before the occurrence of relapses and we did not 301 

observe any major difference (results not shown). Our results are in line with those of the 302 

literature (19,20,27) which reported a short term association between PM10 and the odds of 303 

relapse (19,27).  304 

Since air pollutants are highly correlated and that correlations vary across season (Table 3) 305 

due to complex reactions such as photochemical reactions which necessitate sunlight, we 306 

explored the impact of air pollution testing multi-pollutant models (Table 5). Several 307 

associations decreased in magnitude when adding pollutants in the model, It might be due to 308 

the relation between pollutants, such as collinearity (44). Only O3 was systematically 309 

significantly associated with MS risk during "hot" season, using one, four, or five pollutants 310 

in the model. However, variations observed by single pollutant to multi-pollutant models were 311 

very limited in size. O3 showed the largest association with the odds of MS relapse. In this 312 

study, we provide pollutant-specific comparisons. Results of PM10 in the multi-pollutant 313 
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models were partly confounded by NO2 and vice versa. Indeed, the both pollutants are highly 314 

correlated for both seasons (around 0.70). We did not conduct any bi-pollutant analyses 315 

because we considered that it did not reflect actual exposures and that adding statistical tests 316 

might lead to observe false positives which could alter the interpretation. Collinearity may be 317 

an important issue in multi-pollutant models, so that we have calculated the GVIF^
(1/(2df))

 for 318 

each pollutant included in the multi-pollutant distributed-lag models. As coefficient values 319 

were low (<5), all multi-pollutant associations were reported. 320 

 321 

 322 

Air pollutants' concentrations exhibit seasonal patterns, leading us to conduct analyses 323 

according to season ("cold": from October to March; "hot": from April to September) rather 324 

than fitting models adjusting for season as in the Italian study (19). Farez et al. (2015) 325 

observed that melatonin, which is a neuro-hormone regulated by seasonal variation in sunlight 326 

level and especially night length, was inversely correlated with relapses incidence (45). Yet, 327 

some studies have reported associations between UV level and MS exacerbations (16,17), 328 

suggesting a possible role of erythemal ultraviolet radiation in the production of serum 329 

vitamin D production that might influence relapse incidence (17). However, Hardin et al. 330 

(2017) reported highest risks in early summer when sunshine duration is elevated and lowest 331 

risks at the end of summer (12), suggesting that vitamin D might not be the only environment 332 

factor incriminated in MS relapses (e.g., interactions etc.). Our results seem to corroborate 333 

seasonal changes in MS activity, as associations with air pollutants varied across season, so as 334 

established or likely confounding variables we accounted in our models (meteorological, 335 

infections and allergy variables). Indeed, we observed differences in risks between air 336 

pollutants concentrations and risk of relapses according to "hot" and "cold" seasons, yet this 337 

categorization is only an uncertain proxy of UV exposure. Moreover, PM10 and NO2 338 

concentrations were associated with MS relapses occurrence only in "cold" months, while O3 339 

was associated in "hot" months. Seasonal changes in air pollutants concentrations, the type of 340 

area (e.g., topography, level of traffic etc.) and the seasonal possible individual air pollutant 341 

effect on MS activity could explain mixed results concerning seasonal pattern in relapses rate 342 

observed in the literature (12). We adjusted on holidays since they may influence industrial 343 

activities and road traffic but also and particularly the presence of patients at home. We have 344 

previously shown that holidays suggested a "protective" association during "cold" months 345 

(21). This result could be related with a drop in stress-related work (46) or a leave for areas 346 
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featuring different exposure patterns. In addition, during summer, patients are more likely to 347 

stay outside and might be more exposed to ozone.  348 

 349 

Limitations - We considered patients' living address only, which can be a limitation as much 350 

they could spend a part of their time out of home (e.g., commuting, job site, leisure...). 351 

However, patients affected with MS generally see their mobility reduced along with the 352 

course of the disease. Therefore, there are expected to spend more time at home with time 353 

(47). We did not adjust for sunlight exposure, which is reported to be related to MS incidence 354 

(12). 355 

 356 

Strengths - This study has several strengths. First, we conducted multi-pollutant models to 357 

determine pollutant-specific associations despite the high collinearity between pollutants. 358 

Second, a state-of the-art case ascertainment through the systematic reporting of patients 359 

followed up within the EDMUS database (30). Because the data collection started before the 360 

study period, most of the relapses were prospectively collected and dates of relapses 361 

occurrence were set by neurological experts. We also used a robust and accurate exposure 362 

assessment at the census blocks scale, limiting exposure misclassification to the extent 363 

possible. Finally, we adjusted models with a number of confounders known to be season-364 

dependent.  365 

 366 

The role of air pollution in the pathogenesis of MS remains to be fully elucidated. Recently, 367 

Esmaeil Mousavi et al. (2017) formulated the assumption that air pollution might impact MS 368 

incidence and activity through biological mechanisms inducing neuroinflammatory-oxidative 369 

cascades reactions, decrease of immunological self-tolerance and neurodegeneration (i.e. 370 

axonal deterioration and neuronal loss) that finally conduct to autoimmunity (48). For 371 

instance, some of those mechanisms enrolled could be the blood brain barrier breakdown, a 372 

mitochondrial dysfunction, an overproduction of free radicals or the expression of 373 

inflammatory factors. Moreover, showing a significant association between PM10 374 

concentrations before magnetic resonance imaging (MRI) examination and MRI Gadolinium-375 

enhancing lesions, an Italian study provided recent additional evidence that ambient air 376 

pollution might be a determinant for MS inflammatory relapses triggering (27). Epigenetic 377 

changes in autoimmune disease also occur, especially changes in DNA methylation (49).  378 

 379 
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5. Conclusion  380 

Using a precise exposure spatio-temporal model and a clinically-diagnosed outcome from a 381 

fairly exhaustive multiple sclerosis registry, we reported associations between exposures to air 382 

pollutants (NO2, PM10 and O3) and the risk of MS relapses, when pollutants were assessed 383 

individually. In a multi-pollutant model, only O3 was significantly associated with the risk of 384 

MS triggering. When assessing the link between exposure to PM10 and MS relapses, we 385 

recommend adjusting for NO2 level and vice versa. Taken together, these findings enhanced 386 

our understanding of the plausible association between air pollution exposure and MS 387 

relapses but further research is needed to confirm this hypothesis. Our observation of an 388 

association with PM10 is in line with the results of the few studies published so far. Yet, the 389 

association we observed with NO2 and O3 is to our knowledge unprecedented. 390 

391 
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 522 

Table 1. Baseline characteristics of the 424 patients included in the study. 523 

  Multiple Sclerosis patients 

N = 424 

Demographic characteristics  

 Gender  

 Males 108 (25.5%) 

 Females 316 (74.5%) 

 Clinical characteristics  

 Mean age at MS onset (± sd), years (30.5±10.0) 

 Mean follow-up duration (± sd), years  (6.6±3.5) 

 Mean relapses per patient (between 2000 and 2009)  (4.2±4.7) 

 MS form (at last information)  

 Relapsing-Remitting 352 (83.0%) 

 Secondary Progressive 72 (17.0%) 

sd: standard deviation 524 

 525 
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Table 2. Baseline characteristics of daily air pollutants concentrations, meteorological features, pollen and infections across Strasbourg (France) Metropolitan 

Area, 145 census blocks (2000-2009).  

  "Hot" seasona  "Cold" seasona 

Parameters
b
 Mean Sd

c
 Min. Q1 Median Q3 Max.  Mean Sd Min. Q1 Median Q3 Max. 

Air pollutants (µg/m
3
)                

 PM10  18.94 6.78 4.68 13.88 17.97 22.98 51.59  23.70 12.69 2.55 14.52 21.59 30.12 101.50 

 NO2 29.30 11.66 4.06 20.95 28.16 36.45 92.31  38.66 13.90 3.32 28.88 38.60 48.02 95.90 

 C6H6 1.10 0.59 0.14 0.71 0.97 1.34 4.67  2.23 1.24 0.19 1.33 2.02 2.91 10.58 

 CO 577.7 58.54 501.9 536.8 565.1 603.7 998.3  608.1 84.26 502.7 546.4 585.9 647.8 1175.0 

 O3 86.85 30.89 15.12 65.49 83.44 105.20 221.00  37.26 20.19 2.44 20.47 35.66 51.45 107.20 

Meteorological features                

 Maximum temperature (°C) 22.61 5.56 5.10 19.10 22.80 26.50 38.50  9.45 6.02 -10.30 5.38 9.60 13.52 28.50 

 Maximum atmospheric 
pressure (hPa) 

1010.01     10.41 979.10 1001.00 1011.00 1019.00 1031.00  1013.00 13.03 970.30     1003.00    1013.00 1023.00 1043.00 

 Maximum relative humidity 
(%) 

91.99      5.49 59.0 90.00     93.00   96.00 100.00  93.86      4.35 72.00 92.00     95.00   97.00 100.00 

Allergy                

 Pollen count (daily mean 
number of grains/m

3
) 

130.30 210.10 0.00 21.16 69.84 158.10 2368.00  40.04 130.55 0.00 0.00 0.00 15.64 1519.00 

Infections                

 Influenza-like epidemics (Nb 
of cases per week) 

48.73 107.87 0.00 0.00 0.00 59.00 851.00  453.50 587.02 0.00 112.00 254.00 535.00 3486.00 

a"Hot" season (April to September) and "Cold" season (October to March); 
bEstimations for the 145 census blocks of Strasbourg Metropolitan Area; 
cSd: Standard deviation; 

Wilcox.test (hot vs. cold): Significant (p<0.001) for all the PM10, NO2, C6H6, O3 and CO pollutants.  
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Table 3. Air pollutants daily mean concentrations value correlation coefficient (r), Strasbourg (France) Metropolitan Area, 145 census blocks (2000-2009). 

   PM10  NO2  C6H6  CO  O3 

   "cold" "hot"  "cold" "hot"  "cold" "hot"  "cold" "hot"  "cold" "hot" 

PM10 
"cold"  1              

"hot"   1             

NO2 
"cold"  0.71   1           

"hot"   0.70   1          

C6H6 
"cold"  0.72   0.64   1        

"hot"   0.50   0.59   1       

CO 
"cold"  0.55   0.72   0.59   1     

"hot"   0.46   0.59   0.57   1    

O3 
"cold"  -0.39   -0.48   -0.54   -0.48   1  

"hot"   0.29   -0.06   -0.18   -0.21   1 

Correlation coefficient (r): Pearson'r 
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Table 4. Estimated risk for associations between exposure to air pollutants concentrations (lags 0-3 

days) and risk of MS relapse triggering, according to season. 

  "Hot" season (n = 2,594)
a
  "Cold" season (n = 2,597)

a
 

 Parameter (µg/m
3
)

d
 OR

b
 CI95%

c
   OR CI95% 

PM10 Lags 0-3  1.04 [0.99-1.09]   1.06 [1.01-1.11] 

 Lags 0-6 (one week) 1.03 [1.00-1.06]   1.02 [0.99-1.05] 

NO2 Lags 0-3  1.01 [0.96-1.07]   1.08 [1.03-1.14] 

 Lags 0-6 (one week) 1.02 [0.98-1.05]   1.03 [1.00-1.07] 

C6H6 Lags 0-3  0.98 [0.94-1.02]   1.05 [1.00-1.10] 

 Lags 0-6 (one week) 0.99 [0.96-1.02]   1.02 [0.99-1.05] 

CO Lags 0-3  0.96 [0.90-1.02]   1.04 [0.98-1.10] 

 Lags 0-6 (one week) 0.97 [0.93-1.01]   1.02 [0.99-1.06] 

O3 Lags 0-3  1.16 [1.07-1.25]   0.96 [0.90-1.03] 

 Lags 0-6 (one week) 1.13 [1.07-1.19]   0.98 [0.94-1.02] 

a"Hot" season (April to September) and "Cold" season (October to March) / n = Number of cases and control days; b Odds-

ratio (lags 0 to 3 days and lags 0 to 6 days, constant lag effect). OR corresponds to an interquartile increment of 

concentration; c 95% Confidence Interval. Multivariate conditional logistic regression models were adjusted on all lagged 

daily air pollutants concentrations, daily maximum temperature, day of relapse maximum relative humidity, maximum 

atmospheric pressure, pollen count, influenza-like epidemics, and holidays.
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Table 5. Multi-pollutant analysis. 1 

 PM10 NO2 C6H6 CO O3 

 "Hot"a "Cold"a "Hot" "Cold" "Hot" "Cold" "Hot" "Cold" "Hot" "Cold" 

 ORb CI95%
c ORb CI95%

c OR CI95% OR CI95% OR CI95% OR CI95% OR CI95% OR CI95% OR CI95% OR CI95% 

Multi-pollutant (p=4)d             

MnoPM10 / p=4 - - 1.07 [0.98-1.17] 1.10 [1.02-1.18] 0.97 [0.92-1.02] 1.02 [0.96-1.08] 0.94 [0.84-1.04] 0.97 [0.89-1.05] 1.13 [1.04-1.23] 1.01 [0.93-1.10] 

M noNO2 / p=4 1.08 [1.03-1.13] 1.06 [0.99-1.14] - - 0.96 [0.93-0.99] 1.01 [0.94-1.08] 0.95 [0.90-1.00] 1.00 [0.92-1.08] 1.12 [1.01-1.24] 0.99 [0.92-1.07] 

MnoC6H6 / p=4 1.05 [0.98-1.13] 1.03 [0.96-1.10] 1.01 [0.91-1.11] 1.09 [1.00-1.18] - - 0.93 [0.84-1.04] 1.01 [0.93-1.09] 1.12 [1.04-1.22] 0.96 [0.89-1.04] 

M noCO / p=4 1.07 [1.00-1.15] 1.02 [0.94-1.10] 0.98 [0.91-1.06] 1.07 [0.99-1.16] 0.95 [0.90-1.00] 1.00 [0.94-1.08] - - 1.14 [1.05-1.23] 1.02 [0.94-1.11] 

MnoO3 / p=4 1.09 [1.01-1.17] 1.02 [0.95-1.11] 1.04 [0.95-1.15] 1.08 [1.00-1.18] 0.95 [0.90-1.00] 1.00 [0.94-1.08] 0.89 [0.81-0.99] 0.96 [0.89-1.04] - - 

All-pollutant (p=5)e                   

MFull / p=5 1.07 [1.00-1.15] 1.02 [0.95-1.11] 1.02 [0.92-1.13] 1.08 [1.00-1.18] 0.95 [0.90-1.01] 1.00 [0.94-1.08] 0.94 [0.85-1.05] 0.96 [0.89-1.04] 1.12 [1.03-1.22] 1.01 [0.93-1.10] 
a"Hot" season (April to September) and "Cold" season (October to March) / n = Number of cases and control days; b Odds-ratio concentrations (lags 0 to 3 days, constant lag effect). OR 2 
corresponds to an interquartile increment of concentration; c 95% Confidence Interval. Multivariate conditional logistic regression models were adjusted on all lagged daily air pollutants 3 
concentrations, daily maximum temperature, day of relapse maximum relative humidity, maximum atmospheric pressure, pollen count, influenza-like epidemics, and holidays.   4 
dMulti-pollutant models (p = 4: four pollutants included in the model). 5 
eAll-pollutant models (p = 5: all five pollutants included in the model). 6 
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Table 6. Generalized Variance Inflation Factor values for pollutants by multi-pollutant models. 7 

  GVIF(1/[2df]) a 

  "Hot"b  "Cold"b 

Multi-pollutant (p=4)
c
       

MnoPM10 / p=4 NO2 1.93  1.74 

C6H6 1.39  1.58 

CO 1.80  1.66 

O3 2.26  2.06 

M noNO2 / p=4 PM10 1.68  2.07 

C6H6 1.44  1.87 

CO 1.43  1.58 

O3 2.25  2.05 

MnoC6H6 / p=4 PM10 1.91  1.92 

NO2 2.26  1.91 

CO 1.79  1.68 

O3 2.29  2.05 

M noCO / p=4 PM10 1.98  2.24 

NO2 1.81  1.79 

C6H6 1.45  1.87 

O3 2.14  1.98 

MnoO3 / p=4 PM10 1.96  2.27 

NO2 2.25  1.90 

C6H6 1.46  1.85 

CO 1.68  1.61 

All-pollutant (p=5)
d
       

MFull / p=5 PM10 1.98  2.27 

NO2 2.28  1.92 

C6H6 1.45  1.87 

CO 1.80  1.68 

O3 2.29  2.06 
 8 
aGVIF(1/[2df]): Generalized Variance Inflation Factor; Coefficient used to assess collinearity. 9 
b"Hot" season (April to September) and "Cold" season (October to March). 10 
cMulti-pollutant models (p=4: four pollutants included in the model). 11 
dAll-pollutant models (p=5: all five pollutants included in the model). 12 
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(a) Carbon monoxyde - CO (b) Nitrogen dioxyde - NO2 (c) Ozone - O3 

 
(d) Benzene - C6H6 (e) Particulate matters - PM10 (d) Socioeconomic index 

Figure 1. Ambient air pollution concentrations and SES index across Strasbourg Metropolitan Area 13 

census blocks (2000-2009). 14 
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Figure 2. Associations between exposure to air pollutants concentrations (lags 0-6 days before relapse 

onset, inconstant lag effect) and risk of MS relapse triggering, according to season. 

a"Hot" season (April to September) and "Cold" season (October to March); Odds-ratio (lags 0 to 6 days, inconstant lag effect). OR 

corresponds to an interquartile increment of concentration and are represented with their 95% Confidence Interval. Multivariate conditional 
logistic regression models were adjusted on all lagged daily air pollutants concentrations, daily maximum temperature, day of relapse 

maximum relative humidity, maximum atmospheric pressure, pollen count, influenza-like epidemics, and holidays. 
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Figure 3. Associations between exposure to air pollutants concentrations (lags 0-3 days before relapse 

onset, constant lag effect) and risk of MS relapse triggering, according to season. 

 
 


