Fanny Dufossé
email: fanny.dufosse@inria.fr

Kamer Kaya
email: kaya@sabanciuniv.edu

Ioannis Panagiotas
email: ioannis.panagiotas@ens-lyon.fr

Bora

Bora Uçar
email: bora.ucar@ens-lyon.fr

Approximation algorithms for maximum matchings in undirected graphs

published or not. The documents may come

Introduction

A matching in a graph is a set of edges no two of which share a common vertex. We consider the maximum cardinality matching problem for general graphs; this problem asks for a matching of maximum size. There are a number of polynomial time algorithms to solve this problem exactly. The lowest worst-case time complexity of the known algorithms is O(√ nτ) for a graph with n vertices and τ edges [START_REF] Blum | A new approach to maximum matching in general graphs[END_REF][START_REF] Gabow | Faster scaling algorithms for network problems[END_REF][START_REF] Micali | algorithm for finding maximum matching in general graphs[END_REF]. There is considerable interest in simpler and faster algorithms that have some approximation guarantee, as such simpler algorithms are used as a jump-start routine by the current state-of-the-art matching algorithms [START_REF] Duff | Design, implementation, and analysis of maximum transversal algorithms[END_REF][START_REF] Langguth | Heuristic initialization for bipartite matching problems[END_REF].

We propose randomized heuristics and analyze their performance. The proposed heuristics extend previous work [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF] and construct a subgraph of the input graph by randomly choosing some edges. They then obtain a maximum cardinality matching in the selected subgraph and return it as an approximate matching for the input graph. The probability density function for choosing a given edge is obtained with a sparse matrix scaling method. One of the heuristics use the well-known Karp-Sipser (KS) heuristic [START_REF] Karp | Maximum matching in sparse random graphs[END_REF] to find a maximum cardinality matching on the selected subgraph. Its expected matching cardinality provides an approximation around 0.866 under the condition that the scaling method has successfully scaled the input matrix. The analysis can also be thought of analyzing Karp-Sipser heuristic's performance on a certain model of random graphs. Two other variants obtain better results than the first one; in theory and in practice.

The organization of the paper is as follows. In Section 2, we give some background on matchings, doubly stochastic scaling methods, and a brief summary of related work. In Section 3, we propose our matching heuristics and analyze their approximation guarantee. We then give experiments in Section 4, where we observe the theoretical findings in practice. Section 5 concludes the paper and briefly discusses the future work.

Let G = (V, E) be an undirected graph, where V is the vertex set and E is the edge set. G can be represented as a symmetric, square, sparse matrix A. Each row (and its corresponding column) of A corresponds to a unique vertex in V so that a ij = a ji = 1 if and only if (v i , v j) ∈ E. We use adj(u) to denote the set of neighbors of a vertex, and extend this to a set S of vertices as adj(S) in a natural way. The number of edges incident on a vertex is called its degree. A path in a graph is a sequence of vertices such that each consecutive vertex pair share an edge. A vertex is reachable from another, if there is a path between them. The connected components of a graph are the equivalence classes of vertices under the "is reachable from" relation. A cycle in a graph is a path whose start and end vertices are the same. A simple cycle is a cycle with no vertex repetitions. A tree is a connected graph with no cycles. A spanning tree of a connected graph G is a tree containing all its vertices.

A graph

G = (V , E) is a subgraph of G = (V, E) if V ⊆ V and E ⊆ E. Let G k = (V, E
) be a random subgraph of G where each vertex in V randomly chooses k of its edges, with repetition. An edge {u, v} is included in G k out only once even if it is chosen multiple times. We call G k out as a k-out subgraph of G. A permutation of 1, . . . , n in which no element stays in its original position is called derangement. The total number of derangements of 1, . . . , n is denoted by !n, and is the nearest integer to n! e [3, pp. 40-42], where e is the base of the natural logarithm.

Maximum cardinality matching.

A matching M in a graph G = (V, E) is a subset of edges E where a vertex in V is in at most one edge in M. Given a matching M, a vertex v is said to be matched by M if v is in an edge of M, otherwise v is called unmatched. If all the vertices are matched by M, then M is said to be a perfect matching. The cardinality of a matching M, denoted by |M|, is the number of edges in M. The maximum cardinality matching problem asks for a matching of maximum size. We call such a matching a maximum matching.

2.2 Scaling matrices to doubly stochastic form. An n × n matrix A = 0 is said to have support if there is a perfect matching in the associated bipartite graph. An n × n matrix A is said to have total support if each edge in its bipartite graph can be put into a perfect matching. A square sparse matrix is called irreducible if its directed graph is strongly connected. A square sparse matrix A is called fully indecomposable if for a permutation matrix Q, the matrix B = AQ has a zero free diagonal and the directed graph associated with B is irreducible. Fully indecomposable matrices have total support; but a matrix having total support could be a block diagonal matrix, where each block is fully indecomposable. For more formal definitions of support, total support, and the fully indecomposability, see the book by Brualdi and Ryser [START_REF] Brualdi | Combinatorial Matrix Theory[END_REF]Ch. 3 and Ch. 4]. Any nonnegative matrix A with total support can be scaled with two (unique) positive diagonal matrices D R and D C such that D R AD C is doubly stochastic (that is, the sum of entries in any row and in any column of D R AD C is equal to one). If A has support but not total support, then A can be scaled to a doubly stochastic matrix but not with two positive diagonal matrices [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]-this fact is also seen in more recent treatments [START_REF] Knight | The Sinkhorn-Knopp algorithm: Convergence and applications[END_REF][START_REF] Knight | A symmetry preserving algorithm for matrix scaling[END_REF][START_REF] Ruiz | A scaling algorithm to equilibrate both row and column norms in matrices[END_REF]).

The Sinkhorn-Knopp algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF] is a well-known method for scaling matrices to doubly stochastic form. This algorithm generates a sequence of matrices (whose limit is doubly stochastic) by normalizing the columns and the rows of the sequence of matrices alternately. While the limit is symmetric, the intermediate matrices generated in the sequence are not symmetric. Two other iterative scaling algorithms [START_REF] Knight | A fast algorithm for matrix balancing[END_REF][START_REF] Knight | A symmetry preserving algorithm for matrix scaling[END_REF][START_REF] Ruiz | A scaling algorithm to equilibrate both row and column norms in matrices[END_REF]) maintain symmetry all along the way. That is why we use this latter class of algorithms.

Related work.

The first polynomial time algorithm with O(n 2 τ) complexity for the maximum cardinality matching problem on general graphs with n vertices and τ edges is proposed by Edmonds [START_REF] Edmonds | Paths, trees, and flowers[END_REF]. Currently, the fastest algorithms have O(√ nτ) complexity [START_REF] Blum | A new approach to maximum matching in general graphs[END_REF][START_REF] Gabow | Faster scaling algorithms for network problems[END_REF][START_REF] Micali | algorithm for finding maximum matching in general graphs[END_REF]. The first of these algorithms is by Micali and Vazirani [START_REF] Micali | algorithm for finding maximum matching in general graphs[END_REF] whose clear exposition is later presented by Peterson and Loui [START_REF] Peterson | The general maximum matching algorithm of Micali and Vazirani[END_REF] and recently, its simpler analysis is given by Vazirani [START_REF] Vazirani | An improved definition of blossoms and a simpler proof of the MV matching algorithm[END_REF]. Later, Blum [START_REF] Blum | A new approach to maximum matching in general graphs[END_REF] and Gabow and Tarjan [START_REF] Gabow | Faster scaling algorithms for network problems[END_REF] proposed algorithms with the same complexity.

Random graphs have been frequently analyzed in terms of their maximum matching cardinality. For bipartite graphs, Walkup [START_REF] Walkup | Matchings in random regular bipartite digraphs[END_REF] showed that a 1-out subgraph of a complete bipartite graph

G = (V 1 , V 2 , E) where |V 1 | = |V 2 |
asymptotically almost surely (a.a.s.) does not contain a perfect matching. He also showed that a 2-out subgraph of a complete bipartite graph a.a.s. contains a perfect matching. For complete undirected graphs, similar results are shown by Frieze [START_REF] Frieze | Maximum matchings in a class of random graphs[END_REF]. Karoński and Pittel [START_REF] Karoński | Existence of a perfect matching in a random (1 + e -1)-out bipartite graph[END_REF] improved the results of Walkup by allowing the vertices which are not selected by other vertices to select one more neighbor. They showed that this random graph a.a.s. has a perfect matching. In these graphs, the expected number of edges per vertex is 1 + e -1 .

Randomized algorithms which check the existence of a perfect matching and generate perfect/maximum matchings have been proposed in the literature [START_REF] Cheriyan | algorithms for problems in matching theory[END_REF][START_REF] Ibarra | Deterministic and probabilistic algorithms for maximum bipartite matching via fast matrix multiplication[END_REF][START_REF] Lovász | On determinants, matchings, and random algorithms[END_REF][START_REF] Mucha | Maximum matchings in planar graphs via Gaussian elimination[END_REF][START_REF] Mucha | Maximum matchings via Gaussian elimination[END_REF]. Lovász showed that the existence of a perfect matching can be verified in randomized O(n ω) time where O(n ω) is the time complexity of the fastest matrix multiplication algorithm available [START_REF] Lovász | On determinants, matchings, and random algorithms[END_REF]. More information such as the set of allowed edges, i.e., the edges in some maximum matching, of a graph can also be found with the same randomized complexity as shown by Cheriyan [START_REF] Cheriyan | algorithms for problems in matching theory[END_REF].

To construct a maximum cardinality matching in a general, non-bipartite graph, a simple, easy to implement algorithm with O(n ω+1) randomized complexity is proposed by Rabin and Vazirani [START_REF] Rabin | Maximum matchings in general graphs through randomization[END_REF]. The algorithm uses matrix inversion as a subroutine. Later, Mucha and Sankowski proposed the first algorithm for the same problem with O(n ω) randomized complexity [START_REF] Mucha | Maximum matchings via Gaussian elimination[END_REF]. This algorithm uses expensive sub-routines such as Gaussian elimination and equivalence classes formed based on the edges that appear in some perfect matching [START_REF] Lovasz | Matching theory[END_REF]. A simpler randomized algorithm with the same complexity is proposed by Harvey [START_REF] Harvey | Algebraic algorithms for matching and matroid problems[END_REF].

Although the above-mentioned randomized algorithms find maximum matchings, they use expensive subroutines. Our focus is on matching heuristics that have linear or near linear run time and use randomization to obtain good quality guarantees. Recent surveys of matching heuristics are given by Kaya et al. [START_REF] Duff | Design, implementation, and analysis of maximum transversal algorithms[END_REF]Section 4] and Langguth et al. [START_REF] Langguth | Heuristic initialization for bipartite matching problems[END_REF]. The Karp-Sipser (KS) heuristic [START_REF] Karp | Maximum matching in sparse random graphs[END_REF] is suggested as a good initialization step for exact bipartite maximum cardinality matching algorithms [START_REF] Kaya | Push-relabel based algorithms for the maximum transversal problem[END_REF]. The KS heuristic takes any degree-1 vertex and matches it to its unique neighbor. When there is no degree-1 vertex, it chooses an edge randomly and matches the two end-points. Upon matching a pair of vertices, KS removes them from the graph and updates the degrees of the remaining vertices. Karp-Sipser heuristic becomes an exact algorithm for graphs with components having unique cycles.

Three of us proposed [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF] heuristics for bipartite graphs. One of the heuristics scales the adjacency matrix of a given bipartite graph to extract a 1-out subgraph, and applies Karp-Sipser heuristic as an exact algorithm. This heuristic is shown to deliver matchings of cardinality 0.866n for a bipartite graph with n vertices on each side. This number is also the expected cardinality of a maximum matching in a random 1-out subgraph of a complete bipartite graph [START_REF] Meir | The expected node-independence number of random trees[END_REF]. Excluding the cost of scaling, the heuristic has O(n + τ) time complexity. We empirically showed that only five scaling iterations (with linear time complexity) is sufficient to obtain such matchings in practice. This work extends the previous work from bipartite graphs to general graphs. Our algorithmic constructions are the same (the use of scaling and Karp-Sipser). The theoretical analysis involves new results and adaptations of some of the previous ones.

Heuristics and their analysis

We first present the main heuristic, and then analyze its approximation guarantee. While the heuristic is a straightforward adaptation of its counterpart for bipartite graphs [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF], the analysis is more complicated, because of odd cycles. The analysis shows that random 1-out subgraphs of a given graph have the maximum cardinality of a matching around 0.866 -log(n)/n of the best possible-the observed performance (see Section 4) is higher. Then two variants of the main heuristic are discussed in Section 3.3 without proofs. They include the 1-out subgraphs from the first one, and hence deliver better results theoretically.

One-Out:

The main heuristic. The heuristic shown in Algorithm 1 first scales the adjacency matrix of a given undirected graph to be doubly stochastic. Based on the values in the matrix, the heuristic then randomly marks one of the neighbors for each vertex as chosen. This defines one marked edge per vertex. Then, the subgraph of the original graph containing only the marked edges is formed, yielding an undirected graph with at most n edges, each vertex having at least one edge incident on it. The heuristic KS is run on this subgraph and finds a maximum cardinality matching on it, as the resulting 1-out graph has unicyclic components. The approximation guarantee of the proposed heuristic is analyzed for this step. One improvement to the previous work is to make sure that the matching obtained is a maximal one by running KS heuristic on the vertices that are not matched. This brings in a large improvement to the cardinality of the matching in practice.

Algorithm 1 One-Out

Input G = (V, E) and its adjacency matrix A Output match[•]: the matching

1: D ← SymScale(A) 2: for i = 1 to n do 3:
Pick a random j ∈ Ai * by using the probability density function

s ik Σ t∈A i * sit
, for all k ∈ Ai *

where

s ik = d[i] × d[k]
is the corresponding entry in the scaled matrix S = DAD.

4:

Mark that i chooses j 5: Construct a graph G 1 out = (V, E), where V ={1, . . . , n} E ={(i, j) : i chose j or j chose i} 6: match ←KarpSipser One-Out (G 1 out) 7: Make match a maximal matching Let us classify the edges incident on a vertex v i as in-edges (from those neighbors that have chosen i at Line 4) and an out-edge (to a neighbor chosen by i at Line 4. Dufossé et al. [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF]Lemma 3] show that during any execution of Karp-Sipser, it suffices to consider the vertices whose in-edges unavailable but out-edges are available as degree-1 vertices.

The analysis traces an execution of KS on the subgraph G 1 out . Let A 1 be the set of vertices not chosen by any other vertex at Line 4 of Algorithm 1. These vertices have in-degree zero and out degree one, and hence can be processed by KS. Let B 1 be the set of vertices chosen by the vertices in A 1 . The vertices in B 1 can be perfectly matched with vertices in A 1 ; leaving some A 1 vertices not matched and creating some new in-degree-0 vertices. We can proceed to define A 2 to be the vertices that have in degree-0 in V \ (A 1 ∪ B 1), and define B 2 as those chosen by A 2 , and so on so forth. Formally, let B 0 be an empty set, and define A i to be the set of vertices with in-degree 0 in V \ B i-1 , and B i be the vertices chosen by those in A i , for i ≥ 1. Notice that A i ⊆ A i+1 and B i ⊆ B i+1 . The Karp-Sipser heuristic can process A 1 , then A 2 \ A 1 , and so on, until the remaining graph has cycles only. The sets A i and B i and their cardinality are at the core of our analysis. We first present some facts about these sets and their cardinality, and describe an implementation of KS instrumented to highlight them.

Lemma 3.1. With the definitions above,

A i ∩ B i = ∅.
Proof. We prove this by induction. For i = 1 it clearly holds. Assume that it holds for all i < . Suppose there exists a vertex

u ∈ A ∩ B . Because A -1 ∩ B -1 = ∅, u must necessarily belong to both A \ A -1 and B \ B -1 . For u to be in B \ B -1 , there must exist at least one vertex v ∈ A \ A -1 such that v chooses u. However the condition for u ∈ A is that no vertex in V ∩ (A -1 ∪ B -1
) has selected it. This is a contradiction and the intersection A ∩ B should be empty.

Corollary 3.1. A i ∩ B j = ∅ for i ≤ j. Proof. Assume A i ∩ B j = ∅. Since A i ⊆ A j we have a contradiction as A j ∩ B j = ∅ by Lemma 3.1.
Thanks to Lemma 3.1 and Corollary 3.1, the sets A i and B i are disjoint, and they form a bipartite subgraph of G 1 out , for all i = 1, . . . , . The version of Karp-Sipser heuristic for 1-out graphs is shown in Algorithm 2. The degree-1 vertices are kept in a first-in first-out priority queue Q. The queue is first initialized with A 1 , and a # is used to mark the end of A 1 . Then, all vertices in A 1 are matched to some other vertices, defining B 1 . When we remove two matched vertices from the graph G 1 out at Lines 29 and 40, we update the degrees of their remaining neighbors, and append the vertices which have degrees of 1 to the queue. During Phase-1 of Karp-Sipser, we also maintain the set of A i and B i vertices, while storing only the last one. A and B are returned along with the number of levels, which is computed thanks to the use of the marker #.

Apart from the scaling step, the proposed heuristic in Algorithm 1 has linear worst-case time complexity of O(n + τ). The scaling step, if applied until convergence, can take more time than that. We do do not suggest running it until convergence; for all practical purposes 5 or 10 iterations of the basic method [START_REF] Knight | A symmetry preserving algorithm for matrix scaling[END_REF] or even less of the Newton iterations [START_REF] Knight | A fast algorithm for matrix balancing[END_REF] seem sufficient (see experiments). Therefore, the practical run time of the algorithm is linear.

3.2 One-Out: Analysis. Let a i and b i be two random variables representing the cardinalities of A i and B i , respectively, in an execution of KS on a random 1-out graph. Then, the KS algorithm matches b edges in the first phase, and leaves a -b vertices unmatched. What remains after the first phase is a set of cycles. In the bipartite graph case [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF], all vertices in those cycles are matchable and hence the cardinality of the matching was measured by n -a + b . Since we can possibly have odd cycles after the first phase, we cannot match all remaining vertices in the general case of undirected graphs. Let c be a random variable representing the number of odd cycles after the if Phase-1 = ongoing then

26:

A ← A ∪ {u} 27:

B ← B ∪ {v} 28:

N ← adj(v)

29:

G 1 out ← G 1 out \ {u, v} 30: Enqueue(Q, w) for w ∈ N , deg(w) = 1 31:
break the for-v-loop 32:

if Phase-1 = ongoing and match[u] = NIL then

33:

A ← A ∪ {u} u cannot be matched

34:

Phase-1 ← done

35: if E = ∅ then 36:
pick a random edge (u, v)

37: match[u] ← v 38: match[v] ← u 39:
N ← adj({u, v}) 40: We need to quantify a -b and c in Lemma 3.2. In Section 3.2.1, we obtain an upper bound on a -b . Then in Section 3.2.2, we obtain a pessimistic upper bound on c, which we improve with a more detailed analysis in Section 3.2.3. While the bound for a -b holds for any graph with total support presented to Algorithm 1, the bounds for c are shown for random 1-out graphs of complete graphs. By plugging the bounds for these quantities, we obtain the following theorem on the approximation guarantee of Algorithm 1.

G 1 out ← G 1 out \ {u,
Theorem 3.1. Algorithm 1 obtains a matching with cardinality at least 0.866 -1.04 log(0.336n) n in expectation, when the input is a complete graph.

The theorem can also be interpreted more theoretically as a random 1-out graph has a maximum cardinality of a matching at least 0.866 -1.04 log(0.336n) n , in expectation. The bound is in close vicinity of 0.866, which was the proved bound for the bipartite case [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF]. We note that in deriving this bound we assumed a random 1-out graph (as opposed to a random 1-out subgraph of a given graph) only at a single step. We leave the extension to this latter case as future work and present experiments suggesting that the bound is also achieved for this case. In Section 4, we empirically show that the same bound also holds for graphs whose corresponding matrices do not have total support.

3.2.1

An upper bound on a -b . In order to measure a -b , we adapt a proof from earlier work [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF], which was inspired by Karp and Sipser's analysis of the first phase of their heuristic [START_REF] Karp | Maximum matching in sparse random graphs[END_REF]. Let α (k) j = Pr(v j ∈ A k) be the probability of a vertex v j to belong to A k , and similarly β (k) j = Pr(v j ∈ B k) be the probability of a vertex v j to belong to B k .

Lemma 3.3. It holds that β (k) j ≥ 1 -e -i sij a (k) i (3.1) α (k) j ≤ e 1-i sij β (k-1) i . (3.2)
The proof of the lemma can be derived by following the bipartite case [6, Lemmas 6 and 7]. That is why, we give a high level sketch.

Proof. (Sketch) By Lemma 3.1 and its corollary, A and B define a bipartition. Therefore, the equations remain the same. The only technicality in the proof is to make sure that the vertices in A k and those in B k are from the same set V and to take the bipartition into account.

Thanks to Lemma 3.3, we can now bound a -b .

3.2.3

An improved bound on c. Consider the family of graphs in which all vertices have degree two. As graphs from this family have disjoint cycles; we call them cyclic graphs. Let C M denote a random graph from this family with M vertices. There are !M cyclic graphs with M vertices, as derangements create cycles. The n -a -b vertices remaining after the first phase of Karp-Sipser form a C n-a -b by the principal of deferred decisions [24, p. 9]. This is so, as the edge chosen by a vertex u is incident on a remaining vertex, and u is chosen by exactly one of the remaining vertices. We will find an upper bound on the expected number of odd cycles in a C n-a -b and improve Lemma 3.5. For a vertex u i ∈ C M , let h i be the length of the cycle containing it, and define a variable

Y i = 1
hi if h i is odd and Y i = 0 otherwise. Then, ui∈C M Y i is the number of odd cycles in C M . To see why, consider an odd cycle of length k and observe that each of its vertices contributes 1 k for counting the cycle. We now measure the expected value of Y i for a vertex u i . Lemma 3.8. In a random cyclic graph with M vertices, Pr(h i = k) ≤ 1.04 M for any vertex u i when k < M -2, and Pr(

h i = k) ≤ 1.365 M for k = M -2.
Proof. We have the formula whose explanation follows:

Pr(h i = k) = M -1 k-1 • (k -1)!•!(M -k) !M .
We select a set of k -1 vertices which will form a cycle of length k with u i . There are M -1 k-1 different sets, and there are (k -1)! possible cycles with the selected set. The remaining M -k vertices must also lie in cycles; there are !(M -k) ways to achieve this. Furthermore, with M vertices there are !M ways to create a union of disjoint cycles.

Let us manipulate the formula as

Pr(h i = k) = M -1 k-1 • (k -1)!•!(M -k) !M = (M -1)!•!(M -k) !M • (M -k)! = 1 M • M !•!(M -k) !M • (M -k)! .
For M ≥ 5, we have

M ! !M ≤ 2.73. If M -k ≥ 4, (M -k)! !(M -k) ≥ 2.64, and M ! !M (M -k)! !(M -k) ≤ 2.73 2.64 ≤ 1.04. When M -k = 3, we have 3! !3 = 3, and M ! !M (M -k)! !(M -k) ≤ 2.73 3 ≤ 1 ≤ 1.04. When M -k = 2,
we have 2! !2 = 2, and the upper bound is 2.73/2 = 1.365.

Lemma 3.9. In a random cyclic graph with M vertices,

E[Y i] ≤ 1.04 M • log(M) + 0.1625 M for a vertex u i . Proof. E[Y i] = M k=3,odd Pr(h i = k) • 1 k ≤ M k=1 Pr(h i = k) • 1 k (by splitting 1.365/M for k = M -2) ≤ M k=1 1.04 M • 1 k + (1.365 -1.04) M • 1 M -2 ≤ 1.04 M • M k=1 1 k + 0.1625 M ≤ 1.04 M • log(M) + 0.1625 M .
Lemma 3.10. The number of odd cycles in C M is less than or equal to 1.04 log(M) .

Proof. By the linearity of expectation, we find this formula by summing

E[Y i] over all u i in C M .
We plug in the number of vertices remaining after the first phase of Karp-Sipser into the formula and obtain the following corollary.

Corollary 3.3. The expected number of cycles remaining after the first phase of Karp-Sipser in random 1-out graphs is less than or equal to 1.04 log(n -a -b) , which is also less than or equal to 1.04 log(0.336n) .

Variants.

Here we summarize two related theoretical random bipartite graph models that we adapt to the undirected case using similar algorithms. The presentation will be brief and without proofs; we will present experiments in Section 4.1.

The random 1 + e -1 undirected graph model (see the bipartite version [START_REF] Karoński | Existence of a perfect matching in a random (1 + e -1)-out bipartite graph[END_REF] summarized in Section 2.3) lets each vertex choose a random neighbor. Then, the vertices that have not been chosen select one more neighbor. The maximum cardinality of a matching in the subgraph consisting of the identified edges can be computed as an approximate matching in the original graph. As this heuristic delivers perfect matchings with high probability in the uniform bipartite case, we expect perfect or near perfect matchings in the general case.

A model richer in edges is the random 2-out graph model. In this model, each vertex chooses two neighbors. There are two enticing characteristics of this model in the uniform bipartite case. First, the probability of having a perfect matching goes to one with the increasing number of vertices [START_REF] Walkup | Matchings in random regular bipartite digraphs[END_REF]. Second, there is a special algorithm for computing the maximum cardinality matchings in these (bipartite) graphs [START_REF] Karp | Average case analysis of a heuristic for the assignment problem[END_REF] with high probability, in linear time in expectation.

Experiments

To understand the effectiveness and efficiency of the proposed heuristics in practice, we report the matching quality and various statistics that appear in our analyses in Section 3. For the experiments, we used three graph datasets: (1) the first set is generated with matrices from SuiteSparse Matrix Collection (https://sparse.tamu.edu/). We investigated all n × n matrices from the collection with 50000 ≤ n ≤ 100000. For a matrix from this set, we removed the diagonal entries, symmetrized the pattern of the resulting matrix, and discarded a matrix if it has empty rows. There were 115 matrices at the end which we used as the adjacency matrix. [START_REF] Brualdi | Combinatorial Matrix Theory[END_REF] The graphs in the second dataset are synthetically generated to make KS deviate from the optimal matching as much as possible. This dataset contains five graphs with different hardness levels for KS.

(3) The third set contains five large, real-life matrices from the SuiteSparse collection for measuring the run time efficiency of the proposed heuristics.

4.1 A comprehensive evaluation. We use MATLAB to measure the matching qualities based on the first two datasets. For each matrix, five runs are performed with each randomized matching heuristic and the average is reported. One, five and ten iterations are performed to evaluate the impact of the scaling method. Table 1 summarizes the quality of the matchings for all the experiments on the first dataset. The matching quality is measured as the ratio of the matching cardinality to the maximum cardinality matching in the original graph. The table presents statistics for matching qualities of KS performed on the original graphs (first row), 1-out graphs (the second set of rows), Karoński-Pittel-like (1 + e -1)-out graphs (the third set of rows), and 2-out graphs (the last set of rows).

For the U-Max rows, we construct k-out graphs by using uniform probabilities while selecting the neighbors as proposed in the literature [START_REF] Frieze | Maximum matchings in a class of random graphs[END_REF][START_REF] Karoński | Existence of a perfect matching in a random (1 + e -1)-out bipartite graph[END_REF]. We compute the cardinality of the maximum matchings in these k-out graphs to the maximum matching cardinality on the original graphs and report the statistics. The rows St-Max report the same statistics for the k-out graphs constructed by using probabilities with t ∈ {1, 5, 10} scaling iterations. These statistics serve as upper bounds on the matching qualities of the proposed St-KS heuristics which execute KS on the k-out graphs obtained with t scaling iterations. Since St-KS heuristics use only a subgraph, the matchings they obtain are not maximal with respect to the original edge set. The proposed St-KS+ heuristics exploit this fact and apply another KS phase on the subgraph containing only the unmatched vertices to improve the quality of the matchings. The table does not contain St-Max rows for 1-out graphs since KS is an optimal algorithm for these subgraphs.

Alg. As Table 1 shows, more scaling iterations increase the maximum matching cardinalities on k-out graphs. Although this is much more clear when the worst-case graphs are considered, it can also be observed for arithmetic and geometric means. Since U-Max is the no scaling case, the impact of the first scaling iteration (S1-KS vs U-Max) is significant. On the other hand, the difference on the matching quality for S5-KS and S10-KS is minor. Hence, five scaling iterations are deemed sufficient for the proposed heuristics in practice.

Min

As the theory suggests, the heuristics St-KS perform well for (1 + e -1)-out and 2-out graphs. With t ∈ {5, 10}, their quality is almost on par with KS on the original graph, and even better for 2-out graphs. In addition, applying KS on the subgraph of unmatched vertices to obtain a maximal matching does not increase the matching quality much. Since this subgraph is small, the overhead of this extra work will not be significant. Furthermore, this extra step significantly improves the matching quality for 1-out graphs which a.a.s. do not have a perfect matching.

To better understand the practical performance of the proposed heuristics and the impact of the additional KS execution, we profile their performance by sorting their matching qualities in increasing order for all 115 matrices. Figure 1a plots these profiles on 1-out and 2-out graphs for the heuristics with five scaling iterations. As the first figure shows, five iterations are sufficient to obtain 0.86 matching quality except 1.7% of the 1-out experiments. The figure also shows that the maximum matching cardinality in a random 1-out graph is worse than what KS can obtain on the original graph. This is why although S5-KS finds maximum matchings on 1-out graphs, its performance is still worse than KS. The additional KS in S5-KS+ closes almost all of this gap and makes the matching qualities close to those of KS. On the contrary, for 2-out graphs generated with five scaling iterations, the maximum matching cardinality is more than the cardinality of the matchings found by KS. There is still a gap between the best possible (red line) and what KS can find (blue line) on 2-out graphs. We believe that this gap can be targeted by specialized, efficient exact matching algorithms for 2-out graphs.

There are 30 rank-deficient matrices without total support among the 115 matrices in the first dataset. We observed that even for 1-out graphs, the worst-case quality for S5-KS is 0.86 and the average is 0.93. Hence, the proposed approach also works well for rank-deficient matrices/graphs in practice.

Since the number c of odd cycles at the end of the first phase of KS is a performance measure, we investigate it. For each matrix, we compute the ratio c/n. We then plot the cumulative distribution of these values in Fig. 2. For all the experiments except one, this ratio is less than 1%. For the extreme case, the ratio increases to 8%. In that particular case, the matching found in the 1-out quality results are consistent with the experimental results obtained on the first dataset. As the table shows, the proposed heuristics are faster than the original KS on the input graph. For 1-out graphs, the proposed approach is 2.5-3.9 faster than KS on the original graph. The speedups are in between 1.5-2.6 for 2-out graphs with five iterations.

Conclusion

We proposed heuristics for approximating the maximum cardinality matchings on general (undirected) graphs. The heuristics scale the adjacency matrix of a given graph with doubly stochastic scaling algorithms, and then selects a subgraph on which a maximum cardinality matching is obtained. We showed that the obtained matching approximates the maximum cardinality matching on the original graph; both in theory and in practical experiments. Our theoretical analysis can be perceived as an analysis of the well-known Karp-Sipser heuristic on the random 1-out graph model.

Our experiments suggest that one of the heuristics has performance on par with Karp-Sipser whilst being faster and more reliable.

A more rigorous treatment and elaboration of the variants described in Section 3.3 seem worthwhile. Although Karp-Sipser heuristic work well for these graphs, we wonder if there are exact, linear time algorithms for (1 + e -1)-out and 2-out graphs. We also plan to work on the parallel implementations of these algorithms.

Algorithm 2 7 :

 27 KarpSipser One-Out Input G 1 out = (V, E): Output match[•]: the mates of vertices Output : the number of levels in the first phase Output A: the set of degree-1 vertices in the first phase Output B: the set of vertices matched to A vertices 1: match[u] ← NIL for all u 2: Q ← {v : deg(v) = 1} degree-1 or in-degree 0 3: if Q = ∅ then Enqueue(Q, #) marks the end of the first level 8: Phase-1← ongoing 9: A ← B ← ∅ 10: while true do 11: while Q = ∅ do 12: u ← Dequeue(Q) 13: if u = # and Q = ∅ then 14: break the while-Q-loop 15:else if u = # then 16:

v} 41 :Lemma 3 . 2 .

 4132 Enqueue(Q, w) for w ∈ N , deg(w) break the while-true loop first phase of Karp-Sipser. Then we have the following (obvious) lemma about the approximation guarantee of Algorithm 1. At the end of execution, the number of unmatched vertices is a -b + c. Hence, Algorithm 1 matches at least n -(a -b + c) vertices.

Lemma 3 . 4 .

 34 a -b ≤ (2Ω -1)n, where Ω ≈ 0.567 equals to W (1) of Lambert's W function.Proof. In expectation, a =

Figure 1 :

 1 Figure1: The matching qualities sorted in increasing order for KS on the original graph, S5-KS and S5-KS+ on 1-out and 2-out graphs. The figures also contain the quality of the maximum cardinality matchings in these graphs. The experiments are performed on the 115 graphs in the first dataset.

Figure 2 :

 2 Figure 2: The cumulative distribution of the ratio of number of odd cycles remaining after the first phase of KS in One-Out to the number of vertices in the graph.

Table 1 :

 1 For each matrix in the first dataset and each proposed heuristic, five runs are performed the statistics are performed over the mean of these results; the minimum, maximum, arithmetic and geometric averages, median and standard deviation are reported.

			Max Avg. GMean Med. StDev
		KS	0.880 1.000 0.980	0.980 0.988	0.022
		U-Max	0.168 1.000 0.846	0.837 0.858	0.091
		S1-KS	0.479 1.000 0.869	0.866 0.863	0.059
	1-out	S5-KS S10-KS S1-KS+	0.839 1.000 0.885 0.858 1.000 0.889 0.836 1.000 0.951	0.884 0.865 0.888 0.866 0.950 0.953	0.044 0.045 0.043
		S5-KS+	0.865 1.000 0.958	0.957 0.968	0.036
		S10-KS+ 0.888 1.000 0.961	0.961 0.971	0.033
		U-Max	0.251 1.000 0.952	0.945 0.967	0.081
		S1-Max	0.642 1.000 0.967	0.966 0.980	0.042
)-out (1 + e -1	S5-Max S10-Max 0.934 1.000 0.980 0.918 1.000 0.977 S1-KS 0.642 1.000 0.963 S5-KS 0.918 1.000 0.972 S10-KS 0.934 1.000 0.975 S1-KS+ 0.857 1.000 0.972	0.977 0.985 0.979 0.985 0.962 0.972 0.972 0.976 0.975 0.977 0.972 0.979	0.020 0.018 0.041 0.020 0.018 0.025
		S5-KS+	0.925 1.000 0.978	0.978 0.984	0.018
		S10-KS+ 0.939 1.000 0.980	0.980 0.985	0.016
		U-Max	0.254 1.000 0.972	0.966 0.996	0.079
		S1-Max	0.652 1.000 0.987	0.986 0.999	0.036
		S5-Max	0.952 1.000 0.995	0.995 0.999	0.009
	2-out	S10-Max 0.968 1.000 0.996 S1-KS 0.651 1.000 0.974 S5-KS 0.945 1.000 0.982	0.996 1.000 0.974 0.981 0.982 0.984	0.007 0.035 0.013
		S10-KS	0.947 1.000 0.984	0.983 0.984	0.012
		S1-KS+	0.860 1.000 0.980	0.979 0.984	0.020
		S5-KS+	0.950 1.000 0.984	0.984 0.987	0.012
		S10-KS+ 0.952 1.000 0.986	0.986 0.987	0.011

Table 2 :

 2 Results for the bad matrices with n = 5000 and different h values. One-Out is executed with 5, 10, and 20 scaling iterations and scaling errors are also reported. Averages of five are reported for each cell.

							One-Out
				KS	5 iters.	10 iters.	20 iters.
		h quality error quality error quality error quality
		2		0.96	7.54	0.99	0.68	0.99	0.22	1.00
		8		0.78	8.52	0.97	0.78	0.99	0.23	0.99
		32		0.68	6.65	0.81	1.09	0.99	0.26	0.99
		128		0.63	3.32	0.53	1.89	0.90	0.33	0.98
		512		0.63	1.24	0.55	1.17	0.59	0.61	0.86
						OneOut-S5-KS+		TwoOut-S5-KS+
				KS		Execution time (seconds)	Execution time (seconds)
	Matrix	|V |	|E| Quality time Quality Scale 1-out KS KS+ Total Quality Scale 2-out	KS KS+ Total
	cage15	5.2 94.0	1.00 5.82	0.93 0.67 0.85 0.65 0.05 2.21	0.99 0.67 1.48 1.78 0.01 3.94
	dielFilterV3real 1.1 88.2	0.99 3.36	0.98 0.52 0.36 0.07 0.01 0.95	0.99 0.52 0.62 0.16 0.00 1.30
	hollywood-2009	1.1 112.8	0.93 4.18	0.91 1.12 0.45 0.06 0.02 1.65	0.95 1.12 0.76 0.13 0.01 2.01
	nlpkkt240	28.0 746.5	0.98 52.95	0.93 4.44 4.99 3.96 0.27 13.66	0.98 4.44 9.43 10.56 0.11 24.54
	rgg n 2 24 s0	16.8 265.1	0.98 19.49	0.93 2.33 2.33 2.08 0.17 6.91	0.98 2.33 4.01 6.70 0.11 13.15

Table 3 :

 3 Summary of the results with five large-scale matrices for original KS and the proposed One-Out and Two-Out heuristics which generate maximal matchings with extra KS and five scaling iterations.

From Lemma 3.3 and another result of Dufossé et al. [START_REF] Dufossé | Two approximation algorithms for bipartite matching on multicore architectures[END_REF]Lemma 8], we have α

(2 • 0.567 -1) ≤ 0.134 • n .

3.2.2 An upper bound on c. We now investigate c, the number of odd cycles that remain on a G 1 out graph after the first phase of Karp-Sipser.

Lemma 3.5. We have c ≤ n-a -b

3

.

Proof. After the first phase, we have removed A and B from V . Therefore, the number of vertices remaining for the second phase is n -a -b . The shortest odd cycle is of length 3 and so we can derive the result by assuming that all vertices belong to such cycles.

We need a lower bound on a + b to bound c in Lemma 3.5. We start by bounding a first.

Lemma 3.6. For random 1-out graphs with n ≥ 30 vertices, a ≥ 0.361n.

Proof. As A i ⊆ A i+1 , we have α

i , hence a ≥ a 1 . The probability of a vertex u i to be in

, since u i should not be chosen by any other vertex. For n ≥ 30, we

≥ 0.361. This concludes the proof by the linearity of expectation.

We use the result of the above lemma to bound b . The proofs used in obtaining the bounds in Corollary 3.2 needed to assume a random 1-out graph only for lower bounding α

i . This quantity can also be bound in graphs with uniform vertex degrees. We sum the two lower bounds from Lemmas 3.6 and 3.7 in a corollary. subgraph is maximum for the input graph (i.e., the number of odd components is also large in the original graph).

4.2 Bad matrices for KS. Let A be an n × n symmetric matrix, V 1 be the set of A's first n/2 vertices, and V 2 be the set of A's last n/2 vertices. As Figure 3 shows, A has a full V 1 × V 1 block, i.e., a clique, and an empty V 2 × V 2 block. The last h n vertices of V 1 are connected to all the vertices in the corresponding graph. The block V 1 × V 2 has a nonzero diagonal, hence the corresponding graph has a perfect matching.

On such a matrix with h = 0, the KS heuristic consumes the whole graph during Phase 1 and finds a maximum cardinality matching. When h > 1, Phase 1 immediately ends, since there is no degree-one vertex. In Phase 2, the first edge (nonzero) consumed by KS is selected from a uniform distribution over the nonzeros whose corresponding rows and columns are still unmatched. Since the block V 1 × V 1 forms a clique, it is more likely that the nonzero will be chosen from this block. Thus, a vertex in V 1 will be matched with another vertex from V 1 , which is a bad decision since the block V 2 × V 2 is completely empty. Hence, we expect a decrease on the performance of KS as h increases. On the other hand the probability that the proposed heuristics chooses an edge from that block goes to zero, as those entries cannot be in a perfect matching.

Table 2 shows that the quality of KS drops to 0.63 as h increases. In comparison, One-Out heuristic with five scaling iterations maintains a good quality for small h values. However, a better scaling with more iterations (10 and 20 for h = 128 and h = 512, respectively) is required to guarantee the desired matching quality-see the scaling error in the table.

4.3 Experiments on large-scale graphs. This experiments are performed on a machine running 64-bit CentOS 6.5, has 30 cores each of which is an Intel Xeon CPU E74870 v2 core operating at 2.30 GHz. To choose five large-scale matrices from SuiteSparse, we first sorted the pattern-symmetric matrices in the collection in decreasing order of their nonzero count. We then chose the five largest matrices from different families to increase the variety of experiments. The details of these matrices are given in Table 3. This table also contains the run times and matching qualities of the original KS, and the proposed One-Out and Two-Out heuristics. The proposed heuristics have five scaling iterations and also apply KS at the end for ensuring maximality.

The run time of the proposed heuristics are analyzed in four stages in Table 3. The Scale stage scales the matrix with five iterations, the k-out stage chooses the neighbors and constructs the k-out subgraph, the KS stage applies KS on the k-out subgraph, and KS+ is the stage for the additional Karp-Sipser at the end. The total time with these four stages are also shown. The