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Abstract

Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies

(IBs) in which all the components of the viral RNA polymerase are concentrated. In this

work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to

IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephos-

phorylation is achieved by a complex formed between P and the cellular phosphatase

PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby

and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 inter-

action regions in P. When the P–PP1 interaction was disrupted, M2-1 remained phos-

phorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is

required, in a cyclic manner, for efficient viral transcription. IBs contain substructures

called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized

viral mRNAs concentrate. Disruption of the P–PP1 interaction was correlated with M2-1

exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral

mRNA binding and hence for a previously proposed post-transcriptional function.

Author summary

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness

in infants. Since no vaccine and no potent antivirals are available against RSV, it is

essential to better understand the mechanisms of viral replication to develop new anti-

viral strategies. Here we have investigated the mechanisms by which two essential com-

ponents of the viral RNA polymerase machinery, the phosphoprotein P and the M2-1

transcription factor, interact and function. We identified the amino acid residues of P

critical for this interaction and showed that they are required for P recruiting M2-1 to
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cytoplasmic inclusions, where viral polymerase complex proteins concentrate and viral

RNA synthesis occurs. We also showed that M2-1 dephosphorylation, required for viral

transcription, is achieved by a complex formed between P and the cellular phosphatase

PP1. The region of P binding to PP1 is located nearby and upstream of the M2-1 bind-

ing domain. This is the first report showing that the phosphoprotein of a negative

strand RNA virus can hijack a cellular phosphatase to modulate the phosphorylation

state of its partners. These two P regions interacting with M2-1 and PP1 are also poten-

tial targets for future antiviral therapy.

Introduction

Human respiratory syncytial virus (RSV) is the leading cause of severe respiratory tract infec-

tions in infants worldwide and the primary cause of infant hospitalization for respiratory infec-

tions [1]. In addition, RSV is increasingly recognized as a significant cause of disease in the

elderly population and can often be fatal for patients with a compromised immune system [2].

The virus belongs to the Orthopneumovirus genus of the Pneumoviridae family, order Monone-
gavirales [3]. The RSV genome is a single strand, negative sense RNA of about 15 kb that is

packaged by the nucleoprotein (N) and maintained as a left-handed helical N-RNA ribonu-

cleoprotein complex (RNP) [4–6]. This RNP is the template for two distinct activities: RNA

replication that generates genomic and antigenomic RNA, which is encapsidated by N imme-

diately after synthesis [7, 8], and RNA transcription that generates 10 capped and poly-adeny-

lated mRNAs, which are not encapsidated by N. Both activities are carried out by the viral

RNA-dependent RNA polymerase complex (RdRp) [9]. The viral N, P (phosphoprotein) and

L (large polymerase) proteins are the essential components of the RdRp. RSV P is the main

cofactor of the large polymerase L protein. In particular, by interacting with L and the RNP, P

is essential to properly position the L protein for RNA synthesis [10].

RSV transcription is dependent on a fourth viral protein, M2-1 [11]. The transcriptase com-

plex first engages promoter sequences that lie at the 3’ end of the genome [12]. Transcription

proceeds through sequential stop-and-restart events, in which the RdRp recognizes gene start

(GS) and gene end (GE) sequences, that flank each gene and direct initiation and termination

of transcription, respectively [13]. The transcriptase complex has the propensity to dissociate

from the RNP template, but cannot reinitiate at a downstream gene after a premature termina-

tion. This leads to a decreasing gradient of mRNA from the 3’ to the 5’ end of the genome [14].

In contrast, the highly processive replicase bypasses GS and GE signals to produce complete

genomic and antigenomic RNAs [15]. The exact mechanism of how RdRp differentiates bet-

ween transcription and replication still remains unknown.

By increasing the processivity of the RdRp complex, RSV transcription antiterminator pro-

tein M2-1 prevents premature transcription termination [16, 17]. For this activity, M2-1 has to

be recruited to cytoplasmic inclusion bodies (IBs), which contain other components of the

RdRp complex, notably N, P and L, and [18–20], [21],[22]. Moreover we recently showed that

IBs are a place of viral RNA synthesis and that M2-1 and viral mRNAs concentrate in IB sub-

structures called IB associated granules (IBAGs), from which N, P, L and genomic RNA are

absent [20]. M2-1 is a 22 kDa basic protein that forms stable tetramers in solution [23, 24]. Each

protomer features an N-terminal zinc finger domain, an α-helical tetramerization motif, and a

C-terminal α-helical core domain [24]. M2-1 is an RNA binding protein [25] that binds prefer-

entially to RSV mRNAs and A-rich sequences [26]. RSV M2-1 can also interact with RSV P. We

showed previously that substitution of M2-1 residues involved in the M2-1–P interaction
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prevented the recruitment of M2-1 to IBs, suggesting that formation of a P–M2-1 complex is

critical for M2-1 recruitment to IBs [19]. Since M2-1 interacts with RNA and P in a competitive

manner through the core domain [19, 23], it is expected that these interactions are regulated in

a cyclic manner.

In RSV-infected cells M2-1 exists in different phosphorylation states, resulting in its migra-

tion as two major bands in SDS-PAGE [27–29]. The slower-migrating species contains phos-

phorylated M2-1, whereas the faster-migrating species lacks significant phosphorylation [27].

In RSV infected cells or when co-expressed with P, M2-1 protein remains mainly unphosphory-

lated, whereas M2-1 is mainly phosphorylated when expressed alone [25]. Using recombinant

(unphosphorylated) M2-1 produced in E. coli, it has also been shown that M2-1 can be phos-

phorylated in vitro by casein kinase I on serines S58 and S61 [26]. Abolishing phosphorylation

of these residues by alanine substitution impaired the antitermination function of M2-1 [26].

However, the P–M2-1 interaction appears to be independent of the phosphorylation status of

M2-1 [23]. On the other hand, phosphorylated M2-1 has reduced RNA binding capacities [25].

All these data point to the critical role of dynamic and reversible M2-1 phosphorylation for its

function in transcription.

Neither P nor M2-1 produced in E. coli are phosphorylated [23, 30, 31]. These two unpho-

sphorylated proteins interact together and have been used previously to study the P–M2-1

interactions in vitro [23, 32]. In P, the region encompassing residues 100–120 and more specif-

ically residues L101, Y102, and F109 were reported to be critical for the M2-1–P interaction

and for efficient transcription [33]. It was also shown that P residue T105 is probably involved

in M2-1 binding [34]. P can be phosphorylated on several serine and threonine residues with

different turnover rates [34–39]. In particular phosphorylation of T108, which occurs with a

high-turnover, would prevent M2-1 binding. However, the role of P phosphorylation remains

unclear, since phosphorylation is not required for viral transcription or replication [38, 40,

41]. Here we further investigated structural and functional aspects of the M2-1–P interaction.

We show that a region encompassing residues 93–110 of P is required for the presence of

M2-1 in IBs. We further identified another element, located upstream of this region which is

responsible for M2-1 dephosphorylation. We show that this region is involved in the binding

of the cellular protein phosphatase-1 (PP1) to P, but not in M2-1 binding, and that the com-

plex formed by P and PP1 is responsible for M2-1 dephosphorylation, a key process for effi-

cient viral transcription.

Results

Mapping of M2-1core interaction regions on P by NMR

We previously mapped the interaction surface of RSV P on the core domain of M2-1 (M2-

1core, residues 58–177) by NMR [19], by observing spectral perturbations, at a residue-specific

level, induced by unlabeled P on 15N-labeled M2-1core. RSV P forms highly stable tetramers

[31, 42, 43], with large N- and C-terminal intrinsically disordered regions (IDRs) flanking the

oligomerization domain (residues 126–163) [31, 32]. We recently analyzed the propensities of

these IDRs to form transient secondary structures and to transiently associate, either with each

another or with the N protein, also by NMR [44]. Here we proceeded to determine the M2-1

binding region in P.

Both P and M2-1, produced in E. coli, were unphosphorylated. We compared 1H-15N spectra

of 15N-labeled P in the absence and presence of unlabeled M2-1core. The presence of M2-1core

induced a significant decrease of NMR signal intensities, or line broadening, in a region span-

ning residues 90–120 in the N-terminal IDR of P, upstream of the oligomerization domain (Fig

1A). This finding is in agreement with the previous localization of residues critical for M2-1
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binding [33, 34]. The binding region includes an extremely transient α-helix detected in free P

(αN2 in Fig 1A) [44]. It is expected that in the M2-1–P complex, the αN2 region adopts the

molecular tumbling properties of the globular M2-1core, which results in increased transverse

relaxation and hence line broadening. But this cannot explain that the signal is fully broadened

out. A Kd of 3 μM was previously determined for the M2-1–P complex by isothermal titration

calorimetry (ITC) [19]. It is compatible with exchange on a μs-ms timescale between free and

M2-1core-bound P, which contributes to line broadening. Additional broadening probably arises

from conformational exchange taking place between partially folded states of the αN2 helix,

which may all contribute to M2-1core binding.

We also carried out NMR interaction experiments between M2-1core and two 15N-labeled P

fragments, P[1–126] and P[1–163], which were designed for previous characterization and inter-

action experiments with N by NMR [44]. They both comprise the 90–120 region. P[1–126] is a

monomeric fragment that represents the N-terminal IDR of P. P[1–163] additionally contains the

oligomerization domain of P and displays a similar behavior to full-length P, with nearly com-

plete line broadening in the αN2 region (Fig 1B). Surprisingly, in P[1–126] a second region is per-

turbed at the N-terminus of P (residues 23–37) at a lesser extent. This region overlaps with the

N0-binding site of P, which contains another transient α-helix (αN1) [44, 45]. Notably, in N0-P in-

teraction experiments using RNA-free N, we had observed the symmetrical scenario: N not only

induced line broadening in the N0-binding region, but also to a lesser extent in the M2-1-binding

region [44]. We cannot rule out that a direct interaction takes place in both cases at a second

binding site. However, since we evidenced transient contacts between these two regions in free P

[44], the perturbations observed at the second site may indirectly arise from breaking of internal

contacts to expose the primary binding site [44]. Finally, from the interaction experiment with P

[1–126], it appears that the primary interaction region is probably restricted to residues 90–112,

since residues 113–120 are no longer completely broadened out (Fig 1C). The presence of the

oligomerization domain in full-length P and P[1–163] can affect nuclear relaxation in this region

by restricting motions due to steric hindrance or by promoting an extension of either αN2 or the

coiled-coil helices of the oligomerization domain.

P fragment P[93–110] is sufficient for binding M2-1 in vitro
To validate our NMR results, we performed GST pulldown assays. Full-length and truncated

forms of RSV P were produced as GST-fusion proteins (Fig 2A) and incubated with recombi-

nant His-tagged M2-1 protein. All proteins were expressed in E. coli. After extensive wash, the

complexes were analyzed by SDS-PAGE and Coomassie blue staining. As shown in Fig 2B,

M2-1 and P constructs were purified to> 90% homogeneity, except for GST-P[1–126] and

GST-P[1–90], for which faster migrating bands were observed in a reproducible manner. Mass

spectrometry analysis revealed that these bands correspond to degradation of these P fragments.

Fig 1. Mapping of the M2-1core interaction regions on P by NMR. (A) Superimposed 1H-15N HSQC spectra of 35 μM 15N-labeled P, alone (red contours) and in

the presence of 1 molar equivalent of M2-1core (black contours). Residue-specific assignments are represented by red labels for peaks with an intensity decrease by

more than 60% on addition of M2-1core. The bar diagram represents the intensity ratios (I/I0) measured for each peak. Straight and broken lines represent the

mean and mean ± rmsd values over all signals. The position of the oligomerization domain and regions with transient α-helical or β-sheet secondary structure

along the sequence of P, previously determined by NMR [44], is indicated in the cartoon on top. The boundaries and maximal propensity of these secondary

structures [44] are indicated below. The red background indicates the region around the transient helix αN2 where M2-1core induces>60% intensity decrease. The

hatched area corresponds to a P region encompassing the OD and C-terminal helices for which peaks cannot be observed due to severe line broadening without

M2-1core. (B) and (C) Superimposed 1H-15N HSQC spectra of 35 μM 15N-labeled P[1–126] and 75 μM P[1–163], alone (cyan and blue contours) and in the

presence of 1 molar equivalent of M2-1core (black contours). Residue-specific assignments are given for all peaks. Insets on the top left give assignments for the

crowded central region of the spectra. These spectra were acquired with less resolution in the 5N dimension than the spectrum shown in A. Bar diagrams below

represent the intensity ratios. The regions around αN2 with I/I0< (mean-rmsd) are highlighted with light cyan and blue backgrounds for P[1–126] and P[1–163],

respectively.

https://doi.org/10.1371/journal.ppat.1006920.g001
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The results clearly show that M2-1 binding was retained for GST-P, GST-P[1c126], GST-P

[90-126] and GST-P[93-110]. However, no M2-1 binding was seen for GST-P[161-241], GST-P

[127-160] or GST-P[1-90]. These results, which are in agreement with previous data by Mason

et al. [33], demonstrate that P region P93-D110 is sufficient for binding M2-1 in vitro.

Fig 2. Identification of the M2-1 binding domain on P by GST pull-down. (A) Schematic illustration of the full-length and truncated forms of GST-P used for

M2-1 pulldowns in this study. The oligomerization domain of P is represented as a grey box, and numbers indicate amino acid positions. (B) GST-P proteins were

purified on glutathione-Sepharose beads and incubated in the presence of M2-1. After extensive washing, the binding of M2-1 was determined by SDS-PAGE and

Coomassie blue staining. For each deletion mutant, the ability to interact with M2-1 is summarized on the right in A.

https://doi.org/10.1371/journal.ppat.1006920.g002
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Effect of targeted P gene substitutions on M2-1 controlled transcription

In order to identify the P residues critical for P–M2-1 interaction, we used a functional

assay based on a firefly luciferase (Luc) reporter RSV minigenome. In this system transcrip-

tion of the second gene coding for Luc is absolutely dependent on the P–M2-1 interaction

[19, 23]. Site-directed mutagenesis was performed on residues V85 to E115, encompassing

the P93-D110 region. Ala substitution of seven mainly hydrophobic residues, F87, F98,

L101, Y102, T105, I106 and F109, had a drastic effect on RSV transcription (Fig 3A). West-

ern blot shows that the drop in transcription efficiency was not due to a defect in expression

of the P variants (Fig 3B). Among these, L101, Y102, T105 and F109 had been shown previ-

ously to be involved in the P–M2-1 interaction [33, 34]. The phosphomimetic T108D vari-

ant impaired transcription, in contrast to T108A. This is in line with the results of Asenjo

et al. who had suggested that phosphorylation of T108 could negatively regulate the P–M2-1

interaction [34]. Our results are thus in agreement with previous data, but highlight the crit-

ical role of newly identified residues F87, F98 and I106.

Mutations of P impairing transcription are located in the P93-D110 region, except for F87.

The (i, i+3 ; i, i+4) periodicity of the critical residues F98-F109 of P identified here suggests

that M2-1 binding stabilizes the transient α-helix formed in free P [44]. Helical representation

of this domain reveals that critical residues F98, L101, Y102, T105, I106 and F109 are located

on the same side of the putative helix and form a contiguous surface (Fig 3C).

Impact of mutations of P on the intracellular localization of M2-1

When co-expressed in the absence of other viral proteins, RSV P and N proteins induce the

formation of cytoplasmic IBs similar to those observed during RSV infection, where N and P

co-localize [18]. When co-expressed with P and N, M2-1 also localizes preferentially in these

IBs, which has been linked to its interaction with P [19]. We thus analyzed the impact of the P

mutations identified as critical for RdRp activity on the intracellular localization of M2-1 by

fluorescence microscopy. Cells were cotransfected with expression vectors encoding P (WT

and variants), N and M2-1-mCherry. All tested P variants were able to induce the formation of

IBs (Fig 4). The M2-1-mCherry fusion protein accumulated in IBs in the presence of wild type

(WT) P. M2-1 was also present in the IBs in the presence of P variant T108A, which did not

impact transcription in the minigenome assay. In contrast, M2-1 was absent from the IBs for P

variants that were defective for RdRp activity, F98A, L101A, Y102A, T105A, T105D, I106A,

T108D and F109A, with the notable exception of F87A. It must be specified that mCherry

fusion at the C-terminus of M2-1 does not affect the polymerase activity in the context of the

minigenome, since ~ 70% of activity was recovered, as compared to WT M2-1 (S1 Fig). These

results show that there is a good correlation between the presence of M2-1 in IBs and RdRp

activity, except for F87A. They also point to the potential role of T108 phosphorylation for the

presence of M2-1 in IBs.

Effects of targeted P gene substitutions on the P–M2-1 interaction single

out residue F87

To determine whether point mutations affecting RSV transcription and M2-1 localization

directly impact the P–M2-1 interaction, we performed GST pulldown assays using recombi-

nant, non-phosphorylated GST-P and M2-1 proteins produced in E. coli. Fig 5A shows that

substitutions F98A, L101A, Y102A, T105A, T105D, T108D and F109A were sufficient to

impair P–M2-1 interaction in vitro, while M2-1 still interacted with the T108A and F87A

variants.
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We hypothesized that the M2-1 binding region in P, which displays helical propensity in

solution folds into a stable helix upon M2-1—P complex formation, and we docked a struc-

tural model of the P helix (Fig 5B, green) onto the structure of M2-1core under constraints

obtained by mutagenesis and NMR interaction data. We have shown previously that the P

Fig 3. Identification of residues of P critical for RSV polymerase activity. (A) Polymerase activity assay in the presence

of P mutants. BSRT7/5 cells were transfected with the RSV minigenome composed of plasmids encoding the WT N, M2-1,

and L proteins, the pMT/Luc minigenome, and WT or mutated P proteins, together with pCMV-βGal for transfection

standardization. Viral RNA synthesis was quantified by measuring the Luc activity after cell lysis 24 h post-transfection.

Each luciferase minigenome activity value was normalized based on β-galactosidase expression and is the average of results

from three independent experiments performed in triplicate. Error bars represent standard deviations. (B) Western blot

analysis showing efficient expression of P variant proteins in BSRT7/5 cells. (C) Helical wheel representation of the putative

α-helix located between residues S94 and N111 of P (HeliQuest online program). Residues critical for M2-1-binding are

indicated by a star and the phosphorylatable residue T108 is indicated by two stars. Positively charged residues are in blue,

negatively charged residues in red, putative phosphorylated residues in purple and hydrophobic residues in yellow.

https://doi.org/10.1371/journal.ppat.1006920.g003
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binding site on M2-1 forms a groove between helices α4 and α6 and that the interaction sur-

face on M2-1 is composed of hydrophobic residues (V127, L152, V156), neutral (N129, T130,

S133) and basic residues (R126, R151) [19]. M2-1 R126D and L148A variants completely

impaired P binding as well as its recruitment to cytoplasmic IBs. Critical P residues deter-

mined in the present study are rather hydrophic or neutral. However a 50% decrease in mini-

genome activity was observed for P variants D95A and D110A. These two acidic residues are

at the edge of the P region involved in the interaction with M2-1 and could thus also play a

role in this interaction (see Fig 5B). Altogether our observations strongly suggest that the bind-

ing surfaces of P and M2-1 involve both hydrophobic and electrostatic interactions.

Fig 4. Effects of point mutations targeting the M2-1-binding domain of P on the recruitment of M2-1 to cytoplasmic IBs. BSRT7/5 cells were transfected with

pP (WT and variants), pN, and pM2-1–mCherry plasmids. Cells were fixed 24 h after transfection, labeled with anti-P antibody (green), and colocalization of P

and M2-1–mCherry (red) was analyzed by fluorescence microscopy. Nuclei were stained with DAPI. Scale bars, 20 μm.

https://doi.org/10.1371/journal.ppat.1006920.g004
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To clarify the differences observed between F87A and the mutations affecting the P–M2-1

interaction, we performed immunoprecipitation after co-transfecting BSRT7 cells with plasmids

Fig 5. Effects of P substitutions on P–M2-1 interaction and M2-1 phosphorylation. (A) GST-P (WT and variants) and M2-1

with a C-terminal 6xHis-tag were expressed in E. coli and purified separately. Beads coated with GST-P (variants and WT), as well

as GST-P[1–80] used as a negative control, were saturated with 3% BSA, and incubated alone (-) or in the presence of M2-1 (+), and

washed. Complexes were resolved by SDS-PAGE and stained with Coomassie blue. M, molecular weight ladder. (B) Model of a

P-M2-1 complex obtained by docking the P D95-F109 helix (green ribbon) onto a M2-1 protomer (grey ribbon, with indication of

helix numbers). P residues critical for M2-1 binding are shown in sticks. M2-1 residues critical for P binding are in orange sticks,

while residues involved in RNA-binding domain are in red sticks. (C) Analysis of the M2-1–P interaction in mammalian cells by

immunoprecipitation. BSRT7/5 cells were transfected with plasmids encoding for N, HA-P (WT and variants) and M2-1.

Immunoprecipitations (IP) from cell lysates (L) were performed 24 h post-transfection using an anti-HA antibody. P and M2-1

were revealed by Western blotting using anti-P and anti-M2-1 rabbit antisera. The star indicates the phosphorylated form of M2-1.

https://doi.org/10.1371/journal.ppat.1006920.g005
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encoding N, M2-1 and HA-P (WT and variants impairing in vitro transcription) and by precipi-

tating with an anti-HA monoclonal antibody. The precipitated complexes were analyzed by

Western blot using anti-P and anti-M2-1 polyclonal sera. As expected [29] [28], two main

bands, corresponding to phosphorylated (upper band) and unphosphorylated (lower band)

M2-1, were observed in cell extracts (Fig 5C). However, whereas M2-1 in the complex with WT

P was mainly unphosphorylated, M2-1 was almost exclusively phosphorylated in the presence

of all the P variants tested. Even more surprisingly, whereas only the unphosphorylated form of

M2-1 co-precipitated with WT P, the F87A mutant was able to precipitate phosphorylated

M2-1 as well. M2-1 remained phosphorylated with F98A, L101A and T105A P variants, which

do not bind any form of M2-1, suggesting that the M2-1–P interaction is involved in M2-1

dephosphorylation. Taken together, these observations indicate that both unphosphorylated

and phosphorylated forms of M2-1 can interact with P, and that the interaction between P and

M2-1 favors M2-1 dephosphorylation. They also reveal that the F87A mutation impairs M2-1

dephosphorylation without impeding P–M2-1 binding.

RSV P binds the cellular protein phosphatase 1 (PP1) by a "RVxF"-like

motif

Since RSV P is required for M2-1 dephosphorylation, we hypothesized that P could associate with

a cellular phosphatase, that in turn would be responsible for M2-1 dephosphorylation. For Ebola

virus, which belongs to the Filoviridae family in the Mononegavirales order, it was recently shown

that VP30, which shares functional and structural similarities with RSV M2-1, is dephosphory-

lated by PP1 [46], and that VP30 dephosphorylation is critical for viral transcription. PP1 does

not recognize specific sequences on its target protein. Instead, substrate binding depends on its

association with PP1-interacting proteins (PIPs) that function as targeting subunits [47]. A major-

ity of known PIPs contain a short PP1-binding motif "RVxF" (R/K-K/R-x(0,1)-V/I-x-F/W/Y).

RSV P contains a 81RKPLVSF87 sequence, which conforms to the "RVxF" motif. Sequence align-

ment of Pneumoviridae P shows high conservation of a "R/x-K-x-x-V-T/S-F" motif, which reduces

to "R-K-P-x-V-T/S-F" for pneumoviruses (Fig 6A). RSV P thus harbors a degenerate "RVxF"

motif containing the residue F87 and is most likely a PIP.

To determine whether P could associate with endogenous PP1, cells were co-transfected

with pHA-P and p-N, and P was immunoprecipitated from cell lysates using an anti-HA anti-

body. The presence of cellular phosphatases was then analyzed by Western blot. The presence

of PP1 was clearly revealed in the precipitated products using WT P (Fig 6B). With the P F87A

variant, PP1 was no longer precipitated (Fig 6B), emphasizing the role of this residue. Of note,

for unclear reasons, the F87A P variant was overexpressed as compared to WT P.

We then investigated whether RSV P could directly interact with PP1 by using NMR interac-

tion experiments. We observed the perturbations in 1H-15N correlation spectra (BEST-TROSY)

of 15N-labeled P[1–126] in the presence of unlabeled GST-PP1α. GST-PP1α induced line

broadening of NMR signals, i.e. a decrease of intensity, notably in a region spanning residues

K76-D90 (Fig 6C and S2 Fig). Control experiments in the presence of GST alone did not reveal

any intensity perturbation (S2 Fig). The 76–90 region contains the degenerate "RVxF" motif

identified above. It is adjacent to the M2-1 binding site, but was not perturbed by M2-1core in P

[1–126] (Fig 1C). The 76–90 region had already drawn our attention owing to more efficient
15N transverse relaxation than in adjacent IDRs and to its β-strand propensity in free P [44].

Since PPI RVxF" motifs adopt an extended β-strand conformation in complex with PP1, it was

tempting to hypothesize that 76–90 region forms a primary PP1 binding site [48]. Similarly to

M2-1core, GST-PP1α also perturbed the N0-binding region in P[1–126]. In contrast to M2-1core,

when we performed interaction experiments with full-length P (Fig 6C and S2 Fig),
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perturbations in the vicinity of αN1 were still observed, so that we cannot rule out that they

reflect direct binding to a second binding site [48]. The presence of GSH in the buffer did not

affect intensities.

The ability of PP1 to interact specifically with P was thus investigated by GST pulldown

using GST-PP1α and recombinant P, WT or F87A mutant, all produced in E. coli. As shown

in Fig 6D, only WT P was efficiently pulled down by GST-PP1. In summary, these results dem-

onstrate that the P–PP1 interaction is direct and that residue F87 of P plays a pivotal role in

this interaction.

RSV P recruits the cellular protein phosphatase 1 (PP1) to IBs, which is

required for M2-1 accumulation in IBAGs

The presence of PP1 in IBs was analyzed by confocal microscopy. BSRT7/5 cells were co-trans-

fected with plasmids expressing PP1-GFP, L, P-BFP, N, M2-1–mCherry proteins together with

the pM/Luc vector expressing a firefly luciferase-reporter RSV minigenome, then fixed 24

hours post-transfection. Of note, BFP insertion between residues 73–74 of P, in a naturally dis-

ordered and poorly conserved region among Pneumoviridae [44], only moderately affected the

polymerase activity in the context of the minigenome, since ~ 80% of activity was recovered, as

compared to WT P (S1 Fig). As shown in Fig 7, PP1 fluorescence clearly overlapped with the

WT P fluorescence, indicating that PP1 was significantly targeted to the IBs. In contrast, PP1

was no longer detected in IBs when expressed in the presence of the F87A P variant. These

results revealed that RSV P recruits PP1 to IBs and that F87 plays a critical role in this process.

By studying the ultrastructure of IBs, we recently found that M2-1 colocalizes with viral

neo-synthesized mRNA in IBAGs, revealed by a poly(dT) probe, and from which genomic

viral RNA, N, P and L proteins are excluded [20]. We thus wondered if the absence of a P-PP1

complex could affect the localization of M2-1 in IBs. As the formation of IBAGs requires viral

mRNA synthesis, we first verified that viral transcription can occur in the absence of M2-1

activity in our system. For that purpose, we engineered a new minigenome in which the first

gene was replaced by the Gaussia luciferase coding sequence, upstream from the firefly lucifer-

ase gene. As shown in S3 Fig, whereas no Firefly luciferase activity was detected in the absence

of M2-1, the Gaussia luciferase activity was still detectable although reduced to ~15%. This

confirmed that M2-1 is not absolutely required for expression of the first gene but increases

expression of this gene. Based on this result, transfected cells were prepared for FISH using

poly(dT) probes and analyzed by confocal microscopy. Fig 7 shows that, in contrast to what

was observed with WT P, in the presence of the F87A P mutant M2-1 was present throughout

the IBs, where it colocalized with P, but absent from IBAGs as revealed by a poly(dT) probe.

These results indicate that phosphorylated M2-1, which is still competent for P-binding, can-

not associate with neo-synthesized viral poly-adenylated mRNAs.

Fig 6. Phosphatase PP1 binds to the "RVxF" motif of RSV P. (A) Sequence alignment of Pneumoviridae P showing the conservation of the "RVxF"

motif. Human RSV A strain (HRSV), bovine RSV (BRSV), ovine RSV (ORSV), pneumonia virus of mice (PVM), canine pneumovirus (CPV), swine

orthopneumovirus (SOV), human metapneumovirus (HMPV) and avian metapneumovirus (AMPV) (accession codes AAX23990.1, NP_048051.1,

Q83956.1, Q5MKM7.1, AHF88957.1, ANO40516.1, YP_012606.1, and AAF05910.1, respectively) P sequences were aligned by Clustal Omega and

prepared with ESPript 3. Numbers correspond to RSV P amino acid residues. (B) BSRT7/5 cells were co-transfected with pN and pHA-P or p-HA-P

[F87A]. HA-P (WT and variant) was immunoprecipitated from cell lysates and the presence of PP1 in the precipitate was analyzed by Western blot. L,

cell lysate; IP, immunoprecipitated products. (C) NMR analysis of GST-PP1α binding to RSV P. Intensity ratios (I/I0), measured for each peak in
1H-15N BEST-TROSY spectra of 25 μM 15N-labeled P[1–126] or 15N-labeled full-length P, alone and in the presence of 2 molar equivalents of

GST-PP1α, are represented in the bar diagrams. Straight and broken lines indicate mean and mean ± rmsd values. Regions with transient α-helical or

β-sheet secondary structure [44] are highlighted by a colored background with the same color code as in Fig 1. The hatched area corresponds to a P

region encompassing the OD and C-terminal helices for which peaks cannot be observed in the free form. (D) Proteins GST-PP1, M2-1, P WT and

F87A mutant were expressed in E. coli and purified separately. Beads coated with GST or GST-PP1 were saturated with 3% BSA, and incubated with, P

WT or F87A mutant and washed. Complexes were pulled down, resolved by SDS-PAGE and stained with Coomassie blue.

https://doi.org/10.1371/journal.ppat.1006920.g006
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In a previous report we observed that IBAGs are not detected when using an oligo(dT)

probe in the absence of M2-1 [20]. These results suggested that either M2-1 is needed for the

formation of IBAGs, or that M2-1 binds to mRNAs and is carried to the IBAGs as a passenger,

not as a required chaperone. To clarify this point, we used two different probes, an oligo(dT)

and probes targeting the first transcription unit of the M/Luc minigenome (the NS1-M chime-

ric mRNA), and compared the presence of IBAGs in the absence or presence of either P WT

or P F87A. Some pictures representing the trend of what we observed are shown in Fig 8; in

the absence of M2-1, some IBAGs were detected when using NS1/M probes but not with an

oligo(dT) probe. Similar results were observed with either WT or F87A P. Thus these results

indicate that (i) transcription of the first gene can occur either in the absence of M2-1 or in

presence of phosphorylated M2-1, as revealed by NS1 probes; (ii) poly-adenylation is affected

in the absence of M2-1 but not in the presence of phosphorylated M2-1; and (iii) IBAGs revea-

led by either NS1 or oligo(dT) probes can form in the absence of M2-1 or in the presence of

phosphorylated M2-1 which is excluded from them. In conclusion these results suggest that

M2-1 is not essential for the formation of RNA aggregates calles IBAGs, and could be involved

in mRNA poly-adenylation. They also suggest that a defect in M2-1 dephosphorylation does

not affect mRNA poly-adenylation but binding of M2-1 to poly(A) RNAs after their synthesis.

PP1 overexpression dephosphorylates M2-1 in cellula
A previous report suggested a requirement for cyclic phosphorylation/dephosphorylation of

M2-1 for efficient antitermination function [24]. To further demonstrate that PP1 is involved

in M2-1 dephosphorylation in cellula, PP1 was overexpressed in BSRT7/5 cells in the context

of the RSV minigenome. Fig 9A shows that RSV RdRp activity, as revealed by Luc activity, sig-

nificantly decreased in a dose-dependent manner with pEGFP-PP1 plasmid addition, while P

and N expression levels were not affected (Fig 9B). However, although the expression level of

Fig 7. P-PP1 interaction allows recruitment of PP1 to IBs and M2-1 localization in IBAGs. BSRT7/5 cells were transfected with plasmids encoding the N, L and

M2-1-mCherry proteins, the M/Luc RSV minigenome, and either wild type (WT) or F87A mutant P-BFP. Tagged proteins were expressed instead of the corresponding

wild type as indicated on the pictures. FISH analyses were performed to detect poly(A) RNA (in red). The expressed tagged proteins are visualized thanks to their

spontaneous fluorescence. IBs are delimited by the P fluorescence. Arrows point to IBAGs. Representative images from 3 independent experiments are shown. Images

were taken under a Leica SP8 confocal microscope. Scale bars 5μm.

https://doi.org/10.1371/journal.ppat.1006920.g007
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unphosphorylated M2-1 was not or poorly affected (Fig 9B), overexpression of PP1 signifi-

cantly induced a decrease in phosphorylated M2-1, and thus a decrease of the ratio of phos-

phorylated versus unphosphorylated M2-1 (Fig 9B and 9C), confirming that PP1 is involved in

M2-1 dephosphorylation in living cells.

Discussion

RSV P recruits M2-1 to IBs

The efficient activity of the RSV RdRp complex depends on regulated and highly specific pro-

tein-protein interactions, which are potential targets for antiviral therapy [49]. P plays a pivotal

role through multiple interactions with L, N and M2-1, mediated by its high structural plastic-

ity linked to its disordered regions [44, 50]. The M2-1 binding region has been mapped previ-

ously to P residues 100–120, using proteins from two RSV strains (A2 and Long), and the role

of specific residues L101, Y102, F109, T105 and T108 was highlighted [33], [34]. By combining

NMR, biochemical and functional approaches based on an RSV minigenome and microscopy,

we precisely mapped the M2-1 binding region of P to a stretch encompassing residues 93–110.

We identified 7 residues of P that are directly involved in this interaction, summarized in Fig

10A. These include two newly identified residues F98 and I106 and validate the major role of

hydrophobic P residues in the P–M2-1 interaction [33].

Fig 8. Effect of M2-1 on RSV mRNA poly-adenylation either in the presence or absence of PP1 in IBs. BSRT7/5 cells were

transfected with plasmids encoding the N, L and M2-1-mCherry proteins, the M/Luc RSV minigenome, and either WT or F87A

mutant P-BFP. FISH analyses were performed to detect poly(A) or NS1 RNAs (in red). The expressed tagged proteins are visualized

thanks to their spontaneous fluorescence. IBs are delimited by the P fluorescence. Arrows point to IBAGs. Representative images

from 3 independent experiments are shown. Images were taken under a Leica SP8 confocal microscope. Scale bars 5μm.

https://doi.org/10.1371/journal.ppat.1006920.g008

Fig 9. Effect of PP1 overexpression on RSV RNA polymerase activity and M2-1 phosphorylation. (A) Inhibition of RSV RNA polymerase activity by PP1

overexpression. BSRT7/5 cells were transfected with the RSV minigenome, and various amounts of pEGFP-PP1 vector. Viral RNA synthesis was quantified by

measuring the Luc activity after cell lysis 24 h post-transfection. Each Luc activity value was normalized based on β-galactosidase expression and is the average

of results from three independent experiments performed in triplicate. Error bars represent standard deviations. (B) Expression of phosphorylated (�) or

unphosphorylated M2-1, N and P in BSR-T7/5 cells transfected with the RSV minigenome and with increasing quantities of pGFP-PP1vector. Cell extracts

were resolved by SDS-PAGE 24 h post-transfection and analyzed by Western-blot using rabbit polyclonal anti-M2-1 or anti-P, and mouse monoclonal anti-α
-tubulin antibodies. (C) Ratio of phosphorylated (Phos-M2-1) versus unphosphorylated (Unphos-M2-1) M2-1, normalized to levels of α-tubulin, in the

presence of increasing amounts of pGFP-PP1vector. Signals were quantified using a Chemidoc Touch Imaging System (Bio-Rad, France).

https://doi.org/10.1371/journal.ppat.1006920.g009
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Furthermore, we found a perfect correlation between the capacity of P to interact with

M2-1, RdRp activity and the presence of M2-1 in IBs. These results indicate that M2-1 cannot

reach IBs without P, P acting as a recruiter for M2-1, and are in agreement with previous

observations obtained with M2-1 variants unable to interact with P [19].

Dephosphorylation of M2-1 is mediated by a P-PP1 complex

M2-1 is mainly unphosphorylated in the context of an RSV infection, whereas the phosphory-

lated state is predominant when M2-1 is expressed alone in cells, S58 and S61 being the main

sites of phosphorylation [26]. Previous experiments showed that phosphoablatant substitu-

tions S58A/S61A as well as phosphomimetic substitutions S58D/S61D reduced RSV transcrip-

tion activity to less than 20% and to *40% as compared to WT M2-1, respectively [24, 26].

These data suggest that a cyclic turnover of phosphorylation-dephosphorylation of M2-1 is

required for efficient RSV transcription.

Here we observed that unphosphorylated M2-1 was predominant in cell lysates when

co-expressed with WT P. A reverse situation was observed when M2-1 was co-expressed with

P variants F98A, L101A, T105A that do not interact with M2-1, M2-1 being mainly phosphor-

ylated, suggesting that P binding induces M2-1 dephosphorylation (Fig 5C). The finding that

M2-1 is predominantly phosphorylated in the presence of another P variant F87A, which effi-

ciently pulled down M2-1, confirmed that P is capable of interacting with both phosphorylated

and unphosphorylated forms of M2-1 [23]. Altogether these results indicated that (i) P medi-

ates M2-1 dephosphorylation or prevents M2-1 phosphorylation and that (ii) a P region adja-

cent to the M2-1 binding region comes into play for this activity.

Previous studies suggested that RSV P could be a target of cellular phosphatases PP1 and

PP2A in cultured cells [38, 51]. PP1 is a well-characterized and conserved Ser/Thr phosphatase

holoenzyme. It is composed of a variable regulatory subunit that determines the localization,

activity, and substrate specificity of the phosphatase and of one of three highly homologous

catalytic phosphatase subunits PP1α, PP1γ, or PP1β/δ (reviewed in [47, 48]). PP1 is the most

widely expressed and abundant Ser/Thr phosphatase and is estimated to catalyze about one

third of all protein dephosphorylations in eukaryotic cells. It dephosphorylates hundreds of

key biological targets by associating with nearly 200 regulatory proteins to form highly specific

holoenzymes. Of note, many of the > 200 established PIPs are predicted to be intrinsically dis-

ordered like RSV P.

The defect in M2-1 dephosphorylation observed for the P F87A variant mainly argued in

favor of the hypothesis of the recruitment by P of the PP1 cellular phosphatase through a

RVxF-like motif, upstream of the M2-1 binding site. This hypothesis was consolidated by sev-

eral complementary approaches showing that (i) WT P, but not the F87A variant, could bind

PP1 in vitro and in cellula; (ii) PP1 colocalized with WT P, but not with the F87A variant, in

IBs; and (iii) overexpression of PP1 increased the unphosphorylated/phosphorylated M2-1

ratio. Altogether, our data show that RSV P can be considered as a PP1-interacting protein

(PIP), targeting PP1 to the M2-1 substrate.

Fig 10. Model for phosphorylation turnover of M2-1 taking into account the P–M2-1 and P–PP1 interactions. (A) The primary sequence of the 80–115 region

of P is indicated at the top. Amino acid residues previously identified as critical for M2-1 binding [33, 34] are in green, newly identified residues F98 and I106 are in

red. Residue F87 critical for M2-1 dephosphorylation and efficient transcription is highlighted in red font on a yellow background. The left-hand column shows

amino acid substitutions. Right-hand columns summarize the impact of P mutations on (i) the polymerase activity, (ii) in vitro interaction between P and M2-1

using recombinant proteins, (iii) interaction between P and M2-1 assessed by co-immunoprecipitation from transfected BSRT7/5 cells, and (iv) on the recruitment

of M2-1 to IBs; ND, not determined. (B) Diagram of M2-1 phosphorylation turnover. (1) M2-1 is phosphorylated (at Ser 58 and 61), binds to P in the cytosol and is

dephosphorylated by PP1 in the P–PP1 complex. (2) The P–PP1–M2-1 complex is directed to IBs (pink) where transcription takes place. (3) M2-1 binds to neo-

synthesized mRNAs at the end of transcription and (4) M2-1-mRNAs complexes are concentrated in IBAGs (blue) before being released in the cytosol (5). M2-1 is

then phosphorylated by a cellular kinase and parts with viral mRNAs which will be used for translation of viral proteins (6).

https://doi.org/10.1371/journal.ppat.1006920.g010
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Mode of action of PP1 for M2-1 dephosphorylation

The degenerate "RVxF" motif in RSV P, 81RKPLVSF87, is well conserved among Pneumoviridae,

with a consensus KxxVxF (Fig 6A). The lysine residue is surrounded by basic residues, with an

arginine just upstream for orthopneumoviruses, and two lysines downstream for metapneumo-

viruses. Thus, it is likely that the P proteins of Pneumoviridae share the property of interacting

with PP1 to regulate viral protein phosphorylation. Notably, M2-1 protein is unique to Pneumo-
viridae and present in all members of this virus family. It was shown that residues S57 and S60

of hMPV M2-1 protein, which are equivalent to RSV M2-1 S58 and S61, are also critical for

virus replication, consistent with the critical role of cyclic phosphorylation/dephosphorylation

of hMPV M2-1 for efficient RNA synthesis [52]. It is thus expected that hMPV and RSV present

the same mechanism of regulation of M2-1 dephosphorylation.

It is noteworthy that PP1 was previously shown to play a significant role in the replication of

several viruses, including papovavirus, adenovirus, human immunodeficiency virus 1 (HIV-1)

and 2, Ebola virus (EBOV), and Rift Valley Fever virus [46, 53, 54]. Within Mononegavirales,
the VP30 protein from filoviruses is the only protein that shares structural and functional simi-

larity with the M2-1 protein from Pneumoviridae. It was shown that the phosphorylation status

of VP30 was also regulated by PP1 [46]. It has also been demonstrated that PP1 regulates the

innate immune responses for numerous RNA viruses, such as influenza virus, Sendai virus,

dengue virus, and picornavirus [55]. The V protein of measles virus was shown to interact dire-

ctly with PP1α/γ, via a canonical PP1-binding motif, 288RIWY291, preventing PP1-mediated

dephosphorylation of MDA5, a cytosolic sensor crucial for innate immune defense against vari-

ous RNA viruses, thereby impairing its activation [56].

Potential role of cyclic M2-1 phosphorylation/dephosphorylation

Previous reports indicated that the phosphorylation state of M2-1 regulates the affinities with

its partners [25]. The highest affinities of RSV M2-1 (produced as recombinant protein in E.

coli, i.e. unphosphorylated) for RNA were found with poly(A) (Kd~20 nM) and sequences

present on viral mRNAs that are complementary to GE signals (Kd ~ 46 nM) [19, 24]. We pre-

viously determined that the phosphomimetic S58D/S61D substitution decreased the RNA

binding affinity as compared to WT M2-1 [24]. This is consistent with the crystal structure of

full-length tetrameric RSV M2-1 [24], where S58 and S61 are located on a flexible loop, facing

the RNA binding region located in M2-1core. Addition of a negative charge on these residues

by phosphorylation could thus affect the interaction with RNA. Recombinant tetrameric P and

M2-1 proteins (produced in E. coli, i.e. unphosphorylated) form a complex with a 1:1 stoichi-

ometry and a Kd of ~ 8.1 nM [32]. The affinities of P and RNA for M2-1 are therefore compa-

rable, which would be in line with a switch of M2-1 between the two M2-1–RNA and M2-1–P

complexes.

This assumption was confirmed by comparing the organization of IBs in the presence of

WT or F87A P variant in our minigenome assay. We previously observed a distinct compart-

ment in IBs that contains concentrated viral mRNAs and M2-1 (IBAG). The rest of the IBs

holds all the other proteins of the RSV polymerase complex together with the genomic RNA

[20]. When the P F87A variant was used, PP1 was absent from IBs, and M2-1, which was

found mainly in a phosphorylated form (see Fig 5C), was no longer associated with IBAGs.

The M/Luc minigenome we used for fluorescence microscopy studies has two transcription

units (see materials and Methods); the first one can be transcribed in the absence of M2-1,

although with a 5 to 7 fold reduction (see S3 Fig), while the second one coding for Firefly lucif-

erase fully depends on a functional M2-1 [17, 23, 57]. It is thus likely that the poly(A) RNA

seen in IBs when P F87A was used represents transcription from the first gene. These results
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also indicate that IBAGs form in the absence of dephosphorylated, competent for mRNA bind-

ing, M2-1. Finally, by using two different RNA probes, i.e. NS1 and poly(dT), we observed dif-

ferent effects on viral RNA poly-adenylation when M2-1 was either absent or co-expressed

with P F87A and thus in the absence of PP1; in the first case some residual transcription was

detected with the NS1 probe but not with the poly(dT) probe; in the second case (phosphory-

lated M2-1 only), both probes could detect some IBAGs. Together these results suggest that (i)

poly-adenylation of the first transcription unit is impaired in the absence of M2-1 and (ii)

phosphorylated M2-1 can help poly-adenylation, although it is excluded from IBAGs after

transcription.

To summarize, RSV P can be considered as a newly identified PIP, targeting PP1 to the

M2-1 substrate. To our knowledge, this is the first report showing such a mechanism of regula-

tion of Pneumoviridae transcription. Recently, we have shown that, in RSV-infected cells, viral

RNA synthesis occur in IBs, M2-1 and viral mRNAs concentrating in IB sub-compartments

called IBAGs [20]. The data indicated that IBAGs are dynamic structures, allowing the sorting

of viral mRNAs and their transport to the cytoplasm together with M2-1. Accordingly, we pro-

pose the following model (Fig 10B): in the cytoplasm of infected cells the P protein binds PP1

and the phosphorylated form of M2-1 allowing their recruitment into IBs. M2-1 works as an

anti-terminator of transcription in IBs and could intervene as a poly-adenylation factor. Once

dephosphorylated by PP1, M2-1 has a higher affinity for RNA, in particular for GE and poly

(A) sequences at the end of the transcripts. Terminated mRNAs concentrate in IBAGs and

drag M2-1 along. M2-1 could act in a manner similar to the cellular poly(A) binding protein,

protecting mRNA from degradation and perhaps playing a role in the transport of mRNAs

from IBAGs to the cytosol in order to translate viral mRNAs, and possibly playing an active

role in translation. M2-1 phosphorylation could then occur in the cytosol, resulting in the

detachment of M2-1 from the poly(A) tail of mRNA, before being recycled by P and redirected

to IBs for a new round of transcription.

Materials and methods

Plasmid constructs

All viral sequences were derived from the human RSV strain Long. The full length or segments

of the P gene were PCR amplified by using Pfu DNA polymerase (Stratagene, Les Ulis, France)

and cloned into pGEX-4T-3 bacterial expression vector (GE Healthcare) at BamHI-SmaI sites

to engineer the pGEX-P and derived plasmids. The M2-1 cDNA [23] was subcloned into

pET-22b+ (Novagen) to allow bacterial expression of full-length M2-1 with a C-terminal poly-

histidine tag. Plasmids for eukaryotic expression of the human RSV (Long strain) proteins N,

P, M2-1, and L, designated pN, pP, pM2-1, and pL, respectively, and pM/Luc have been descr-

ibed previously [22, 23]. The pM/Luc minigenome has two transcription units; the first ORF is

a chimera between NS1 (327 first nucleotides) and M genes (138 last nucleotides), and tran-

scription termination depends on a N Gene End sequence. The second ORF codes for firefly

luciferase and ends with a SH Gene End sequence The first and second mRNA expressed by

this minigenome are 698 and 1897 nucleotides in length, excluding the poly(A) tail, respec-

tively. A second minigenome containing Gaussia and Firefly luciferases was engineered and

synthesized by Genscript. This pGaussia/Firefly minigenome is similar to the pM/Luc minige-

nome excepted that it contains the Gaussia luciferase gene upstream in place of the NS1-M chi-

meric gene (complete sequences available on demand). Point mutations were introduced in

the P sequence by site-directed mutagenesis using the QuikChange site-directed mutagenesis

kit (Stratagene). To generate the plasmid pHA-P, complementary oligonucleotides encoding a

hemagglutinin (HA) tag epitope (MYPYDVPDYA) were annealed and inserted at the BamHI
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restriction site in frame at the 5’ end of the P gene in pP. For the eukaryotic expression of a

M2-1–mCherry fusion protein, the mCherry gene was amplified by PCR from the pmCherry

vector (Clontech) and cloned in frame at the 3’ end of the M2-1 gene at BglII-XhoI sites in

pM2-1. To engineer the pP-BFP vector, first a NheI site was introduced at nucleotides

741–746 of the P sequence; then, the BFP gene was PCR amplified from the pTagBFP-Tubulin

vector (Evrogen) and inserted at the NheI restriction site, between P residues 73–74. The

eukaryotic expression vector pEGFP(C1)-PP1α was purchased from Addgene. The PP1A

insert (residues 7–300) was subcloned into pGEX-4T-3 at BamHI-XhoI sites. Sequence analy-

sis was carried out to check the integrity of all the constructs. All the oligonucleotide sequences

are available on request.

Bacterial expression of recombinant proteins and purification

For M2-1 expression, E. coli BL21(DE3) (Novagen) bacteria were transformed with pET-M2-1

plasmid, and bacteria were grown at 37˚C for 8 h in Luria-Bertani medium (LB) containing

100 μg/ml ampicillin. Protein expression was induced by adding one volume of fresh LB

medium, 400 μM isopropyl β-D-1-thiogalactopyranoside (IPTG) and 50 μM ZnSO4 for 16 h at

28˚C. Cultures were centrifuged at 5,000 g for 15 min and the pellet was resuspended in lysis

buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 mM imidazole, 0.1% Triton X-100 and 1

mg/ml lysozyme). Benzonase (Novagen) was then added to the lysates (final concentration

5U/mL), which were further incubated for 1h at room temperature under rotation. NaCl was

then added to reach a final concentration of 1M and lysates were clarified by centrifugation at

10,000 g for 1h at 4˚C. The supernatant was loaded onto a 5-mL HiTrap IMAC column (GE

Healthcare) charged with 0.2 M ZnSO4 and equilibrated with low-imidazole buffer and high

salted buffer (50 mM imidazole, 20 mM Tris-HCl [pH 7.4], 1M NaCl) using a 50-mL Super-

loop. Then a linear gradient of 1–0.15M NaCl was applied to reduce the concentration in

NaCl. Finally, a linear gradient of 80–800 mM imidazole in the same buffer was applied to

elute M2-1 fractions containing the His-tagged proteins. After equilibration with 20 mM Tris-

HCl [pH 7.4], 150 mM NaCl buffer, M2-1 was further purified by size exclusion chromatogra-

phy on a HiLoad Superdex-200 column with a 120-mL total bed volume (GE Healthcare).

Appropriate fractions were pooled. M2-1 protein was confirmed RNA-free by spectrophotom-

etry (OD 260/280 ratio) and stored at 4˚C.

For P expression, E. coli BL21(DE3) bacteria transformed with pGEX-P derived plasmids

were grown as described above. Bacterial pellets were resuspended in lysis buffer (20 mM

Tris/HCl pH 7.4, 60 mM NaCl, 1 mM EDTA, 1 mg/mL lysozyme, 1 mM DTT, 0,1% Triton

X-100) supplemented with complete protease inhibitor cocktail (Roche) for 1 h on ice. Benzo-

nase was then added and the lysate was incubated for 1 h at ambient temperature under rota-

tion. The lysates were centrifuged at 4˚C for 30 min at 10,000 g. Glutathione-Sepharose 4B

beads (GE Healthcare) were added to the clarified supernatants and the mixtures were incu-

bated overnight at 4˚C under rotation. The beads were washed with lysis buffer, three times

with 1X PBS and then stored at 4˚C in an equal volume of PBS.

For PP1 expression, chaperone competent cells pGro7/BL21 (Takara) were transformed

with pGEX-PP1 and grown as previously described [58]. Briefly, an overnight starter culture

was grown at 37˚C in LB medium supplemented with antibiotics and 1 mM MnCl2. PP1 pro-

duction was initiated by inoculating 1/2 liter of LB supplemented with 1 mM MnCl2 with 35

ml of starter culture. The bacteria were grown at 30˚C to an OD of *0.5, then arabinose was

added (2 g/l) to induce the expression of the GroEL/GroES chaperone. When OD was *1, the

temperature was lowered to 10˚C (ice-bath) and the expression of PP1 was induced with 0.1

mM IPTG for *20 h. Culture was centrifuged at 5,000 g for 15 min and bacterial pellets were
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resuspended in lysis buffer (20 mM Tris/HCl pH 8.0, 150 mM NaCl, 1 mM MnCl2, 1 mg/mL

lysozyme, 1 mM DTT, 0,1% Triton X-100) supplemented with complete protease inhibitor

cocktail (Roche) for 1 h on ice and treated as described above except that NaCl was then added

to reach a final concentration of 700mM.

For NMR experiments 15N-labeled P and two N-terminal fragments of P, P[1–126] (resi-

dues 1–126) and P[1–163] (residues 1–163), were produced in M9 medium supplemented

with 15N-labeled NH4Cl (Eurisotop) and glucose and purified following the same protocol as

for full-length P. The core domain of M2-1 (residues 58–177) was prepared as described previ-

ously [19]. Proteins were cleaved from GST with biotinylated thrombin (Novagen). Thrombin

was later removed using streptavidin resin (Novagen). The samples were subsequently concen-

trated on centrifugation filter units (Amicon Ultra) to 50–150 μM and dialyzed against NMR

buffer (20 mM sodium phosphate pH 6.8, 100 mM NaCl). GST-PP1α was eluted from

GSH-sepharose beads by using 50 mM glutathione, concentrated and dialyzed against NMR

buffer. Purity was assessed by SDS-PAGE and by mass spectrometry.

GST pulldown assays

GST pull-downs were performed by incubating 50μl of a 50% slurry of Glutathione-Sepharose

4B beads (GE Healthcare) containing either GST-PP1 or GST-P (WT and mutants) at 25 μM

in 20mM Tris/HCl [pH 7.4], 150mM NaCl (TN buffer) with a 3-fold molar excess of M2-1 or

P and BSA 3%. After 1 h at 20˚C under agitation, the beads were washed extensively with TN

buffer, boiled in 25 μl of Laemmli buffer and analyzed by SDS-PAGE and Coomassie blue

staining.

Cell culture

BSRT7/5 [59] cells were maintained in Eagle’s minimum essential medium and Dulbecco’s

modified Eagle’s medium, respectively, supplemented with 10% fetal calf serum, 2 mM L-glu-

tamine, and penicillin–streptomycin solution. The cells were grown at 37˚C in 5% CO2. Cyto-

toxicity measurements were performed using the CellTiter-Glo Luminescent cell viability

assay (Promega).

Minigenome experiments

BSRT7/5 cells at 90% confluence in 24-well dishes were transfected using Lipofectamine 2000

(Invitrogen) with a plasmid mixture containing 0.25 μg of pM/Luc minigenome, 0.25 μg of

pN, 0.25 μg of pP (WT and mutants), 0.125 μg of pL, and 0.06 μg of pM2-1, as well as 0.06 μg

of pSV-β-Gal (Promega) to normalize transfection efficiencies as previously described [23].

Transfections were done in triplicate and each independent transfection was performed three

times. Cells were harvested at 24 h post-transfection and lysed in luciferase lysis buffer (30 mM

Tris [pH 7.9], 10 mM MgCl2, 1 mM dithiothreitol [DTT], 1% [vol/vol] Triton X-100, and 15%

[vol/vol] glycerol). Luciferase activities were measured for each cell lysate after injection of

lysis buffer supplemented with ATP and D-luciferin (final concentrations 1mM each) with an

Infinite 200 Pro (Tecan, Männedorf, Switzerland) and normalized to β-Gal expression levels.

Fluorescence microscopy

BSRT7/5 cells grown on coverslips were transfected with pN, pM2-1–mCherry and pP or

p-BFP (WT or variants) using Lipofectamine2000 (Invitrogen). At 24 h post-transfection, sam-

ples were fixed in 4% paraformaldehyde (PFA) for 30 min, and permeabilized in PBS contain-

ing 0.1% Triton X-100 and 3% BSA. Coverslips were incubated for 1h at room temperature
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with primary antibodies, washed, and then incubated for an additional hour with Alexa Fluor

488 goat anti-mouse IgG (Invitrogen). For P detection the mouse anti-P monoclonal antibody

021/2P [18] was used. Coverslips were mounted with ProLong Gold Antifade reagent contain-

ing DAPI (Life Technologies). Cells were observed with a Nikon TE200 inverted microscope

equipped with a Photometrics CoolSNAP ES2 camera. Images were processed using MetaVue

software (Molecular Devices).

Confocal microscopy was used to study IB ultrastructure. Z-stack image acquisitions of

multi-labeled (P-BFP, N, M2-1-Cherry, FISH) cells were performed under a 63x apochromatic

lens and a numerical zoom comprised between 1x and 15x (LSAF acquisition software) under

the WLL Leica SP8 microscope and representative pictures were taken.

Fluorescent in situ hybridization (FISH)

Infected cells were fixed 24 h p.i. and permeabilized as described above. Endogenous biotin

was blocked in PBS-BSA 1% (w/v) supplemented with free streptavidin (4 μg/ml) for 1h. Cov-

erslips were rinsed 3 times with PBS, post-fixed 10 min at 4˚C in formaldehyde 4% (v/v),

rinsed 2 times with PBS, and incubated in hybridization mix (2x SSC (1x SSC is 150 mM NaCl

and 15 mM sodium citrate), dextran 10% (w/v), formamide 20% or 50% (v/v) for oligo(dT)

and NS1 probes, respectively, 1 mg/ml herring sperm DNA; mRNAs were detected by using

either 3’-biotinylated poly(dT) or a pool of NS1 oligonucleotides (for sequences see ref. [20] at

a final concentration of 100 μM in a humidified chamber at 37˚C for 3h. Next, cells were

washed 2 times at 42˚C with the following 3 solutions: 2x SSC plus formamide 20% (v/v), 2x

SSC, 1x SSC and finally PBS at room temperature. Probes were then detected by incubating

cells with streptavidin-Alexa Fluor 647 conjugate (8 μg/ml) in PBS-BSA 1% (w/v) during 1h

prior to 3 washes with PBS. Cells were then submitted to immunofluorescent staining and con-

focal microscopy.

Immunoblotting

Cells were lysed for 30 min at 4˚C in lysis buffer (20 mM Tris [pH 7.4], 150 mM NaCl, 0.1% Tri-

ton X-100) supplemented with a complete protease inhibitor cocktail (Roche). Cell lysates were

spun for 10 min at 10,000 g; supernatants were recovered, mixed with Laemmli buffer, and

boiled. Proteins were resolved by SDS-PAGE and transferred onto nitrocellulose membranes.

The membranes were incubated in blocking solution (1X PBS, 0.05% Tween 20 supplemented

with 5% milk) for 1 h. Blots were incubated with primary antibodies in blocking solution: rabbit

anti-P and anti-M2-1 antisera [31], mouse monoclonal anti-α-tubulin antibody (Sigma), rabbit

polyclonal anti-PP1A antibody (Abcam) and rat monoclonal anti-HA-peroxidase antibody

(Roche). The membranes were rinsed with PBS containing 0.05% Tween 20 and incubated for 1

h with the appropriate HRP-conjugated secondary antibodies diluted in blocking solution. The

membranes were rinsed, and immunodetection was performed by using an enhanced chemilu-

minescence (ECL) substrate (BioRad, France).

Coimmunoprecipitation assays

BSRT7/5 cells were cotransfected with pHA-P (WT and variants), pN and pM2-1. After 24 h,

transfected cells were lysed for 30 min at 4˚C in ice-cold lysis buffer (20 mM Tris HCl [pH

7.4], 150 mM NaCl, 0.1% Triton X100, 20μM RNAse A and 15% glycerol) with a complete pro-

tease inhibitor cocktail (Roche). Cell lysates were centrifuged at 4˚C for 10 min at 10,000 g and

incubated overnight at 4˚C with a rat anti-HA monoclonal antibody (Roche cl. 3F10) coupled

to magnetic beads (Invitrogen). The beads were then washed 3 times with lysis buffer and 1
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time with PBS, proteins were boiled in Laemmli buffer for 5 min and samples were subjected

to SDS-PAGE and immunoblotting as described above.

NMR spectroscopy
1H-15N correlation spectra, Heteronuclear Single Quantum Correlation (HSQC) or

BEST-TROSY, were measured at a temperature of 288 K on Bruker Avance III 800 or 950

MHz spectrometers equipped with cryogenic TCI probes. 7% D2O was added to the sam-

ples to lock the magnetic field. Spectra were processed with Topspin 3.2 (Bruker Biospin)

and analyzed with CCPNMR 2.2 software [60].

Modelling

Flexible docking was carried out on the guru interface of the Haddock Webserver [61, 62],

using the X-ray structure of M2-1core extracted from PDB 4C3E, chain B. Models of a P helix

spanning residues 94–112 were built using CYANA 3.2 [63] under torsion angle constraints

obtained from backbone chemical shifts of P. Following active M2-1 (126, 127, 129, 130, 133,

148, 152, 156, 160, 163) and P residues (98, 101, 102, 105, 106, 108 and 109) were identified by

mutagenesis experiments or by NMR interaction experiments, in this work or in [19]. Passive

residues were automatically defined around active residues. 1000 initial structures were gener-

ated. 200 final structures were refined in water and clustered according to RMSD criterion.

More than 50% structures clustered in the same cluster with the best Haddock score. Statistics

are shown in S1 Table.

Supporting information

S1 Fig. Effects of M2-1-mCherry and P-BFP for RSV polymerase activity. BSRT7/5 were

transfected with pMT/Luc, pP or p-P-BFP, pL, pN and either pM2-1 or pM2-1-cherry, and

Luc reporter activity was measured.

(DOCX)

S2 Fig. Perturbations of GST-PP1α in NMR spectra of P. (Upper panel) Superimposed
1H-15N BEST-TROSY spectra of 25 μM 15N-labeled P[1–126] or 15N-labeled P, alone (magenta

contours) and in the presence of 2 molar equivalents of GST-PP1α (black contours) are shown

with residue-specific assignments. (Lower panel) Superimposed 1H-15N HSQC spectra of

10 μM 15N-labeled P[1–126], alone (green contours) and in the presence of 10 molar equiva-

lents of GST (black contours). The buffer of the P[1–126]+GST sample contained 25 mM glu-

tathione that yields natural abundance 15N signals indicated by stars.

(DOCX)

S3 Fig. Comparative normalized activities of Gaussia and Firefly luciferase in the absence

(-) or presence (+) of M2-1. BSRT7/5 were transfected with pGaussia/Firefly minigenome vec-

tor, pP pL, pN and either pM2-1 or an empty vector pGEM3 and luciferase activities were

measured 24 hours post-transfection.
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S1 Table. Statistics for P-M2-1 docking and clustering with HADDOCK2.2 Webserver (S1

References 1,2). The top cluster is the most reliable according to HADDOCK.
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S1 References. References for S1 Table.
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Project administration: Jean-François Eléouët.
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