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Fourier transform of Weyl fractional derivatives
P. Vigué

1 Definitions
Unlike more usual fractional operators with names now comonly agreed, like Caputo derivative or Riemann-
Liouville derivative, there is no unanimous designated name for the operators presented here, that have
unbounded integration intervals. Drawing inspiration from [Hil08], [Ort11] (table 2.1) et [Mai10] (section 1.4),
they are named after Weyl in the rest of the document.

Let α be in ]0, 1[, let x be a differentiable function. The Weyl fractional derivative of x (of order α) is
defined as:

Dαx(t) := 1
Γ(1− α)

∫ t

−∞
(t− τ)−αẋ(τ) dτ, (1)

where Γ is the Euler Gamma function :

Γ(α) :=
∫ ∞

0
e−ssα−1 ds. (2)

The Weyl fractional integral is similarly defined: for α ∈ R+ \ N,

D−αx(t) := 1
Γ(α)

∫ t

−∞
(t− τ)α−1x(τ) dτ (3)

The integration interval chosen above, ]−∞, t[, is not bounded. Expressions defined above exist when the
function x is periodic ([Ort11], section 2.11.1), and, in the case of the fractional integral, if it is also of zero
mean.

There is a link between fractional derivative and fractional integral. For α ∈]0, 1[,

Dαx(t) := 1
Γ(1− α)

∫ t

−∞
(t− τ)−αẋ(τ) dτ (4)

= 1
Γ(1− α)

∫ t

−∞
(t− τ)(1−α)−1ẋ(τ) dτ ; (5)

and given that 1− α > 0, the integral of ẋ of order 1− α is

Dα−1ẋ(t) = D−(1−α)ẋ(t) := 1
Γ(1− α)

∫ t

−∞
(t− τ)(1−α)−1ẋ(τ) dτ (6)

therefore
Dαx = Dα−1ẋ (7)

Moreover, thanks to this link between fractional derivative and fractional integral, one can define the Weyl
derivative of order β ∈]1, 2[ as:

Dβx := Dβ−1ẋ (8)
and similarly to the standard derivative, this can be done recursively for larger orders β; or even, skipping
steps, let us define the Weyl fractional derivative of x of order β ∈ R+ \ N,

Dβx(t) := 1
Γ(dβe − β)

∫ t

−∞
(t− τ)dβe−β−1x(dβe)(τ) dτ, (9)
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where d·e denotes the ceiling function. Setting n := dβe − 1 and α := β − n ∈]0, 1[, one gets

Dβx(t) = 1
Γ(1− α)

∫ t

−∞
(t− τ)−αx(n+1)(τ) dτ = Dαx(n), (10)

which is why the rest of this document focuses on the operator Dα for α ∈]0, 1[.

2 Fourier transform of fractional operators
The motivation for the term “fractional” is to generalize the derivation and integration operations to non-
integer orders. For a function x, the Fourier transform F verifies:

F(ẋ)(ξ) = (iξ)F(x)(ξ). (11)

Definitions (1), (3), generalize this property to an order α in ]0, 1[:

F(D−αx)(ξ) = (iξ)−αF(x)(ξ), F(Dαx)(ξ) = (iξ)αF(x)(ξ) (12)

Coupled with the remark (10), one can obtain that the property (12) holds for any non-integer α.
A similar property, in terms of Laplace transform, is more commonly given, but for causal functions, and

for a Laplace variable s with a (strictly) positive real part. To obtain the property (12) from there, one can
take the limit s → −iξ, which can be justified by theorem. This is how [Pod98], section 2.9.2, presents it.
A direct proof of the property (12) for α = 1

2 is given in the lecture [DGP10]. The rest of this document is
dedicated to give a direct1 proof for α ∈]0, 1[.

To this end, three lemmas are first established. The first is adapted from Jordan’s lemma. The second
one is proved very similarly to the first one. These two first lemmas are used to prove the thid one, a Fourier
transform used for the final proof, which establishes the property (12).

Lemma (Jordan). In the complex plane, let CR be the quarter circle of center 0, radius R, endpoints R
and iR, positively oriented. Let α ∈]0, 1[, let ξ < 0. Then the integral

IR :=
∫
CR

zα−1e−iξz dz (13)

tends to 0 when R tends to infinity.

Proof. After choosing the polar parametrization of CR: z = Reiθ, dz = iReiθ dθ∣∣∣∣∫
CR

zα−1e−iξz dz
∣∣∣∣ =

∣∣∣∣∣
∫ π/2

0
Rα−1eiθ(α−1)e−iξ(R cos θ+iR sin θ)iReiθ dθ

∣∣∣∣∣ (14)

6
∫ π/2

0
Rα−1

∣∣∣eiθ(α−1)
∣∣∣ ∣∣e−iξR cos θ∣∣ eξR sin θ|i| R |eiθ| dθ (15)

6 R
∫ π/2

0
Rα−1eξR sin θ dθ (16)

Let ε > 0. Since α− 1 < 0, there exists R0 such that for R > R0, Rα−1 < ε. On the other hand, the function
sin is over

[
0, π2

]
, so its graph is above the line segment from (0; 0) to

(π
2 ; 1

)
, yielding

∀ θ ∈
[
0, π2

]
,

2
π
θ 6 sin θ (17)

Since ξ < 0,
∀ θ ∈

[
0, π2

]
, ξ

2
π
θ > ξ sin θ (18)

1In a sense of: as self-contained as possible, using explicit proofs rather than externalizing the burden to lesser known theorems!
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Therefore, for R > R0,

|IR| 6 Rε
∫ π/2

0
eξRθ2/π dθ (19)

6 Rε
eξR − 1
ξR2/π = ε

π

2
1− eξR

|ξ|
−−−−−→
R→+∞

0 (20)

�

Lemma (contour around 0). In the complex plane, let C0 be the quarter circle of center 0, radius 1
R
,

endpoints 1
R

and i

R
, negatively oriented. Let α ∈]0, 1[, ξ < 0. Then the integral

I0 :=
∫
C0

zα−1e−iξz dz (21)

tends to 0 when R tends to infinity.

Proof. Again, a polar parametrization z = 1
Re

iθ yields:

∣∣∣∣∣
∫ 0

π/2

(
1
R
eiθ
)α−1

e−iξ
1
R (cosθ+i sin θ)i

1
R
eiθ dθ

∣∣∣∣∣ 6
∫ π/2

0
R1−α exp

(
ξ sin θ
R

)
1
R

dθ (22)

6 R−α
∫ π/2

0
exp

(
ξ

R

2
π
θ

)
dθ (23)

(from Eq. (18))

6 R−α
Rπ

2ξ

(
exp

(
ξ

R

)
− 1
)

(24)

6 R1−απ

2
1− eξ/R

|ξ|
−−−−−→
R→+∞

0 (25)

since when R→ +∞,
R1−α(1− eξ/R) ∼ −R1−α ξ

R
= −R−αξ −−−−−→

R→+∞
0 (26)

�

Lemma (Fourier transform). For α ∈]0, 1[ and ξ ∈ R∫ +∞

0
e−iξssα−1 ds = (iξ)−αΓ(α) (27)

Proof. Starting with the case ξ < 0, let C be the closed curve shown in Fig. 1. The holomorphic function

z 7→ e−iξzzα−1

has only one pole, z = 0, and it is outside of the contour C. Cauchy Integral Theorem2 gives:∫
C

e−iξzzα−1 dz = 0 (28)

This integral is now split into four: ∫
C

=
∫ R

1/R
+IR +

∫ i/R

iR

+I0 (29)

2Voir par ex. Weisstein, E. W. : Cauchy Integral Theorem. From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/CauchyIntegralTheorem.html.
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Figure 1: Contour C, concatenation of four simple curves. Blue, dash: quarter circle CR (first lemma).
Solid, black: when R→ +∞, positive part of the real axis. Black, dash: when R→ +∞, positive part of the
imaginary axis. Red: quarter circle C0 (second lemma).

The previous lemmas established that the second and fourth integrals, namely IR and I0, tend to 0 when
R tend to infinity. Therefore, the limit R→ +∞ of Eq. (29) yields:∫ +∞

0
e−iξzzα−1 dz +

∫ 0

+i∞
e−iξzzα−1 dz = 0 (30)

The integrals are parametrized as follows : z ∈ R+ for the first one, z = it and t ∈ R+ for the second one,
one obtains: ∫ +∞

0
e−iξssα−1 ds =

∫ +∞

0
e−iξ(it)(it)α−1i dt (31)

=
∫ +∞

0
eξtiαtα−1 dt (32)

= iα
∫ +∞

0
e−y

(
y

−ξ

)α−1 1
−ξ

dy (33)

substitution y = −ξt (ξ < 0)

= iα(−ξ)−α
∫ +∞

0
e−yyα−1 dy (34)

= (iξ)−αΓ(α) (35)

since iα(−1)−α = eiαπ/2e−iαπ = eiπ/2(−α) = i−α. By denoting

pα : s 7→ 0 if s < 0, sα−1 otherwise (36)

one obtains that for ξ < 0,

F(pα)(ξ) =
∫ +∞

0
e−iξssα−1 ds = (iξ)−αΓ(α) (37)

To conclure whatever the sign of ξ, let ξ < 0, by property of the Fourier transform, since pα is a real function,

F(pα)(−ξ) = F(pα)(ξ) (38)
= i−αξ−αΓ(α) (39)
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Figure 2: Integration domain under the line t = τ (blue), parametrized on the left side by the red half-lines
(t, τ) ∈ R×]−∞, t], on the right side by the half-lines (τ, t) ∈ R× [τ,+∞[.

and
i−α = e−iαπ/2 = ei(−α)(−π/2) = (−i)−α (40)

so
F(pα)(−ξ) = (−i)−αξ−αΓ(α) = (i(−ξ))−αΓ(α) (41)

�

Proof of the property (12).

F(D−αx)(ξ) =
∫ +∞

−∞
D−αx(t)e−iξt dt (42)

=
∫ +∞

t=−∞

1
Γ(α)

∫ t

τ=−∞
(t− τ)α−1x(τ) dτe−iξt dt (43)

= 1
Γ(α)

∫ +∞

τ=−∞

∫ +∞

t=τ
(t− τ)α−1x(τ)e−iξt dt dτ (44)

by using the new parametrization of the half-plane under the line t = τ (see Fig. 2)

= 1
Γ(α)

∫ +∞

τ=−∞

∫ +∞

s=0
sα−1x(τ)e−iξ(s+τ) ds dτ (45)

(substitution s = t− τ) (46)

= 1
Γ(α)

∫ +∞

s=0
sα−1e−iξs ds

∫ +∞

τ=−∞
x(τ)e−iξτ dτ (47)

= (iξ)−αF(x)(ξ) (48)

using the third lemma for the last equality. On the other hand,

F(Dαx)(ξ) = F(Dα−1ẋ)(ξ) by property (7) (49)
= (iξ)α−1F(ẋ)(ξ) (α− 1 < 0, established result for the integral Dα−1) (50)
= (iξ)αF(x)(ξ) (51)

�
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