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Approximation algorithms for maximum matchings in
undirected graphs

Fanny Dufossé∗ Kamer Kaya† Ioannis Panagiotas‡ Bora Uçar§

Abstract
We propose heuristics for approximating the maximum cardinality matching on undirected

graphs. Our heuristics are based on the theoretical body of a certain type of random graphs,
and are made practical for real-life ones. The idea is based on judiciously selecting a subgraph
of a given graph and obtaining a maximum cardinality matching on this subgraph. We show
that the heuristics have an approximation guarantee of around 0.866 − log(n)/n for a graph
with n vertices. Experiments for verifying the theoretical results in practice are provided.

1 Introduction

A matching in a graph is a set of edges no two of which share a common vertex. We consider the
maximum cardinality matching problem for general graphs; this problem asks for a matching of
maximum size. There are a number of polynomial time algorithms to solve this problem exactly.
The lowest worst-case time complexity of the known algorithms is O(

√
nτ) for a graph with n

vertices and τ edges [1, 9, 23]. There is considerable interest in simpler and faster algorithms that
have some approximation guarantee, as such simpler algorithms are used as a jump-start routine
by the current state-of-the-art matching algorithms [5, 19].

We propose randomized heuristics and analyze their performance. The proposed heuristics
extend previous work [6] and construct a subgraph of the input graph by randomly choosing some
edges. They then obtain a maximum cardinality matching in the selected subgraph and return it as
an approximate matching for the input graph. The probability density function for choosing a given
edge is obtained with a sparse matrix scaling method. One of the heuristics use the well-known
Karp-Sipser (KS) heuristic [14] to find a maximum cardinality matching on the selected subgraph.
Its expected matching cardinality provides an approximation around 0.866 under the condition that
the scaling method has successfully scaled the input matrix. The analysis can also be thought of
analyzing Karp-Sipser heuristic’s performance on a certain model of random graphs. Two other
variants obtain better results than the first one; in theory and in practice.

The organization of the paper is as follows. In Section 2, we give some background on matchings,
doubly stochastic scaling methods, and a brief summary of related work. In Section 3, we propose
our matching heuristics and analyze their approximation guarantee. We then give experiments in
Section 4, where we observe the theoretical findings in practice. Section 5 concludes the paper and
briefly discusses the future work.
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2 Notation and background

Let G = (V,E) be an undirected graph, where V is the vertex set and E is the edge set. G can be
represented as a symmetric, square, sparse matrix A. Each row (and its corresponding column) of
A corresponds to a unique vertex in V so that aij = aji = 1 if and only if (vi, vj) ∈ E. We use
adj(u) to denote the set of neighbors of a vertex, and extend this to a set S of vertices as adj(S) in
a natural way. The number of edges incident on a vertex is called its degree. A path in a graph is a
sequence of vertices such that each consecutive vertex pair share an edge. A vertex is reachable from
another, if there is a path between them. The connected components of a graph are the equivalence
classes of vertices under the “is reachable from” relation. A cycle in a graph is a path whose start
and end vertices are the same. A simple cycle is a cycle with no vertex repetitions. A tree is a
connected graph with no cycles. A spanning tree of a connected graph G is a tree containing all its
vertices.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Let Gk = (V,E′) be
a random subgraph of G where each vertex in V randomly chooses k of its edges, with repetition.
An edge {u, v} is included in Gkout only once even if it is chosen multiple times. We call Gkout as a
k-out subgraph of G. A permutation of 1, . . . , n in which no element stays in its original position
is called derangement. The total number of derangements of 1, . . . , n is denoted by !n, and is the
nearest integer to n!

e [3, pp. 40–42], where e is the base of the natural logarithm.

2.1 Maximum cardinality matching. A matching M in a graph G = (V,E) is a subset of
edges E where a vertex in V is in at most one edge in M. Given a matching M, a vertex v is said
to be matched by M if v is in an edge of M, otherwise v is called unmatched. If all the vertices
are matched by M, then M is said to be a perfect matching. The cardinality of a matching M,
denoted by |M|, is the number of edges in M. The maximum cardinality matching problem asks
for a matching of maximum size. We call such a matching a maximum matching.

2.2 Scaling matrices to doubly stochastic form. An n × n matrix A 6= 0 is said to have
support if there is a perfect matching in the associated bipartite graph. An n × n matrix A is
said to have total support if each edge in its bipartite graph can be put into a perfect matching. A
square sparse matrix is called irreducible if its directed graph is strongly connected. A square sparse
matrix A is called fully indecomposable if for a permutation matrix Q, the matrix B = AQ has a
zero free diagonal and the directed graph associated with B is irreducible. Fully indecomposable
matrices have total support; but a matrix having total support could be a block diagonal matrix,
where each block is fully indecomposable. For more formal definitions of support, total support,
and the fully indecomposability, see the book by Brualdi and Ryser [2, Ch. 3 and Ch. 4].

Any nonnegative matrix A with total support can be scaled with two (unique) positive diagonal
matrices DR and DC such that DRADC is doubly stochastic (that is, the sum of entries in any row
and in any column of DRADC is equal to one). If A has support but not total support, then A
can be scaled to a doubly stochastic matrix but not with two positive diagonal matrices [30]—this
fact is also seen in more recent treatments [16, 18, 29]).

The Sinkhorn-Knopp algorithm [30] is a well-known method for scaling matrices to doubly
stochastic form. This algorithm generates a sequence of matrices (whose limit is doubly stochastic)
by normalizing the columns and the rows of the sequence of matrices alternately. While the limit
is symmetric, the intermediate matrices generated in the sequence are not symmetric. Two other
iterative scaling algorithms [17, 18, 29]) maintain symmetry all along the way. That is why we use
this latter class of algorithms.



2.3 Related work. The first polynomial time algorithm with O(n2τ) complexity for the
maximum cardinality matching problem on general graphs with n vertices and τ edges is proposed
by Edmonds [7]. Currently, the fastest algorithms have O(

√
nτ) complexity [1, 9, 23]. The first of

these algorithms is by Micali and Vazirani [23] whose clear exposition is later presented by Peterson
and Loui [27] and recently, its simpler analysis is given by Vazirani [31]. Later, Blum [1] and Gabow
and Tarjan [9] proposed algorithms with the same complexity.

Random graphs have been frequently analyzed in terms of their maximum matching cardinality.
For bipartite graphs, Walkup [32] showed that a 1-out subgraph of a complete bipartite graph
G = (V1, V2, E) where |V1| = |V2| asymptotically almost surely (a.a.s.) does not contain a perfect
matching. He also showed that a 2-out subgraph of a complete bipartite graph a.a.s. contains a
perfect matching. For complete undirected graphs, similar results are shown by Frieze [8]. Karoński
and Pittel [12] improved the results of Walkup by allowing the vertices which are not selected by
other vertices to select one more neighbor. They showed that this random graph a.a.s. has a perfect
matching. In these graphs, the expected number of edges per vertex is 1 + e−1.

Randomized algorithms which check the existence of a perfect matching and generate per-
fect/maximum matchings have been proposed in the literature [4, 11, 20, 25, 26]. Lovász showed
that the existence of a perfect matching can be verified in randomized O(nω) time where O(nω) is
the time complexity of the fastest matrix multiplication algorithm available [20]. More information
such as the set of allowed edges, i.e., the edges in some maximum matching, of a graph can also be
found with the same randomized complexity as shown by Cheriyan [4].

To construct a maximum cardinality matching in a general, non-bipartite graph, a simple,
easy to implement algorithm with O(nω+1) randomized complexity is proposed by Rabin and
Vazirani [28]. The algorithm uses matrix inversion as a subroutine. Later, Mucha and Sankowski
proposed the first algorithm for the same problem with O(nω) randomized complexity [26]. This
algorithm uses expensive sub-routines such as Gaussian elimination and equivalence classes formed
based on the edges that appear in some perfect matching [21]. A simpler randomized algorithm
with the same complexity is proposed by Harvey [10].

Although the above-mentioned randomized algorithms find maximum matchings, they use
expensive subroutines. Our focus is on matching heuristics that have linear or near linear run
time and use randomization to obtain good quality guarantees. Recent surveys of matching
heuristics are given by Kaya et al. [5, Section 4] and Langguth et al. [19]. The Karp-Sipser (KS)
heuristic [14] is suggested as a good initialization step for exact bipartite maximum cardinality
matching algorithms [15]. The KS heuristic takes any degree-1 vertex and matches it to its unique
neighbor. When there is no degree-1 vertex, it chooses an edge randomly and matches the two
end-points. Upon matching a pair of vertices, KS removes them from the graph and updates the
degrees of the remaining vertices. Karp-Sipser heuristic becomes an exact algorithm for graphs
with components having unique cycles.

Three of us proposed [6] heuristics for bipartite graphs. One of the heuristics scales the
adjacency matrix of a given bipartite graph to extract a 1-out subgraph, and applies Karp-Sipser
heuristic as an exact algorithm. This heuristic is shown to deliver matchings of cardinality 0.866n
for a bipartite graph with n vertices on each side. This number is also the expected cardinality of a
maximum matching in a random 1-out subgraph of a complete bipartite graph [22]. Excluding the
cost of scaling, the heuristic has O(n + τ) time complexity. We empirically showed that only five
scaling iterations (with linear time complexity) is sufficient to obtain such matchings in practice.
This work extends the previous work from bipartite graphs to general graphs. Our algorithmic
constructions are the same (the use of scaling and Karp-Sipser). The theoretical analysis involves



new results and adaptations of some of the previous ones.

3 Heuristics and their analysis

We first present the main heuristic, and then analyze its approximation guarantee. While the
heuristic is a straightforward adaptation of its counterpart for bipartite graphs [6], the analysis
is more complicated, because of odd cycles. The analysis shows that random 1-out subgraphs
of a given graph have the maximum cardinality of a matching around 0.866 − log(n)/n of the
best possible—the observed performance (see Section 4) is higher. Then two variants of the main
heuristic are discussed in Section 3.3 without proofs. They include the 1-out subgraphs from the
first one, and hence deliver better results theoretically.

3.1 One-Out: The main heuristic. The heuristic shown in Algorithm 1 first scales the
adjacency matrix of a given undirected graph to be doubly stochastic. Based on the values in
the matrix, the heuristic then randomly marks one of the neighbors for each vertex as chosen.
This defines one marked edge per vertex. Then, the subgraph of the original graph containing
only the marked edges is formed, yielding an undirected graph with at most n edges, each vertex
having at least one edge incident on it. The heuristic KS is run on this subgraph and finds a
maximum cardinality matching on it, as the resulting 1-out graph has unicyclic components. The
approximation guarantee of the proposed heuristic is analyzed for this step. One improvement to
the previous work is to make sure that the matching obtained is a maximal one by running KS
heuristic on the vertices that are not matched. This brings in a large improvement to the cardinality
of the matching in practice.

Algorithm 1 One-Out

Input G = (V,E) and its adjacency matrix A
Output match[·]: the matching
1: D← SymScale(A)
2: for i = 1 to n do
3: Pick a random j ∈ Ai∗ by using the probability density function

sik
Σt∈Ai∗sit

, for all k ∈ Ai∗

where sik = d[i]× d[k] is the corresponding entry in the scaled matrix S = DAD.
4: Mark that i chooses j
5: Construct a graph G1

out = (V,E), where

V ={1, . . . , n}
E ={(i, j) : i chose j or j chose i}

6: match←KarpSipserOne-Out(G1
out)

7: Make match a maximal matching

Let us classify the edges incident on a vertex vi as in-edges (from those neighbors that have
chosen i at Line 4) and an out-edge (to a neighbor chosen by i at Line 4. Dufossé et al. [6, Lemma
3] show that during any execution of Karp-Sipser, it suffices to consider the vertices whose in-edges
unavailable but out-edges are available as degree-1 vertices.

The analysis traces an execution of KS on the subgraph G1
out. Let A1 be the set of vertices not



chosen by any other vertex at Line 4 of Algorithm 1. These vertices have in-degree zero and out
degree one, and hence can be processed by KS. Let B1 be the set of vertices chosen by the vertices
in A1. The vertices in B1 can be perfectly matched with vertices in A1; leaving some A1 vertices
not matched and creating some new in-degree-0 vertices. We can proceed to define A2 to be the
vertices that have in degree-0 in V \ (A1 ∪B1), and define B2 as those chosen by A2, and so on so
forth. Formally, let B0 be an empty set, and define Ai to be the set of vertices with in-degree 0
in V \ Bi−1, and Bi be the vertices chosen by those in Ai, for i ≥ 1. Notice that Ai ⊆ Ai+1 and
Bi ⊆ Bi+1. The Karp-Sipser heuristic can process A1, then A2 \A1, and so on, until the remaining
graph has cycles only. The sets Ai and Bi and their cardinality are at the core of our analysis. We
first present some facts about these sets and their cardinality, and describe an implementation of
KS instrumented to highlight them.

Lemma 3.1. With the definitions above, Ai ∩Bi = ∅.

Proof. We prove this by induction. For i = 1 it clearly holds. Assume that it holds for all i < `.
Suppose there exists a vertex u ∈ A` ∩ B`. Because A`−1 ∩ B`−1 = ∅, u must necessarily belong
to both A` \ A`−1 and B` \ B`−1. For u to be in B` \ B`−1, there must exist at least one vertex
v ∈ A` \ A`−1 such that v chooses u. However the condition for u ∈ A` is that no vertex in
V ∩ (A`−1 ∪ B`−1) has selected it. This is a contradiction and the intersection A` ∩ B` should be
empty. �

Corollary 3.1. Ai ∩Bj = ∅ for i ≤ j.

Proof. Assume Ai∩Bj 6= ∅. Since Ai ⊆ Aj we have a contradiction as Aj∩Bj = ∅ by Lemma 3.1.�

Thanks to Lemma 3.1 and Corollary 3.1, the sets Ai and Bi are disjoint, and they form a bipartite
subgraph of G1

out, for all i = 1, . . . , `.
The version of Karp-Sipser heuristic for 1-out graphs is shown in Algorithm 2. The degree-1

vertices are kept in a first-in first-out priority queue Q. The queue is first initialized with A1, and
a # is used to mark the end of A1. Then, all vertices in A1 are matched to some other vertices,
defining B1. When we remove two matched vertices from the graph G1

out at Lines 29 and 40, we
update the degrees of their remaining neighbors, and append the vertices which have degrees of
1 to the queue. During Phase-1 of Karp-Sipser, we also maintain the set of Ai and Bi vertices,
while storing only the last one. A` and B` are returned along with the number ` of levels, which is
computed thanks to the use of the marker #.

Apart from the scaling step, the proposed heuristic in Algorithm 1 has linear worst-case time
complexity of O(n + τ). The scaling step, if applied until convergence, can take more time than
that. We do do not suggest running it until convergence; for all practical purposes 5 or 10 iterations
of the basic method [18] or even less of the Newton iterations [17] seem sufficient (see experiments).
Therefore, the practical run time of the algorithm is linear.

3.2 One-Out: Analysis. Let ai and bi be two random variables representing the cardinalities
of Ai and Bi, respectively, in an execution of KS on a random 1-out graph. Then, the KS algorithm
matches b` edges in the first phase, and leaves a` − b` vertices unmatched. What remains after the
first phase is a set of cycles. In the bipartite graph case [6], all vertices in those cycles are matchable
and hence the cardinality of the matching was measured by n− a` + b`. Since we can possibly have
odd cycles after the first phase, we cannot match all remaining vertices in the general case of
undirected graphs. Let c be a random variable representing the number of odd cycles after the



Algorithm 2 KarpSipserOne-Out

Input G1
out = (V,E):

Output match[·]: the mates of vertices
Output `: the number of levels in the first phase
Output A: the set of degree-1 vertices in the first phase
Output B: the set of vertices matched to A vertices
1: match[u]← NIL for all u
2: Q← {v : deg(v) = 1} I degree-1 or in-degree 0
3: if Q = ∅ then
4: `← 0 I no vertex in level 1
5: else
6: `← 1
7: Enqueue(Q,#) I marks the end of the first level
8: Phase-1← ongoing
9: A← B ← ∅

10: while true do
11: while Q 6= ∅ do
12: u← Dequeue(Q)
13: if u = # and Q = ∅ then
14: break the while-Q-loop
15: else if u = # then
16: `← ` + 1
17: Enqueue(Q,#) I new level formed
18: skip to the next while-Q-iteration
19: if match[u] 6= NIL then
20: skip to the next while-Q-iteration
21: for v ∈ adj(u) do
22: if match[v] = NIL then
23: match[u]← v
24: match[v]← u
25: if Phase-1 = ongoing then
26: A← A ∪ {u}
27: B ← B ∪ {v}
28: N ← adj(v)
29: G1

out ← G1
out \ {u, v}

30: Enqueue(Q,w) for w ∈ N , deg(w) = 1
31: break the for-v-loop
32: if Phase-1 = ongoing and match[u] = NIL then
33: A← A ∪ {u} I u cannot be matched
34: Phase-1 ← done
35: if E 6= ∅ then
36: pick a random edge (u, v)
37: match[u]← v
38: match[v]← u
39: N ← adj({u, v})
40: G1

out ← G1
out \ {u, v}

41: Enqueue(Q,w) for w ∈ N , deg(w) = 1
42: else
43: break the while-true loop



first phase of Karp-Sipser. Then we have the following (obvious) lemma about the approximation
guarantee of Algorithm 1.

Lemma 3.2. At the end of execution, the number of unmatched vertices is a` − b` + c. Hence,
Algorithm 1 matches at least n− (a` − b` + c) vertices.

We need to quantify a` − b` and c in Lemma 3.2. In Section 3.2.1, we obtain an upper bound
on a` − b`. Then in Section 3.2.2, we obtain a pessimistic upper bound on c, which we improve
with a more detailed analysis in Section 3.2.3. While the bound for a` − b` holds for any graph
with total support presented to Algorithm 1, the bounds for c are shown for random 1-out graphs
of complete graphs. By plugging the bounds for these quantities, we obtain the following theorem
on the approximation guarantee of Algorithm 1.

Theorem 3.1. Algorithm 1 obtains a matching with cardinality at least 0.866− d1.04 log(0.336n)e
n in

expectation, when the input is a complete graph.

The theorem can also be interpreted more theoretically as a random 1-out graph has a maximum

cardinality of a matching at least 0.866 − d1.04 log(0.336n)e
n , in expectation. The bound is in close

vicinity of 0.866, which was the proved bound for the bipartite case [6]. We note that in deriving
this bound we assumed a random 1-out graph (as opposed to a random 1-out subgraph of a given
graph) only at a single step. We leave the extension to this latter case as future work and present
experiments suggesting that the bound is also achieved for this case. In Section 4, we empirically
show that the same bound also holds for graphs whose corresponding matrices do not have total
support.

3.2.1 An upper bound on a` − b`. In order to measure a` − b`, we adapt a proof from
earlier work [6], which was inspired by Karp and Sipser’s analysis of the first phase of their

heuristic [14]. Let α
(k)
j = Pr(vj ∈ Ak) be the probability of a vertex vj to belong to Ak, and

similarly β
(k)
j = Pr(vj ∈ Bk) be the probability of a vertex vj to belong to Bk.

Lemma 3.3. It holds that

β
(k)
j ≥ 1− e−

∑
i sija

(k)
i (3.1)

α
(k)
j ≤ e1−

∑
i sijβ

(k−1)
i . (3.2)

The proof of the lemma can be derived by following the bipartite case [6, Lemmas 6 and 7]. That
is why, we give a high level sketch.

Proof. (Sketch) By Lemma 3.1 and its corollary, A` and B` define a bipartition. Therefore, the
equations remain the same. The only technicality in the proof is to make sure that the vertices in
Ak and those in Bk are from the same set V and to take the bipartition into account. �

Thanks to Lemma 3.3, we can now bound a` − b`.

Lemma 3.4. a` − b` ≤ (2Ω− 1)n, where Ω ≈ 0.567 equals to W (1) of Lambert’s W function.

Proof. In expectation, a` =
∑n
i=1 α

(`)
i and b` =

∑n
i=1 β

(`)
i . The expected difference is

a` − b` =

n∑
i=1

α
(`)
i − β

(`)
i .



From Lemma 3.3 and another result of Dufossé et al. [6, Lemma 8], we have α
(`)
i − β

(`)
i ≤ (2Ω− 1)

and hence

a` − b` ≤
n∑
i=1

(2 · 0.567− 1) ≤ 0.134 · n . �

3.2.2 An upper bound on c. We now investigate c, the number of odd cycles that remain on
a G1

out graph after the first phase of Karp-Sipser.

Lemma 3.5. We have c ≤ n−a`−b`
3 .

Proof. After the first phase, we have removed A` and B` from V . Therefore, the number of vertices
remaining for the second phase is n− a` − b`. The shortest odd cycle is of length 3 and so we can
derive the result by assuming that all vertices belong to such cycles. �

We need a lower bound on a` + b` to bound c in Lemma 3.5. We start by bounding a` first.

Lemma 3.6. For random 1-out graphs with n ≥ 30 vertices, a` ≥ 0.361n.

Proof. As Ai ⊆ Ai+1, we have α
(`)
i ≥ α

(1)
i , hence a` ≥ a1. The probability of a vertex ui to be in

A1 is α
(1)
i =

(
1− 1

n−1

)n−1
, since ui should not be chosen by any other vertex. For n ≥ 30, we

have 1
e ≥

(
1− 1

n−1

)n−1
≥ 0.361. This concludes the proof by the linearity of expectation. �

We use the result of the above lemma to bound b`.

Lemma 3.7. For random 1-out graphs with n ≥ 30 vertices, b` ≥ 0.303n.

Proof. We start again with b` ≥ b1, as Bi ⊆ Bi+1. By (3.1),

b` ≥
∑
j

1− e−
∑

i sijα
(1)
i ,

and using Lemma 3.6,

b` ≥
∑
j

1− e−0.361 ,

for n ≥ 30. This simplifies to the stated result. �

The proofs used in obtaining the bounds in Corollary 3.2 needed to assume a random 1-out graph

only for lower bounding α
(1)
i . This quantity can also be bound in graphs with uniform vertex

degrees. We sum the two lower bounds from Lemmas 3.6 and 3.7 in a corollary.

Corollary 3.2. a` + b` ≥ 0.664n for random 1-out graphs with n ≥ 30 vertices.

At this point, we have a bound on the number of matched vertices using Lemmas 3.2, 3.4, 3.5,
and Corollary 3.2 as n− a` + b` − n−a`−b`

3 ≥ 0.754n.



3.2.3 An improved bound on c. Consider the family of graphs in which all vertices have degree
two. As graphs from this family have disjoint cycles; we call them cyclic graphs. Let CM denote a
random graph from this family with M vertices. There are !M cyclic graphs with M vertices, as
derangements create cycles. The n− a` − b` vertices remaining after the first phase of Karp-Sipser
form a Cn−a`−b` by the principal of deferred decisions [24, p. 9]. This is so, as the edge chosen
by a vertex u is incident on a remaining vertex, and u is chosen by exactly one of the remaining
vertices. We will find an upper bound on the expected number of odd cycles in a Cn−a`−b` and
improve Lemma 3.5.

For a vertex ui ∈ CM , let hi be the length of the cycle containing it, and define a variable
Yi = 1

hi
if hi is odd and Yi = 0 otherwise. Then,

∑
ui∈CM

Yi is the number of odd cycles in CM .

To see why, consider an odd cycle of length k and observe that each of its vertices contributes 1
k

for counting the cycle. We now measure the expected value of Yi for a vertex ui.

Lemma 3.8. In a random cyclic graph with M vertices, Pr(hi = k) ≤ 1.04
M for any vertex ui when

k < M − 2, and Pr(hi = k) ≤ 1.35
M for k = M − 2.

Proof. We have the formula whose explanation follows:

Pr(hi = k) =

(
M−1
k−1

)
· (k − 1)!·!(M − k)

!M
.

We select a set of k − 1 vertices which will form a cycle of length k with ui. There are
(
M−1
k−1

)
different sets, and there are (k − 1)! possible cycles with the selected set. The remaining M − k
vertices must also lie in cycles; there are !(M − k) ways to achieve this. Furthermore, with M
vertices there are !M ways to create a union of disjoint cycles.

Let us manipulate the formula as

Pr(hi = k) =

(
M−1
k−1

)
· (k − 1)!·!(M − k)

!M

=
(M − 1)!·!(M − k)

!M · (M − k)!

=
1

M
· M !·!(M − k)

!M · (M − k)!
.

For M ≥ 5, we have
M !

!M
≤ 2.73. If M − k ≥ 4,

(M − k)!

!(M − k)
≥ 2.64, and

M !

!M

(M − k)!

!(M − k)
≤ 2.73

2.64 ≤

1.04. When M − k = 3, we have
3!

!3
= 3, and

M !

!M

(M − k)!

!(M − k)
≤ 2.73

3 ≤ 1 ≤ 1.04. When M − k = 2,

we have
2!

!2
= 2, and the upper bound is 2.73/2 ≤ 1.35. �

Lemma 3.9. In a random cyclic graph with M vertices, E[Yi] ≤
1.04

M
· log(M) +

0.155

M
for a vertex

ui.



Proof.

E[Yi] =

M∑
k=3,odd

Pr(hi = k) · 1

k

≤
M∑
k=1

Pr(hi = k) · 1

k

(by splitting 1.35/M for k = M − 2)

≤

(
M∑
k=1

1.04

M
· 1

k

)
+

(1.35− 1.04)

M
· 1

M − 2

≤ 1.04

M
·
M∑
k=1

1

k
+

0.155

M

≤ 1.04

M
· log(M) +

0.155

M
. �

Lemma 3.10. The number of odd cycles in CM is less than or equal to d1.04 log(M)e.

Proof. By the linearity of expectation, we find this formula by summing E[Yi] over all ui in CM .�

We plug in the number of vertices remaining after the first phase of Karp-Sipser into the formula
and obtain the following corollary.

Corollary 3.3. The expected number of cycles remaining after the first phase of Karp-Sipser in
random 1-out graphs is less than or equal to d1.04 log(n− a`− b`)e, which is also less than or equal
to d1.04 log(0.336n)e.

3.3 Variants. Here we summarize two related theoretical random bipartite graph models that
we adapt to the undirected case using similar algorithms. The presentation will be brief and without
proofs; we will present experiments in Section 4.1.

The random 1 + e−1 undirected graph model (see the bipartite version [12] summarized in
Section 2.3) lets each vertex choose a random neighbor. Then, the vertices that have not been chosen
select one more neighbor. The maximum cardinality of a matching in the subgraph consisting of
the identified edges can be computed as an approximate matching in the original graph. As this
heuristic delivers perfect matchings with high probability in the uniform bipartite case, we expect
perfect or near perfect matchings in the general case.

A model richer in edges is the random 2-out graph model. In this model, each vertex chooses two
neighbors. There are two enticing characteristics of this model in the uniform bipartite case. First,
the probability of having a perfect matching goes to one with the increasing number of vertices [32].
Second, there is a special algorithm for computing the maximum cardinality matchings in these
(bipartite) graphs [13] with high probability, in linear time in expectation.

4 Experiments

To understand the effectiveness and efficiency of the proposed heuristics in practice, we report the
matching quality and various statistics that appear in our analyses in Section 3. For the experiments,
we used three graph datasets: (1) the first set is generated with matrices from SuiteSparse Matrix
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Figure 1: The matching qualities sorted in increasing order for KS on the original graph, S5-KS
and S5-KS+ on 1-out and 2-out graphs. The figures also contain the quality of the maximum
cardinality matchings in these graphs. The experiments are performed on the 115 graphs in the
first dataset.

Collection (https://sparse.tamu.edu/). We investigated all n × n matrices from the collection
with 50000 ≤ n ≤ 100000. For a matrix from this set, we removed the diagonal entries, symmetrized
the pattern of the resulting matrix, and discarded a matrix if it has empty rows. There were 115
matrices at the end which we used as the adjacency matrix. (2) The graphs in the second dataset
are synthetically generated to make KS deviate from the optimal matching as much as possible.
This dataset contains five graphs with different hardness levels for KS. (3) The third set contains
five large, real-life matrices from the SuiteSparse collection for measuring the run time efficiency of
the proposed heuristics.

4.1 A comprehensive evaluation. We use MATLAB to measure the matching qualities based
on the first two datasets. For each matrix, five runs are performed with each randomized matching
heuristic and the average is reported. One, five and ten iterations are performed to evaluate the
impact of the scaling method.

Table 1 summarizes the quality of the matchings for all the experiments on the first dataset. The
matching quality is measured as the ratio of the matching cardinality to the maximum cardinality
matching in the original graph. The table presents statistics for matching qualities of KS performed
on the original graphs (first row), 1-out graphs (the second set of rows), Karoński-Pittel-like
(1 + e−1)-out graphs (the third set of rows), and 2-out graphs (the last set of rows).

For the U-Max rows, we construct k-out graphs by using uniform probabilities while selecting
the neighbors as proposed in the literature [8, 12]. We compute the cardinality of the maximum
matchings in these k-out graphs to the maximum matching cardinality on the original graphs and
report the statistics. The rows St-Max report the same statistics for the k-out graphs constructed
by using probabilities with t ∈ {1, 5, 10} scaling iterations. These statistics serve as upper bounds
on the matching qualities of the proposed St-KS heuristics which execute KS on the k-out graphs
obtained with t scaling iterations. Since St-KS heuristics use only a subgraph, the matchings they
obtain are not maximal with respect to the original edge set. The proposed St-KS+ heuristics
exploit this fact and apply another KS phase on the subgraph containing only the unmatched
vertices to improve the quality of the matchings. The table does not contain St-Max rows for
1-out graphs since KS is an optimal algorithm for these subgraphs.



Alg. Min Max Avg. GMean Med. StDev

KS 0.880 1.000 0.980 0.980 0.988 0.022

1
-o

u
t

U-Max 0.168 1.000 0.846 0.837 0.858 0.091
S1-KS 0.479 1.000 0.869 0.866 0.863 0.059
S5-KS 0.839 1.000 0.885 0.884 0.865 0.044
S10-KS 0.858 1.000 0.889 0.888 0.866 0.045
S1-KS+ 0.836 1.000 0.951 0.950 0.953 0.043
S5-KS+ 0.865 1.000 0.958 0.957 0.968 0.036
S10-KS+ 0.888 1.000 0.961 0.961 0.971 0.033

(1
+
e−

1
)-

o
u

t

U-Max 0.251 1.000 0.952 0.945 0.967 0.081
S1-Max 0.642 1.000 0.967 0.966 0.980 0.042
S5-Max 0.918 1.000 0.977 0.977 0.985 0.020
S10-Max 0.934 1.000 0.980 0.979 0.985 0.018
S1-KS 0.642 1.000 0.963 0.962 0.972 0.041
S5-KS 0.918 1.000 0.972 0.972 0.976 0.020
S10-KS 0.934 1.000 0.975 0.975 0.977 0.018
S1-KS+ 0.857 1.000 0.972 0.972 0.979 0.025
S5-KS+ 0.925 1.000 0.978 0.978 0.984 0.018
S10-KS+ 0.939 1.000 0.980 0.980 0.985 0.016

2-
ou

t

U-Max 0.254 1.000 0.972 0.966 0.996 0.079
S1-Max 0.652 1.000 0.987 0.986 0.999 0.036
S5-Max 0.952 1.000 0.995 0.995 0.999 0.009
S10-Max 0.968 1.000 0.996 0.996 1.000 0.007
S1-KS 0.651 1.000 0.974 0.974 0.981 0.035
S5-KS 0.945 1.000 0.982 0.982 0.984 0.013
S10-KS 0.947 1.000 0.984 0.983 0.984 0.012
S1-KS+ 0.860 1.000 0.980 0.979 0.984 0.020
S5-KS+ 0.950 1.000 0.984 0.984 0.987 0.012
S10-KS+ 0.952 1.000 0.986 0.986 0.987 0.011

Table 1: For each matrix in the first dataset and each proposed heuristic, five runs are performed the

statistics are performed over the mean of these results; the minimum, maximum, arithmetic and geometric

averages, median and standard deviation are reported.
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Figure 2: The cumulative distribution of the ratio of number of odd cycles remaining after the first
phase of KS in One-Out to the number of vertices in the graph.

As Table 1 shows, more scaling iterations increase the maximum matching cardinalities on k-out
graphs. Although this is much more clear when the worst-case graphs are considered, it can also
be observed for arithmetic and geometric means. Since U-Max is the no scaling case, the impact
of the first scaling iteration (S1-KS vs U-Max) is significant. On the other hand, the difference on
the matching quality for S5-KS and S10-KS is minor. Hence, five scaling iterations are deemed
sufficient for the proposed heuristics in practice.

As the theory suggests, the heuristics St-KS perform well for (1 + e−1)-out and 2-out graphs.
With t ∈ {5, 10}, their quality is almost on par with KS on the original graph, and even better for
2-out graphs. In addition, applying KS on the subgraph of unmatched vertices to obtain a maximal
matching does not increase the matching quality much. Since this subgraph is small, the overhead
of this extra work will not be significant. Furthermore, this extra step significantly improves the
matching quality for 1-out graphs which a.a.s. do not have a perfect matching.

To better understand the practical performance of the proposed heuristics and the impact of
the additional KS execution, we profile their performance by sorting their matching qualities in
increasing order for all 115 matrices. Figure 1a plots these profiles on 1-out and 2-out graphs for
the heuristics with five scaling iterations. As the first figure shows, five iterations are sufficient to
obtain 0.86 matching quality except 1.7% of the 1-out experiments. The figure also shows that
the maximum matching cardinality in a random 1-out graph is worse than what KS can obtain on
the original graph. This is why although S5-KS finds maximum matchings on 1-out graphs, its
performance is still worse than KS. The additional KS in S5-KS+ closes almost all of this gap
and makes the matching qualities close to those of KS. On the contrary, for 2-out graphs generated
with five scaling iterations, the maximum matching cardinality is more than the cardinality of the
matchings found by KS. There is still a gap between the best possible (red line) and what KS can
find (blue line) on 2-out graphs. We believe that this gap can be targeted by specialized, efficient
exact matching algorithms for 2-out graphs.

There are 30 rank-deficient matrices without total support among the 115 matrices in the first
dataset. We observed that even for 1-out graphs, the worst-case quality for S5-KS is 0.86 and the
average is 0.93. Hence, the proposed approach also works well for rank-deficient matrices/graphs
in practice.

Since the number c of odd cycles at the end of the first phase of KS is a performance measure, we
investigate it. For each matrix, we compute the ratio c/n. We then plot the cumulative distribution
of these values in Fig. 2. For all the experiments except one, this ratio is less than 1%. For the
extreme case, the ratio increases to 8%. In that particular case, the matching found in the 1-out



(a) h = 2 (b) h = 512

Figure 3: Bad matrices for KS with h = 2 and h = 512.

subgraph is maximum for the input graph (i.e., the number of odd components is also large in the
original graph).

4.2 Bad matrices for KS. Let A be an n × n symmetric matrix, V1 be the set of A’s first
n/2 vertices, and V2 be the set of A’s last n/2 vertices. As Figure 3 shows, A has a full V1 × V1
block, i.e., a clique, and an empty V2 × V2 block. The last h � n vertices of V1 are connected to
all the vertices in the corresponding graph. The block V1 × V2 has a nonzero diagonal, hence the
corresponding graph has a perfect matching.

On such a matrix with h = 0, the KS heuristic consumes the whole graph during Phase 1 and
finds a maximum cardinality matching. When h > 1, Phase 1 immediately ends, since there is no
degree-one vertex. In Phase 2, the first edge (nonzero) consumed by KS is selected from a uniform
distribution over the nonzeros whose corresponding rows and columns are still unmatched. Since
the block V1 × V1 forms a clique, it is more likely that the nonzero will be chosen from this block.
Thus, a vertex in V1 will be matched with another vertex from V1, which is a bad decision since
the block V2 × V2 is completely empty. Hence, we expect a decrease on the performance of KS as
h increases. On the other hand the probability that the proposed heuristics chooses an edge from
that block goes to zero, as those entries cannot be in a perfect matching.

Table 2 shows that the quality of KS drops to 0.63 as h increases. In comparison, One-Out
heuristic with five scaling iterations maintains a good quality for small h values. However, a better
scaling with more iterations (10 and 20 for h = 128 and h = 512, respectively) is required to
guarantee the desired matching quality—see the scaling error in the table.

4.3 Experiments on large-scale graphs. This experiments are performed on a machine
running 64-bit CentOS 6.5, has 30 cores each of which is an Intel Xeon CPU E74870 v2 core
operating at 2.30 GHz. To choose five large-scale matrices from SuiteSparse, we first sorted the
pattern-symmetric matrices in the collection in decreasing order of their nonzero count. We then
chose the five largest matrices from different families to increase the variety of experiments. The
details of these matrices are given in Table 3. This table also contains the run times and matching
qualities of the original KS, and the proposed One-Out and Two-Out heuristics. The proposed
heuristics have five scaling iterations and also apply KS at the end for ensuring maximality.

The run time of the proposed heuristics are analyzed in four stages in Table 3. The Scale
stage scales the matrix with five iterations, the k-out stage chooses the neighbors and constructs
the k-out subgraph, the KS stage applies KS on the k-out subgraph, and KS+ is the stage for
the additional Karp-Sipser at the end. The total time with these four stages are also shown. The



One-Out
KS 5 iters. 10 iters. 20 iters.

h quality error quality error quality error quality
2 0.96 7.54 0.99 0.68 0.99 0.22 1.00
8 0.78 8.52 0.97 0.78 0.99 0.23 0.99

32 0.68 6.65 0.81 1.09 0.99 0.26 0.99
128 0.63 3.32 0.53 1.89 0.90 0.33 0.98
512 0.63 1.24 0.55 1.17 0.59 0.61 0.86

Table 2: Results for the bad matrices with n = 5000 and different h values. One-Out is executed
with 5, 10, and 20 scaling iterations and scaling errors are also reported. Averages of five are
reported for each cell.

OneOut-S5-KS+ TwoOut-S5-KS+
KS Execution time (seconds) Execution time (seconds)

Matrix |V | |E| Quality time Quality Scale 1-out KS KS+ Total Quality Scale 2-out KS KS+ Total
cage15 5.2 94.0 1.00 5.82 0.93 0.67 0.85 0.65 0.05 2.21 0.99 0.67 1.48 1.78 0.01 3.94
dielFilterV3real 1.1 88.2 0.99 3.36 0.98 0.52 0.36 0.07 0.01 0.95 0.99 0.52 0.62 0.16 0.00 1.30
hollywood-2009 1.1 112.8 0.93 4.18 0.91 1.12 0.45 0.06 0.02 1.65 0.95 1.12 0.76 0.13 0.01 2.01
nlpkkt240 28.0 746.5 0.98 52.95 0.93 4.44 4.99 3.96 0.27 13.66 0.98 4.44 9.43 10.56 0.11 24.54
rgg n 2 24 s0 16.8 265.1 0.98 19.49 0.93 2.33 2.33 2.08 0.17 6.91 0.98 2.33 4.01 6.70 0.11 13.15

Table 3: Summary of the results with five large-scale matrices for original KS and the proposed One-Out

and Two-Out heuristics which generate maximal matchings with extra KS and five scaling iterations.

quality results are consistent with the experimental results obtained on the first dataset. As the
table shows, the proposed heuristics are faster than the original KS on the input graph. For 1-out
graphs, the proposed approach is 2.5–3.9 faster than KS on the original graph. The speedups are
in between 1.5–2.6 for 2-out graphs with five iterations.

5 Conclusion

We proposed heuristics for approximating the maximum cardinality matchings on general (undi-
rected) graphs. The heuristics scale the adjacency matrix of a given graph with doubly stochastic
scaling algorithms, and then selects a subgraph on which a maximum cardinality matching is ob-
tained. We showed that the obtained matching approximates the maximum cardinality matching
on the original graph; both in theory and in practical experiments. Our theoretical analysis can be
perceived as an analysis of the well-known Karp-Sipser heuristic on the random 1-out graph model.
Our experiments suggest that one of the heuristics has performance on par with Karp-Sipser whilst
being faster and more reliable.

A more rigorous treatment and elaboration of the variants described in Section 3.3 seem
worthwhile. Although Karp-Sipser heuristic work well for these graphs, we wonder if there are
exact, linear time algorithms for (1 + e−1)-out and 2-out graphs. We also plan to work on the
parallel implementations of these algorithms.
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