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Geometric origin and few properties of the
arctangential heat equation

Yann Brenier, CNRS, ENS-DMA, FR75005 Paris

March 21, 2018

Abstract
We establish the geometric origin ot the nonlinear heat equation with arct-

angential nonlinearity: ∂tD = ∆(arctanD) by deriving it, together and in du-
ality with the mean curvature flow equation, from the minimal surface equation
in Minkowski space-time, through a suitable quadratic change of time. After
examining various properties of the arctangential heat equation (in particular
through its optimal transport interpretation à la Otto and its relationship with
the Born-Infeld theory of Electromagnetism), we shortly discuss its possible
use for image processing, once written in non-conservative form and properly
discretized.

AMS: 35K55, 35L65, 53C44
Keywords: Nonlinear heat equations, minimal surface equations, mean curva-
ture flow, optimal transport, nonlinear electromagnetism, image processing.

Introduction
The arctangential heat equation

∂tD = ∆(arctanD) (1)

belongs to the class of degenerate nonlinear heat equations

∂tD = ∆(φ(D)),

(where φ is monotonic with derivative valued in [0,+∞]), usually called "porous
medium" (as φ(D) = Dm, m > 1) or "fast diffusion” (m < 1) and sometimes
related to geometry (such as φ(D) = logD, which corresponds to the Ricci flow
in two space dimensions) [5, 8, 18, 19]. The analysis of the arctangential heat
equation in terms of existence, uniqueness, regularity and stability theory for
the initial value problem is not the point of the present paper. We rather show
that the arctangential heat equation has a geometric origin and can be formally
derived, together (and in duality) with the well known mean curvature flow
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for graphs, from the minimal surface equation in the Minkowski space of all
(t, x) ∈ R×Rd, with metric −dt2 + δijdx

idxj . The minimal surface equation
reads (see [10], for example)

∂t(
∂tφ

R
) = ∂k(

∂kφ

R
), R =

√
1− ∂tφ2 + ∂kφ ∂kφ , (2)

where

φ = φ(t, x) ∈ R, x ∈ Rd, t ∈ R, ∂k =
∂

∂xk
, ∂k = δkj ∂j .

From this equation, properly expressed, in section 1, as a “system of conservation
laws with convex entropy” (in the sense of [7]), we generate in section 2, using the
quadratic change of time method recently discussed in [4], two “dual” non linear
parabolic equations: one is the well-know mean curvature flow (for graphs)

∂tφ =
√

1 + ∂kφ ∂kφ ∂i

(
∂iφ√

1 + ∂kφ ∂kφ

)
, (3)

while the second one is precisely the arctangential heat equation (1). The arct-
angential heat equation seems widely ignored in the literature, but has, in our
opinion, many interesting properties, discussed in sections 3 and 4, on top of
being “dual” to the mean curvature flow. First of all, we will compare, in section
3, the arctangential heat equation, properly rescaled as

∂tD = λ∆(arctan(Dλ−1)

with a large parameter λ > 0, to its formal limit as λ→ +∞, namely the linear
heat equation

∂tD = ∆D,

both written à la Otto [12, 13], in optimal transport style (for which we refer to
[1, 13, 14, 20]):

∂tD = ∂i
(
D ∂i(F ′(D))

)
.

In the linear case, F(D) is just the Boltzmann entropy function D logD − D
(so that F ′(D) = logD), in other words, the Legendre-Fenchel transform of the
exponential function

F(D) = D logD −D = sup
u∈R

u D − expu,

while, in the arctangential case, as will be seen in section 3,

F(D) = sup
u≤log λ

u D − λ arcsin(λ−1 expu),

is the Legendre-Fenchel transform of u → λ arcsin(λ−1 exp(u)) (extended by
+∞ for u > log λ), which can be seen as a “catastrophic” correction to the usual
exponential function. (By catastrophic, we mean that this monotonic convex
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function reaches the value λπ/2 with infinite slope at u = log λ and, then,
suddenly jumps to +∞.)
Still in section 3, we will briefly mention the “Chaplygin heat equation”

∂tD + ∆(D−1) = 0,

formally obtained in the opposite regime λ ↓ 0. (This equation has been
named “Chaplygin heat equation” because it can been interpreted as a “friction-
dominated” version of the “Chaplygin gas” , for which we refer to [17].) We will
also establish a connection between the arctangential heat equation and the non-
linear theory of Electromagnetism proposed in 1934 by Max Born and Leopold
Infeld [2]. More precisely, in two space dimensions, both the arctangential heat
equation and the mean curvature flow just describe special solutions, depend-
ing only on two space variables, of the same vector-valued diffusion equation in
three space dimensions,

∂tD = ∇×
(
B
√

1 +D2 − (D ·B)D√
1 +D2

)
, B = −∇×

(
D√

1 +D2

)
(written in traditional "nabla" notations, B and D being three-dimensional
vectors, × denoting the vector product, D · B = DkB

k, D2 = DkD
k), which,

itself, can be formally derived, again by quadratic change of time, directly from
the Born-Infeld equations [2] (for which we also refer to [3, 16]).
Finally, in section 4, we discuss the non-conservative form of the arctangential
heat equation:

∂tψ =

(
cos(πψ)

π

)2

∆ψ (4)

(where D is written as tan(πψ)). Properly discretized, this equation might be a
valuable tool to treat black and white images (ψ denoting the level of gray), by
sharply enhancing the level sets {ψ = k + 1/2} for k ∈ Z as t grows, as shown
by several numerical computations in section 4.

1 Reformulation of the minimal surface equation
It is crucial for our analysis to get a formulation of the minimal surface

equation (2) in the framework of “systems of conservation laws with convex
entropy”, for which we refer to Dafermos’ book [7]. More precisely:

Theorem 1. Let φ be a smooth solution of the minimal surface equation (2)
and define

D =
∂tφ√

1− ∂tφ2 + ∂kφ ∂kφ
, Bi = ∂iφ, Pi =

−∂tφ ∂iφ√
1− ∂tφ2 + ∂kφ ∂kφ

. (5)

Then (D,B,P ) is solution to the system of conservation laws

∂tBi + ∂i

(
BjP

j −D
h

)
= 0, ∂tD + ∂j

(
DP j −Bj

h

)
= 0, (6)
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∂tP
i + ∂j

(
P iP j +BiBj

h

)
= ∂i

(
1 +BjB

j

h

)
, (7)

h(D,B,P ) =
√

1 +D2 +BjBj + PjP j , (8)

which admits, for this strictly convex function h, the extra conservation law

∂th+ ∂j

(
P j − (DBj + P j) +Bk(BkP j − P kBj)

h2

)
= 0. (9)

Notice that the local in time existence of smooth solutions to the minimal
surface equation (2) is a well known fact, while the global existence of smooth
solutions for “small” (in a suitable sense) initial conditions for d ≥ 2 is a much
more refined result, obtained by Lindblad. (See [10] for more details.)

Proof of Theorem 1
The proof follows a strategy similar to the one used for non-linear Maxwell’s

equations, in particular for the Born-Infeld equations, in [3, 16]. In the first
step, we get the Hamiltonian form of the minimal surface equations (2), which
reads as a system of conservation laws for (D,B) (as defined in (5)), with an
extra conservation law for H(D,B) =

√
(1 +BkBk)(1 +D2), which is a locally

(but not globally) convex function of (D,B) about (0, 0). The second step is
a suitable augmentation of the Hamiltonian system in order to get a larger
system of conservation laws, namely (6,7) for (D,B) and P = −DB. This
new system enjoys an extra conservation law for the strictly convex function
h(D,B,P ) =

√
1 +D2 +BkBk + PkP k which is nothing butH(D,B), written

as a function of (D,B,P ). The comprehensive proof of Theorem 1 is postponed
to the end of the paper, in Appendix 5.

2 Recovery of the mean curvature flow and the
arctangential heat equation from the minimal
surface equation by quadratic change of time

Inspired by our recent work with X. Duan [4], we investigate the augmented
system (6,7,8) under the quadratic change of time: t → θ = t2/2. We consider
two “dual” regimes of initial conditions at t = 0, well suited to this quadratic
change of time, respectively D(0, x) = 0 and B(0, x) = 0 and, in both cases,
P (0, x) = 0.
In the first regime, we assume D(0, x) = 0, P (0, x) = 0, i.e., in terms of the
original field φ, solution to (2), ∂tφ(0, x) = 0, by definition (5). We make the
consistent ansatz

B(t, x) = B(θ, x), D(t, x) = tD(θ, x), P (t, x) = tP(θ, x), θ = t2/2, (10)
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for some smooth fields (B,D). In other words, we introduce

B(θ, x) = B(
√

2θ, x), D(θ, x) =
D(
√

2θ, x)√
2θ

, P(θ, x) =
P (
√

2θ, x)√
2θ

.

In the second, “dual” regime, we assume B(0, x) = 0, P (0, x) = 0, which means
∂iφ(0, x) = 0, in terms of φ, and, accordingly, we introduce the second ansatz

D(t, x) = D(θ, x), B(t, x) = tB(θ, x), P (t, x) = tP(θ, x), θ = t2/2, (11)

or, equivalently,

D(θ, x) = D(
√

2θ, x), B(θ, x) =
B(
√

2θ, x)√
2θ

, P(θ, x) =
P (
√

2θ, x)√
2θ

.

Let us now state our main result.

Theorem 2. After the two “dual” quadratic changes of time (10) and (11),
the minimal surface equations, written in augmented form (6,7,8), respectively
lead on one hand to the mean-curvature flow (3) and on the other hand to the
arctangential heat equation (1).

Let us emphasize the formal character of this result, where we are just dealing
with the equations. We will not discuss in the present paper the analysis of how
close the solutions of the minimal surface equations (2), written in augmented
form (6,7,8), after quadratic change of time, are from the solutions of (1) and
(3), respectively. Let us just indicate our belief that the “relative entropy” (or
“modulated energy”) method (as in Dafermos’ book [7], see also [4, 9, 15] for
very recent occurences), based on the strict convexity of (8) and the dissipation
law (21) established below, is the most appropriate tool to treat this question.

Proof of Theorem 2
Let us transform the augmented system (6,7,8) in both regimes (10,11). In

the first case, we get the non-autonomous system, where θ features explicitly,

∂θBi + ∂i

(
BjPj −D
H

)
= 0, D + 2θ

(
∂θD + ∂j

(
DPj

H

))
= ∂j

(
Bj

H

)
,

Pi + 2θ

(
∂θPi + ∂j

(
PiPj

H

))
+ ∂j

(
BiBj

H

)
= ∂i

(
1 + BjBj

H

)
,

H =
√

1 + BjBj + 2θ(D2 + PjPj).

Formally, this system admits, as θ ↓ 0, the following asymptotic system

∂θBi + ∂i

(
BjPj −D√
1 + BkBk

)
= 0, D = ∂j

(
Bj√

1 + BkBk

)
, (12)
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Pi = −∂j

(
BiBj√

1 + BkBk

)
+ ∂i

(
1 + BjBj√
1 + BkBk

)
. (13)

In the second regime, when we rather assume B(0, x) = P (0, x) = 0 and use
ansatz (11) instead of (10), we get from (6,7,8) again a non-autonomous system
where θ features explicitly:

∂θD + ∂j

(
DPj − Bj

H

)
= 0, Bi + 2θ

(
∂θBi + ∂i

(
BjPj

H

))
= ∂i

(
D
H

)
,

Pi + 2θ

(
∂θPi + ∂j

(
PiPj + BiBj

H

))
= ∂i

(
1

H

)
,

H =
√

1 +D2 + 2θ(BjBj + PjPj),

which admits as asymptotic system, as θ ↓ 0,

∂θD + ∂j

(
DPj − Bj√

1 +D2

)
= 0, Bi = ∂i

(
D√

1 +D2

)
, (14)

Pi = ∂i

(
1√

1 +D2

)
. (15)

Restoring notations (t,D,B, P ), instead of (θ,D,B,P), we may write both
asymptotic systems (12,13) and (14,15) respectively as

∂tBi + ∂i

(
BjP

j −D
η

)
= 0, η =

√
1 +BkBk (16)

D = ∂j

(
Bj

η

)
, P i = −∂j

(
BiBj

η

)
+ ∂i

(
1 +BjB

j

η

)
(17)

and

∂tD + ∂j

(
DP j −Bj

η

)
= 0, η =

√
1 +D2, (18)

Bi = ∂i

(
D

η

)
, Pi = ∂i

(
1

η

)
. (19)

Let us first derive the arctangential heat equation (1) from (18,19). We get

∂tD = ∂j

(
−DP

j

η
+
Bj

η

)
= ∂j

(
−D
η
∂j
(

1

η

)
+

1

η
∂j
(
D

η

))

= ∂j

(
∂jD

η2

)
= ∂j

(
∂jD

1 +D2

)
= ∆(arctanD).

Let us now derive the mean curvature flow (3) from (16,17). Writing B as a
gradient, i.e. Bi = ∂iφ, we may integrate (16) just as

∂tφ =
D − ∂iφP i

η
. (20)
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We have

P i = −∂j
(
∂iφ ∂jφ

η

)
+ ∂i

(
1 + ∂jφ ∂

jφ

η

)
= −∂j

(
∂jφ

η

)
∂iφ−

(
∂jφ

η

)
∂j∂

iφ+ ∂i
(

1

η

)
+ ∂i

(
∂jφ ∂

jφ

η

)
= −∂j

(
∂jφ

η

)
∂iφ+ ∂i

(
1

η

)
+ ∂jφ ∂

i

(
∂jφ

η

)
= −∂j

(
∂jφ

η

)
∂iφ+ η ∂i

(
1

2η2

)
+ η ∂i

(
∂j∂

jφ

2η2

)
= −∂j

(
∂jφ

η

)
∂iφ+ η ∂i

(
1 + ∂j∂

jφ

2η2

)
= −∂j

(
∂jφ

η

)
∂iφ

(by definition of η). Thus, by (20)

∂tφ =
D

η
+
∂iφ ∂

iφ

η
∂j

(
∂jφ

η

)
.

Since

D = ∂j

(
∂jφ

η

)
,

we get

∂tφ =
1 + ∂iφ ∂

iφ

η
∂j

(
∂jφ

η

)
=
√

1 + ∂iφ ∂iφ ∂j

(
∂jφ√

1 + ∂kφ ∂kφ

)

(by definition of η), which exactly is the mean curvature flow (3). This concludes
the proof of Theorem 2.

Remark

It is worth noticing that, in the case of the second ansatz (11), leading
to the arctangential equation (1) after quadratic change of time, the extra
conservation law (9) leads to the dissipation law

∂tη + ∆(
1

η
) = −B

kBk + P kPk
η

, η =
√

1 +D2, Bi = ∂i(
D

η
), Pi = ∂i(

1

η
) (21)

on top of conservation laws (18,19), which, consistently, can be as well obtained
directly from (1).
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3 Few properties
of the arctangential heat equation

3.1 Interpretation à la Otto
Assuming that D is nonnegative (which is a consistent assumption due to

the maximum principle for (1)), the arctangential heat equation also reads

∂tD = ∂i

(
D ∂i

(
log(

D√
1 +D2

)

))
, (22)

which can be written, in the framework of optimal transport theory [1, 14, 20],

∂tD = ∂i
(
D ∂i(F ′(D))

)
, (23)

à la Otto, as the gradient flow, with respect to the (so-called) “Wasserstein" or
"MK2" metric [12, 13], of the functional

D →
∫
F(D(x))dx

for a suitable function F . Here F is a “renormalized” version of the classical
Boltzmann entropy, namely

F(D) = D log

(
D√

1 +D2

)
− arctanD (24)

and should be extended by 0 for D = 0 and by +∞ for D < 0 to define a
globally convex function from R to ]−∞,+∞]. Its Legendre-Fenchel transform
can be explicitly (and easily) computed:

u→ sup
D

(uD −F(D)) = (G exp)(u) = arcsin(exp(u)), (25)

which should be extended by +∞ for u > 0 and can be seen as a “generalized”
exponential function. (Here the symbol G is used to note a generalization of a
classical special function).

As a matter of fact, if we consistently parameterize the arctangential heat
equation, in its formulation à la Otto (22), as:

∂tD = ∂i

(
D ∂i

(
log(

D√
1 +D2λ−2

)

))
, (26)

where λ > 0 should be understood as a large “cutoff” parameter, the corre-
sponding Boltzmann entropy becomes

D log

(
D√

1 +D2λ−2

)
− λ arctan(Dλ−1), (27)

whose Legendre-Fenchel transform reads:

(Gλ exp)(u) = λ arcsin(λ−1 exp(u)), (28)
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(extended by +∞ for u > log λ). The later function is clearly an approximation
of the regular exponential function as λ goes to infinity, with the interesting
feature that, at u = log λ, it reaches a finite value, namely λπ/2, and suddenly
jumps to +∞, while its u-derivative blows up. In some sense, y = (Gλ exp)(u),
which solves the super-nonlinear ODE

dy

du
= λ tan(

y

λ
),

while its derivative z = dy
du solves

dz

du
= (1 +

z2

λ2
)z,

is a “catastrophic” version of the exponential function, probably suitable for
some applications in Geophysics, Biology, Social Sciences and many other fields.
Also notice that the inverse of this generalized exponential function provides a
generalization of the logarithm, namely,

(Gλ log)(v) = log(λ sin(vλ−1)).

This function monotonically covers ] − ∞, log λ] as v ∈]0, λπ/2[ and can be
symmetrically and periodically extended to v ∈ R as

(Gλ log)(v) =
1

2
log(λ2 sin2(vλ−1)).

which features in several fields of Mathematics, including the recent theory of
“unbalanced optimal transportation” [6, 11].

3.2 A limit case: the Chaplygin heat equation
The arctangential heat equation, in its parameterized form (26), namely

∂tD = ∂i

(
D ∂i

(
log(

D√
1 +D2λ−2

)

))
,

admits an interesting formal limit as λ ↓ 0, Indeed, we have

∂i
(

log

(
D√

1 +D2λ−2

))
= ∂i

(
log

(
λ√

1 + λ2D−2

))
= ∂i

(
log

(
1√

1 + λ2D−2

))

∼ −∂i
(
λ2D−2

2

)
= −λ2D−1∂i(D−1), λ ↓ 0,

so that, as λ ↓ 0, after rescaling t→ λ2t, we get from (26) the "Chaplygin heat
equation"

∂tD = −∆(D−1) (29)
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[Notice that this equation can also be directly obtained from the Euler equations
of "isentropic fluids"

∂tD + ∂kQ
k = 0, ∂tQ

i + ∂k(
Qk Qi

D
) + ∂i(p(D)) = 0,

with "Chaplygin pressure" p(D) = −D−1 (as in [17]), after the same quadratic
change of time

D(t, x) = D(θ, x), Q(t, x) = tQ(θ, x), θ = t2/2,

we used above.]

3.3 Relationship with nonlinear Electromagnetism in two
space dimensions

Let us now show that, in the case of two space dimensions d = 2, both
equations (3) and (1) can be (formally) derived from one of the most famous
(and very geometric) model of nonlinear Electromagnetism, namely the Born-
Infeld equations, again through a suitable quadratic change of time. We first
notice that these equations just describe particular solutions, depending only on
two space variables, of the same three-dimensional vectorial diffusion equation:

Proposition 3. In two space dimensions, both the mean curvature flow (3)
and the arctangential heat equation (1) correspond to special solutions of the
three-dimensional diffusion equation

∂tD = ∇×
(
B
√

1 +D2 − (D ·B)D√
1 +D2

)
, B = −∇×

(
D√

1 +D2

)
(30)

Proof.

Straightforward calculations show that (3) just corresponds to particular
solutions D of form

D(t, x) = (−∂2φ(t, x1, x2), ∂1φ(t, x1, x2), 0),

while (1) rather corresponds to solutions of "dual" form

D(t, x) = (0, 0, D(t, x1, x2)),

which, in both cases, implies B ·D = 0 and leads to, respectively, (3) and (1).

The augmented Born-Infeld system

Next, we derive (30) from a suitable quadratic change of time, as formal
asymptotic equation for the nonlinear Maxwell equations

∂tB +∇ ·
(
∂H

∂D
(D,B)

)
= 0, ∂tD −∇ ·

(
∂H

∂B
(D,B)

)
= 0, (31)
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where the Hamiltonian function H is

H(D,B) =
√

(1 +B2)(1 +D2)− (D ·B)2

(while H(D,B) = (B2 +D2)/2 would correspond to the usual, linear, Maxwell
equations). This nonlinear correction to the Maxwell equations was suggested
by Born and Infeld in 1934 [2]. Let us write more explicitly (31), introducing

P = D ×B, h =
√

(1 +D2)(1 +B2)− (D ·B)2 =
√

1 +D2 +B2 + P 2 .

We get

∂tB +∇ ·
(
B ⊗ P − P ⊗B

h

)
= −∇×

(
D

h

)
, (32)

∂tD +∇ ·
(
D ⊗ P − P ⊗D

h

)
= ∇×

(
B

h

)
. (33)

As in section 1, this system of conservation laws admits an extra conservation
law for h. However h, as a function of (D,B), is convex only about (0, 0) and not
globally. Following [3, 16], again as in section 1, we get a new extra conservation
law by considering P as an independent variable and write h as a function of
(D,B,P )

h = h(D,B,P ) =
√

1 +D2 +B2 + P 2 . (34)

We obtain

∂tP +∇ ·
(
P ⊗ P −B ⊗B −D ⊗D

h

)
= ∇

(
1

h

)
. (35)

In [3, 16], it is proven that the augmented system (32,33,34,35) enjoys an ex-
traconservation law for h written as a function of (D,B,P ).

The diffusive limit of the augmented Born-Infeld system

Proposition 4. The diffusion equation (30) can be obtained from the augmented
Born-Infeld system (32,33,34,35) after the quadratic change of time

D(t, x) = D(θ, x), B(t, x) = tB(θ, x), P (t, x) = tP(θ, x), θ = t2/2, (36)

Proof.

Let us apply ansatz (36) to system (32,33,34,35). We get the non-autonomous
system, where θ features explicitly,

B + 2θ

(
∂θB +∇ ·

(
B ⊗ P − P ⊗ B

H

))
= −∇×

(
D
H

)
,

∂θD +∇ ·
(
D ⊗ P − P ⊗D

H

)
= ∇×

(
B
H

)
,
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P + 2θ

(
∂θP +∇ ·

(
P ⊗ P − B ⊗ B

H

))
= ∇ ·

(
D ⊗D
H

)
+∇

(
1

H

)
,

H =
√

1 +D2 + 2θ(B2 + P2) .

As θ ↓ 0, we get the asymptotic system

∂θD +∇ ·
(
D ⊗ P − P ⊗D

H

)
= ∇×

(
B
H

)
,

B = −∇×
(
D
H

)
, P = ∇ ·

(
D ⊗D
H

)
+∇

(
1

H

)
,

where, now,
H =

√
1 +D2 .

Observe that P = D × B directly follows from these equations. Thus, since we
are in three space dimensions,

∇ ·
(
D ⊗ P − P ⊗D

H

)
= ∇×

(
D × P
H

)

= ∇×
(
D × (D × B)

H

)
= ∇×

(
(D · B)D −D2B)

H

)
.

= ∇×
(

(D · B)D − (1 +D2)B)

H

)
+∇×

(
B
H

)
,

= ∇×
(

(D · B)D
H

−HB
)

+∇×
(
B
H

)
.

Finally, we have found

∂θD = ∇×
(
B
√

1 +D2 − (D · B)D√
1 +D2

)
, B = −∇×

(
D√

1 +D2

)
which is nothing but the expected equation (30), after restoring notations (t, B,D)
instead of (θ,B,D).

4 The arctangential heat equation in nonconser-
vative form: a tool for image processing?

In nonconservative form, the arctangential heat equation (1) reads (4), namely

∂tψ =

(
cos(πψ)

π

)2

∆ψ.

Interestingly enough, in this nonconservative formulation, ψ can take values in
the entire real line and not only in [−1/2, 1/2]. In sharp contrast with the usual
linear heat equation, (4) seems to admit (in a suitable sense) a lot of nontrivial

12



equilibrium solutions, at least in the one dimension case d = 1. Such solutions ψ
should be continuous, piecewise linear functions, with possible change of slope
(or plateaus) each time ψ touches the discrete set {k+ 1/2, k ∈ Z} as cos(πψ)
vanishes. Let us now perform few numerical experiments based on the very
elementary explicit difference scheme (written in two space dimensions with
traditional notations of numerical analysis):

ψn+1
i,j − ψ

n
i,j = cos(πψni,j)

2

(
ψni+1,j + ψni−1,j + ψni,j+1 + ψni,j−1

4
− ψni,j

)
(37)

(where the “stability condition” has been saturated on purpose).
In the first experiment, we input as initial condition ψ(0, ·) a (simulated) Brown-
ian curve on T = R/Z (made periodic by substracting a suitable affine function).
We draw the initial curve and the final curve obtained with 256 grid points and
4096 time steps.
The second experiment is of different nature. We use a 256 × 256 grid for the
periodic square T2 = (R/Z)2 and take as initial condition ψ(0, x, y) =

4 cos(2π(x− 0.25)) cos(2π(y − 0.2)) + 3 cos(2π(y + x)) cos(2π(x− 0.8)) + ξ,

where ξ is random, uniformly independently distributed in [−0.5,+0.5]. In three
successive plots, we draw all grid points (i, j) where ψni,j is at distance less than
0.025 from the set {k+1/2, k ∈ Z} in R, respectively for n = 0 (i.e. for the initial
condition), n = 8192 and, again n = 0 but without noise. According to the later
experiment, the arctangential heat equation, in discretized nonconservative form
(37), enjoys some ability at processing black and white images, ψni,j being the
(suitably normalized) level of gray at step n and grid point (i, j), by unvealing
and enhancing the level sets {(i, j) ψni,j ∈ {k + 1/2, k ∈ Z}} as n grows.
Finally, in the third experiment, our initial condition is obtained by adding the
same noise ξ as before to the step function with values 1/2 if

4 cos(2π(x− 0.25)) cos(2π(y − 0.2)) + 3 cos(2π(y + x)) cos(2π(x− 0.8)) ≥ 0.5,

and 0 otherwise. We draw the same plots as in the previous experiment, this
time for n = 0 and n = 1024 (and, of course, 256× 256 grid points).

13
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5 Appendix: Proof of Theorem 1

First step: Hamiltonian form of the minimal surface equa-
tions

Equation (2) is easily obtained by finding critical points φ of the Minkowski
area of the graph (t, x)→ (t, x, φ(t, x)), namely

−
∫ ∫ √

1− ∂tφ2 + ∂kφ ∂kφ dtdx, (38)

under space-time compactly supported perturbations. For the sequel, it is cru-
cial to use the Hamiltonian form of equation (2). For that purpose, we introduce
the fields

E(t, x) = ∂tφ(t, x), Bi(t, x) = ∂iφ(t, x), (39)

which are linked by the differential compatibility condition

∂tBi = ∂iE. (40)

Introducing the Lagrangian function

L(E,B) = −
√

1− E2 +BkBk , (41)

we look at critical points (E,B) of∫ ∫
L(E(t, x), B(t, x))dtdx

under space-time compactly supported perturbations, subject to constraint (40).
In other words, we look for saddle-points (E,B, ψ) of∫ ∫ (

L(E(t, x), B(t, x)) + ∂tψ
iBi(t, x)− ∂iψiE(t, x)

)
dtdx

where ψ is a Lagrange multiplier for constraint (40). Independently of the
specific definition of L, we may introduce the Hamiltonian H as the partial
Legendre-Fenchel transform of the Lagrangian L(E,B) with respect to E,

H(D,B) = sup
E∈R

DE − L(E,B) (42)

and the corresponding "dual" field

D(t, x) = (
∂L

∂E
)(E(t, x), B(t, x)). (43)

Then, we get, by standard differential calculus, the Hamiltonian formulation

∂tBi = ∂i

(
∂H

∂D
(D,B)

)
, ∂tD = ∂i

(
∂H

∂Bi
(D,B)

)
, (44)
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and, as a consequence, an extra conservation law involving H

∂t(H(D,B)) + ∂i(P
i(D,B)) = 0, P i(D,B) = −

(
∂H

∂D

∂H

∂Bi

)
(D,B). (45)

In the case of the minimal surface equations L is given by (41) and we get,
explicity,

H(D,B) =
√

(1 +Bk Bk)(1 +D2) (46)

and, after elementary calculations, deduce

Proposition 5. The minimal surface equations (2) can be written in Hamilto-
nian form

∂tBi = ∂i

√1 +BkBk

1 +D2
D

 , ∂tD = ∂i

√ 1 +D2

1 +BkBk
Bi

 , (47)

with the extra conservation law

∂tH + ∂iP
i = 0, H =

√
(1 +Bk Bk)(1 +D2), P i = −DBi. (48)

In addition, (D,B) are related to the original field φ involved in (2) by

Bi = ∂iφ, D =
∂tφ√

1− ∂tφ2 + ∂kφ ∂kφ
. (49)

Second step: construction of an augmented system with
convex entropy

Unfortunately, H, as defined by (46), is not a convex function of (D,B) and,
therefore, (47) does not belong to the class of systems of “conservation laws
with a convex entropy” which enjoys many interesting properties (as discussed
in Dafermos’ book [7]). However, there is also an extra conservation law for
P = −DB, namely (7). This allows (D,B,P ) to be solution of the augmented
system (6,7) of conservation laws which enjoys the extra conservation law (9) for
the strictly convex "entropy" h(D,B,P ) =

√
1 +D2 +BkBk + PkP k , which

is nothing but H(D,B), written as a function of (D,B,P ). Let us now provide
the detailed calculations.
The first evolution equations (6) are straightforward (just writting (47) with
P = −DB). The two last ones are much more involved. Let us first prove (7).
Since Pi = −DBi, we get

∂tPi = −D∂tBi −Bi∂tD = T = T4 + T3 + T1 + T2,

T4 = D∂i

(
BjP

j

h

)
, T3 = −D∂i

(
D

h

)
,
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T1 = Bi∂j

(
DP j

h

)
, T2 = −Bi∂j

(
Bj

h

)
(using (1)). We have

T4 = T4a+ T4b, T4a = DBj∂i

(
P j

h

)
, T4b =

DP j

h
∂iBj ,

T3 = T3a+ T3b, T3a = −∂i
(
D2

h

)
, T3b =

D

h
∂iD,

T1 = T1a+ T1b, T1a = ∂j

(
BiDP

j

h

)
, T1b = −∂jBi

DP j

h
,

T2 = T2a+ T2b, T2a = −∂j
(
BiB

j

h

)
, T2b = ∂jBi

Bj

h
.

Since Pj = −DBj , we have

T1a = −∂j
(
PiP

j

h

)
,

T4a = −Pj∂i
(
P j

h

)
= T4aa+T4ab, T4aa = −∂i

(
PjP

j

h

)
, T4ab =

P j

h
∂iPj .

Since B is a gradient, we have ∂iBj = ∂jBi and, therefore,

T4b = −T1b, T2b = ∂iBj
Bj

h
,

so that

T3b+ T2b+ T4ab =
1

2h
∂i(1 +D2 +BjB

j + PjP
j) = ∂ih = ∂i(

h2

h
)

(by definition (8) of h). Collecting all terms, we find

∂tPi = T = T4aa+ T4ab+ T4b+ T3a+ T3b+ T1a+ T1b+ T2a+ T2b

= T4aa+ T3a+ T1a+ T2a+ ∂ih

= −∂i
(
PjP

j

h

)
− ∂i

(
D2

h

)
− ∂j

(
PiP

j

h

)
− ∂j

(
BiB

j

h

)
+ ∂i(

h2

h
)

= ∂i

(
1 +BjB

j

h

)
− ∂j

(
PiP

j

h

)
− ∂j

(
BiB

j

h

)
(by definition (8) of h) and we have obtained (7). Let us now prove (9). Notice
that, from now on, we no longer can use P = −DB. Equation should only follow
from the augmented system (6,7,8) and the property that B is a gradient. Using
definition (8) of h, we get

∂th =
D∂tD +Bi∂tBi + P i∂tPi

h
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=
D

h
∂j

(
−DP j +Bj

h

)
+
Bi

h
∂i

(
−BjP j +D

h

)
+

+
P i

h

(
∂i

(
1 +BjB

j

h

)
− ∂j

(
PiP

j

h

)
− ∂j

(
BiB

j

h

))
= T1 + T2 + T3 + T4 + T5 + T6 + T7

where

T1 =
D

h
∂j

(
−DP j

h

)
, T2 =

D

h
∂j

(
Bj

h

)
T3 =

Bi

h
∂i

(
−BjP j

h

)
, T4 =

Bi

h
∂i

(
D

h

)
T5 =

P i

h
∂i

(
1 +BjB

j

h

)
T6 = −P

i

h
∂j

(
PiP

j

h

)
, T7 = −P

i

h
∂j

(
BiB

j

h

)
= −P

j

h
∂i

(
BjB

i

h

)
We see that

T2 + T4 = ∂i

(
DBi

h2

)
,

T1 + T6 = −P j
(
D

h
∂j(

D

h
) +

P i

h
∂j(

Pi
h

)

)
− ∂jP j

(
D2 + P 2

h2

)
= P j

(
1

h
∂j(

1

h
) +

Bi

h
∂j(

Bi
h

)

)
+ ∂jP

j

(
1 +BiB

i

h2
− 1

)
(by definition of h)

=
P j

h
∂j(

1

h
) +

P jBi

h2
∂jBi +

P jBiB
i

h
∂j(

1

h
) + ∂jP

j

(
1 +BiB

i

h2
− 1

)
,

=
P jBi

h2
∂jBi +

P j(1 +BiB
i)

h
∂j(

1

h
) + ∂jP

j

(
1 +BiB

i

h2

)
− ∂jP j

=
P jBi

h2
∂jBi + ∂j

(
P j(1 +BiB

i)

h2

)
− T5− ∂jP j .

We also have

T3 + T7 = −∂i
(
P jBjB

i

h2

)
− BiP j

h2
∂iBj ,

so that (since B is a gradient)

T1 + T6 + T3 + T7 + T5 = ∂j

(
P j(1 +BiB

i)

h2

)

−∂i
(
P jBjB

i

h2

)
− ∂jP j
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and we have finally obtained

∂th = T1 + T2 + T3 + T4 + T5 + T6 + T7

= ∂j

(
P j(1 +BiB

i)

h2

)
− ∂i

(
P jBjB

i

h2

)
+ ∂i

(
DBi

h2

)
− ∂jP j ,

i.e.

∂th+ ∂j

(
P j − (DBj + P j) +Bk(BkP j − P kBj)

h2

)
= 0,

which is the desired conservation law (9) and achieves the proof of Theorem 1.
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