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Investigating the Potential of Computer Environments for 

the Teaching and Learning of Functions: a Double 

Analysis from two Research Traditions
1
 

Jean-Baptiste Lagrange • Giorgos Psycharis 

Abstract   The general goal of this paper is to explore the potential of computer 

environments for the teaching and learning of functions. To address this, different 

theoretical frameworks and corresponding research traditions are available. In this 

study, we aim to network different frameworks by following a ‘double analysis’ 

method to analyse two empirical studies based on the use of computational 

environments offering integrated geometrical and algebraic representations. The 

studies took place in different national and didactic contexts and constitute cases 

of Constructionism and Theory of Didactical Situations. The analysis indicates 

that ‘double analysis’ resulted in a deepened and more balanced understanding 

about knowledge emerging from empirical studies as regards the nature of 

learning situations for functions with computers and the process of 

conceptualisation of functions by students. Main issues around the potential of 

computer environments for the teaching and learning of functions concern the use 

of integrated representations of functions linking geometry and algebra, the need 

to address epistemological and cognitive aspects of the constructed knowledge 

and the critical role of teachers in the design and evolution of students’ activity. 

We also reflect on how the networking of theories influences theoretical 

advancement and the followed research approaches. 
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1. Introduction  

The notion of function occupies a central role in a wide range of mathematical 

topics studied especially at the secondary and the upper secondary level. 

However, engaging students in functional thinking is known as a demanding task 

(Oehrtman et al. 2008). Existing research confirms students’ difficulties in 

coordinating understandings in different settings (Bloch 2003) and dealing with 

representations in several registers (Duval 2000). Reform curriculum programs 

adopting a functional perspective to the teaching of algebra are usually oriented 

towards a less manipulation oriented algebraic content by promoting, with the use 

of technological tools, screen (graphical) interpretations of functions (Kieran 

2007). Clearly, algebraic formalism seems to have been placed in the background 

of attention in these programs with the risk to deprive students from a direct 

access to symbolic forms of mathematical ideas. However, algebraic formalism is 

at the core of algebra and constitutes a powerful, inherently mathematical medium 

for expressing mathematical ideas. Recently, the development of new 

technological tools offering integrated representations of functions has generated 

further interest as regards their potential for the teaching and learning of 

functions. Yet, it seems difficult to really appreciate this potential, since it is 

needed to take into account the visions provided by specific theoretical 

frameworks, and because of the fragmented character of these frameworks 

(Artigue 2009).  

Our overall research goal in this paper is to explore the potential of computational 

environments for the teaching and learning of functions. In order to address this 

goal, we seek to combat fragmentation by networking different theoretical 

frameworks. It is important to note that here we consider fragmentation as 

resulting from the existence of different research traditions. By research tradition, 

we do not mean only a reference to a theoretical framework, but also the research 

practices built jointly with a framework: reflection on a practice gives theoretical 

elements for a framework, and, in return, practice, that is to say design, 

observation and interpretation, is affected by the framework. Taking into account 

that a research tradition in the research on technology enhanced learning of 

mathematics can often be identified by a technology-based learning environment, 

a theoretical framework and a national educational and cultural context, we chose 
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to consider two research traditions, both dealing with functions and software 

offering interconnected algebraic and geometrical representations, but different in 

many other aspects. One involves Turtleworlds, a piece of geometrical 

construction software combining dynamic manipulation of variable values with 

the symbolic notation provided by Logo programming. The design and the 

research on the use of Turtleworlds are inspired by Constructionism (Harel and 

Papert 1991) and have been carried out in the Greek context. The other research 

tradition involves Casyopée, a piece of software that offers a dynamic geometry 

window connected to a symbolic environment specifically designed to help 

students to work on functions. Casyopée’s design and experimentations occurred 

in the French context that is shaped by didactical theoretical frameworks and 

epistemological considerations. We focus here on a framework preeminent in the 

French context –the Theory of Didactical Situations (TDS, Brousseau 1997), and 

on an epistemological typology of activity with functions built to make sense of 

the potential of computational environments with interconnected algebraic and 

geometrical representations (Lagrange and Artigue 2009). 

Our choice to consider networking at the level of research traditions, lead us to 

question the research practices rooted in the above perspectives in terms of 

design, implementation and analysis of concrete research studies. Thus, we found 

it relevant to put each framework into action in producing a double analysis of 

teaching and learning phenomena that appear in two respective research studies 

focusing on functions, one with Turtleworlds and another one with Casyopée. In 

this approach, double analysis was seen by us as a means/tool to network the two 

frameworks by highlighting possible connections and divergent aspects and 

through this to address the potential of computer environments for the teaching 

and learning of functions. Therefore, the objectives guiding our research can be 

described in two levels. Firstly, we were interested in investigating the ways 

students’ interactions with the provided representations may affect their 

opportunities for learning about function, according to each of the two theoretical 

frameworks. Taking into account the partial view provided by each framework, 

we wanted to provide a more complete analysis (supported by different theoretical 

and empirical components) of the same teaching and learning phenomena. This 

aim is addressed in Sections 4 and 5. Secondly, our aim was to discuss the 

potential of digital technologies for the teaching and learning of functions by 
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linking double analysis to the existing literature. This aim is addressed in Section 

6. As an agenda beyond the above aims, we expect to experience the profits and 

limitations of our networking attempt for theoretical advancement and 

development as well as for reflection on our own approaches. 

In the next section, we outline the theoretical framework of this study. Then, the 

adopted methodology is sketched. Sections 4 and 5 contain a ‘double analysis’ of 

two empirical studies from a constructionist and TDS perspective, respectively. In 

Section 6, we discuss the potential of digital technologies for the teaching and 

learning of functions with respect to the concerns/issues raised by the double 

analysis. Finally, in Section 7 we present the conclusions of the article.   

2. Theoretical Framework 

In this section, we first outline the theoretical traditions at stake and particular 

theoretical tools and constructs through which each tradition considers the ways 

students conceptualise functions, namely situated abstraction and typology of 

activities for function. Then, we frame our approach to networking theoretical 

frameworks and describe the tools we used for this in the present study. Next, we 

provide a review of the existing literature concerning the role of computer 

environments as components of learning situations about functions. Finally, we 

summarise major trends identified by previous research as regards the processes 

of conceptualisation of the notion of function with computer environments.  

2.1. Constructionism and Situated Abstraction  

Constructionism incorporates and builds upon constructivism’s connotation of 

learning as ‘building knowledge structures’ through progressive internalization of 

actions, in a context where students are consciously engaged in constructing (or 

de/re-constructing) physical and virtual models on the computer (e.g., geometrical 

figures, simulations, animations): the notion of construction refers both to the 

‘external’ product of students’ activity as well as to the process by which students 

come to develop more formal understandings of ideas and relationships (Papert 

1980). The constructionist paradigm attributes special emphasis on students’ 

construction of meanings when using mathematics to construct their own models 

during individual and collective ‘bricolage’ with digital artefacts, i.e. continual 

reshaping of digital artefacts by the students in order to complete specific tasks. It 



 

5 

is important to note at this point that our interpretation of ‘meaning’ is not related 

purely to individual cognition but also to the way that students interact with 

digital artifacts and the social context of the classroom to appreciate explicitly 

mathematical relations and their semantics. In this perspective, a learning situation 

corresponds to a meaning generation process afforded by a conjunction of 

tinkering with digital representations, noticing feedback and communicating with 

others (teacher, other students). There is a dualistic nature of the idea: a learning 

situation indicates a process and a concrete object which represents the outcome 

of learner’s activity in constructing something and communicating with others 

about it.  

Under a constructionist perspective, Noss and Hoyles (1996) introduced the 

notion of situated abstraction to address how mathematical abstraction is 

scaffolded within computational media. They describe abstraction as a meaning 

generation process in which mathematical meanings are expressed as invariant 

relationships, but yet remain tied up within the conceptual web of resources 

provided by the available computational tool and the activity system. A critical 

point in this process concerns the potential of meanings to be transformed as 

students move the focus of their attention onto new objects and relationships 

within the setting, while maintaining their connections with existing ones. In this 

perspective, a ‘situated abstraction’ approach to students’ conceptualisation of 

function within a particular computer-based setting involves meaning generation 

evident in the concretion of generalized relationships by students through the use 

of the available tools, linguistic conventions, and structures (e.g., expressed in the 

form of programmable code).  

2.2. TDS and Typology of Activities for Function 

Brousseau (1997) presents TDS as a model of learning by adaptation. The idea of 

situations is fundamental in TDS. It refers to a project organized (e.g., by the 

teacher) so as to cause one or some students to appropriate a certain piece of 

mathematical knowledge. ‘Milieu’, a coherent part of a situation, is defined as a 

system comprising material (e.g., tools) and non material (e.g., prior knowledge, 

symbols, interactions with other students) elements of a situation. Student’s acting 

on the ‘milieu’ provokes feedback calling for modifying or adjusting action. Thus, 
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the student is expected to create the targeted knowledge as response to the 

requirements of an ‘antagonist’ milieu rather than on the teacher’s intentions. This 

is the a-didactical situation. Teaching has to organize the situation, in order to 

optimize the conditions of the interaction that is to say that progress in the 

interaction should be conditioned by a progress towards the knowledge aimed at 

in the situation. Thus, a learning situation in TDS involves a ‘milieu’ targeting a 

particular piece of mathematical knowledge and also an account of students’ 

potential for learning through their interaction with the milieu. Such an account 

addresses progress in relation to an epistemological analysis of the targeted 

knowledge. By epistemological analysis, we mean an analysis situating a given 

knowledge in a scientific field, the different forms and expressions that it can take 

and its relationship with other knowledge.  

The epistemological analysis favored in TDS situates functions at different levels 

(1) dependencies sensually experienced in a physical system (Radford 2005); (2) 

dependencies between magnitudes, enhancing the consideration of functions as 

models of physical dependencies; (3) functions of one real variable, with 

formulas, graphs, tables and other possible algebraic representations. Based on the 

idea that students approach the notion of function by working on dependencies at 

these levels, Lagrange and Artigue (2009) proposed a typology of activities for 

functions. The typology connects the notion of function to the idea of covariation 

or dependency in physical systems (first level) where one can observe mutual 

variations of objects and also, at the second level, to the idea of input-output pairs 

of two magnitudes. It also distinguishes between types of representations and 

algebraic activities in each level. Particularly: iconic/enactive representations (Tall 

1996); and three types of algebraic activities: generational (forming of expressions 

and equations), transformational (algebraic manipulation, e.g., factoring) and 

global/meta-level (not algebra-specific but related to the use of algebra, e.g., 

problem solving, modeling, looking for relationships) (Kieran 2007). 

2.3. Networking of Theories Representing Different Research 

Traditions  

At the level of their principles, Constructionism and TDS share a common focus 

on the design of learning through devices that provide affordances for interaction 
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and knowledge construction. For instance, the idea of ‘milieu’, emerged and 

clearly defined within the TDS tradition, can also be seen by a constructionist 

perspective as a device – through not described with the same terms – that 

integrates teachers’/researchers’ design of artifacts (e.g., tasks, microworlds) 

targeting rich meaning generation by the students. The divergence of the two 

perspectives is expected to become apparent if we consider the nature of design as 

activated in research practice. According to Radford (2008), there is space for 

further integrative attempts between the two traditions.   

Networking different theoretical frameworks around the use of digital tools for the 

learning of mathematics is a current topic of research in the field (Drijvers et al. 

2013). For achieving some integration amongst different traditions, Bikner-

Ahsbahs and Prediger (2010) highlight the link between theory and research 

practice and adopt an approach “that conceptualizes theories in their dual 

character as frame and as a result of research practices” (ibid, p. 483). From a 

similar perspective, networking of theories in technology enhanced mathematics 

was addressed by six European research teams in the context of the project 

ReMath
2
 through collaborative engagement in a ‘cross-experimentation’ 

programme leading to unified comparative accounts of pairs of studies of the 

same digital artifact (i.e. ‘cross-case analyses’) (Artigue 2009). ReMath indicated 

the importance of including the whole cycle of design-implementation-analysis of 

research studies in the networking process. This was the point of departure for our 

approach. Therefore, our initial step for networking was to address the need for 

mutual understanding by considering two research studies based upon the use of 

computer environments for the teaching and learning of function, each one 

designed and implemented within the corresponding research tradition.  

Our next step in networking consists of producing a double analysis of concrete 

teaching and learning phenomena under the corresponding theoretical 

frameworks. As mentioned in the introduction, our first aim is to study how each 

tradition considers students’ learning of function as well as to highlight possible 

connections and divergent aspects. At this point networking consists of comparing 

and contrasting the two approaches. The second aim of our study is to link the 
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double analysis to the existing research concerning the use of computer 

environments for the teaching and learning of functions so as to shed light on 

what the double analysis may bring in the respective discussion in the field. In 

order to address this aim, we argue that the constituent elements of double 

analysis, i.e. the analyses carried out by each tradition, should be coordinated 

according to particular dimensions underlying research approaches as regards the 

design, implementation and analysis of learning situations for functions. Using 

different dimensions is seen by us as a way to make the divergence of the two 

perspectives come to the fore as well as to ensure a wider approach to the complex 

classroom reality. For instance, as evidenced in Section 2, ‘what a learning 

situation is’ should be answered differently by a constructionist perspective and 

TDS. Both traditions emphasize design in some sense, but Constructionism 

emphasizes rich meaning generation through construction activities without 

precisely foresee students’ procedures, while TDS gives priority to the 

development of an epistemological analysis of the aimed mathematical knowledge 

as a means to ensure that students’ interaction will actually put this knowledge at 

stake. This brings us to our last step in networking which consists of coordinating 

(Prediger et al. 2008; Bikner-Ahsbahs and Prediger 2010) Constructionism and 

TDS by coordinating the respective analyses in terms of two dimensions: 

‘Economy of learning situations’ and ‘Conceptualisation of function’.  

The notion of ‘economy’ of learning situations has been used by Hoyles, 

Lagrange and Noss (2006) in order to describe better the role of many different 

components intervening in the classroom progression of knowledge: students, 

teacher, but also various artefacts, some of these material (e.g., blackboard, 

disposition of the room) and the others non material (e.g., tasks, rules, systems of 

notation, language). Although the term ‘situations’ refers to the work of 

Brousseau, the authors adopted it without any didactic theorization. They define 

the economy of a learning situation as a specific organization of the classroom 

components (i.e. actors and artefacts), which encompass activities, interactions 

and norms within the classroom, and suggest that “technology brings changes and 

specificities in this economy” (ibid, p. 301) leading to a kind of ‘perturbation’ in 

the classroom. Aspects of context are challenged, actors take different roles than 

their ‘usual’ ones (e.g., the changing role of the teacher in the classroom), 

students’ mathematical activity is shaped by the use of particular technological 



 

9 

tools, new kinds of meanings are generated. It should be interesting, in our case, 

to investigate the contribution of the two research traditions to this important 

dimension of learning situations in the double analysis.  

The second dimension refers to the students’ construction of knowledge when 

learning about functions. The constructionist approach in this study is influenced 

by situated abstraction, while the TDS approach relies upon the typology of 

activities for functions. Thus, the corresponding analyses are expected to bring to 

the fore a cognitive/epistemological duality in approaching students’ learning for 

functions. 

2.4. Functions in Computational Environments: The Economy of 

Learning Situations 

A first motivation is in the computer’s potential for integrating a multiplicity of 

representations such as symbolic (algebraic), coordinate graphical, tabular, and 

iconic. Kieran and Yerushalmy (2004) review a variety of software taking 

advantage of this multiplicity and note that “intensive use of multiple 

representations technology (often) define themselves as functional approaches” 

(ibid., p. 103) and that “educators seek tools that will allow students to 

mathematically represent personal experiences as functions” (ibid., p. 105). 

As Kieran and Yerushalmy (ibid, p. 120) point out, dynamic control, that is to say 

direct manipulation of representation, often complements multiple representations 

of functions. With regard to algebraic representations, devices like sliders or 

dragging modalities allow direct control of algebraic expressions, for instance by 

animating parameters, or manipulating graphs. Also specially designed applets 

provide additional opportunities for interaction with algebraic representations 

through construction and use of chains or operations (e.g., arrow chains) and 

options for scrolling and tracing. For instance, such an applet (called 

AlgebraArrows) fostered students’ covariation understanding of functions through 

construction and modification of arrow chains (Doorman et al. 2012). With regard 

to non algebraic representations, authors who work with environments offering 

multiple interconnected representations stress the crucial role that the use of these 

representations can play in promoting students’ understanding of functional 

dependencies. For instance, part of research with Dynamic Geometry Systems 
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(DGS) concerns students’ conceptualisation of covariation when dragging certain 

geometrical objects in a continuous manner and observing how dependent 

geometrical constructions responded to this (Hazzan and Goldenberg 1997; 

Falcade et al. 2007). Authors who address the economy of learning situations in 

dynamic environments do so by way of a framework in the research tradition they 

participate in (see for instance Theory of Semiotic Mediation in the research study 

by Falcade et al. ibid.). 

Computer programming is an alternative way of building and manipulating 

representations, and a motivation for researchers: writing procedures in a specific 

language allows the construction of functions providing rich experience with the 

notion of function as process possibly ‘encapsulated’ in objects (Dubinsky 1999). 

Programming can also be seen as means to provide a representational 

infrastructure alternative to traditional symbolism, thus making the idea of 

formalized functional dependency more learnable for students (Noss 2004). The 

constructionist perspective has been built to make sense of situations involving 

programming as means to access mathematical ideas.  

A substantial body of research also exists at upper secondary level about the use 

of Computer Algebra Systems (CAS) (Thomas et al. 2004). As a difference with 

research on multirepresentational dynamic tools, research on CAS does not 

generally focus on functions, but rather on more general algebraic ideas. For 

instance, Kieran and Drijvers (2006) insist on the role that CAS can play for 

supporting the understanding of algebraic equivalence and forms. Lagrange 

(2005) and Weigand and Bichler (2010) represent a shift towards using CAS 

embedded into environments allowing exploration of algebraic functions. The 

complexity of CAS environments and the problematic classroom integration 

explain why a big part of research studies about CAS use deals with questions of 

classroom efficiency. These studies bring concerns about the economy of learning 

situations often not addressed by research based on the use of other kinds of 

computer environments (Artigue 1997). 

More recently, computer environments offering both geometrical and algebraic 

capabilities have been designed with the aim of providing some sort of 

combination of DGS and algebraic multirepresentation, possibly including CAS 

and/or spreadsheet (Mackrell 2011). The need to explore the transformative 
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potential of the corresponding technologies has been related to the fact that such 

systems could encourage different levels of interplay between the two powerful 

mathematical worlds, different kinds of algebraic expression as well as new 

opportunities for direct manipulation of dynamically linked geometric and 

symbolic forms of mathematical objects. In addition, most up-to-date computer 

environments allow the user to animate objects by way of a programming 

language, providing alternative representational systems and reintroducing design 

ideas reviewed above.  

The assumptions underpinning the development of these environments are very 

diverse. Designers stress the possibility for students to make the connection 

between various representations in analytic geometry, for instance a figure and its 

Cartesian equation, and the affordances for users to ‘act’ on these connected 

representations. “It is possible to investigate the parameters of a circle’s equation 

by dragging the circle with the mouse. On the other hand, students may also 

manipulate the equation directly and see the changed circle in the geometry 

window.” (Hohenwarter and Fuchs 2005). The nature of tasks associated with 

these environments in learning situations (for instance optimization) puts the 

notion of function often at stake. Researchers insist on the possibility for students 

to solve tasks in various environments offering interconnected representations 

(e.g., DGS, CAS, spreadsheet), and also on the complexity of these environments 

that might be a problem for teachers (Artigue and Bardini 2010), converging with 

the concern for the economy of learning situations raised by research about CAS. 

2.5. Conceptualising the Notion of Function with the Help of 

Computers  

2.5.1  From Process-Object to Covariation Aspect of Functions 

From early nineties most of the studies concerning students’ conception of 

functions were based on the distinction between the two major stances that 

students adopt towards functions: the process view and the object view (Kieran 

1992; Sfard 1991). The process view of functions is characterised by students’ 

focus on the performance of computational actions following a sequence of 

operations (i.e. computing values) while the object view is based on the 
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generalisation of the dependency relationships between input-output pairs of two 

quantities/magnitudes (Breidenbach et al. 1992).  

Elaborating further the process–object duality in students’ understanding of 

functions, mathematics educators suggested that students’ understanding of 

functions can be considered as moving from an initial focus on actions and 

processes to more object-oriented views characterized by a gradual focus on 

structure, incorporation of properties and reification of mathematical objects 

(Breidenbach et al. 1992). In this vein, from the middle nineties, a number of 

approaches developed to describe object-oriented views of function emphasized 

the covariation aspect of function (Thompson 1994; Confrey and Smith 1995; 

Carlson et al. 2002; Oehrtman et al. 2008). The essence of a covariation view is 

related to the understanding of the manner in which dependent and independent 

variables change as well as the coordination between these changes. According to 

Carlson et al. (2002) covariational reasoning consists of “the cognitive activities 

involved in coordinating two varying quantities while attending to the ways in 

which they change in relation to each other.” (ibid., p. 357). However, this 

dynamic conception of variation seems to be not obvious for the students since it 

is essential to take into account simultaneously variation between magnitudes in 

different levels emerging in an ordered succession, and there is a need for 

situations that provide students with opportunities to think about the covariational 

nature of functions in modeling dynamic events.  

2.5.2  Understanding the Idea of Independent Variable 

A particular difficulty in understanding functions deals with the idea of 

independent variable. Using Tall and Vinner (1981) notion of concept image and 

concept definition, Thompson (1994) reports students’ persistent “mal-formed 

concept images (…) showing up in the strangest places” (ibid, p. 6). He 

particularly indicates that the predominant image evoked for students by the word 

‘function’ involves two disconnected/separated expressions linked by the equal 

sign. Aiming to indicate students’ difficulty to develop a conceptual 

understanding of the symbolic expression of functional relations and the role of 

particular symbols in it, he reports an example of a formula for the sum 

222 ...21 nSn +++= given by a student on the blackboard as a response to the 
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teacher’s request. The student wrote
6

)12)(1(
)(

++
=

nnn
xf and none of the 

students found something wrong with this expression since it seemed to fit their 

image of function at that time. Here the student’s use of symbols for the 

expression of a functional relation indicates an implicit consideration of it as a 

‘template’ consisting of two distinct parts in which the first one is used as a label 

for the second without linking at the conceptual level these two parts and the 

existing objects/quantities.  

2.5.3  The Role of Symbolism 

Connecting the symbolism of functions with the above aspects is also a major 

difficulty for students. Students’ view of symbolic expressions can be of a pure 

input-output correspondence. In other circumstances, it can be pseudo-structural, 

the expressions being understood as an object in itself, not connected to functional 

understanding (Sfard 1991). Slavit (1997) indicates the critical role of symbolism 

“confronted in very different forms (such as graphs and equations)” (ibid, p. 277) 

in the development of the function concept and suggests the need for students’ 

investigation of algebraic and functional ideas in different contexts such as the 

geometric one. Even when students have access to basic proficiencies in algebraic 

symbolism, coordinating these proficiencies with an understanding of the 

structure of the algebraic formula in a function is critical and is particularly at 

stake when the function comes from a problem context. Most students fail in this 

coordination. Evidence of failure is given in the context of equation. For instance, 

van der Kooij (2010) notes that most students in a vocational high school were 

able to do calculation on the pendulum equation 
g

l
T π2= while they gave no 

sense to an ‘abstract’ equation like xy 2= . Kieran (2007) reports on low 

achievement across countries for items of a TIMSS survey involving production 

or interpretation of formulas to describe a phenomenon depending on a variable 

number.  

3. Methodology 

The authors of this paper consist of one researcher who is experienced in using 

TDS in his research (the first author) and one researcher who has a substantial 
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experience in working under a constructionist perspective (the second author). 

Both of them participated in the project ReMath as members of two research 

teams. The experience of the two teams in cross-analysing the same experiment 

under TDS and constructionist lens brought evidence that divergent views of 

functions as well as distinct theoretical orientations can produce a lot of 

misunderstandings relatively to design and possible uses of a tool, to students’ 

activity and to the notion of function as implemented in a tool. Our method in this 

study is inspired by our experience in ReMath. However, here it goes further in 

terms of networking, since our aim is to provide a coordinated analysis of 

different research studies as a means to tackle the potential of computational 

environments for the teaching and learning of functions. 

We chose two experiments to be representative of the research practices in the two 

traditions but also very distinct. We mentioned in the introduction the specificities 

of each software that make them very different. The contexts of use were also 

very different in the two studies, the Casyopée study being for 11th grade students 

in scientific stream in the French context, while the Turtleworlds study was for 

7th grade mixed-ability classes in the Greek context. This diversity was chosen in 

order to get a broad view of the teaching and learning of functions, going beyond 

the particularities of a school level or other contextual factors. The fact that the 

data of each study stem from research work carried out by the two authors 

separately, was a challenge for us to share as much information on the design and 

implementation in each case (e.g., educational context, method). The overall 

description of the design of each study and the reported episodes in Sections 4 and 

5 were written by the respective authors.  

As a next step, we were engaged in identifying dimensions for analysing data 

from the classroom in order to be able to coordinate our own approaches. Due to 

our common focus on the learning of function, ‘conceptualisation of function’ was 

one obvious dimension for both of us. Also, taking into account our ReMath 

experience, we saw the need for a dimension addressing at a more general level 

how each research tradition considers classroom as a system of interrelated 

components (e.g., subjects, tools, activities) which affects the construction and 

progression of knowledge. Joint reflection lead us to adopt the notion of 

‘Economy of learning situations’ presented above. After this, we prepared a 
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review of the literature about functions in computer environments according to the 

chosen dimensions (see Sections 2.4 and 2.5). In Section 6, this choice will be 

prove to be useful in our attempt to situate the results of the present study in the 

existing research in the field. 

Next, each of us wrote an outline on the Constructionism and TDS framework 

respectively, explaining also the core elements of our lenses in order to address 

the two dimensions (e.g., how a ‘learning situation’ may be conceived in each 

framework). These outlines were the base of the theoretical perspectives we 

described earlier in Sections 2.1 and 2.2. Then, each of us worked separately from 

the other for carrying out the analysis of a particular piece of data from his own 

experiment (e.g., an episode) according to the dimensions mentioned above. 

Particularly, we agreed to analyse data in which key aspects of functions were 

brought to the fore through students’ use of the available tools as well as to 

provide as much information on the context of students’ activity.  

Next, we exchanged these (‘original’) analyses with the detailed description of 

each study (aims, method, etc.) and we started a process of making 

understandable one’s own approach which involved discussion and joint 

reflection on the ‘original’ analyses. In the end of this process, each one of us was 

able to react on the study and the analysis of the other’s under his own (‘alien’) 

perspective. This way two second analyses were produced. For more opportunities 

for comparing and contrasting our approaches, we decided these second analyses 

to be written in terms of concerns/issues brought by the ‘alien’ tradition to the 

original analysis. In subsequent in person meetings, we worked collaboratively to 

clarify these analyses for more accessible descriptions of the findings according to 

claims and assumptions of the two frameworks. We note that the use of ‘we’ and 

‘our’ in the constructionist and TDS analyses (i.e. Sections 4 and 5) refers to each 

one of us considered as a member of the respective community of 

(constructionist/TDS) researchers. In any other part of the paper the use of ‘we’ 

and ‘our’ signifies our common ground of interpretation built through our 

collaborative work by the end of the reported study. 

Finally, the process of coordinating the two approaches in terms of the chosen 

dimensions and the making of links with the existing literature was carried out in 

close but mainly distant collaboration (see Section 6). This process involved also 
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comparing and contrasting the two approaches taking into account the 

concerns/issues brought mainly by the ‘alien’ analyses mentioned above. 

Conclusions on the central aim of the study and on the outcomes of double 

analysis were also drawn. Overall, this process took nearly two years.  

4. Turtleworlds study  

4.1.  Aims and Choices  

This central research question in this study concerned how a computer 

environment offering integrated representations could help students to understand 

dependencies and express them in formal notation. The study was designed from a 

constructionist inspiration and then the choice was to favor students’ meaningful 

engagement in a purposeful task: enlarging-shrinking geometrical figures. As 

regards the notion of function, this task presents a potential for identifying a 

mutual dependence between two comparable quantities (interdependency), and 

also a potential for distinguishing certain kinds of dependence (e.g., additive, 

multiplicative) between two comparable quantities: proportional relations are 

considered as means to concretize relationship between measures in the geometric 

enlargement context. The functionalities of the computer environment were 

chosen in order to prompt students to construct relationships and figures 

according to the rules of proportionality. These rules were not initially explicit to 

the students, the aim being to emerge through interaction with the available tools: 

the environment was expected to provide feedback leading to visually-based 

cognitive conflict, particularly when using additive strategies. The need of a 

computer environment that allows formal expression of relationships was critical.  

Turtleworlds (Kynigos 2004) consists of three interconnected components: 

Canvas, Logo and Variation Tool. The elements of a geometrical construction can 

be expressed in a Logo procedure with the use of variables or functional 

relationships including variables. The user is able to dynamically manipulate the 

geometrical figure by dragging specific pointers along the ‘number line’-like 

representation of these variables using the dynamic manipulation feature of the 

computer environment called ‘variation tool’. After a procedure depending on 

variables is defined and executed with a specific value, clicking the mouse on the 
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turtle trace activates the variation tool, which provides a slider for each variable. 

For instance, the procedure ‘letterN’ (Fig. 1) creates a model of the letter ‘N’ with 

two variables representing the vertical segments and the ‘tilted’ segment 

respectively. The dragging of a slider results in a continual reshaping of the figure 

according to the corresponding variable value (Fig. 1).  

  

Fig. 1. A model of “N” with two variables and internal angle 35°. The values on the two sliders are: r=200 and t=240 (left). 

Dragging the slider :t to the value 220 leads to the figure on the right. 

4.2.  Task  

The task called Dynamic Alphabet was designed to engage purposefully a class in 

constructing enlarging-shrinking models of all the capital letters (i.e. of variable 

sizes) with one variable corresponding to the height of the respective letter. 

Moving the slider of the variation tool in this case would result in the visualisation 

of the letter as an enlarging-shrinking geometrical figure. Thus, the students had 

to chose an independent variable and express all the varying lengths of each letter 

procedure with appropriate functional relationships. For enlarging-shrinking the 

fixed model of ‘N’ shown in Fig. 1, the students had to consider :r as independent 

variable and express variable :t as 1.2*(:r). Students, however, were simply asked 

to design letters having the same height, as if they were designed between two 

lines of a note book. The research aim was to see if and how students might come 

to ‘translate’ these constraints in formal mathematical notation through their 

interaction with the available tools. Since, the inclusion of an additive relationship 

in a procedure would result in a ‘distorted’ figure for different values in the 
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variation tool, the students were expected to identify a general ‘method’ to 

prevent distortions and through this to recognize the utility of mathematical ideas. 

4.3.  Context and Data  

The experiment with Turtleworlds took place in a secondary school in Athens, 

Greece with two 7th grade mixed-ability classes (first grade of the secondary 

level) with 26 13-year-old students in each class and two mathematics teachers. 

Each class had only one teacher. Classroom implementation was carried out in 16 

teaching sessions for each class - 2 sessions per week - with the participating 

teachers over two months. Arrangements were made for the research to take place 

before the concepts of shrinking and enlarging geometrical figures were officially 

introduced to the students. This was done in order to avoid students’ attempts to 

reproduce taught methods and algorithms and, also, in order to enhance the 

exploratory potential of their engagement with the task. The students had also had 

some experience with traditional Logo constructions, including variable 

procedures. In each session the second author participated as participant observer 

in the classroom and intervened more or less assuming the role of a teacher, by 

posing questions, encouraging students to explain their ideas and strategies and 

asking for refinement and revision when appropriate.  

Through the use of two video-cameras, video recordings were collected by one 

group of students in each class (focus groups) and the overall classroom activity. 

The focus groups – which were the same in all sessions – consisted of students 

whose ability in mathematics had been reported by the teachers as average. 

Additionally, these students were familiar in working together and they were open 

in talking to the researcher/teacher about their thinking and strategies. During data 

collection one camera and one wired microphone were on the focus groups. Our 

intention was to capture the evolution of focus groups students’ activity (e.g., 

strategies, use of tools) throughout the teaching sequence. Through the second 

camera we recorded the overall classroom activity as well as interesting 

interactions in student groups other than the focus group. 

4.4. The Work of Alexia and Christina  

Early in their work most of the students constructed a model of their letter – called 

as original pattern in the study – sometimes without using any variables. In 
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subsequent phases of their exploration, students experimented with the use of 

variables for all of its segments, to change it proportionally, until they built their 

final model with one variable. Here the focus is on a pair of students – Alexia and 

Christina (focus group, Class A2) - exploring the construction of an enlarging-

shrinking model of the letter N that they completed in six successive phases 

during four classroom sessions. Below, there is a brief description of students’ 

activities in each phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The Logo codes of N in the first five phases of students’ work. 

Phase 1: Construction of the original pattern of N (35°) (vertical segments=200, 

slanted segment=240, internal angle=35°) and N (45°) (vertical segments=100, 

slanted segment=145, internal angle=45°). 

to letterN 

fd 200 

rt 145 

fd 240 

lt 145 

fd 200 

end 

to letterN 

fd 100 

rt 135 

fd 145 

lt 135 

fd 100 

end 

to letterN :r :t 

fd :r 

rt 145 

fd :t 

lt 145 

fd :r 

end 

Phase 1 Phase 2 

to letterN :r  

fd :r 

rt 145 

fd :r+40 

lt 145 

fd :r 

end 

to letterN :r 

fd :r 

rt 145 

fd :r+50 

lt 145 

fd :r 

end 

to letterN :r 

fd :r 

rt 145 

fd :r+45 

lt 145 

fd :r 

end 

Phase 3 

to letterN :r 

fd :r 

rt 135 

fd :r*1.5  

lt 135 

fd :r 

end 

to letterN :r 

fd :r 

rt 135 

fd :r*1.45  

lt 135 

fd :r 

end 

to letterN :r 

fd :r 

rt 135 

fd :r*1.42  

lt 135 

fd :r 

end 

Phase 4 Phase 5 
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Phase 2: N (35°) construction with two variables for the vertical segments and the 

slanted segment respectively. Recognition of the interdependence of variables. 

Exploration of the construction of similar N (35°) models of different sizes.  

Phase 3: N (35°) construction with one variable and specification of an additive 

functional relation between the vertical segment and the slanted segment. 

Experimentation with changes to the constant value of the additive functional 

relation used to represent the slanted segment.  

Phase 4: N (45°) construction with one variable and specification of a 

multiplicative functional relation between the vertical segment and the slanted 

segment (not appropriate function operator). Experimentation with changes to the 

constant value of the function operator used to represent the slanted segment.  

Phase 5: N (45°) construction with one variable and appropriate multiplicative 

functional relation between the vertical segment and the slanted segment. 

Phase 6: Exploration of the construction of different models of N (25°, 30°, 35°, 

45°) and specification of appropriate multiplicative functional relations.  

The examples the group’s work presented below were chosen so as to highlight 

critical aspects of the students’ transition from the additive to the multiplicative 

approach to the problem at hand.  

4.4.1  From phase 2 to phase 3: Emergence and Evolution of Additive Strategies  

During phase 2, students were engaged in constructing different models of N(35°) 

by successive dragging on the two sliders of the variation tool (:r and :t) (see 

Table 1). They tested the procedure for different values of :r and on the basis of 

the screen outcome adjusted the input of the second variable. Then the students 

were challenged to consider the co-variation of the two variables (:r and :t) for 

constructing an enlarging-shrinking similar models of N (35°) in different sizes. 

Initially, they considered the relation of the two values as “200 plus forward 40” 

which they used in the construction of the respective original pattern of N(35°). 

Thus, they substituted variable :t with the functional expression (:r+40). When 

Alexia moved the slider :r to the value 220, the figure was distorted (see Fig. 1) 

and Christina conjectured directly for the changes in the functional expression 
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(“we need to add 50”). This way students continued to work with additive 

relations (e.g., :r+50, :r+45) but moved from constant differences to adjusted 

differences according to the different values of the independent variable. Meaning 

generation in this phase was further enriched by students’ engagement in 

specifying sub-domains for the values of the independent variable (i.e. “between 

195 to 205”) for which figure distortion seemed to be minimised on the screen for 

different additive relations. However, successive dragging on the variation tool 

confirmed that the use of an additive algebraic expression constituted an 

erroneous strategy for constructing an enlarging-shrinking model of N holding for 

“all values of :r”.   

4.4.2  From phase 3 to phase 4: Emergence and Evolution of Multiplicative 

Strategies  

The students moved to the multiplicative strategies in the subsequent construction 

of an enlarging-shrinking model of N(45°) as they started to rethink the functional 

relation between the two varying magnitudes and its expression in the Logo code. 

In the next excerpt (the students discuss about the identification of an appropriate 

functional relation for the slanted length so as to construct an enlarging-shrinking 

model of N (45°) (vertical segments=100, slanted segment=145 in the original 

pattern).  

Researcher: Since the one [i.e. the vertical segment] is 100 and the other one [i.e. the slanted 

segment]. What is the relation between 145 and 100?  

Christina: It [i.e. the slanted length] is neither half. It is half … let’s say plus 45.  

Researcher: Half?   

Christina: Not exactly. [After a while] One and 45 which we have already put here [i.e. the 

expression :r+45]. Oh, it is half … 45. Half.  

Alexia: One and …   

Christina: One and ... Yes, one and a half.  

Christina seems to attempt to move back and fourth move between additive (i.e. 

plus 45) and multiplicative (i.e. one and a half) forms of the relation between the 

two lengths. In her last quoted phrase, she describes verbally a functional relation 

but seems to be reluctant to express it through symbolic language in the code. At 

that point the researcher modified the focal point of his question to include the 

covariation of the two lengths and asked the students directly what kind of 

relation they suggested for the slanted length in relation to the vertical one.  
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Researcher: If this is one time and half bigger than the tilted one. How much is it? 

Alexia: :r plus one and a half.  

Christina: [to Alexia] No, it would be two times and a half then. It’s :r plus half. It is one time and 

half bigger.  

Alexia: :r plus half.  

Christina: [Thinks for a while] :r times one and a half. Lets’ try it [Christina then goes straight to 

the Logo editor and types the linear relation as 1.5*:r for the slanted length.] 

 

Fig. 2. “N” with one variable and internal angle 45°. 

 

The multiplicative expression 1.5*:r (Fig. 2) seemed to have emerged as a 

synthesis between Christina’s sense of the distributive property with the 

multiplication of a variable with a decimal number, i.e. :r+1/2*(:r)=1.5*(:r). Using 

this relation as a basis, these students were engaged in ‘correcting’ distortions to 

figural representations resulting from the symbolic code. This process was 

characterized by their gradual refinement of the relationships employed in 

accomplishing the enlarging-shrinking geometrical construction. After 

experimentation with changing the values of the functional operator they accepted 

as value 1.42 which actually is an approximation of the real value of the 

functional operator calculated through trigonometry. It is important to note that 

the students had drawn a line at the letter base so as to precisely evaluate the 

accuracy of their approximations for the functional operator (see Fig. 2). 
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4.5.  Analysis from the Constructionist Perspective 

4.5.1 The Economy of the Learning Situation from the Constructionist 

Perspective 

From a constructionist point of view, the sequence of the above episodes brings to 

the foreground two critical aspects of the construction of geometrical figures 

according to proportionality: first, how the students can appreciate the 

inappropriateness of additive strategies and, second, how they can identify and 

express multiplicative functional relations in formal notation. A critical step in 

this direction is the translation of the dependency between the vertical and the 

slanted side in symbolic notation through a process in which values, variables and 

everyday language are simultaneously interlinked. Although the relation between 

the two magnitudes/lengths can be initially perceived by the students as additive, 

the computational environment provides a structure which students can use to 

express the corresponding function, tools for experimenting with it and further 

elaborating its formula. At the same time students have opportunities to relate 

specific numerical values of two variables and after considering one variable as an 

independent one to determine the values of the dependent variable given the value 

of the independent one and identify and express a functional relationship between 

the two based on the analysis of the data available through their exploration. Thus, 

the students can move from identifying dependence and co-variation between 

magnitudes to identifying and expressing co-variation between magnitudes 

represented through variables.  

This is considered as a critical step in the evolution of students’ activity since it 

represents a shift in students’ attention from the variation between values of 

variables to the simultaneous covariation (though initially perceived as additive) 

of the two lengths. At the same time, the students can create links between the 

functional relation corresponding to the side length and particular domains of 

variation of the independent variable. From a constructionist perspective, we see 

that the generated meanings can be reshaped as the students move the focus of 

their attention onto a relation which is a new object within the setting.  
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4.5.2 The Process of Conceptualisation from the Constructionist 

Perspective 

The chain of meanings for function here involves (a) the idea of variable as 

representing a general entity that can assume any value and symbolise general 

rules, (b) the specification of domains of validity for an additive functional 

relation and the development of methods to take control of the distortion of the 

figure (e.g., design of straight line in the letter base), (c) experimentation with the 

symbolic form of the additive functional relation and (d) implications of the 

potential emergence of the multiplicative functional relation between the two 

variables representing the vertical and the slanted side. The chain of meanings 

seems to be reshaped through the use of the variation tool. The abnormality of the 

graphical outcome leads students to use the tool in such a way that dragging, in 

conjunction with the symbolic notation, helps them to extend the elaboration of 

the proportional relation between the covarying magnitudes so as to prevent the 

distortion of the shape.  

We consider the selected excerpts in the above paragraph as illustrative examples 

of the dynamic nature of the functional meanings developed by the students. The 

researcher’s remark about the relation between two specific numerical values 

triggers students’ focus on the functional relation between the two corresponding 

lengths. Christina seems to be able to articulate the dependent length as situated 

abstraction with direct reference to the independent variable :r. In contrast, we see 

that Alexia seems to describe the emergent relations under an additive rather than 

a multiplicative approach since she always refers to addition (indicated by the use 

of the word ‘plus’) without providing a clear description of the inherent functional 

relation. Although it is not clear what is the symbolic form of the functional 

relation suggested by Christina in the first excerpt – i.e. (:r + :r/2) or (1 + :r/2) or 

(1+:r)/2- the available symbolic component of the environment allows students to 

test these relations, thus providing a basis for further elaboration based on the use 

of the variation tool and the graphical feedback. In the end of the second excerpt 

Christina’s transition to a multiplicative functional relation is indicated by the use 

of the word ‘times’. Thus, she seems to link in a relevant way the expression ‘:r 

plus half’ (of :r) emerging through interaction with the tool with the expression ‘:r 

times one and a half’ based on her knowledge of the distributive property. In 
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summary, the following situated abstractions take place: ‘One and a half’ → ‘One 

plus :r divided by 2’ and ‘One and a half’ → ‘:r plus half’ (of :r).  

4.6. Analysis from the TDS Perspective   

4.6.1  The Economy of the Learning Situation from the TDS Perspective 

In a learning situation, TDS stresses the need to analyse if ‘milieu’ actually 

justifies the use of knowledge objectively to solve a given problem. The 

conditions for this include: (a) the mathematical knowledge aimed at should be 

the only good method of solving the problem, (b) students should be able to start 

working with inadequate ‘basic knowledge’, (c) students should be able to tell for 

themselves whether their attempts are successful or not, (d) the feedback should 

not indicate the solution, but it should be suggestive of ways to improve 

strategies, (e) students should be able to make a rapid series of attempts, but 

anticipation should be favored (Brousseau 1997).  

Considering the example with Turtleworlds, we can see that these conditions are 

important for the success of the situation. Students have to start with inadequate 

conceptualisation and the multiplicative functional relation has to be the only 

good method for completing adequately the construction. Dragging on the slider 

of the variation tool should allow them to realize by themselves whether their 

attempts succeeded or failed. The graphical distortion produced by additive 

relation should also bring suggestive information about the inappropriateness of 

this solution. Expressing the relation into the Logo procedure should favor 

anticipation. It seems that the constructionist researcher implicitly built his 

analysis upon an idea of a milieu providing this kind of interaction. But, since no 

a priori analysis ensures that the conditions exposed above will actually hold, a 

TDS researcher would express concerns about the reproducibility of the situation. 

Did the phenomena observed appear by chance, or would a replication of the 

implementation be necessarily successful? What are the conditions of success? 

Moreover, in the TDS perspective, adidacticity should be preserved. Thus, the 

teacher, or any person knowing a solution, should not act as to induce students 

towards this solution. The episode in which the researcher intervenes so as to 

move students’ attention on the multiplicative dependence would then be 

interpreted by TDS as a too direct indication towards a solution (a “Topaze 
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effect”, Brousseau 1997, p. 25). In the TDS tradition, it could be noted that, by 

chance, the students do not follow the intervention and keep exploring addition 

based relationships. From this point of view, one would also wonder why this 

intervention was necessary. 

Another concern is that Constructionism takes care of ‘meanings’ rather than 

directly of ‘mathematical knowledge’. The effect of students’ interaction with the 

‘milieu’ is described in terms of construction of meanings. Furthermore, as shown 

in the presentation of the task, Constructionism favours situations where students 

can appreciate the utility of mathematical ideas. This means that the ‘milieu’ 

should not only favor the emergence of meaning and of symbolic components, but 

also help students appreciate their utility beyond the boundaries of school 

mathematics. In contrast, TDS considers that ‘knowing’ (connaissances) built in 

the interaction is not a goal in itself, but has to be put in correspondence with 

‘standard’ knowledge (savoir) through a process of institutionalization organized 

by the teacher. Here, the knowledge at stake is a concern because the 

constructionist analysis tends to stick to a level of understanding by the students 

not going beyond the situation. Thus, knowledge (savoir) about functions is not 

clearly identified and remains undistinguished from knowledge about 

proportionality.  

4.6.2  The Process of Conceptualisation from the TDS Perspective 

According to the typology of activities for function, the physical system here is a 

path of the turtle in three segments with a given angle between them. In phase 1, 

the path is fixed with given length of the segments. In phase 2 it depends on two 

variables and in the next phases, the challenge is to program the path in order that 

it depends on one variable while conforming to the goal that it represents the letter 

N. At the level of magnitudes, angles and lengths are involved. What is at stake is 

formulating a dependency between the length of the vertical segments and the 

length of the slanted segment in a functional form allowing its expression in a 

Logo procedure. At the level of functions, the dependency between the ‘vertical’ 

and the ‘slanted’ length is mathematically a multiplicative function, whose 

coefficient depends on the given angle.  
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In phases 1 to 5, while activating the sliders and working on the Logo procedure, 

the students consider together the physical system and the dependency between 

magnitudes. Their task is actually to understand the constraints of the physical 

system as a dependency linking two magnitudes and to find an expression for this 

dependency in order to write the procedure using a single variable. This implies to 

choose one length as an independent variable and the other as a dependent 

variable before building a suitable algebraic expression. In phase 6, the students 

move to mathematical functions. Taking the functional expression of the 

dependency for one angle into account, they understand that the same 

multiplicative model holds for other angles. Their task is then to find the 

multiplicative coefficient for each angle. Additional tasks could deal with 

comparing the functions for different angles by using tables or graphs, thus 

engaging students in further exploratory activity at this level of functions. 

The typology of algebraic activity is based on an epistemology of functions. The 

distinction between the three levels of activity helps here to analyse the 

progression of functional meanings, showing the importance of working with 

magnitudes as a bridge between sensual experience and mathematical functions 

and suggesting further tasks. What is not clear here is first how the three levels are 

distinguished in the settings provided by Turtleworlds, and second what are the 

functional relationships involved in the Logo procedure and to what extent they 

can serve as preparation for an algebraic understanding of functions. 

Actually, there is no one to one correspondence between the three levels of 

activity and the three components of Turtleworlds. Activity in the three 

components is principally about measurements. As a difference for instance with 

Dynamic Geometry, the figure cannot be directly manipulated but only by way of 

sliders (of the variation tool) that act on measures. The student is then directly 

placed in a world of measures. The Logo procedures can be viewed as functions 

with a certain syntax. However, the procedures do not express the functional 

relationship between lengths which is at stake, but rather a function whose input is 

a length and the output the figure itself. The actual expression of the functional 

relationship at stake is within the procedure, embedded in commands for the turtle 

and thus it is not easily perceived by the user. This is consistent with the remark 

above that further tasks should lead to consider well identified functions with 
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plain definitions, formulas, graphs and table. Again, it can be raised here the need 

to link the knowledge emerging in interaction with Turtlewords to the standard 

mathematical knowledge.   

5.  Casyopée study 

The session analysed here is part of a series of experimental sessions carried out 

in the frame of the ReMath project (mentioned before) during the French team’s 

experiment of its own digital artifact, namely Casyopée. As we will see below, the 

design of Casyopée brings innovative functionalities in order that students 

understand key actions in the process of modeling a geometrical dependency into 

an algebraic function. One of these key actions at stake here is the choice of an 

adequate independent variable, corresponding to a specific functionality (button) 

in the software. The aim of the study was to evaluate how students could 

appropriate this functionality, as well as other functionalities encountered in the 

preceding sessions, and the impact of this progress on their understanding of 

functions. The study was designed in the TDS tradition, by establishing a 

supposedly adequate milieu, doing an a priori analysis to support this assumption 

of adequacy, and an a posteriori analysis to confront the assumption with reality. 

In these analyses, the two dimensions identified above - the process of 

conceptualisation and the economy of the learning situation – interact. We 

distinguished these dimensions in the a posteriori analysis in order to proceed to 

further integrative steps subsequently.  

5.1.  Software  

Casyopée deals with various representations of functions. It provides a symbolic 

window (Fig. 3) with tools to work with functions in the three registers: numeric, 

graphic and symbolic. Casyopée also includes a dynamic geometry window (Fig. 

4) linked to the symbolic window. The geometric window allows defining 

independent magnitudes (implying free points) and also dependant ones that can 

be expressions involving distances, x-coordinates or y-coordinates. Couples of 

magnitudes that are in functional dependency can be exported to the symbolic 

window and define a function, likely to be treated with all the available tools; this 

can be done automatically, a functionality that was expected to help students in 

modeling dependencies, and that we will refer to as “automatic modeling” below. 
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Casyopée’s design is then consistent with the three levels of the typology of 

activities about functions. It is also conceived to help students in the various 

algebraic activities. Especially, parameters can be animated via sliders and used 

formally in calculations; this feature was intended to promote generalisation, a 

key dimension in global/meta-level algebraic activities.  

 

Fig. 3. Casyopée: The symbolic window and the graphic tab. 

5.2. The Design of a Session 

The classroom session analysed here followed three sessions in which students 

got familiar with the symbolic window, and one in which they were introduced to 

the dynamic geometry window and to problems about areas. In addition to TDS, 

the design of the session was also inspired by the typology of activities about 

functions outlined in Section 2.2. The knowledge at stake is at the boundary 

between activities at the level of magnitudes and activities at the level of one 

variable functions. A series of tasks was conceived in which the students had to 

make a choice of the independent variable as a key step to get an algebraic model 

of a geometric dependency, in order to solve a problem related to areas. This 

choice was based on the assumption that it brings to the foreground a key 

component of the notion of function and also exploits an important feature in the 

software that students should learn. 
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The problem was the following: ABCD being a rectangle, what can be the position 

of a point M in the plane in order that the area of the triangle BMC is one third of 

the area of rectangle ABCD (Fig. 4)?  

The sides of rectangle were parametric (AD=a and AB=b) in order to ensure 

generality and a discussion on the fact that the solution does not depend on a. The 

solution is that the points satisfying the condition belongs to one of two straight 

lines parallel to BC crossing the line AB respectively in M0 and M1 such that 

BM0=BM1=2AB/3=2b/3. It is possible to reach this solution geometrically, but the 

way the problem was proposed to students (in coordinate geometry) and their lack 

of knowledge in geometry, oriented towards using a function as a model of the 

variable area. Five successive tasks were then proposed to the students: (Task 1) 

Build the figure in the dynamic geometry window, M being a free point in the 

plane (Task 2) Create a geometric calculation for the area of ABCD, and moving 

M, conjecture positions of M for which the area of BMC is one third of the area of 

the rectangle (Task 3) Choose an adequate independent variable to get a model of 

the geometric function of the area of BMC (Task 4) Use Casyopée’s “automatic 

modeling” to get the definition of a function in the algebraic window (Task 5) Use 

the algebraic window to get algebraic solutions, and then interpret them in the 

dynamic geometry window. 

 

Fig. 4. Casyopée: The dynamic geometrical window and the geometric calculation tab. 



 

31 

Task 3 was central in the session. It was expected that through this task students 

could identify precisely the role and mathematical statute of elements involved in 

modeling a dependency, especially the independent variable, but also algebraic 

elements already encountered in the previous sessions, like the parameters. 

Instructions were given in order that the side AB was parallel to the y axis, and the 

side BC to the x axis. So the students had the choice to select for independent 

variable some length involving the point M or coordinates of M, but only 

calculations depending univocally of the y coordinate of M could be adequate 

variables. In particular, it was expected that students would observe that moving 

horizontally the point M does not change the area, and connect this observation 

with the fact that Mx is not an adequate independent variable. After a user selects 

an independent and a dependent variable, Casyopée gives some feedback on 

whether it is possible to create a function with these data. Together with the 

observation of values of the variables when moving point M, this feedback was 

expected to create a milieu helping students understand the statute of variables in 

a function modeling a dependency.  

The problem solving session lasted 90 minutes and took place in the computer lab 

with students working alone or in pairs. In the TDS vocabulary, “action” is the 

main feature of this session. A written assignment that was required for the next 

week aimed at developing “formulation”, another dimension of a “didactical 

situation”. 

5.3.  A Priori Analysis  

In task 3, if a student chooses a length like BC that doesn’t vary when M is 

moved, Casyopée’s answer is that it doesn’t depend on any free point and no 

function can be created with this length as an independent variable. Lengths 

involving M cannot be chosen as independent variables because they depend on 

the two coordinates. Mx can be an independent variable, but, as mentioned above, a 

change of Mx does not affect the value of the area of the rectangle. The version of 

Casyopée, still in development at that time, calculated a formula involving My , 

but after that refused to create a function. My is a suitable variable. The function 
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calculated by Casyopée is
( )

2

2
bx

ax
−

×→ . It was expected that the identifier x 

for the independent variable could be confusing for students. Casyopée offers 

other identifiers, but it was not likely that students will use this feature. In the 

preceding session, the independent variable was a length on the y axis, and the 

teacher insisted that this length could be labelled x in the function. After creating 

the function, the students could work in the familiar symbolic window to solve an 

equation. If My has been chosen as a variable, the equation is
32

babxa ×
=

−×
 but 

it can be different if the student chooses another variable; for instance, MB yy − is a 

possible choice and the equation is then
32

baxa ×
=

×
.The only difficulty in this 

equation is the absolute value, that was displayed by Casyopée in the non-

simplified form of 
( )

2

2
bx −

. Students had no direct technique to solve it by 

hand, and might be surprised that Casyopée gives two solutions. After that they 

had to interpret the two solutions in x as two values of My and to give the 

geometric solution. It was expected that some technical help from the teacher or 

researchers observing the session could be necessary, especially with new 

capabilities of Casyopée, nevertheless preserving the adidactical interaction.  

5.4. Observation 

5.4.1  Data 

The situation has been implemented in two classes with 25 17-year-old students 

each one. The implementation took place in a 90-minute session in each class. 

The teachers of these classes belonged to the ReMath team. Because our interest 

was on the interaction with Casyopée as an element of the milieu, we choose to 

have a close observation of a set of students in each class selected with the 

teachers. Data consisted of recordings of students’ work via screen capture 

software and observers’ field notes and students’ written assignment. Here we 

refer to the work of one class. The work of a pair (Elina and Chloé) in this class 

will be analysed first. Then, in order to provide an a posterirori analysis consistent 
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with the TDS perspective, we report briefly on the work of the other students in 

the same class. 

5.4.2  The Work of Elina and Chloé 

5.4.2.1 The Session   Twenty minutes were necessary for the students to build the 

rectangle, create a geometric calculation for the area of rectangle and create a free 

point M. The given problem asked for a free point in the plane. This was 

important for the situation, but the pair hesitated, creating first a free point in the 

plane, then, after a dialog, deleting and creating M on a vertical side AB. The 

students then explored the figure, by moving M on AB during 10min. They found 

a solution, by evaluating numerically this area (considering the numerical values 

of the parameters a and b) without taking numerical information of the software. 

They commented “This is good, this is one third of AB” and wrote their solution. 

The teacher saw that crucial elements of the milieu had been overlooked: M was 

not a free point on the plane and no calculation for the area of MBC had been 

created. He prompted the students to correct. During another ten minutes, the 

students explored the figure, again looking for a single position of M, but now on 

BC’s perpendicular bisector and not using values of the area of MBC calculated 

by Casyopée. 

Then Elina thought that they could create a function, but Chloé stressed that an 

independent variable had to be chosen first. Thus they returned to the text of the 

given problem and tried to identify the requested variables. Reading the message 

after trying the constant measure AB, they moved M to this segment. Trying BM, 

Chloé commented: “here we cannot create the variable”. After that, they 

tried MB xx −  and MB yy − , reading the message (Casyopée says “the variable 

depends on M, it is defined over ]-infinity, +infinity[”) but not creating the 

variable. 

At 50min, the teacher told them to choose a variable and they chose Mx . Then 

they defined the function: BCABxM ×→ and got a function bax ×→ in the 

symbolic window. After that, they defined the function
2

BCMH
xM

×
→ . As 

indicated in the a priori analysis, Casyopée calculated a formula involving My , but 

after that, refused to create a function.  
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At 65min, they had to recreate the figure because of a technical problem and 

Chloé realized that the triangle area was constant and equal to one third of the 

rectangle area for every position of M on a certain horizontal line. They 

commented “it is always one third … then the y-coordinate is what is important”. 

Surprisingly, again they chose the variable Mx and got the same feedback as 

before.  

At 70min, the teacher told them to test the variable My as indicated in the text of 

the problem. Casyopée indicated “]-infinity, +infinity[” for the domain. They 

were not happy and tried to find a way to redefine this domain into [ ]3,0 . Giving 

up, they defined the function by way of “automatic modeling” and it was accepted 

by Casyopée. They tried a graphical resolution, but they were confused by the 

graphical window and needed to get help by the teacher. He showed them how 

Casyopée offers a dynamic link between a trace on the graph and the free point 

from which the function is built. The students observed that when they moved M 

horizontally in the geometry window, the trace did not move (Fig. 3, on the right). 

In the last five minutes, they started a report, indicating the functions created and 

mentioning that when Mx changes, the area remains constant and equal to b. Note 

that the area of BMC in the solution equals actually
3

ab
. The students replaced the 

parameter a (but not b) by its current value. 

5.4.2.2 The Written Assignment  Elina and Chloé’s report was divided in two 

parts: 

Dynamic geometry  They mention that they assign values (a=3, b=6) to the 

parameters and then they explain how they calculated the areas with the values 

assigned. They describe their exploration: “in our case, the area of BMC must be 

6. Thus we move M in order that the value displayed is 6. We see that there are 

two positions of M and only the y-coordinate has an influence on the area, the x-

coordinate does not change the area”. 



 

35 

Casyopée (i.e. the symbolic window   They write: “we chose the variable Mx ”
3
.  

And then “we draw the functions BCAByM ×→ and
2

BCMH
yM

×
→ ”, copying 

the formula given by Casyopée and not mentioning the domain. They copy also 

the equation and the two solutions. They conclude: “To satisfy the condition, the 

y-coordinate of M should be
3

5b
yM = or

3

b
yM = ”. About the difficulties 

encountered, the students mention: “Finding that only y has an influence on the 

area of BMC, and then choosing My as an independent variable”. 

5.4.3  Other Students  

Among other students, difficulties appeared with the notion of area of a triangle, 

some just multiplying two sides, or being unable to construct the altitude that was 

necessary for the calculation. Exploring the variations of the area by moving M, 

half of the students limited the positioning of M, like Chloé and Elina, inside the 

rectangle. They had also difficulties with independent variables. Only one in two 

students created functions in the first 60min. There was a variety of choices of 

independent variable: some students chose My while others chose an expression 

like HM yy − , MH being an altitude in the triangle BMC. Some written reports 

show how Casyopée helped to choose an independent variable. For instance, a 

pair of students wrote: “after several attempts with different choices of variables, 

we noticed that only the variable My gave us a result”. The reports mentioning this 

choice generally do not make the connection with the finding of the solutions on 

two horizontal lines. Some reports do not mention this choice, writing the 

algebraic solution with the variable x, not mentioning what this x represents.   

                                                 

3
 Actually, Mx was the label of the button allowing choosing a variable, which explains 

why the students mention this label, while being aware of My being the right choice. This 

label, very confusing, has been changed in further versions of Casyopée. The design 

decision at the time of this experiment was to implement key actions at Casyopée’s 

interface by way of buttons like in Dynamic Geometry. The difficulty was to find icons 

that could accurately represent the nature of the action. 
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5.5.  A Posteriori Analysis  

5.5.1  The Economy of the Learning Situation from the TDS Perspective 

The situation was certainly productive in the sense that students could grasp the 

necessity of choosing an adequate independent variable in order that Casyopée 

will be able to express a function, but they were far from giving an algebraic 

signification relatively to this necessity and to the other algebraic objects 

involved, like for instance the parameters. Casyopée’s feedback was generally not 

well understood. Eventually, it conflicted with students’ views, for instance 

relatively to the domain. It happened that the teacher had to intervene to help 

going forward in the task. He tended to offer more than a technical help to 

students, steering them towards steps of the solution and then breaking the 

intended adidacticity. This was also the case in other ReMath Casyopée 

experiments. Thus, the influence of the provided feedback seems to be less 

productive than expected as regards the students’ attempts to identify key steps in 

their mathematical work. Relatively to the question at stake of how students could 

appropriate the choice of the independent variable, as well as other functionalities 

already encountered in the preceding sessions, and through this appropriation 

progress in their understanding of functions, the appreciation is then mixed: the 

milieu highlights actions that students can identify as steps in the solution; then 

students are ‘pushed’ towards these actions; however, this does not guarantee that 

they acquire an appropriate understanding of these actions. 

5.5.2  The Process of Conceptualisation from the TDS Perspective 

With regard to the knowledge at stake in the previous sessions, students stayed 

unfamiliar with the parameters used to represent a generic case. Most students, 

like Elina and Chloé, never changed their values and referred to their current 

values. The geometric exploration was limited, sometimes to a vertical side of the 

rectangle and for many students, inside the rectangle. Influenced by current 

problems involving areas, the students looked for a single position as a solution. 

Eventually some realised that all points on a line satisfy the condition. The written 

reports generally mention two positions of M whereas two lines could be deduced 

from the finding that only the y-coordinate has an influence on the area. Making 

sense of the choice of a variable was then not straightforward and achieved by 
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most students only after long hesitation. Most students nevertheless realized that 

“only My has an influence” and in their written report wrote the correct functions 

in My . However, like Elina and Chloé, even when they used this function for 

expressing and solving an equation, they generally could not interpret the 

solutions relatively to the geometrical situation. The outcome is that students 

actually explored the functional dependency at the three levels, geometry, 

magnitudes and algebra, but were not quite aware of interconnections between 

these levels. 

5.6.  Analysis from the Constructionist Perspective  

5.6.1 The Economy of the Learning Situation from the Constructionist 

Perspective 

The reported episode reveals students’ diverse views of the symbolic forms 

provided by the tool and difficulties to relate their selection of variables to the 

concept of function. To analyse this divergence, we will refer to two gaps at the 

level of design: one has to do with the design of the environment and, in 

particular, the nature of the provided feedback and the second with the nature of 

milieu and the teachers’ role.  

As for the first, the level of design of Casyopée at that time did not provide 

students with opportunities to take some actions in relation to the provided 

feedback. Thus, we see that students could not experiment directly with notation 

in Casyopée. The correct symbolic form in mathematical terms appears as a 

‘closed’ answer pre-supposing in some way students’ understanding of the 

standard algebraic symbolism of functional dependencies. A constructionist view 

on design should stress that further development of meaning generation can be 

facilitated if students have at their disposal a manipulable mechanism so as to take 

further action based on the provided feedback (i.e. to ‘do something’ with the 

tool). Learning activity within constructionist computational media very often 

consists of students’ engagement in debugging intentionally designed ‘buggy’ 

behaviors of objects. These objects operate as means to challenge productive 

meaning generation and provoke further interpretations and actions by students. 

Thus, Constructionism should emphasise the expressiveness of computational 

environments as a design principle, i.e. design based on the use of dynamic 
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representations that make algebraic symbols and relationships more concrete and 

meaningful for the students through the ability to express mathematical ideas 

possibly in ways that may diverge from standard mathematics (see for example 

the idea of autoexpression which privileges the role of a programming language 

as a mechanism to control objects by expressing explicitly the relationships 

between them, Noss et al. 1997).  

The second point has to do with the role of the teacher. In TDS there is a strong 

element of control in students’ activity which allows for restricted place for the 

unexpected. In the episode we can see that the teacher seems to be reluctant to 

intervene and does it only when he realizes that the students face strong problems 

in coping with the provided functionalities and integrating them in their activity. 

In a constructionist perspective, in contrast, teacher’s interactions are more 

participatory from the teachers’ side and more strategic in encouraging students to 

elaborate emergent ideas and generalisations (Kynigos 2012).  

5.6.2 The Process of Conceptualisation from the Constructionist 

Perspective  

The layers of meanings for function here involve (a) modeling the dependency 

between M and the area involving this point in order to be satisfied the 

corresponding relationship, (b) conceptualising the idea of independent variable 

representing a geometrical object, (c) conceptualising functional dependencies 

between geometrical objects, (d) abstracting these dependencies at the algebraic 

level through interpretation of the provided symbolic forms and making of links 

with standard mathematical symbolism for functions (i.e. functions through 

“automatic modeling” and mathematical functions in the curriculum). Here we 

will concentrate on the layers (b) and (d) mentioned above where meaning 

generation is indicated by students’ engagement in building a function for 

describing the covariation between My (as an independent variable) and the area of 

the triangle BMC but faced difficulties to connect their emergent generalisations 

based on the symbolisation of Casyopée to standard mathematics.  

This is a very critical point that forces us to consider the issue of meaning and its 

role in conceptualisation with an emphasis to the status of the knowledge 

emerging in students’ interaction with the available tools in relation to the targeted 
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mathematical knowledge. We see students’ difficulty to interpret the two solutions 

in x as two values of My as an indication of how the semantics of the software (i.e. 

the label Mx indicating the choice of an independent variable) influences the kind 

of mathematics which is shaped by the students. Students’ answer in the written 

report reveal that their conceptualisation takes place as an abstract-concrete 

dialectic indicated by the reference to the label Mx  (“we chose the variable Mx ”) 

and the argumentation around the modelisation of the problem at hand (“To 

satisfy the condition, the y-coordinate of M should be
3

5b
yM = or

3

b
yM = ”). From 

a situated abstraction perspective, progress in conceptualisation of function can be 

continued dynamically through reshaping of meanings indicated by shifts in 

attention evoked, for instance, by new objects emerging in students’ activity or by 

direct teacher’s intervention. Under this perspective meaning generation allows 

recognition of fallibility in the status of students’ articulations (e.g., arguments, 

solutions, noticing feedback, use of representations) emerging through their 

interaction with the available tools, i.e. these articulations can be considered as 

evolving and not as complete statements expressed to be confirmed or dismissed. 

This view allows addressing construction of mathematical knowledge as thinking-

in-progress consisted of meanings in formation attached to abstraction processes 

taking into account the specificity of situations and the contingency of 

mathematical expression on specific tools in their contexts of use.  

6. Coordinating  Constructionist and TDS 

Analyses  

In this section, we position the concerns/issues raised through the double analysis 

of the Turtleworlds and Casyopée studies above. The titles of the subsections here 

are the ones we used to structure the description of the existing research (Sections 

2.4 and 2.5) and they are also consistent with the two dimensions of double 

analysis. We point out what can be learned from this double analysis as regards 

the economy of the learning situations as well as the processes of 

conceptualisation of the notion of function with computer environments.  
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6.1. The Economy of Learning Situations  

The motivations underlying the Turtleworlds study build on two opportunities for 

students’ action on functions identified in the respective literature: the dynamic 

exploration of covariations in geometrical settings and the use of a programming 

language (see Section 2.4). The constructionist analysis sees there a potential for 

identifying a mutual dependence between two comparable quantities 

(interdependency) and also a potential for distinguishing certain kinds of 

dependence (e.g., additive, multiplicative) between two comparable quantities and 

the construction of expressions of these by way of Logo code. Implicitly, a 

‘milieu’ is considered here, providing affordances for interaction consistent with 

the knowledge or meaning at stake. Feedback of the milieu consists in 

visualizations of correct dynamic figures as well as of failures and mistakes. The 

various representations and the possibility of actions on these representations are 

seen as establishing a ‘rich’ milieu, offering multiple opportunities for meaning 

generation. The possibility of cognitive conflicts is evoked relatively to the 

proportional relationship, but with regard to the idea of dependency and 

expression of functional relations, the constructionist analysis seems to expect that 

they will emerge ‘naturally’ in students’ conceptualisation as a result of 

interaction with the milieu and of a dialogue with the teacher.  

The TDS analysis of the Turtleworlds study stressed that the milieu here is a zone 

of free interaction, and meaning is created through the interaction itself, finalized 

by a construction, rather than by success in a task. The constructionist analysis is 

supported by an observation of a productive students’ work, but no a priori and a 

posteriori analyses discussed the conditions of this productivity and then, from the 

TDS point of view, the reproducibility of the situation is questionable. In some 

sense, the constructionist approach can be characterized as ‘serendipitous’: it is 

confident that in a ‘rich’ situation, emergent phenomena can be interpreted as a 

creation and reshaping of meanings by students. However, as the TDS analysis 

points out, what these meanings actually refer to in terms of functions and 

proportionality remain uncertain. 

The motivations underlying the Casyopée study meet at a general level those 

involved for the use of multirepresentational DGS and CAS software identified in 

the respective literature (see Section 2.4). Its specificity is that it focuses on key 
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points of the transition from functions in a DGS to mathematical functions, 

aiming to facilitate students’ access to symbolic forms. The task in the study is to 

find a solution of a problem. It can be explored in geometrical settings, but can be 

really achieved only after the transition to functions of one real variable. The 

milieu is then inspired by TDS, the task being challenging and the transition being 

conceived as a non obvious step. Feedbacks are prepared in the software in order 

to ensure that interaction will actually put the aimed knowledge at stake. 

However, as indicated above the appreciation is mixed: the interaction seems to 

produce effects in terms of action in the environment, but not to really make sense 

for the students. The constructionist interpretation points to an important fact: 

Casyopée is a mathematical tool, and most of the feedback it provides supposes 

algebraic knowledge, or coordination between geometry and algebra, that is 

precisely at stake. In this vein, constructionist analysis brings to the fore issues of 

tool design emphasising the importance of design choices allowing students’ 

meaningful use of the available infrastructure by forging connections between 

students’ action and tool formalism.  

The interventions of the teacher are noticeable in both studies. They are seen by 

Constructionism as participatory and strategic in enhancing students’ exploratory 

activity. In contrast, TDS cares for adidacticity that could be broken in these 

interventions, by way of ‘Topaze’ effects. However, in the Casyopée study, it 

happens that total adidacticity would have led the students to an impasse.  

Constructionist and TDS analyses of learning situations in part converge when 

they consider a milieu and in part diverge because they have different conceptions 

of this milieu. Beyond the concepts involved, the style of analysis is also different. 

TDS analysis is oriented towards evaluating the reproducibility of situations of 

learning aiming a given knowledge, and constructionist analysis towards 

identifying occurrences of progression of meaning. Data collected during both 

studies are consistent with the style of the original framework: record of the 

interactions in groups of students with a possible participation of the teacher for 

Constructionism, evidence of procedures consistent with the a priori analysis for 

TDS. In spite of this, it has been possible to apply an ‘alien’ analysis to each 

study, and to identify features related to the economy of the learning situations. 

This ‘double analysis’ is clearly deeper and helps to look at the economy of 
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learning situations about functions with computers as a particularly complex 

question. On the one hand, the multiplicity of interconnected representations of 

functions, of students’ possible actions on these, as well as of students’ 

understanding of these representations and actions is an obstacle to the possibility 

of a controlled milieu, and of adidacticity consistent with TDS. On the other hand, 

relying exclusively on ‘serendipity’, and seeing the teacher as an unconstrained 

participant would allow only weak conclusions relatively to the potential of 

computer environments. There is then a tension between controlled milieu and 

adidacticity on one side, and serendipitous learning and teacher’s participation on 

the other side.  

6.2. Conceptualising the Notion of Function with the Help of 

Computers 

6.2.1  From Process-Object to Covariation Aspect of Function 

The two studies actually propose situations promoting a covariation view of 

functions. These situations are based on modeling dynamic phenomena connected 

with a sensual experience of dependency. The analyses carried out suggest that 

situations of that kind have a potential to help students reach awareness of 

covariation by connecting in a meaningful way its different representations. 

However, the two analyses diverge in how they consider covariation in these 

situations. The constructionist analysis looks at how covariational meanings are 

reframed in students’ progression at a personal or inter-personal level, 

independently of standard mathematics. In contrast, the typology inspiring 

Casyopée refers to covariation between objects defined in standard mathematics 

(e.g., geometrical figures, measures, algebraic functions) and favours the 

development and observation of learning trajectory through settings organizing 

these objects.  

The two analyses do not consider the same objects and thus cannot be directly 

combined. However, the respective review of research suggests that 

understanding covariation is a long term process and that there is not a simple 

approach to engage students in this process (see Section 2.5). An analysis based 

on the typology of algebraic activities can be useful in describing students’ 

passages in different levels of work with covariation in a particular setting (e.g., 
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from activities in a physical system to functions of one real variable), while a 

situated abstraction analysis can be used to focus on the conceptual aspects of this 

process by addressing the role of external resources in the evolution of 

mathematical knowledge in this particular setting.  

6.2.2  Understanding the Idea of Independent Variable 

This idea of independent variable was particularly at stake in the Casyopée study. 

Choosing an adequate independent variable was thought of as a particular action 

with the software allowing accessing the algebraic part of the typology, and, in the 

TDS a priori analysis, feedback was supposed to ensure the mathematical 

productivity of this action. However, things were not so simple. The 

constructionist analysis identified the resisting concept image, confirming 

Thompson’s intuition (see the reported example in Section 2.5). At the same time, 

the Turtleworlds study revealed that students were able to make sense of 

independent variable at the operational level of identifying and expressing 

functional relations to achieve a particular construction goal (i.e. robust enlarging-

shrinking geometrical figures) within the respective setting. This can be an 

indication of the potential of particular forms of representations and connections 

between them (e.g., exploiting the expressive power of linguistic representations) 

that can be used to introduce students to independent variable before official 

instruction of functions of one variable. 

6.2.3  The Role of Symbolism 

It is a distinct design feature of Casyopée and Turtleworlds, and of the associated 

situations of use, to deal with symbolism, aiming to reconcile symbolic forms and 

dynamic manipulation of mathematical objects and relationships. In this approach, 

the graphical and numerical settings are subsidiary means for exploration, which 

is different from current approaches that tend to strongly rely on these settings for 

problem solving, drawing on the potentialities of technology for graphing and 

tabulating functions and justified by students’ weaknesses in symbolic 

manipulation (see for an example, Hoffkamp 2010). The constructionist analysis 

shows the productivity of the elaboration of symbolic expressions involving 

measures by way of Logo programming in Turtleworlds, and as a preparation for 

functions of one variable in Casyopée, via the ‘reshaping of meanings’. Transition 
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to algebraic forms that Casyopée should favor is again to be thought of as a long 

term process.  

7. Conclusions 

The general goal of this paper is to explore the potential of computational 

environments for the teaching and learning of functions by networking 

Constructionism and TDS. Networking took place at the level of research 

traditions through double analysis of two research studies carried out in the Greek 

and the French didactic context respectively. The emphasis given to a milieu in 

both traditions made double analysis possible and productive. The similar method 

of collecting detailed observation of students’ work also helped, but it is worth 

noting that, while in the constructionist inspired tradition well chosen observation 

of particular students’ work can be the basis for analysing, the TDS inspired 

tradition needs to refer also to observation at the level of the classroom in order to 

tackle reproducibility. 

As a direct answer to the general goal of this paper, coordinating the analyses of 

the two studies (Section 6) in terms of two common dimensions (i.e. ‘The 

economy of learning situations’ and ‘The process of conceptualising the notion of 

function’), resulted in a deepened and more balanced understanding of the issues 

around the potential of computational environments for the teaching and learning 

of functions. With respect to the economy of learning situations, the double 

analysis points out a tension between controlled milieu and adidacticity on the one 

side, and serendipitous learning and teacher participation on the other side. TDS 

tradition is concerned with reproducibility but, in the experiment presented in this 

paper, encounters obstacles resulting from limited predictability of the software 

feedback and its interpretation by students, while the constructionist tradition 

favours deep insight on the learning process and is more open to exploit often 

unexpected students’ emergent ideas and generalisations. Relatively to the process 

of conceptualisation, the main tension is between standard knowledge and 

meanings. For one tradition, access to the understanding of covariation of 

functional ideas like the notion of independent variable and of the symbolism, is 

through learning trajectories involving activities on standard mathematical 

objects, while the other tradition allows for process of conceptualisation more 

distant from standard mathematics. These tensions are inherent in the complexity 
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of the computer environments that Turtleworlds and Casyopée represent, as well 

as in the notions involved in the field of functions.  

At the level of didactical knowledge about functions, the coordinated double 

analysis (Section 6) indicates algebraic modeling of geometrical dependencies as 

a fruitful domain for engaging students in functional thinking. It also raises the 

importance of tool design in facilitating students’ productive work with 

geometrical and algebraic representations. According to the reported examples, 

students’ meaningful transition from the world of covariation to the world of 

functions of one variable is not at all an easy task. It seems to be a long term 

process which may be facilitated through particular forms of interconnected 

representations that can be used to introduce algebraic ideas to the students, 

possibly before formal instruction of one variable functions.    

Overall, the synthesis of the results leads to a more complete view of the potential 

of digital technologies for the learning of functions from the two perspectives. We 

summarise the main issues around this potential as indicated by the findings of 

this study: (a) The importance of providing students with opportunities to act 

on/experiment with integrated representations of functions linking geometry and 

algebra, (b) The central role of tool design in facilitating the transition from 

exploration of covariation at the geometrical setting (e.g., by distinguishing 

different kinds of dependence, by noticing failures and mistakes through 

appropriate feedback) to the symbolic forms of functions (e.g., through tools 

allowing symbolic expression of functional relations), (c) The need to take a 

balanced view on students’ construction of knowledge for functions by addressing 

epistemological aspects (e.g., its relation to the standard knowledge) as well as 

cognitive aspects (e.g., its formation as thinking-in-progress tied-up within the 

available tools and their specific context of use), (d) The role of the teacher as a 

critical element of task design and the evolution of students’ activity in order to 

achieve the intended learning aims. 

The insight provided by the above findings is not limited to the particular episodes 

from the classroom. It indicates an advance at the level of the two theories since it 

highlights their underlying theoretical claims and assumptions. As an example, 

see how the duality between the knowledge built by interacting with the milieu 

(‘knowing’) to the standard mathematical knowledge at stake (‘knowledge’) 
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raised by TDS can be understood in terms of construction of meanings. In this 

case, knowing (connaissances) can be seen as relative to meaning generation 

since both terms address formation of knowledge emerging in students’ 

interactions with the use of the available tools. Since constructionist approaches 

do not prescribe an institutionalization process, meaning generation indicates a 

‘bridge’ between knowing and knowledge in the sense that it emphasises the 

potential of meanings to lead to more formal understandings.  

As an agenda beyond the networking of the two traditions, we now reflect on the 

research benefits for each of the approaches in the present study. Overall, double 

analyses helped us broaden our views in reflecting on our own research approach. 

The application of TDS and constructionist theoretical tools to the same research 

study has allowed us to better articulate the affordances and constrains of each 

approach in understanding the data. We take the example of the Turtleworlds 

study. The ‘alien’ analysis by TDS stressed the relation between meaning and 

standard knowledge. This may led to the emergence of new research questions for 

this study. For instance, one research question of the Turtleworlds study was the 

following: “How do students use the available representations in Turtleworlds to 

construct meanings for proportional relations when engaged in enlarging-

shrinking geometrical figures?”. Taking into account the above challenge 

provided by the TDS perspective, this question can be complemented by a second 

one: “Are these meanings linked to the standard knowledge for proportional 

relations and how?”. This confirms that the complementary use of different 

principles of the two theories can support a more complete view/analysis of 

particular learning situations.   

As an overall conclusion, we do believe that research attempts aiming to address 

the potential of computational environments for the teaching and learning of 

mathematics may benefit from the present study both at the level of proposing 

networking processes between different research traditions as well as at the level 

of operationalizing networking tools and methods to articulate connections 

between different traditions through close research collaboration. 
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