Combinatorics of Local Search: An Optimal 4-Local Hall's Theorem for Planar Graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Combinatorics of Local Search: An Optimal 4-Local Hall's Theorem for Planar Graphs

Résumé

Local search for combinatorial optimization problems is becoming a dominant algorithmic paradigm, with several papers using it to resolve long-standing open problems. In this paper, we prove the following '4-local' version of Hall's theorem for planar graphs: given a bipartite planar graph G = (B, R, E) such that |N (B)| ≥ |B | for all |B | ≤ 4, there exists a matching of size at least |B| 4 in G; furthermore this bound is tight. Besides immediately implying improved bounds for several problems studied in previous papers, we find this variant of Hall's theorem to be of independent interest in graph theory.

Domaines

Informatique
Fichier principal
Vignette du fichier
radiuslocalsearch.pdf (846.22 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01740357 , version 1 (21-03-2018)

Identifiants

Citer

Daniel Antunes, Claire Mathieu, Nabil Mustafa. Combinatorics of Local Search: An Optimal 4-Local Hall's Theorem for Planar Graphs. 25th Annual European Symposium on Algorithms (ESA 2017), Sep 2017, Vienna, Austria. ⟨10.4230/LIPIcs.ESA.2017.8⟩. ⟨hal-01740357⟩
231 Consultations
139 Téléchargements

Altmetric

Partager

More