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Abstract
Time-periodic solutions of dynamical systems can be looked for using a discretization method. This paper

tests the Harmonic Balance Method (HBM) on a one-degree-of-freedom system (mass, damper, spring, belt)
with a regularized friction law. Its relative error is computed with respect to the number of discretization
unknowns. Despite the widespread idea that frequency methods are hardly applicable to friction problems,
the HBM compares well with a classical time-domain method for this nonlinear system. The main conclusion
of this article is that the HBM, without any specific optimization, is well suited for regularized friction.

1. Introduction

For nonlinear systems, the study of time-periodic solutions, and their evolution with respect to a param-
eter, is called the continuation of periodic solutions. For systems of Partial Differential Equations (PDE),
continuation studies may follow two successive discretization methods: a spatial discretization to transform
PDE into Ordinary Differential Equations (ODE), for instance, a modal projection; then a second proce-
dure to transform ODE systems into algebraic systems. Thus, time discretization methods are an important
ingredient in periodic solutions continuation, either in the time domain or in the frequency domain.

One of them is the harmonic balance method, where a periodic solution x of a nonlinear differential system

ẋ = f(x, λ) (1)

is sought after as:

x(t) = x0 +
H∑
k=1

xc,k cos(kωt) + xs,k sin(kωt) (2)

The new unknowns are the Fourier coefficients (x0, xc,k, xs,k) and ω. One must compute the Fourier coeffi-
cients of f(x, λ) given those of x. First attempts, especially when carried out by hand, were limited to a few
terms in the sum (2), that is, H small (often, H = 1). To overcome this issue the Alternating Frequency/Time
Domain method (AFT) [11] computes the nonlinear terms in the time domain. Then, Cochelin and Vergez [4]
showed that the computation of Fourier coefficients can be performed automatically for an arbitrary number
of harmonics H, in the frequency domain, provided the differential system follows a specific formalism. Then,
this can be coupled efficiently to a robust continuation technique, the Asymptotic Numerical Method (ANM)
since the system obtained on Fourier coefficients follows the requirements of the ANM.

The main available results for a class of problems of a certain regularity are asymptotic convergence rates.
As already underlined in [1], the lack of theoretical results on preasymptotic error analysis is problematic for
applications and motivates numerical study. Indeed, convergence rates describe how methods behave when
the number of discretization unknowns (for instance, the number of coefficients in Fourier series) tends to
infinity. However, what are realistic error expectations for a given number of discretization unknowns? As
recalled later, for f an analytic function in eq. (1), the HBM has a uniform convergence rate of O(c−H), where
c > 1 and H is the number of harmonics [5]. Although it is satisfying to have a convergence result, the



Symbol Signification Numerical value (if applicable)
λ Continuation parameter �
Vb Belt speed �
FN Normal force 5 N
ζ1 Damping 1.3096× 10−3

ω1 Natural angular frequency 1.2316× 103 rad.s−1

M1 Modal mass 6.42× 10−3 kg
µs Static friction coefficient 0.4
µd Dynamic friction coefficient 0.2
ε Modulus smoothing parameter 10−4

α Friction constant α =
√
µs(µs − µd) ' 0.283

n Regularization parameter �

Table 1: Parameters used for the mass-spring-damper-belt system with regularized friction.

definition of this exponential convergence merely means that if u denotes the exact solution and uH the HBM
estimate with H harmonics, there exists c > 1, a rank H0 and a constant C0, such that

∀ H > H0, ‖uH − u‖∞ < C0 c
−H

Obviously, the numbers c, H0 and C0 depend on the system of interest and are not known in advance. If c
is too close to unity the convergence will be rather slow; if H0 is large the asymptotic behaviour will not be
observed for practical (small) numbers H.

Another practical difficulty is the monotonicity of the error. If a solution is suspected to be inaccurate (for
instance, it presents spurious oscillations), will the solution be improved by adding discretization unknowns?
In order to compute approximate values of convergent series, increasing the number of terms in the partial
sum is not always reliable. Although it may seem at this point a “worst case scenario”, non-monotone error
is a phenomenon encountered in the current study, and the authors wish to underline its importance.

The issues mentioned above stress the need for more theoretical results on preasymptotic error analysis. In
the absence of such results, it is valuable to carry out numerical benchmarks. The case of regularized impact
has been studied in [1]. Another numerically demanding interaction in nonlinear mechanics is friction, with a
great variety of models developed for specific needs [2, 3]. The present paper focuses on a regularized friction
law. The solutions branches for this law and their similarities with Coulomb’s friction law are examined in
[6].

As a reference method, the Orthogonal Collocation at Gauss points with regular meshing is also used to
solve for periodic solutions of this model since it is a widely used and accepted method for non linear or even
piecewise-smooth systems. The aim of the current assessment is to evaluate the capacity of the HBM to deal
with regularized friction. It is known that there are refinements which can be deployed and tried whenever
necessary. The HBM can be more efficient using harmonic selection techniques (for instance, [7]). The OC
can benefit from adaptive meshing (although it can also be defective, as mentioned in Section 5.3 of [8]).
Our results show that, without optimization, on regularized friction, the error for the HBM has at least two
interesting properties: it is relatively small; it is monotonically decreasing. In some cases, it can also reach
its asymptotic rate with few unknowns.

The present paper is organised as follows: in section 2, model equations are given and numerical methods
are recalled. Section 3 presents the protocol used to evaluate the numerical accuracy of the method. Section
4 presents the results of this error analysis, for two types of nonlinearity (weakly nonlinear or stiff, depending
on the regularization parameter), and each time for two types of solutions.

2. Model and theoretical background

2.1. Model equations
The model studied in this paper is a mass-spring-damper-belt system (Fig. 1, a). This mechanical device

is a bowed string toy model. If y denotes the transverse displacement of a string at the bowing point x = xb,
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a projection of the equation of motion on the first bending mode leads to a mass-spring-damper equation.
Namely, if Vr denotes the relative velocity between the mass and the belt, Vb the belt velocity, FN the normal
force, M1 the modal string mass, ζ1 the damping, ω1 the natural angular frequency,

ÿ + 2ζ1ω1ẏ + ω2
1y = FN

M1
µn(Vr) (3)

where Vr = ẏ − Vb (4)
The contact law between the mass and the belt is a regularized friction law µn(Vr). It is based on an

analytical mother function, g, and a regularization parameter, n. g is defined as

g(Vr) :=
−µdVr

√
V 2
r + ε− 2αVr

V 2
r + 1 , α =

√
µs(µs − µd) (5)

where µs and µd are static and dynamic friction coefficients (µs > µd). Then, µn is defined as

µn(Vr) := g(nVr) =
−µdVr

√
V 2
r + ε

n2 − 2αnVr
V 2
r + 1

n2

(6)

For small values of n the system is weakly nonlinear; for great values of n it becomes stiff. This regularized
law µn is studied in [6]. A plot of the function µn is given in Fig. 1, b, for n = 10 (weakly nonlinear system)
and n = 100 (stiff system). For this regularized law, the movement type is classified as follows: let Vn be such
that

µn(Vn) = max
v

µn(v) ' µs (7)

then

|Vr(t)| 6 |Vn| ⇒ stick, |Vr(t)| > |Vn| ⇒ slip (8)
A period containing exactly one interval of stick motion and one of slip motion is called stick-slip.
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Figure 1: a) Mass-spring-damper system with a conveyor belt. b) Regularized friction law for n = 10 (black, dash) and n = 100
(red, solid).

2.2. Numerical methods
The association of the HBM and the Asymptotic Numerical Method (ANM), or of the OC and the ANM,

is implemented in the Matlab toolbox MANLAB [9]. It requires what is called quadratic formulation. By
adding auxiliary variables, the derivation order is lowered to 1 and the nonlinearities are recast into quadratic
ones, so that u, the vector of all unknown variables, is solution of

mu̇ = c0 + λc1 + l0u + λl1u + q0(u,u) (9)
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where λ is the continuation parameter, m, l0, l1 are matrices, c0, c1 vectors, q0 a bilinear operator [4]. We
recall here the quadratic formulation of equations (3), (4), (6) chosen in [6]:

0 = − λ + ω1z − Vr (10a)

0 = ε

n2 + V 2
r −R2 (10b)

0 = 1
n2 − S + V 2

r (10c)

0 = + 2α
n
Vr + µnS + µdVrR (10d)

ẏ = + ω1z (10e)

ż = − 2ζ1ω1z − ω1y + FN
ω1M1

µn (10f)

mu̇ = c0 + λc1 + l0u + q0(u,u)

The operators from eq. (9) are recalled (l1 is null). The 6 variables are concatenated into a vector u =
(Vr, R, S, µn, y, z)t.

We also recall briefly the two time-discretization methods, the HBM and the OC.
In the HBM, the periodic solution is sought after as a truncated Fourier series:

û(t) = u0 +
H∑
k=1

uc,k cos(kωt) +
H∑
k=1

us,k sin(kωt) (11)

New unknowns are vectors u0, uc,k and us,k, and angular frequency ω. To approximate an analytic function,
the HBM has a uniform asymptotic convergence rate of O(c−H), where c > 1 and H is the number of
harmonics [5]. The main difficulty in using the HBM with a large number of harmonics is to find Fourier
coefficients of nonlinear terms. In our case that is the purpose of the quadratic formulation, as proposed in
[4].

In the OC method, the solution is approximated by a periodic, continuous, piecewise polynomial of order
p. The (unknown) period is divided into Nint subintervals [ti, ti+1]. In each subinterval, equidistant time-steps
tji and the samples of the solution uji are defined as

tji := ti + j

p
h, uji := u(tji ), 0 6 j 6 p (12)

The approximate solution û is interpolated with Lji , the Lagrange polynomials of order p based on the time-
steps tji :

∀ t ∈ [ti, ti+1] , û(t) =
p∑
j=0

ujiL
j
i (t) (13)

The solution is then assumed continuous and periodic, which gives constraints at t = ti and t = 0. An
algebraic system on the unknowns ω and vectors uji is obtained by evaluation at the Gauss-Legendre points
(i.e the zeros of the Legendre polynomial of order p on each subinterval). Using regular meshing, the OC has a
uniform asymptotic convergence rate of O

(
N
−(p+1)
int

)
[12]. As usual the convergence is obtained by increasing

the number of subintervals, since it is cumbersome to increase the degree of polynomials (this would require
computing zeroes of Legendre polynomials). From now on the polynomials order is set to p = 3.

The number of discretization unknowns for each variable, Ndis, is defined as: Ndis = 2H+1, for the HBM,
Ndis = 3Nint + 1 for the OC.

3. Comparison protocol

3.1. Reference solution
Since both methods converge for C∞ problems, we can use as a reference the solution given by one method

with a great number of discretization unknowns. We use here the HBM with H = 500 harmonics. Numerical

4



integration, though it would provide an independent reference, has accuracy limitations and preliminary tests
showed that it was not always reliable. For instance, for n sufficiently large, in a portion of the bifurcation
diagram near the first Hopf bifurcation, where the amplitude and the angular frequency of the solution are
steep functions of the continuation parameter Vb (see [6]), usual numerical integration schemes seem unable
to compute periodic solutions.

3.2. Norm
Two kinds of results about numerical error are displayed below. First, one can focus on each variable

separately by computing relative errors. A comparison between the six variables can then be carried out.
However, this comparison is meaningful only if all variables have the same (null) mean value. One can notice
for instance that equation (10a) brings an offset between z and Vr, which would yield different relative errors.
Therefore, for each variable X in the vector u, its mean value is removed before computing the relative error.

For each variable X, after evaluating Xref and Xtest in Nt = 105 points regularly spaced over their
respective periods, which creates two vectors (Xref(tj))j , (Xtest(tj))j , its mean value M(X) is defined by

M(X) := 1
Nt

∑
k>0

Xref(tk) (14)

The relative error without bias is defined by

εr(X) :=
‖ (Xref(tj))j − (Xtest(tj))j ‖2

‖ (Xref(tj))j −M(X)‖2
(15)

The second kind of results is scalar and uses a single norm. It has already been highlighted that using the
ANM makes necessary the introduction of 4 auxiliary variables, namely Vr, R, S, µn, instead of using just 2,
y and z, as a numerical integration method would. For the sake of a complete assessment of the error, the
second norm takes the 6 variables into account. Thus, with u = (Vr, R, S, µn, y, z)t, vector of the 6 variables,(
ui(tj)

)
16i66,16j6Nt

the matrix of its time evaluations, Mu the mean values of each variable, mean relative
error εr,m is now defined as

εr,m :=

∥∥∥(uiref(tj)
)
i,j
−
(
uitest(tj)

)
i,j

∥∥∥
2∥∥∥(uiref(tj)

)
i,j
−Mu

∥∥∥
2

(16)

3.3. Test solution
When the number of discretization unknowns (i.e. H or Nint) changes, the solution branch is altered.

For instance, for the system (3), the fold bifurcation (see Fig. 2), located at Vb ' 10.26 m.s−1 (for n = 10),
is displaced to Vb ' 24.05 m.s−1 for H = 1, Vb ' 7.51 m.s−1 for H = 5 and Vb ' 9.46 m.s−1 for H = 9.
To compare two solutions, a reference on the one hand, and a test solution with less harmonics or less
subintervals on the other hand, a criterion is needed to perform a relevant comparison. As in a previous
comparison protocol [1], an energy criterion is chosen. In the test solution, the mass needs to have the same
kinetic energy (over a period) as in the reference.

At last, branches of solutions are available. Where should tests be performed, i.e. which solutions should
be chosen as references? To the author’s knowledge, the number of unknowns needed to approximate a solution
cannot be estimated in advance. One can also observe that this number can vary along a solution branch.
For the system considered here, near the two Hopf bifurcations (see Fig. 2) and on the slipping portion of
the branch, the solution requires few unknowns and does not present any numerical challenge. Between the
first Hopf bifurcation and the belt velocity denoted V1 on the one hand, and between the velocity V2 and the
fold bifurcation on the other hand, the solution is a (regularized) stick-slip with Vr staying negative over a
period. Between the velocities V1 and V2, Vr briefly changes sign, which, as the authors found in preliminary
tests, makes this stick-slip more challenging to compute. Also, the stiffness of the system, which is controlled
by the regularization parameter n, alters the solution, and is a relevant parameter of interest. Therefore, four
cases will be studied:
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Figure 2: Bifurcation diagram for the system (3), n = 10 : peak-to-peak amplitude of y vs λ = Vb (HBM, H = 80). Solid line:
stable solution, dash: unstable.

1. “Weakly nonlinear system, situation 1”, denoted W1: low value of n (n = 10), Vr stays negative
(section 4.1)

2. “Weakly nonlinear system, situation 2”, denoted W2: low value of n (n = 10), Vr briefly changes sign
(section 4.2)

3. “Stiff system, situation 1”, denoted S1: high value of n (n = 100), Vr stays negative (section 4.3)
4. “Stiff system, situation 2”, denoted S2: high value of n (n = 100), Vr briefly changes sign (section 4.4).

4. Error results

4.1. Case W1: weakly nonlinear system, situation 1
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Figure 3: Reference solution (computed with HBM, H = 500), in Case W1 (as defined in section 4.1) : n = 10, Vb = 0.5 m.s−1,
other parameters values are given in Table 1. a) One period of the displacement y, relative velocity Vr and friction coefficient
µn with arbitrary vertical scales. b) Phase diagram (y, Vr) in blue, limit velocity between stick and slip Vn in black dashed (see
equation (8)).
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Figure 4: Relative errors (eq. 15) for three specific variables y, z and µn, in case W1 (as defined in section 4.1). a) HBM, semilog
scale, with a zoom window on y around Ndis = 80. b) OC, semilog scale. Note that axis limits are different between the two
figures.
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For a low value of the regularization parameter (n = 10), which means, for a weakly nonlinear system,
the case W1 focuses on a reference solution with a small belt velocity (Vb = 0.5 m.s−1). For this first choice
of n and Vb, Fig. 3, left, shows one period of the displacement y, relative velocity Vr friction coefficient µn.
Fig. 3, right, shows the cycle in the phase space (y, Vr). An important characteristic of this solution is that
Vr is negative during the period, unlike the solution presented in case W2 (section 4.2).

For any number of discretization unknowns Ndis, y is more accurately computed than z, which is more
precise than µn (Fig. 4). When the friction law is Coulomb’s law, defined as:

µ(Vr) =
{
−µd sign(Vr) if Vr 6= 0 (slip)
µ0 with |µ0| 6 µs, if Vr = 0, (stick) (17)

then during a stick-slip cycle, the acceleration and the friction coefficient have a discontinuity between sticking
and slipping. The velocity is continuous with two singular points over a period, and differentiable elsewhere.
Although the regularization process makes every variable analytical with respect to the continuation param-
eter, the regularized variables y, z and µn have different spectral content. This can explain a better accuracy
for some variables compared to others, even if they are all smooth.

For z and µn the errors for the HBM are straight lines in the semilog plot (in agreement with the asymptotic
convergence rate O

(
c−H

)
, c > 1) for small values of Ndis. The variable y is very accurately represented with

the HBM (more than the five others); but from Ndis = 43 to 163, small ripples appear very regularly (as
displayed in the zoom window around Ndis = 80) and the ripples span 3 or 4 steps. This intriguing behaviour
does not undermine the precision of this method since it is a small effect on the most accurately computed
variable.

The OC exhibits up to two stages in the preasymptotic range for each variable (Fig. 4b). At first, the error
can be a non-monotone function of Ndis. Then, the error is strictly decreasing, and its slope coefficient in
log-log scale converges to its expected value −(p+1) = −4 for an asymptotic convergence rate of O

(
N
−(p+1)
int

)
.

The transition between these two stages depends on the stiffness of the variables. The error is immediately
a monotone function of Ndis for y ; it becomes monotone for z when Ndis > 130 ; for µn, this happens when
Ndis > 238.

In terms of mean relative error, the HBM shows a uniform convergence rate O
(
c−H

)
, which means a linear

fit in semilog scale (Fig. 5, left). For 61 6 Ndis 6 183 the linear coefficient is −0.052 ; since Ndis = 2H + 1,
c = exp(2 ∗ 0.052 ∗ ln(10)) = 1.27.

The asymptotic polynomial convergence of the OC appears later. At first sight there is an almost straight
line in log-log scale from Ndis > 250, but the slope coefficient may be different from the asymptotic rate when
the error starts being monotone. A linear regression fits the curve with coefficient −4.3 for 394 6 Ndis 6 484.

The accuracy of the chosen reference solution can be checked a posteriori. Indeed, for a variable X, let
Xe be the exact solution, Xtest and Xref being the test and the reference as above. Then:

• ε1 = ‖Xtest −Xe‖ is the error that is searched for ;

• ε2 = ‖Xref −Xe‖ has to be a small error ;

• ε3 = ‖Xtest −Xref‖ is actually measured.

Reverse triangle inequality gives |ε1− ε3| 6 ε2 and means that as long as ε3 is much greater than ε2, ε3 is close
to ε1. If the HBM mean error is still a straight line (in semilog scale) when Ndis increases, the test solution is
still much less accurate than the reference, and the assumption of a small error ε2 is correct. On the contrary,
if machine precision prevents the error ε2 from being small (compared with ε3), the test and the reference
become close. In that case, from a certain Ndis, there is a plateau, with an almost constant error beyond
this number of unknowns. This plateau, not shown in figures, is not an issue of the convergence process, but
one of its features: it indicates when the test reaches the same accuracy as the reference. For the HBM and
n = 10, this plateau appears beyond Ndis = 200 for y, Ndis = 220 for z, and Ndis = 260 for µn.

A comparison with numerical integration over the variables y and z was used to confirm our results. Let’s
call ODE the solution provided by the the solver ode15s from Matlab ODE suite [13]. Since the relative error
between ODE and the HBM reference solution (with H = 500 harmonics) is about 10−11 (resp. 10−10) for y
(resp. z), choosing ODE instead of HBM as a reference gives extremely close error curves for those variables.
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Figure 6: Reference solution (computed with HBM, H = 500), in Case W2 (as defined in section 4.2) : n = 10, Vb = 2 m.s−1,
other parameters values are given in Table 1. a) One period of the displacement y, relative velocity Vr and friction coefficient
µn, with arbitrary vertical scales. b) Zoom in the phase diagram (y, Vr) in blue ; limit velocities between stick and slip, Vn and
−Vn, are black dashed lines (see equation (8)).

4.2. Case W2: weakly nonlinear system, situation 2
For the same value of the regularization parameter (n = 10), the case W2 focuses on a reference solution

with a greater belt velocity (Vb = 2 m.s−1). The reference solution is plotted in Fig. 6. On the right, phase
diagram (y, Vr) is zoomed during the stick motion (|Vr| 6 Vn). The sign of Vr changes during a period. It is
the main difference with the previous case W1. This property of the solution has significant consequences on
the preasymptotic error (as shown below), but the underlying reasons are still unclear.

Note that as underlined in [6], this sign change is a difference with the stick-slip cycles obtained using
Coulomb’s law, where the relative velocity has a constant sign. It is caused by the regularization process and
has no physical interpretation.

In this case (Fig. 7), the HBM error decreases at a fast rate for small values of Ndis, then reaches a slower
asymptotic convergence (straight lines in the semilog plot). Similarly to the first case, the relative error on y
is smaller than the one on z, itself smaller than the error on µn. Ripples on the error curves now affect the
three variables, not only y.

The OC error curves exhibit spurious oscillations, especially for the variables y and µn until large values
of Ndis. This time, the six error curves are presented on the same figure to highlight that for small number of
unknowns, the error curves are close for the two methods. The computation of mean errors (Fig. 8) gives a
synthetic measure, where the error on µn appears predominantly.

4.3. Case S1: stiff system, situation 1
For increasing values of n, the system becomes stiffer (Fig. 1, b). The chosen value here is n = 100, and

in this first situation S1, similarly to case W1, Vr stays negative over one period (for the reference solution
Vb = 0.05 m.s−1). The relative errors over y, z and µn are ordered as before: y has the smallest relative
error, µn the largest. The two methods have closer error curves than before (Fig. 10). The HBM is already
exponentially convergent, with monotone errors on z and µn (and small ripples on y). The OC mean error
is non-monotone in the tested range (Fig. 10). Going further should show the asymptotic convergence of the
OC mean error, as observed for n = 10 in case W1.

The stiffness of the system, compared with case W1 (n = 10), is highlighted by the number of discretization
unknowns needed to reach a specific accuracy. Let’s consider the variable y. In case W1, the error was inferior
to 10−4 when Ndis > 21 for the HBM, when Ndis > 34 for the OC. When n = 100 in this analogous case S1,
more discretization unknowns are needed to keep the error on y lower than 10−4 (Ndis > 97 for the HBM,
Ndis > 148 for the OC).
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Figure 7: Relative errors (eq. (15)) for three specific variables y, z and µn. Weakly nonlinear system (n = 10), case W2 (as
defined in section 4.2). Solid lines with squares: HBM, dashed lines: OC. Semilog scale.
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Figure 8: Mean relative error (eq. (16)) for the HBM and the OC, for a weakly nonlinear system (n = 10) in case W2 (as defined
in section 4.2). a) Semilog scale. b) Log-log scale.
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Figure 9: Relative errors (eq. 15) for three specific variables y, z and µn. Case S1 (as defined in section 4.3). Solid lines with
squares: HBM, dashed lines: OC. Semilog scale.
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Figure 10: Mean relative error (eq. (16)), for the HBM and the OC, for case S1 (as defined in section 4.3). a) Semilog scale. b)
Log-log scale.
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Figure 11: Relative errors (eq. (15)) for three specific variables y, z and µn, for case S2 (defined in Section 4.4). Solid lines with
squares: HBM, dashed lines: OC. Semilog scale.

4.4. Case S2: stiff system, situation 2
In this last case S2, the system is stiff (n = 100) ; and for the reference solution, the value of Vb = 0.4

m.s−1 is chosen so that the sign of Vr changes shortly during the period (analogous of W2, section 4.2). The
errors on the three variables y, z and µn are shown in Fig. 11. The HBM converges with monotone errors.
The rates slow down for large number of discretization unknowns. The OC errors exhibit important spikes for
small Ndis, and errors are non-monotone in the tested range. Once more, mean error curves (not displayed
here) only reflect the predominant error on µn. In Fig. 11 the HBM error curves start at Ndis = 145 and the
OC curves start at Ndis = 82. If Ndis is too small, the HBM cannot be used to continue the whole branch.
On the contrary, the OC is able to continue the branch but computed solutions can be inaccurate.

5. Conclusion

In this paper, the Harmonic Balance Method (HBM) is assessed on a nonlinear system with a regularized
friction law. A numerical evaluation of the error with respect to the number of discretization unknowns is
performed for four different cases (either a weakly or highly nonlinear system ; either a constant sign for the
relative velocity or a varying sign). The Orthogonal Collocation at Gauss points with regular meshing (OC)
is used to put results into context.

In cases where the relative velocity keeps a constant sign, the HBM immediately starts converging at an
asymptotic rate. That rate is slower for a stiff system than for a weakly nonlinear system. The OC presents
non-monotone errors for small numbers of discretization unknowns, and the asymptotic convergence of the
OC can be difficult to observe when the system is stiff.

In cases where the sign of the relative velocity shortly changes over a period, the HBM does not converge
at its asymptotic rate from the beginning, and the OC errors exhibit more important oscillations. The HBM
presents satisfyingly low error values. We conclude that the HBM, without any specific optimization, is well
suited for regularized friction.
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