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Abstract This paper aims at contributing to remedy the narrow treatment of functions at upper secondary level. 

Assuming that students make sense of functions by working on functional situations in distinctive settings, we 

propose to consider functional working spaces inspired by geometrical working spaces. We analyse a classroom 

situation based on a geometric optimization problem pointing out that no working space has been prepared by 

the teacher for students’ tasks outside algebra. We specify a dynamic geometry space, a measure space and an 

algebra space, with artefacts in each space and means for connecting these provided by Casyopée. The question 

at stake is then the functionality of this framework for implementing and analyzing classroom situations and for 

analyzing students’ and teachers’ evolution concerning functions, in terms of geneses relative to each space. 
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1 Introduction  

This paper is about the teaching of functions at upper secondary level. We are working in separate countries, but 

in the same research group. This “Casyopée” group brings together teachers and researchers. Its main concern is 

that, although both at an epistemological and at a cognitive level, functions make sense because of their 

occurrence in many dissimilar settings, teaching actually favors “algebraic” representations, that is to say 

formulas and the associated graphs and tables, and often senseless manipulation, providing students poor 

understanding and abilities. Our group tries to implement classroom situations, tools and resources and a 

theoretical basis to remediate this narrow treatment of functions by upper secondary teaching.  

The motivation of this paper is that, among the theoretical frameworks that our group considered before, no 

one took into consideration the fact that, to be fully considered by students and teachers, each setting where 

functions can make sense has to be thought of as a particular space allowing specific scientific work and specific 

conceptualisations. We are influenced by Kuzniak (2013), who presents geometrical working spaces as a way to 

avoid misunderstandings in geometrical education, for instance with regard to how students should reason, 

developing their spatial intuition and ability with instruments, or rejecting these in favor of formal deduction. 

Like geometrical working spaces, considering functional working spaces should allow teachers and students to 

work on functions in various spaces, including spaces where functions are experienced without algebraic 

formalization, avoiding the predominance of a working space restricted to algebraic representations and 

manipulations. As with geometrical working spaces, working in a specific functional space should allow 

working on functions with specific instruments and under control of specific rules. The hypothesis in this paper 

is that adequate teaching situations should organize students’ work in various non-algebraic and algebraic 

working spaces, and allow connections between these. 

http://www.editorialmanager.com/zdmi/download.aspx?id=18515&guid=ab8d6fc9-8ff4-4eb8-83fc-71675170b875&scheme=1
http://www.editorialmanager.com/zdmi/download.aspx?id=18515&guid=ab8d6fc9-8ff4-4eb8-83fc-71675170b875&scheme=1
http://www.editorialmanager.com/zdmi/viewRCResults.aspx?pdf=1&docID=1312&rev=4&fileID=18515&msid={F396429D-22E8-4DBE-93E8-014389E245DC}


We first develop our analysis of current curricula, taking the example of our countries. Then, drawing from 

the work of other researchers, we analyse how current strategies orient students’ activity to a restricted working 

space. This helps to specify three working spaces relevant for a class of problems, consistent with our 

hypothesis. We show by another example how the design of a classroom situation can take advantage of 

considering these spaces. This design involves a resource built by the Casyopée group, the Casyopée software, 

and we show how this environment provides specific artefacts for each space, and helps make connections 

between spaces.  

The question then is how students and teachers come to understand the affordances provided by each of 

these spaces respectively for learning and for teaching, that is to say, in Kuzniak’s (2013) words, how they build 

suitable personal functional working spaces, a process that we name genesis1. Our hypothesis is that, because 

this understanding comes along with the conceptualization of functions, a genesis necessarily occurs in the long 

term. We carried out studies about students and teachers over two years, concerning functions and Casyopée, 

reported respectively by Minh (2012a) and Lagrange (2011). In this paper, we take advantage of both these 

studies and of the identification of functional working spaces, in order to understand how personal functional 

spaces are built by students and teachers.  

2 Functions, curricula and classroom implementation 

The functional perspective on the teaching of algebra is seen by curricula makers as an effective approach to 

consolidate post middle school students’ algebraic knowledge and to prepare them for calculus. The use of 

technology, especially graphical and dynamic geometry packages, is encouraged in an exploratory approach to 

functions. Kieran (2007) depicts these programs of study as oriented towards solving realistic problems and 

towards multirepresentational activities, allowing for an algebraic content that is less manipulation oriented and 

thus shifting away from traditional skills of algebra.  

Lagrange and Psycharis (2014), analyzing students’ activities on functions from different perspectives, 

identified three important challenges for students: to consider functional dependencies, that is to say something 

depending on another, as particular covariation, to understand the idea of independent variable, and to make 

sense of functional symbolism. The first two challenges point towards activities where a functional dependency 

is studied in various representations or models. The third one implies linking dependency with various algebraic 

forms: notation f(…), domain of existence, role of independent variable and of parameters in the formula… 

Considering the curricula in our countries as examples representative of dissimilar cultures, we illustrate 

how precisely functions appear in programs of studies. In Vietnam, Nguyen (in Halbert et al., 2013) stresses that 

60% of the program deals with functions and that it is organized around this domain. The ideas of functional 

dependency and of variations of functions2, beyond mere correspondence, are introduced early (respectively 7th 

and 9th grade). After 10th grade, the curriculum is more oriented towards classical study of functions. The main 

                                                           
1 We are aware that ‘genesis’ is used for denoting, in MWS, processes connecting the epistemological and the 

cognitive planes in a space. However, the way we use this word is consistent with the theoretical construct of ‘instrumental 

genesis’ (Lagrange, 1999), a basis of the work we carried out for more than 15 years. Confronting these two conceptions is a 

promising perspective.  
2 Studying variations of a continuous function is for instance proving that it is decreasing on some interval and 

increasing on another adjacent interval, and thus that it has a minimum. See examples in the teaching situations above.  



types of tasks proposed by textbooks are also classical. Only one type of tasks deals also with another domain: 

optimizing a geometrical quantity. Nguyen Thi Nga (2011) gives complementary insight, stressing how this 

program demands that teachers carry out classroom mathematically meaningful interdisciplinary activities. 

However she points out that actual tasks proposed to students, even when they involve extra-mathematical 

situations, are rather applications of already taught mathematics. 

In France, before 10th grade, functions are included in a “field” dealing with data management in which 

proportionality and statistics have an important place. At this stage, functions are not algebraic. Algebra deals 

with equations and inequations. At 10th grade there is a strong emphasis on the functional perspective mentioned 

above: half of the program is made of a “field” of functions, the other half being left to geometry and 

probabilities. The program insists on problem solving involving situations in various domains, mathematical and 

extra-mathematical. MEN/DGESCO-IGEN (2013) is an official document accompanying this program of study 

that stipulates competencies to be developed by students. Proficiencies like “researching”, “representing” and 

“calculating” are well specified by relevant sub-competencies. In contrast, the proficiency “modelling” is poorly 

described as the ability “to translate real world situations into the mathematical language [sic]”. Thus, as in 

Vietnam, tasks involving extra-mathematical situations give priority to mathematical symbolism. At 11th and 12th 

grade, the curriculum is classically oriented towards calculus3. 

These two examples of curricula show that the emphasis on functions in some parts of programs of study 

does not go together with activities related to functional dependencies through which students could access the 

idea of function and associated symbolism, and meet the above mentioned challenges. Focusing on real world 

situations “translated into into the mathematical language,” the curricula actually favor application of classical 

“algebraic” methods. Later, at 11th and 12th grades, these methods evolve towards classical calculus, again not 

involving deep understanding of functions. This is what we called above the narrow treatment of functions by 

upper secondary teaching.  

Above, we mentioned one type of task in Vietnam associating function to another domain: optimizing a 

geometrical quantity. This type of task is also encouraged in France at 10th grade. We draw an illustration of the 

narrow treatment of functions at the level of the classroom, from an article by Robert and Vandebrouk (2014) 

aiming at studying the influence of teachers’ decisions regarding tasks and classroom implementation upon 

students’ activity. The authors analyse classroom situations and we select one that implements a task belonging 

to the above mentioned type. They say (p. 268) that this situation is representative of the teacher’s usual practice 

when dealing with functions and technology. From information provided by this article, figure 1 presents the 

geometrical figure at stake, the sub-tasks for students, and some complementary data with regard to the teacher’s 

expectation. The figure made of the square DEFG and the triangle FBA is supposed to represent a shop-ensign, a 

weak response to the curriculum’s demand of “real life situation”.  

Robert and Vandebrouck (2014) report on the work in the class, focusing on two pairs of students. The 

account gives evidence of a gap between what actually happened and the teacher’s expectations. The first pair of 

students is weak. They spend 30mn on constructing the figure and achieve it only with the help of the teacher. 

They explore with difficulty, finding a minimum again thanks to the teacher, but cannot use the trace of a point. 

They do not understand what “calculating the sum of areas as a function of x” means. During the last 10mn, the 

teacher explains to the whole class how to “complete the square” and students copy what is written on the 

                                                           
3 The current programs of study and accompanying documents in France can be found at http://eduscol.education.fr/ 



blackboard. The other pair is high achieving. They understand correctly the tasks in dynamic geometry, using the 

trace to complete the exploration as indicated by the teacher. They make the link between the trace and 

numerical exploration, but they do not see the trace as a graph of a function. After that, they do not understand 

the purpose of an algebraic expression. Nevertheless, they obtain this expression, but they do not know how to 

use it. Like the other pair, they follow the teachers’ explanation about “completing the square”. These students 

had much less difficulty as compared to the other pair to perform sub-tasks, but for them also the sub-tasks are 

not connected because the idea of function that should make the connection is not present. 

 
The figure with AB=5, and, above, the trace, 
as expected by the teacher. 

 

ABCD is a square. E is a point on side [DC] and DEFG is a 
square. The aim is to find a position of E in order that the 
sum of the areas DEFG + FBA is minimal.  
 
Tasks: 

1. Make a dynamic geometry figure. 
2. Explore and conjecture the position of E 
3. Prove the result algebraically, posing x=DE and 

calculating the sum of areas “as a function of x”. 
 
Expectations of the teacher: 
The situation is for one hour at tenth grade, with the aim that 

students after building the figure and a first numerical 

observation will: 

1. complete exploration by defining a point K of 

coordinates DE and the sum of areas. Using the trace 

mode, they will make a graphical observation, 

specifying the conjecture. 

2. obtain a quadratic formula for the function.  

3. prove the minimum by “completing the square”. 

 
 

Fig. 1 The “shop-ensign” scenario 

In their analysis, Robert & Vandebrouck (2014) note that the decision of directing students to use “x=DE” 

implies that students should concentrate on algebraic work, creating a gap with activity in dynamic geometry. 

Our analysis is complementary. First, in sub-task 1, we see what we call an underestimation by the teacher of 

instrumental needs of the situation in dynamic geometry. It means that students’ activity expected by the teacher 

presupposes an understanding of complex features of dynamic geometry software, in connection with 

mathematical understanding. Here students have to be aware of a distinction between fixed point, free point and 

free point on an object, and understand what a dependent point is. This awareness is linked to the idea of 

function that students are supposed to approach through this task. Very often beginners in dynamic geometry 

confuse free point in the plane and free point on object and have no idea of dependent point4. It means here that 
                                                           

4 We submitted a dynamic geometry figure with A a fixed point, C a free point, and B and D constructed in order that 

ABCD is a rectangle with sides parallel to the axes, to 34 students in a 10th grade class. The students had basic knowledge in 

dynamic geometry allowing them to understand how the rectangle is constructed and what happens when C is dragged. We 

asked them whether B and D are free points. Half of the class answered positively and explained that these points “are able to 

move”. See also Laborde, Kynigos, Hollebrands & Strasser (2006, p. 285). 



they create F, G and E as free points in the plane or on a segment, visually making a square DEFG, but this 

square does not resist when moving E on [CD]. Obviously, here this analysis of instrumental needs has not been 

done by the teacher, the weak students needing much time and strong help to achieve this task. Using the trace of 

a point K of x-coordinate DE and y-coordinate the sum of the areas in sub-task 2 could help reinforce the idea of 

graph, but here, with no special attention from the teacher, the task is difficult and not meaningful. Weak 

students do not succeed and high achieving students do not see the trace as a graph of a function. 

Forming the algebraic expression is at stake in sub-task 3. We observe that weak students simply do not 

understand the task, while high achieving students succeed but do not see a real purpose. For a meaningful 

transition between dynamic geometry and algebra, students would need some guiding thread. This thread should 

be the idea of function, existing as a dependency between geometrical objects, dependency between measures, 

and finally algebraic function. However, the dependency between the area and the position of point E is not at 

stake, the independent variable is imposed to students and a function is mentioned only in task 3, and thus 

students, high as well as low achievers, experience this task as an abrupt and meaningless switch to skill oriented 

algebra. The teacher conducts no classroom discussion on dependencies, on the choice of variables and on the 

relation with the algebraic function. She rather concentrates on a technique of proof, oriented on properties of 

expression and a special algebraic manipulation technique. 

Our view is that, before switching to the usual algebraic space, students should have worked on functions in 

two other spaces. One is pure dynamic geometry: when moving E to the right, the square visibly grows bigger 

and the triangle smaller; this could be an opportunity to make students feel the need to quantify in order to study 

variations of the area of the “whole” shop-ensign. The second working space deals with this quantification5, 

especially building measures that could be involved in the definition of a function: in this working space, 

exploring dependencies between measures, students could approach a solution, but without the affordances and 

constraints brought by formalization. Working in these spaces and discussing their limits would have allowed a 

more meaningful transition to the algebraic space. In this last space, a validation congruent with the work on 

measures (i.e., using properties of variations for quadratic functions observed on graphs, rather than completing 

the square) would have been more relevant for connecting algebraic work and work in the previous spaces. 

This classroom situation illustrates the narrow treatment of functions by upper secondary teaching that we 

mentioned above. Optimizing a geometrical quantity is an emblematic type of task in the domain of function. It 

could provide the opportunity to work on functions in three spaces, and make meaningful connections. 

Unfortunately, work in the algebraic space is privileged and disconnected from the work in dynamic geometry 

which is used only as a motivation. 

3 Functional working spaces and the Casyopée software 

The above example of a classroom situation helped us to introduce three spaces for working on functions, and to 

stress the importance of providing students the opportunity of real work in each of these spaces, as well as to 

make connections between these6. We develop here the idea of connected functional working spaces that arise in 

                                                           
5 About quantification and its importance in students’ understanding of functions, see Thompson (2011).  
6 In addition, considering functions in “real world situations” would suppose a space where students could work in a 

non-mathematical space, for instance around a physical device involving a mechanical dependency. See Lagrange (2013) for 

http://www.linguee.fr/anglais-francais/traduction/guiding+thread.html


our group while progressing in our understanding of the challenges brought about by the teaching/learning of 

functions. We also present some aspects of the Casyopée software, one of the resources whose design is carried 

out by our group as a result of this progress.  

In the dynamic geometry working space, functions exist in a figure, with free points and dependent 

constructions. No quantification is at stake. Students experience dependency between objects, and a first 

approach to optimization. We stressed above that, in the above example, while dragging the free point E, 

students could observe and discuss how the shape of the shop-ensign is transformed. Artefacts are primitives of 

construction, such as creation of parallel or perpendicular lines, and intersections of those, that allow dynamicity. 

Rules are geometrical principals governing constructions and also features specific to dynamic geometry, 

especially the asymmetrical relationship between free points and dependent constructions. 

In the second space, the objects are measures in relation of dependency. The artefacts deal with 

prealgebraic symbolism, that is to say formulas expressing geometrical measures by way of algebraic operations 

and elementary measures. The rules deal with dependencies relative to a moving object: a dependency has to be 

expressed by way of quantities that are measurable attributes of the object; one quantity (the independent 

variable) has to depend univocally on the object. These rules are at the very heart of the idea of function. 

In the third space, in contrast to the two previous spaces, objects, artefacts and rules exist in the 

“traditional” paper/pencil school culture: analytic functions, algebraic notation with literals for the independent 

variable and parameters, graphs and tables, and transformations conserving equivalence. However, as we saw in 

the analysis of the classroom situation, the idea of function and the link with other spaces can be overlooked 

because of an overemphasis on algebraic manipulation. In this space, implementing optimization problems 

should rather help students to reflect on different formulas for a function, their equivalence, and how they 

express a dependency. In this approach, algebraic transformations (factoring, expanding, differentiating…) exist 

as artefacts used for a given purpose in view of determining properties of a function.  

The Casyopée software is designed to provide artefacts adequate for each of the above working spaces in 

three main windows (figure 2). The geometry window has generic dynamic geometry features, providing tools 

for dynamic construction. Free point in the plane is distinguished from free point on an object and from point 

depending on one or more free points, for instance an intersection of objects constructed from free points. The 

“geometric calculation tab” allows forming and numerically exploring “pre-algebraic” formulas representing 

geometrical quantities; it also offers the possibility of selecting two formulas, one for the independent variable, 

and the other for the dependent variable. In cases where these formulas represent measures that are in functional 

dependency (like for instance the distance AE and the sum of areas, in the example above), Casyopée is able to 

compute symbolically an analytic formula and a domain, thus creating a function which is exported into the 

symbolic window. Otherwise it issues some explanation for the impossibility. Thus, what is really at stake is the 

selection of measures in functional dependency and the forming of pre-algebraic formulas for these measures. 

The symbolic window is designed to be consistent with the view we expressed above, of helping students to 

consider different equivalent formulas for a function and to use transformations as artefacts to study functional 

properties. It also offers features similar to symbolic graphing calculators (evaluation of expressions, graphs and 

tables).  
                                                                                                                                                                                     

an example. Here, for the sake of simplicity, we will keep the type of task of geometric optimization as an object for 

reflection, and then restrict ourselves to three spaces. 



 

Fig. 2 Casyopée’s main windows and the links between them 

While the three windows are clearly distinguished, the design helps connections between working spaces. 

Numerical values of measures created in the geometric calculation tab are displayed and continuously updated 

when a free point is dragged in the geometry window. The exportation of a dependency from the geometric 

calculation tab to the symbolic window was decided in order to allow a flexible transition from measures to 

algebra: students can choose freely relevant measures and change their choice easily if necessary. There are also 

links between the geometry window and the symbolic window. When a point is dragged in the geometry 



window, the graphs and the formulas are updated. If this point is involved in the definition of the independent 

variable, a trace is moved on the graph of the function. This link is reversible.  

4 The design of a classroom situation 

We consider now more directly our hypothesis about suitable teaching situations organizing students’ work in 

various non algebraic and algebraic working spaces, and connecting these. We consider again a geometric 

optimization situation similar in its aims to the “shop-ensign” that we analysed above. It is also a situation for a 

one hour session at 10th grade. The principles of design are very different and can be expressed with regard to 

students’ work in the three spaces. 

1. The dynamic geometry construction and exploration have to be simple, in order that students 

understand easily the dependency between geometrical objects, even with a limited understanding of 

this type of construction. 

2. The question has to be expressed in pure geometrical terms, in order that students discover the need for 

introducing a dependent quantity, as well as an independent one. 

3. The situation has to emphasize this quantification and the properties of the resulting function, rather 

than algebraic manipulation. 

The choice is then to consider a parabola of equation y=f(x), and a fixed point A not on this parabola, and 

not on its axis. The question is then to find a position on the parabola “as close as possible” to A (Fig. 3).  

 

Fig. 3 The dynamic geometry figure, and the formula and graph of the function in the parabola situation 



The situation is then designed in three phases, corresponding to the challenges identified by Lagrange and 

Psycharis (2014): covariation, independent variable and symbolism.  

Phase 1. In the dynamic geometry space, students have to understand the need for introducing a free point 

M on the parabola, and then to locate a closest position visually. To be more accurate, students should consider 

distance AM and its numerical variations by moving M on the parabola, and then understand a co-variation 

between the point M and the distance. This phase will be carried out by students working with Casyopée. 

Phase 2. Introducing this phase, the teacher will stress the need for creating a function in order to have a 

more accurate value of the minimum. Actually students have been initiated to the graphical exploration of a 

function given by a formula, and this is for them at this level the best way to explore variations. The critical point 

here is the identification of an independent variable. Mathematically it is simple, since a free point on a parabola 

whose axis is the y-axis, is parameterized by its x-coordinate. However we expect that for students this 

quantification, passing from the position of a point to a numerical value representing this position, will not be 

obvious. Then this phase will be a collective discussion directed by the teacher. 

Phase 3. Students, working again on computer, will enter the independent and dependent variables into the 

modeling menu of Casyopée and export a new function into the symbolic window. They will exploit its graph to 

get a more accurate minimum, a technique that they already know. In order to work on symbolism, students will 

have also to interpret the formula calculated by Casyopée.  

Lagrange (2013) reports on a classroom implementation of this scenario. It shows how students work in 

each space, and how the teacher helps the transition between spaces by specific mediations.  

At the beginning of the first phase, students work on exploration in the dynamic geometry space, creating 

and dragging a free point M on the parabola, and observing. This is generally not accurate, for instance students 

locate a point M on the perpendicular to the axis passing through A. The teacher asks for a first quantification, 

referring to Casyopée: “How could we use the software? ... What could we ask it to calculate?” Students 

understand the interest of a measure to pass from “visually close” to “minimum distance”.  

This brings them, in the second phase, to the measure space, Casyopée providing the artefacts of the 

geometric calculation tab. The teacher introduces the problem of quantifying the independent variable: “in order 

to get a better approximation, we need to define a function whose value is AM... but depending on what...?” The 

students propose M and she replies: “M is not a variable... When you move M, it depends on what? What gives 

the position of a point?” Then the students propose “the coordinates” or the “x-coordinate and y-coordinate”. She 

objects: “I have to choose, which one?” Most students choose the y-coordinate because visually, this coordinate 

seems more in relation with the position of M on the parabola. She objects again: “the y-coordinate... then... if I 

have to locate a point on the curve, what should you give to get the right position? If you ask me for the y-

coordinate 4...” Students recognize that there are two points for one value of the y-coordinate, and propose the x-

coordinate. The teacher insists: “Yes, if you say, the point is on the curve, and I know the x-coordinate, then I 

know the position of the point...Then you can characterize the position by the x-coordinate.” Students who tried 

exporting a function with Casyopée, using the y-coordinate and then the x-coordinate, confirm that the first 

choice was not successful. 

In the third phase, after graphing the function obtained by exportation, students carry out a graphical 

exploration, connecting a technique that they already know with the problem of optimization. The teacher shows 

the reversible link between trace on the graph and position of M on the parabola, helping students to better 



understand this connection. Interpreting the formula calculated by Casyopée is not easy for the students, because 

they are not familiar with the technique of expressing the coordinates of a point on a curve, and a distance in 

coordinate geometry, although it was already taught. They nevertheless recognize key elements in the formula 

like f(x) denoting the y-coordinate of M, and the square root denoting the calculation of a distance. 

It seems to us that, although the session is short, the students are aware of working in three different spaces, 

with different means of representing, treating and interpreting. Students understand dependency between a 

geometrical object and a property of the figure in the first space, and they are familiar with reading properties on 

a graph in the algebraic space. The measure space, and particularly the need for expressing a dependency 

between two measures are new for them. Working in this space is essential for connecting from the figure in the 

dynamic geometry space to the graph and formula in the algebraic space. 

5 Student’s Geneses 

As explained in the introduction we want to take advantage of the identification of functional working spaces, in 

order to study students’ geneses involving particular spaces, that is to say how they build suitable personal 

spaces. As also explained, our hypothesis is that these geneses necessarily occur in the long term, and we use for 

that a study of students over two years. The method was to consider the same class of scientific students at 11th 

and 12th grades and to focus particularly on two students working as a team. The teacher was a member of the 

Casyopée group. A special observation of the team was carried out by way of screen and video recordings, and 

of semi-directed interviews. We consider here three milestones: one observation at a key time in each year, and 

an interview at the end of the second year. 

The first observation took place in January of the first year (11th grade) on the occasion of the concluding 

session of an experiment consisting of six sessions. The first three sessions focused on capabilities of Casyopée’s 

symbolic window and on quadratic functions. In other words, this part was an introduction to an algebra space 

where Casyopée provided artefacts, and rules were related to algebraic knowledge regarding quadratic functions. 

The next two sessions aimed at consolidating students’ knowledge of geometrical situations and at introducing 

them to Casyopée’s other windows. The central task was to build geometric calculations to express areas and to 

choose relevant independent variables to express dependencies between a free point and the areas. This part can 

be considered as an introduction, both to the dynamic geometry and to the measure spaces. It puts emphasis on 

measures that are new for students.The third part consisted of one concluding session that will be considered 

here as a first observation of students’ geneses. Students had to solve the first problem in figure 4.  

The second observation took place in January of the second year (12th grade), was about students solving 

the second problem in figure 4. Meanwhile the class worked on similar problems, roughly one session every 

month and during these sessions, the two students interacted with the observer. The interview was carried out at 

the end of the second year, before the baccalauréat7 . Meanwhile students worked on functional problems 

                                                           
7 “Much like British A-levels or European Matura, the baccalauréat allows French students to obtain a 

standardised qualification, typically at the age of 18. This then qualifies holders to (…) go on to tertiary 

education.” (https://en.wikipedia.org/wiki/Baccalauréat). The students observed here pass the scientific 

baccalauréat involving a set of subjects among which mathematics has the heavier weight.  



adequate for preparing this exam (and then mainly algebraic) and used Casyopée as a resource for personal 

work8. 

Problem 1 (11th grade) 

 

Problem 2 (12th grade) 

 

Text: Consider a triangle ABC. A(-a;0), B(0;b) and 
C(c;0), a, b and c being three parameters. Find a 
rectangle MNPQ with M on [OA], N on [AB], P on 
[BC], Q on [OC] and with maximum area. 
 
Hint of a solution: For all values of parameters, the 
maximum area is for M at the middle of segment 
[OA] 
 
 

Text: Consider point I(0; a), a being a parameter and 
point A of coordinates (10; 0). M belongs to segment 
[OA], N is on the parallel to the y-axis passing by A 
and the triangle IMN is rectangle in M. When M is in 
A, then N is also in A. The problem is to find the 
position of M to maximize the area of the triangle. 
Hint of a solution: for values of a greater than , the 
function is decreasing and then the maximum is for 
M=O. For other values, there is a local maximum for 
a position of M inside the segment. This maximum is 
the absolute maximum for a lower than 5 (figure 2), 
otherwise the maximum is for M=O. For a=5, there 
are two maximums, one for M=O and the other at the 
middle of [OA]. 

Fig. 4 The problems in the two observations 

In each working space, we analyse the tasks and how students progressed from one year to the next. 

In the dynamic geometry space, the figure in both problems is defined parametrically. Consequently, the 

dynamic figure includes points defined by parametric coordinates, as well as a free point on a segment and then 

students have to distinguish between the two notions. Dependent points are to be constructed, as in the “shop-

ensign” situation. The first year, the students took much time constructing the variable rectangle. They first built 

a “soft” rectangle, that is to say that the quadrilateral they built was perceptively a rectangle, but did not resist a 

variation of the figure by animation, dragging a free point or changing the value of a parameter. They had 

difficulty in distinguishing between a free point in the plane and a free point on a segment. In spite of the 

feedback of the software and of the help of the observer, they were slow to correct. The second year, mistakes in 

using dynamic geometry still occurred, but students easily corrected the errors by themselves. It means that in 

this space, becoming aware of the dependency between objects was not obvious but progressed, thanks to 

sustained work in this space. Working on dependencies from geometrical situations actually puts at stake this 

fundamental aspect of dynamic geometry. Our interpretation is that these students did not meet in previous 

classes the constraint of constructing a figure whose properties resist animation. More generally, we assume that 

in many classrooms, in spite of the official demands, students do not have to use dynamic geometry by 

                                                           
8 More data about this study is provided by Minh (2012b). 



themselves, or have mostly to draw “static” figures9. The outcome is that teaching has to take particular care of 

students’ genesis relative to the dynamic geometry space, providing opportunities of working on really dynamic 

figures and discussing the resulting dependencies. 

In the measure space, finding a formula for the dependent variable is not difficult. In both problems, several 

choices are possible for the independent variable, and, especially for the first problem, this choice has an 

influence over the complexity of the formula of the algebraic function: if students choose a length on the x-axis 

representing the position of M, the formula is less complex as compared to the formula resulting from the choice 

of a side of the rectangle. Numerical exploration of these variables is to be made more carefully in the second 

problem, since variations depend on the parameter. The first year, the students confused the creation of a 

dependant variable representing the area with the choice of an independent variable and hesitated on the choice. 

They did few numerical explorations. They did not understand by themselves the need to choose an independent 

variable and to export the dependency as an algebraic function. The second year, although the exploration is 

more complex, students explored a lot of different cases and values of the parameter. They commented, using the 

relevant functional language: “growing”, “decreasing”… There was also a much better understanding of the 

process of exporting the function beyond the corresponding artefact of Casyopée. Particularly, as shown by Minh 

(2012a), students identified the choice of variables in the measure space as the key action.  This means that 

sustained work is useful in this space for an adequate understanding of functions.  

In the algebraic space, the techniques for proving the variations are different in the two years, following the 

progress of students’ learning in calculus. In the first problem, students are expected to use knowledge about 

quadratic functions: their graph as a parabola, and a formula giving the abscissa of the vertex of the parabola, 

from coefficients of an expanded form of the function. In the second problem, students are expected to 

differentiate the function, to obtain a quadratic function and to compute the zeros (figure 4). These calculations 

are classical. However the formulas are parametric and this aspect introduces some complexity, so students were 

expected to use Casyopée to feel more confident. The difficult part in the second problem is to interpret the 

zeros, because depending on the parameter, they can be real or complex, or they can be inside or outside the 

interval of definition of the function. In the first year, after recognizing a parabola for the graph of the function 

calculated by Casyopée, students did not know how to use their previous knowledge about quadratic functions. 

With the help of the observer, they remembered a formula for the abscissa of the vertex. The resulting expression 

was complex, but could be easily simplified by Casyopée. In spite of this, students dealt only with a numerical 

case, considering the current values of the parameters. Finally the students conjectured the optimal position for a 

generic triangle in the geometry window, but could not prove it in the symbolic window. The second year, 

students proposed directly a procedure using the derivative. They used smartly Casyopée’s transformations such 

as “expanding” and “factoring” in view of a goal. They used the sliders in Casyopee to change the value of the 

parameter, in order to study the different cases. In short, they built a suitable personal algebra working space. 

One could object that this personal space is closely linked to Casyopée’s artefacts. However, this space was 

useful in the preparation of the baccalauréat. We assume that this comes from special strategies of the teacher 

and we keep the elucidation of these strategies for further work.  

                                                           
9 Some evidence supporting this assumption is provided by Lagrange & Caliskan (2009) from a study of textbooks 

and classroom practices in France. 



 

Fig. 5 Problem 2 figure and graph of the function and derivative for the case  a < 5 

As reported by Minh (2012a), the interview at the end of the second year shows that the students also connected 

the work in the three spaces in a “process” contributing to the elucidation of a function, for instance when they 

declared: “to perform all the process is great: constructing the figure, table of variation, calculation of the 

derivative… We have the algebraic and geometrical sides together… We see better how a function ’reacts’, it is 

convenient and interesting”. 

6 Teachers’ geneses  

Like the preceding section, this section is about geneses concerning functional working spaces, but with regard 

to teachers, with the same hypothesis that theses geneses necessarily occur in the long term. We use data from a 

project that aimed at studying how innovative software like Casyopée can be disseminated to “ordinary” 

classrooms. This project brought together two teachers that had been involved in the design of Casyopée, named 

“experts” in this paper, and six other teachers named “participants” in this paper. The experts were members of 

the Casyopée group since the beginning. The participants were relatively experienced in the classroom use of 

technology but not involved in the history of Casyopée.  

The idea was to use classroom scenarios as means for communicating between experts and participants. 

The participants would propose uses corresponding to their needs and ask the experts for their advice and 

support. The scenarios would be built in order to be proposed to all potential users, and thus contribute to the 

dissemination. Researchers, experts and participants met 14 times during 2 years in 3 hour sessions. Eight 

different scenarios were created and each was experimented in several classes. The choice was to analyze 



objective elements accounting for communal work, especially the video recordings of the meetings. The 

recordings were coded in a video analysis database and split into about 90 clips. We consider here that preparing, 

experimenting and presenting classroom situations with Casyopée implied for participants to make sense of new 

working spaces for their students, characterized by the new artefacts provided by Casyopée, but also influenced 

by the underlying conception of the work on functions, and then to build personal working spaces adequate for 

teaching. 

Because the participants were already experts in classroom use of dynamic geometry, we consider here 

only the algebra and measure spaces. We do the analysis by using interactions recorded in the clips, completed 

by data related to the classroom scenarios produced by the group. 

In clips dealing with the measure space, it appears that the participants had implemented before geometric 

optimization situations in their classes, similarly to how the teacher did for the shop-ensign problem reported 

above. They were unsatisfied because of the algebraic manipulation work, which they considered not relevant 

during the resolution. They were then tempted by classroom use of the geometrical calculation tab. However 

they encountered difficulties. In the second meeting for instance, a teacher complained that she could not use 

exportation for a problem she used to propose to her students (fig. 6). She considered two free points in the plane 

A and B and a free point M on the segment [AB]. After that, she wanted students to export a dependency into the 

symbolic window, in order to solve the problem algebraically. She chose AM as the independent variable and the 

calculation  as dependent variable. But Casyopée replied that the calculation AM is dependent on 

more than a free point, and exportation was unsuccessful. The teacher expected a function like

. Actually, Casyopée handles functions of one variable. It is also possible to create 

parameters and then to consider families of functions. Thus in any situation in which several variables are 

involved, one variable has to play the role of the independent variable and the others have to play the role of 

parameters. In the above situation, a consistent approach is to define the two points A and B as coordinated 

points, depending on a parameter representing the distance AB. For instance A might be at the origin and B 

might be (0; a) and the function would be . This is a constraint of a functional working 

space centered on one variable functions when dealing with objects depending on several variables. 

Understanding this constraint is not essential for students who work on situations prepared by the teacher, but the 

teacher has to deal with this when preparing a situation and he or she needs a deeper understanding of 

dependency. During the meetings and the experimentations of scenarios, it seems that the participants integrated 

this constraint: when presenting the scenarios elaborated in the project, they often regretted that “the teachers do 

not understand this very simple fact that for modeling into a function, you have to restrict to a single free point”.  



  

M is a free point on segment [AB]. AMP and 

BMQ are two isosceles rectangle triangles. Is 

there a position of M where the sum of the areas 

is minimal? 

Fig. 6 An optimization problem proposed by a participant 

We characterize the participants’ genesis relative to the algebra space first using clips recording interactions that 

dealt with the participants’ expectations and interrogations concerning Casyopée’s symbolic window that these 

teachers identified as providing Computer Algebra (CAS) tools. Participants thought initially that CAS would be 

particularly useful for problems about functions in real world situations often implying complicated algebraic 

calculations. This idea was linked with their desire to offer students realistic problems, and with views that CAS 

should be used as scaffolding for students with weak abilities in algebra. That is why they proposed situations 

resulting in very complex expressions that CAS had difficulties handling. This is because CAS relies on 

algorithms that are generally not deterministic: for instance, it happens that two expressions are mathematically 

equivalent but also that none of the algorithms can recognize the equivalence, a phenomenon that Elbaz-Vincent 

(2005) points out as the “decidability limitation” inherent in CAS. 

It took time for these teachers to realize how the CAS’ decidability limitation influences the classroom 

situations. Scenarios had to be carefully adapted in order to articulate CAS and by hand calculation. Then 

participants realized the actual potential of CAS for teaching/learning: it does not miraculously handle 

everything, but it can help when one understands its potential and limits, and takes advantage of these for 

specific situations. At the end of the project, from a participant’s proposition, a classroom scenario was designed 

and experimented, where students had to coordinate the use of Casyopée for calculations that they were not 

confident to perform by themselves, and by hand simplifications that could not be achieved by CAS. This means 

that, while participants understood better the potential of CAS artefacts, implicit rules for their didactic use also 

evolved. 

In order to give insight into the complexity of the participants’ evolution concerning the algebra space, we 

examine another example dealing with techniques of proof. It happened that an expert proposed a scenario where 

10th grade students had to conjecture and prove the interval of positivity of a given linear function. He proposed 

that students conjecture graphically and then use the monotonicity of a linear function that allows a proof 

congruent with the graphical observation and supported by Casyopée 10 . Participants agreed about making 

students conjecture this property on graphs, but objected that monotonicity would have to be proved. This is a 

summary of the discussion that followed between the expert (E) and participants (Pi). 

The expert proposes a proof for monotonicity. 

E: My view is to use factoring. Computing f(u)-f(v) and then factoring into a(u-v).  

P1 reports that she tried to use factoring to prove the variations of quadratic functions at 11th grade without much 

success. E objects that an inequation based technique is “rule oriented”.  

                                                           
10 There is a special functionality, based on algebraic theorems dealing with functions, that helps building proofs. 



P1: Factoring ? When I tried to apply to quadratric functions at 11th grade... the link between f(u)-f(v) and 

u-v is perhaps more visible... but, but.. I finished by doing only inequations...  

E: OK, applying rules...  

Another participant (P2) objects that a technique based on monotonicity is very new to 10th grade students and 

wonders how students could be engaged in a proof. P1 stresses that the teacher will have to guide them strongly 

and P2 confirms that proving the variations of quadratic functions at 11th grade is very hard. 

P2: We must start from what they (the students) know, otherwise … My question, how will they compare 

f(u) and f(v)?  

P1: You will tell them (students) to calculate f(u)-f(v). You will say : "to compare f(u) and f(v), calculate 

f(u)-f(v)". You will tell them.  

P2: For quadratic functions at 11th grade, calculating f(u)-f(v), good students understand, but... it is hard, 

very hard...  

E suggests that, since rules about inequalities have been used without proof, the monotonicity of linear functions 

could also be admitted without proof. Actually Casyopée proposes the variation property of a linear function 

(growing, decreasing) based on the sign of the x-coefficient. Students could then make the link between this sign 

and the variation property by graphical observation. The participants discuss the relevance of introducing a new 

technique, from their experience of teaching 10th graders something already taught at 9th grade. 

E: Rules learnt at 9th grade about inequalities are also artificial (not proved). 

P2: The problem is to prove again at 10th grade something they manipulated and remanipulated at 9th 

grade... 

E: What do they really remember (of what they did at 9th grade)?  

P3: They don't really remember. I did it (when teaching at 9th grade) and now I do the same at 10th 

grade... I have the impression to do about linear functions at 10th grade what I was doing before at 9th 

grade...  

Finally, the participants seem ready to adopt the new technique but are concerned with how students could make 

connections between the two techniques. 

P2: Then it is perhaps not a problem to change...  

P3: Yes and no, they (the students) should make a link...  

The participants’ reluctance towards the technique proposed by the expert has complex motivations. First, this is 

a functional technique, (i.e. technique based on properties of functions), as compared to inequations, and the 

participants prefer to keep it for more advanced students and for non-linear functions: at 11th grade, a complete 

proof by factoring seems to them relevant, although not obvious for most students. Second, the participants like 

to keep the proof by inequations for 10th graders, even when it has already be taught at 9th grade, because they 

are concerned that these students would forget algebraic rules learnt before. This discussion occurred at the end 

of the first year and, although the participants seem to consider more favorably the proposition after the 

discussion, it has not been put into operation as a classroom scenario.  

The participants’ resistance to techniques of proof based on functional properties indicates that, as a 

difference from the expert’s, their new personal functional algebra space is in competition with an “old” equation 

based space. This can be put into relation with the problem of the coordination between (in)equation based 

algebra taught before 10th grade, and the functional approach at 10th grade. Curricula encourage switching to 

functions, leaving to the teachers the difficult task of coordinating these approaches (Kieran 2007). This task has 

been achieved by the experts along the years in the Casyopée group, building a suitable functional space; in this 



space the technique of proof is congruent with the graphical conjecture, taking advantage of students’ new 

knowledge about functions. It was not the case of the participants even after two years of interactions. 

Finally, we note also that the “closest point on the parabola” scenario exposed and analyzed above was a 

common production of participants and experts after a proposition of participants at the end of the project: the 

participants insisted on designing a situation for 10th graders minimizing the instrumental needs in dynamic 

geometry, as well as the algebraic manipulations, in order to focus on the choice of variables by the students. 

Implicitly, the teachers recognized the necessity for students of situations bringing forth the question of the 

variables involved in a function and then the central role of the measure space. The necessity of connecting the 

spaces is also implicitly recognized through this situation; the teacher observed in the implementation of the 

scenario reported above was one of the participants and we saw how she insisted on the coordination between 

the works in the three spaces. 

7 Summary and perspectives 

We presented this paper as a continuation of previous work aiming at remedying a narrow treatment of functions 

by upper secondary teaching, especially taking into consideration the fact that functions make sense because of 

their occurrence in many dissimilar settings, and then the need for analysing each of these settings as a functional 

working space. We identified geometric optimization as an “emblematic” type of task and analysed a classroom 

implementation, pointing out problems resulting from the fact that no working space had been prepared by the 

teacher for students’ tasks in dynamic geometry and measures. Thus the situation gave priority to the algebraic 

manipulation work, poorly contributing to students’ understanding of functions. We specified a dynamic 

geometry space, a measure space, and an algebra space, and indicated specific functionalities of Casyopée 

bringing artefacts in each space and means for connecting the spaces. We examined then the functionality of this 

framework for implementing and analyzing classroom situations and for analyzing students’ and teachers’ 

evolution concerning functions, in terms of geneses related to each space. We gave an example where 

considering students’ activity in each space and connections between spaces, allows the development of 

principles of design for a classroom situation of geometric optimization, to assess their efficiency and to 

highlight differences from the situation analyzed before.  

In previous papers, for instance by Lagrange and Psycharis (2014) or Minh (2012b), the main theoretical 

construct was a grid of students’ activities on three levels: (1) Covariation and dependency in a physical system 

(2) Covariation and dependency between magnitudes or measures (3) Mathematical functions of one real 

variable. The grid also proposed a classification into types of activity (Enactive-Iconic, Algebraic…). This is of 

course compatible, but organizing and analyzing working spaces goes beyond classifying activities: it is 

specifying the settings in which students develop these activities and make sense of these. In addition, the grid 

insists on a similarity between activities at each level, whereas each space has its specific artefacts and rules. 

Finally, the grid seems to imply a more or less standard path in the activities from physical settings to algebra. 

Considering working spaces provides a less rigid view of students’ work about functions. For instance, the 

Casyopée group recently elaborated and tested a classroom scenario based on several models of a physical object 

(the main cable in a suspension bridge): a local physical model involving tensions and the first Newton law, a 

local mathematical model based on the relationship between tensions and positions of two consecutive points on 

the cable, a computational discrete model calculating iteratively the coordinates of points on the cable together 



with the tensions, and finally a continuous global model using calculus (see http://casyopee.eu). Each model is 

subject to specific scientific work and for students, corresponds to a specific space. The spaces are explored in 

parallel by groups of students and after that, groups of students work to prepare a synthesis. The outcome is that 

a diversity of functional spaces, not limited to the three considered in this paper, may be organised and 

investigated by students in a nonlinear way. This situation also implies a wider variety of artefacts: films, 

concrete models, paper/pencil work and a programming environment. It will be an opportunity, in further work, 

to explore the functionality of the framework beyond the three spaces studied here, and beyond artefacts specific 

to Casyopée.  

The two studies about geneses insist on long term and on particular geneses in each working space. 

Students’ geneses show a gradual construction of personal spaces and connections between these, thanks to 

sustained work articulating the three spaces. Teachers’ geneses are also gradual, in some cases unachieved, and 

can be seen as the result of the work of creating classroom situations together with experts. Teachers’ personal 

spaces include an understanding of functional dependency and of the use of artefacts as a basis for these 

situations: in other words they incorporate rules about the constitution of working spaces for students. 

Up to now, we used the theoretical framework of “instrumental genesis” (Lagrange, 1999; Minh, 2012a, 

Minh, 2012b) to study the development of knowledge in situations of use of mathematical software 

environments. Instrumental geneses share with the geneses introduced in this paper a common basis: they link 

closely the appropriation of capabilities of computer artefacts and the development of relevant knowledge, 

mathematical for the students and didactical for the teachers. It seems to us however that geneses relative to 

particular spaces that we considered in this paper, have the advantage of providing a more analytic view of long 

term evolution, and of being centred on mathematical work rather than restrictively on artefacts. 

As we mentioned in note 1, ‘genesis’ is used in MWS for denoting processes connecting the 

epistemological and the cognitive planes. This is certainly different, but ‘our’ geneses clearly imply cognitive 

evolution of the subjects and so further work could search to reconcile the two constructs. Also, in the continuity 

of previous work, this paper favors the artefact component of functional working spaces to the detriment of the 

rules, or more precisely, of the theoretical reference frame, and then further work should also aim at studying 

more comprehensively this component in each space.  
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