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Expected number and distribution of critical
points of real Lefschetz pencils

Michele Ancona ∗

27/07/2017

Abstract
We give an asymptotic probabilistic real Riemann-Hurwitz formula com-

puting the expected real ramification index of a random covering over the
Riemann sphere. More generally, we study the asymptotic expected number
and distribution of critical points of a random real Lefschetz pencil over a
smooth real algebraic variety.

1 Introduction
The Riemann-Hurwitz formula says that the total ramification index R of

a branched covering f : Σ → Σ′ of degree d between two compact Riemann
surfaces is R = dχ(Σ′)− χ(Σ). In particular, if Σ′ = CP 1, R = 2d+ 2g − 2,
where g is the genus of Σ.
More generally, if p : X 99K CP 1 is a Lefschetz pencil on a complex manifold
X of dimension n, then

(−1)n#crit(p) = χ(X)− 2χ(F ) + χ(Y )

where F is a smooth fiber of p and Y is the base locus of p.
The questions that motivate this paper are the following: how do these

critical points distribute on the variety? When p is defined over R, what
about the number of real critical points of a real Lefschetz pencil?
We answer these questions by computing the asymptotic expected number
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of real critical points of real Lefschetz pencils and also the asymptotic distri-
bution of such points.

The chosen random setting has already been considered by Schiffman and
Zelditch in [14] to study the integration current over the common zero locus
of k independent random global sections of a line bundle over a complex
projective manifold.

In the real case Kac [7], Kostlan [8] and Shub and Smale [15] computed
the expected number of real roots of a random real polynomial.
In higher dimensions, Podkorytov [13] and Bürgisser [1] computed the ex-
pected Euler characteristic of random real algebraic submanifolds, Gayet
and Welschinger estimated the Betti numbers [3], [5], [4]. (See also [10], [11]
and [9]).

In [12] Nicolaescu computed the expected number of critical of a random
smooth function on a Riemannian manifold have and how they distruibute.

Statements of the results

Let X be a smooth real projective manifold of dimension n, that is a
complex projective manifold equipped with an anti-holomorphic involution
cX .
We denote by RX = Fix(cX) its real locus. Let (L, h) be a positive real
hermitian line bundle. Then, for large d, for almost every (α, β) ∈ H0(X;Ld)2

(resp. RH0(X;Ld)2) the map uαβ : X 99K CP 1 defined by x 7→ [α(x) : β(x)]
is a Lefschetz pencil (resp. real Lefschetz pencil) (see Prop. 2.11).

Definition 1.1. We denote the set of critical points of uαβ by crit(uαβ) and
by Rcrit(uαβ) = crit(uαβ) ∩ RX the set of real critical points.

The number of real critical points of a Lefschetz pencil depends on the pair
(α, β). The main theorem of this article is the computation of the expected
value of this number.

Theorem 1.2. Let X be a smooth real projective manifold of dimension n,
let (L, h) be a positive real hermitian line bundle over X. Then

lim
d→+∞

1√
d
nE[#Rcrit(uα,β)] =

{
n!!

(n−1)!!
eR(n)π

2
Volh(RX) if n is odd

n!!
(n−1)!!

eR(n)Volh(RX) if n is even.

In this theorem Volh(RX) is the volume of RX with respect to the Rie-
mannian volume dvolh induced by the metric h. The probability we consider
is a natural Gaussian probability on RH0(X;Ld) (see Section 2.1) and eR(n)
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is the expected value of (the absolute value) of the determinant of real sym-
metric matrices (for the explicit values of eR(n), see [5, Section 2]).
We recall that eR(1) =

√
2
π
, then we have:

Corollary 1.3. Let (Σ, cΣ) be a real Riemann surface and (L, h) a real holo-
morphic line bundle of degree 1. Then, for every pair (α, β) ∈ RH0(X;Ld)2

without common zeros, uαβ is a degree d branched covering between Σ and
CP 1. Then the expected real total ramification index is equivalent to√

π

2
V olh(RΣ)

√
d

as d tends to +∞.

Theorem 1.2 will be a consequence of a more precise equidistribution re-
sult.
We define ναβ =

∑
x∈crit(uαβ)

δx (resp. Rναβ =
∑

x∈Rcrit(uαβ) δx) the Dirac mea-

sure on the (real) critical set.

Theorem 1.4. Let X be a smooth real projective manifold of dimension n
and (L, h) be a positive real hermitian line bundle over X. Then

lim
d→+∞

1√
d
nE[Rναβ] =

{
n!!

(n−1)!!
eR(n)π

2
dvolh if n is odd

n!!
(n−1)!!

eR(n)dvolh if n is even.

weakly in the sense of distributions.

Theorem 1.4 says that for all continuous function ϕ ∈ C0(RX)

lim
d→+∞

1√
d
nE[Rναβ](ϕ) =

{
n!!

(n−1)!!
eR(n)π

2

∫
RX ϕdvolh if n is odd

n!!
(n−1)!!

eR(n)
∫
RX ϕdvolh if n is even.

where E[Rναβ](ϕ) =
∫
RH0(X;Ld)2

∑
x∈Rcrit(uαβ) ϕ(x)dµ(α, β).

The following equidistribution result in the complex case follows along
the same lines.

Theorem 1.5. Let X be a smooth complex projective manifold of dimension
n, let (L, h) a positive hermitian line bundle over X. Then

lim
d→+∞

1

dn
E[ναβ] = (n+ 1)!dvolh

weakly in the sens of distribution.
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As before, Theorem 1.5 says that for all continuous function ϕ on X, we
have

lim
d→+∞

1

dn
E[ναβ](ϕ) = (n+ 1)n!

∫
X

ϕdvolh

where dvolh is the Kählerian volume associated to h.

Organisation of the paper

In Section 2.1 we introduce the Gaussian measure on H0(X;Ld) associ-
ated to a Hermitian line bundle (L, h) over a complex manifold X (see also
[14], [3], [5]).
In Section 2.2 we present some classical results about Lefschetz pencils on
complex manifolds.
In the rest of the Chapter 2 we introduce our main tools, namely the Hör-
mander peak sections (see also [5], [16]) and the incidence variety (see [15]).

Chapter 3 is completely devoted to the proofs of the Theorems 1.2, 1.4
and 1.5. In Sections 3.1 and 3.2 we prove the equidistribution of critical
points of a (real) Lefschetz pencil over a (real) algebraic variety X. This will
be done using coarea formula and peak sections. These ideas are taken from
[5].
In Section 3.3 we will compute the universal constant by direct computation.
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2 Definitions and main tools

2.1 Notations

Let X be a smooth complex projective manifold of dimension n. Let
L → X be a holomorphic line bundle equipped with a Hermitian metric h
of positive curvature ω ∈ Ω(1,1)(X,R). The curvature form induces a Kähler
metric onX and a volume form dvolh = ωn

n!
. Let dx = ωn∫

X ωn
be the normalized

volume form.
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The Hermitian metric h induces a Hermitian metric hd on Ld for every integer
d > 0 and also a L2-Hermitian product on the space H0(X;Ld) of global
holomorphic sections of Ld denoted by 〈, 〉 and defined by

〈α, β〉 =

∫
X

hd(α, β)dx

for all α, β in H0(X;Ld).
This Hermitian product induces a Gaussian measure on H0(X;Ld) defined
by

µ(A) =
1

πNd

∫
A

e−‖s‖ds

for all open subset A ⊂ H0(X;Ld) where ds is the Lebesgue measure associ-
ated to 〈, 〉 and Nd = dimCH

0(X;Ld).
A Lefschetz pencil on X is a rational map p : X 99K CP 1 having only non
degenerated critical points and defined by two sections of a holomorphic line
bundle with smooth and transverse vanishing loci.

All these definitions have a real counterpart. Let X a smooth real projec-
tive manifold of dimension n, that is a smooth complex projective manifold
equipped with an anti-holomorphic involution cX . We denote by
RX = Fix(cX) its real locus.
A real holomorphic line bundle p : L→ X is a line bundle equipped with an
anti-holomorphic involution cL such that p ◦ cL = cX ◦ p and cL is complex-
antilinear in the fibers. We denote by RH0(X;L) the real vector space of
real global section of L, i.e. sections s ∈ H0(X;L) such that s ◦ cX = cL ◦ s .
A real Hermitian metric on L is a Hermitian metric hL such that c∗LhL = h̄L.
If (L, hL) is a line bundle over X with positive curvature ω, then ω(., i.) is a
Hermitian metric over X which restricts to a Riemannian metric over RX.
With a slight abuse of notation, we denote also the Riemannian volume form
by dvolh. The L2-Hermitian product 〈, 〉 on H0(X;Ld) restricts to a L2-scalar
product on RH0(X;Ld), denoted also by 〈, 〉. Then, as in the complex case,
also in the real case we have a natural Gaussian measure on RH0(X;Ld)
defined by

µ(A) =
1
√
π
Nd

∫
A

e−‖s‖ds

for all open subset A ⊂ RH0(X;Ld) where ds is the Lebesgue measure asso-
ciated to 〈, 〉 and Nd = dimCH

0(X;Ld) = dimR RH0(X;Ld).
If (X, cX) is a smooth real projective manifold then a real Lefschetz pencil

5



is a Lefschetz pencil p : X 99K CP 1 such that p ◦ cX = conj ◦ p.
We conclude this section by introducing some notation on symmetric matri-
ces.

Definition 2.1. For every n ∈ N∗, denote by Sym(n,R) the real vector
space of real symmetric matrices of size n × n. The vector of dimension of
these vector spaces is n(n+1)

2
and we equip them with the basis B given by Ẽjj

and Ẽij = Eij +Eji for 1 6 i < j 6 n, where for every k, l with 1 6 k, l 6 n,
Ekl is the elementary matrix whose entry at the i-th row and j-th column
equals 1 if (i, j) = (k, l) and 0 otherwise.

We equip Sym(n,R) with the scalar product turning B into an orthonor-
mal basis. Let µR the associated Gaussian probability measure. We then
set

eR(n) =

∫
A∈Sym(n,R)

| detA | dµR(A).

2.2 Lefschetz pencils

In this section, we compute the asymptotic value of the number of critical
points of a Lefschetz pencil (see also [3, Section 1]).
Recall that a Lefschetz fibration is a map X → CP 1 with only non degener-
ate critical points. The following proposition is a kind of Riemann-Hurwitz
formula for Lefschetz pencils, for a proof see for example Proposition 1 of [3].

Proposition 2.2. Let X be a smooth complex projective manifold of positive
dimension n equipped with a Lefschetz fibration p : X → CP 1 and let F be a
regular fiber of p. Then we have the following equality:

χ(X) = 2χ(F ) + (−1)n#crit(p).

Remark that if p : X 99K CP 1 a Lefschetz pencil and we blow-up the base
locus Base(p) + Y , then we obtain a Lefschetz fibration p̃ : X̃ + BlYX →
CP 1. By additivity of the Euler characteristic, we have that χ(X̃) = χ(X)+
χ(Y ), then by Proposition 2.2 we have

χ(X) = 2χ(F )− χ(Y ) + (−1)n#crit(p). (1)

Proposition 2.3. Let L be an ample line bundle over a complex manifold
X of dimension n. For almost all global sections α, β ∈ H0(X;Ld), the map
uαβ defined as x 7→ [α(x) : β(x)] is a Lefschetz pencil (see Prop. 2.11).
Then, as d goes to infinity, we have

#crit(uαβ) = (n+ 1)

(∫
X

c1(L)n
)
dn +O(dn−1). (2)
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Proof. We will follow the lines of Lemma 2, Lemma 3 and Proposition 4 of
[3].
We have χ(F ) =

∫
F
cn−1(F ) and χ(Y ) =

∫
Y
cn−2(Y ).

We remark that the base locus is the intersection of the zero locus of α and
β, that is Y = Zα ∩ Zβ.
A regular fiber F over [a, b] ∈ CP 1 is the zero locus of the section bα− aβ ∈
H0(X;Ld), thus the normal bundle NX/F is Ld|F To compute χ(F ) we will
use the adjunction formula. We have

0→ TF → TX|F → NX/F → 0

then we have c(X)|F = c(F ) ∧ c(Ld)|F , i.e. (1 + c1(X) + ... + cn(X))|F =
(1 + c1(F ) + ...+ cn−1(F )) ∧ (1 + dc1(L)).
If we develop this we have c1(X) = c1(F ) +dc1(L) and, for j ∈ {2, ..., n− 1},
we have cj(X)|F = cj(F ) + dc1(L)|F ∧ cj−1(F ).
Then, summing up the term,

cj(F ) =

j∑
k=0

(−1)kdkc1(L)k|F ∧ cj−k(X)|F .

In particular, for j = n− 1 we have

cn−1(F ) =
n−1∑
k=0

(−1)kdkc1(L)k|F ∧ cn−k−1(X)|F .

Then χ(F ) is equal to
∫
F

∑n−1
k=0(−1)kdkc1(L)k)|F ∧ cn−k−1(X)|F

But, for α ∈ H2n−2
dR (X), we have that∫

F

α|F =

∫
X

α ∧ c1(Ld)

so,

χ(F ) =
n−1∑
k=0

∫
X

(−1)kdk+1c1(L)k+1 ∧ cn−k−1(X)

and asymptotically

χ(F ) ∼ (−1)n−1(

∫
X

c1(L)n)dn.

For Y = Zα ∩ Zβ, the same argument gives us

cj(Y ) =

j∑
k=0

(−1)kdkc1(L)k|Y ∧ cj−k(Zα)|Y .
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But, as before,

cj−k(Zα) =

j−k∑
h=0

(−1)hdhc1(L)h ∧ cj−k−h(X).

and so, replacing in the above equation

cj(Y ) =

j∑
k=0

(−1)kdkc1(L)k|Y ∧ (

j−k∑
h=0

(−1)hdhc1(L)h|Y ∧ cj−k−h(X)|Y )

For j = n− 2 we have

cn−2(Y ) =
n−2∑
k=0

(−1)kdkc1(L)k|Y ∧ (
n−2−k∑
h=0

(−1)hdhc1(L)hY ∧ cn−2−k−h(X)|Y )

and this is equivalent to
n−2∑
k=0

(−1)n−2dn−2c1(L)n−2
|Y = (−1)n−2(n− 1)dn−2c1(L)n−2

|Y

as d→∞.
So we have,as d→∞,

χ(Y ) ∼ (−1)n−2(n− 1)dn−2

∫
Y

c1(L)n−2
|Y =

= (−1)n−2(n− 1)dn−1

∫
Zα

c1(L)n−2 ∧ c1(L) =

= (−1)n−2(n− 1)(

∫
X

c1(L)n)dn.

Combining this with χ(X) = 2χ(F )−χ(Y )+(−1)n#crit(uαβ) we obtain the
result.

2.3 Hörmander’s peak sections

Here we introduce the Hörmander’s peak sections, an essential tool for
our proofs of Theorems 1.4 and 1.5 (see also [6], [16], [5]). Let L be a holo-
morphic line bundle over a smooth complex projective manifold equipped
with a Hermitian metric h of positive curvature ω and let dx = ωn∫

X ωn
be the

normalized volume form. Let x be a point of X. There exists, in the neigh-
borhood of x, a holomorphic trivialization e of L such that the associated
potential φ = −logh(e, e) reaches a local minimum at x with Hessian of type
(1, 1). The following result was proved in [16] (see also [5]) .
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Lemma 2.4. Let (L, h) be a holomorphic Hermitian line bundle of posi-
tive curvature ω over a smooth complex projective manifold X. Let x ∈ X,
(p1, ..., pn) ∈ Nn and p′ > p1 + ... + pn. There exists d0 ∈ N such that for
every d > d0, the bundle Ld has a global holomorphic section σ satisfying∫
X
hd(σ, σ)dx = 1 and∫

X\B(x, log d√
d

)

hd(σ, σ)dx = O(
1

d2p′
)

Moreover, if (x1, ..., xn) are local holomorphic coordinates in the neigh-
borhood of x, we can assume that in a neighborhood of x,

σ(x1, ..., xn) = λ(xp11 · · · xpnn +O(| x |2p′))ed(1 +O(
1

d2p′
))

where
λ−2 =

∫
B(x, log d√

d
)

| xp11 · · · xpnn |2 hd(ed, ed)dx

and e is a holomorphic trivialization of L in the neighborhood of x whose
potential φ = − log h(e, e) reaches a local minimum at x with Hessian equal
to πω(., i.).

Here is an analogue of Lemma 2.4 in the real case:

Lemma 2.5. Let (L, h) be a real holomorphic Hermitian line bundle of pos-
itive curvature ω over a smooth rel projective manifold X. Let x ∈ RX,
(p1, ..., pn) ∈ Nn and p′ > p1 + ... + pn. There exists d0 ∈ N such that for
every d > d0, the bundle Ld has a global holomorphic section σ satisfying∫
X
hd(σ, σ)dx = 1 and∫

X\B(x, log d√
d

)

hd(σ, σ)dVh = O(
1

d2p′
)

Moreover, if (x1, ..., xn) are local real holomorphic coordinates in the neigh-
borhood of x, we can assume that in a neighborhood of x,

σ(x1, ..., xn) = λ(xp11 · · · xpnn +O(| x |2p′))ed(1 +O(
1

d2p′
))

where
λ−2 =

∫
B(x, log d√

d
)

| xp11 · · · xpnn |2 hd(ed, ed)dx

and e is a real trivialization of L in the neighborhood of x whose potential
φ = − log h(e, e) reaches a local minimum at x with Hessian πω(., i.).
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This real counterpart follows from Lemma 2.4 by averaging the peak
sections with the real structure.
Let σ0 be the section given by the Lemma 2.5 with p′ = 3 and pi = 0 for
all i, σi the section given by Lemma 2.5 with p′ = 3 and pj = δij, σij the
section given by Lemma 2.5 with pi = pj = 1 and pk = 0 otherwise and σkk
the section given by the Lemma 2.5 with pk = 2 and pl = 0 for l 6= k.
These sections are called peak sections. Their Taylor expansions are:

σ0(y) = (λ0 +O(‖ y ‖6))ed(1 +O(
1

d6
));

σi(y) = (λiyi +O(‖ y ‖6))ed(1 +O(
1

d6
)) ∀i;

σij(y) = (λijyiyj +O(‖ y ‖6))ed(1 +O(
1

d6
)) ∀i 6= j;

σkk(y) = (λkky
2
k +O(‖ y ‖6))ed(1 +O(

1

d6
)) ∀k.

The following lemma provides the asymptotic of the constants λ0, λi, λij et
λkk.

Lemma 2.6. [5, Lemma 2.5] Under the hypothesis of Lemma 2.4 or 2.5, we
have

lim
d−→∞

1√
d
nλ0 =

√
δL

lim
d−→∞

1
√
d
n+1λi =

√
π
√
δL

lim
d−→∞

1
√
d
n+2λij = π

√
δL

lim
d−→∞

1
√
d
n+2λkk =

π√
2

√
δL

for the L2-product induced by dx = ωn∫
X ωn

where δL =
∫
X
c1(L)n is the degree

of the line bundle L.

Let

H2x = {s ∈ H0(X;Ld) | s(x) = 0,∇s(x) = 0,∇2s(x) = 0}(
resp. RH2x = {s ∈ RH0(X;Ld) | s(x) = 0,∇s(x) = 0,∇2s(x) = 0}

)
.

This space is formed by sections whose 2-jet vanishes at x. The sections
(σi)0≤i≤n (σij)1≤i≤j≤n provide a basis of a complement of H2x. This basis is
not orthonormal and its spanned subspace is not orthogonal toH2x. However,
this basis is aymptotically an orthonormal basis and its spanned subspace is
asymptotically orthonormal to H2x, in the following sense:
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Proposition 2.7. [16, Lemma 3.1] The section (σi)0≤i≤n and (σij)1≤i≤j≤n
have L2-norm equal to 1 and their pairwise scalar product are O(1

d
). Likewise,

their scalar products with every unitary element of H2x are O( 1
d3/2

).

2.4 Incidence varieties

Following [15] we define an incidence variety associated to the complex
(resp. real) manifold X and to the (real) positive line bundle L. We will
use this incidence variety to prove that, for global sections α, β ∈ H0(X;Ld)
(resp. α, β ∈ RH0(X;Ld)), the map uαβ defined as x 7→ [α(x) : β(x)] is
almost surely a Lefschetz pencil (Proposition 2.3).

Let (L, h) be a real Hermitian line bundle with positive curvature ω over
a real manifold X of dimension n.

Definition 2.8. Let α, β ∈ H0(X;Ld) (resp. RH0(X;Ld)) be (resp. real)
global sections such that the map x 7→ [α(x) : β(x)] is a Lefschetz pencil.
We define

1. the base locus of a Lefschetz pencil as the points x such that
α(x) = β(x) = 0;

2. the critical points as the points x ∈ X \Base(uαβ) such that
(α∇β − β∇α)(x) = 0 (this expression doesn’t depend on the choice of
a connexion ∇ on L).
We denote by crit(uαβ) the set of critical points of (uαβ) and by
Rcrit(uαβ) = crit(uαβ) ∩ RX the set of real critical points)

We denote by ∆ (resp.R∆) the set of (α, β, x) ∈ H0(X;Ld)2 ×X (resp.
(α, β, x) ∈ RH0(X;Ld)2 × RX) such that α(x) = β(x) = 0. Set

I = {(α, β, x) ∈ (H0(X;Ld)2 ×X)\∆ | x ∈ crit(uαβ)}

(resp. RI = {(α, β, x) ∈ (RH0(X;Ld)2 × RX)\R∆ | x ∈ crit(uαβ)})

Proposition 2.9. Let L a (real) holomorphic line bundle over a smooth
complex (resp. real) projective manifold X. If Ld is 1-ample, that is if the
1-jet map

H0(X;Ld)×X → J1(Ld)

(s, x) 7→ j1
x(s) = (s(x),∇s(x))

is surjective, then I (resp. RI) is a manifold of complex (resp. real) dimen-
sion 2Nd, where Nd = dimH0(X;Ld).
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Proof. We study the differential of the map

q : (H0(X;Ld)2 ×X)\∆→ T ∗X ⊗ L2d

defined by
(α, β, x) 7→ (α∇β − β∇α)(x) ∈ T ∗xX ⊗ L2d

x

defining I. If we prove that 0 is a regular value, then, by Implicit Function
Theorem, we have the result. Now, for (α, β, x) ∈ I we have

d|(α,β,x)q·(α̇, β̇, ẋ) = (α̇∇β−β∇α̇+α∇β̇−β̇∇α+α∇2
(ẋ,.)β−β∇2

(ẋ,.)α+∇ẋα∇β−∇ẋβ∇α)(x).

Let η ∈ T ∗xX ⊗ L2d
x we have to prove that there exists (α̇, β̇, ẋ) such that

d|(α,β,x)q · (α̇, β̇, ẋ) = η. As (α, β, x) 6∈ ∆, we know that at least one between
α(x) and β(x) is not zero. Without loss of generality, suppose that α(x) 6= 0,
then, as Ld is 1-ample, there exists β̇ such that β̇(x) = 0 and α(x)∇β̇(x) = η,
then d|(α,β,x)q · (0, β̇, 0) = η.

If L is ample, then, for large d, Ld is 1-ample. So, in our case I
(resp. RI ) is a smooth variety for large d, called the incidence variety. The
tangent space of I at (α, β, x) is

T(α,β,x)I = { (α̇, β̇, ẋ) ∈ H0(X;Ld)×H0(X;Ld)× TxX |(
α̇∇β − β∇α̇ + α∇β̇ − β̇∇α + α∇2

(ẋ,.)β − β∇2
(ẋ,.)α

)
(x) = 0} .

(resp. T(α,β,x)RI = {(α̇ , β̇, ẋ) ∈ RH0(X;Ld)× RH0(X;Ld)× TxRX |
(α̇∇β − β∇α̇ + α∇β̇ − β̇∇α + α∇2

(ẋ,.)β − β∇2
(ẋ,.)α ) (x) = 0} ) .

Remark 2.10. • In the equation defining the tangent space there is also
the term
(∇ẋα∇β −∇ẋβ∇α)(x) but it equals zero both in the complex and real
case because on I and RI we have the condition (α∇β − β∇α)(x) = 0
and then
(∇ẋα∇β −∇ẋβ∇α) (x) =

(
(∇ẋα

β
α
−∇ẋβ)∇α

)
(x) = 0.

• The incidence variety comes equipped with two natural projections

πH : I → H0(X;Ld)×H0(X;Ld) and πX : I → X

(
resp. πRH : RI → RH0(X;Ld)× RH0(X;Ld) and πRX : RI → RX

)
12



Proposition 2.11. Let L an ample holomorphic line bundle (resp. real holo-
morphic) over a smooth complex projective manifold X (resp. real projective).
For every couple α, β ∈ H0(X;Ld) (resp. ∈ RH0(X;Ld)) the map

uαβ : X 99K CP 1

x 7→ [α(x) : β(x)].

is, for large d, almost surely a Lefschetz pencil (resp. real Lefschetz pencil).

Proof. The critical points of πH (resp. πRH) are exactly the triples (α, β, x)
such that (α∇2β − β∇2α)(x) is degenerate. By Sard’s theorem valcrit(πH)
has zero Lebesgue and Gaussian measure. Also, for large d, the set Γ com-
posed by the pairs (α, β) ∈ H0(X;Ld)×H0(X;Ld) such that {x ∈ X,α(x) =
β(x) = 0} is not smooth has zero Lebesgue and Gaussian measure (see for
example [10, Section 2.2]).
Then (Γ ∪ valcrit(πH)) has zero measure and its complement is exactly the
set of couple of sections defining a Lefschetz pencil.

3 Proof of the theorems
In this chapter we prove Theorems 1.2, 1.4 and 1.5.

3.1 Coarea formula

Here we will use the incidence variety defined in Section 2.4 and the coarea
formula to see the expected distribution of critical points of a (real) Lefschetz
pencil as an integral over X (resp. RX).

Definition 3.1. The normal jacobian JacNf of a submersion f : M → N
between Riemannian manifolds is the determinant of the differential of the
map restricted to the orthogonal of its kernel. Equivalently, if dfp is the
differential of f at p, then the normal jacobian is equal to

√
det(dfpdf ∗p ),

where df ∗p is the adjoint of dfp with respect to the scalar product on TpM
and Tf(p)N .

Let X be a smooth complex (resp. real) projective manifold of dimension
n and (L, h) be a (real) holomorphic line bundle of positive curvature ω.

Definition 3.2. We define a Dirac measure for (real) critical points of a
(real) Lefschetz pencil uαβ associated to a couple (α, β) ∈ H0(X;Ld)2

(resp. ∈ RH0(X;Ld)2) by

ναβ =
∑

x∈crit(uαβ)

δx (resp. Rναβ =
∑

x∈Rcrit(uαβ)

δx).

13



Let ϕ be a continuous function on RX. Then, by definition,

E[Rναβ](ϕ) =

∫
RH0(X;Ld)2

∑
x∈crit(uαβ)

ϕ(x)dµ(α, β).

Proposition 3.3. Following the notation of Section 2.4, we have

E[Rναβ](ϕ) =

∫
RX

ϕ(x)

∫
πRH(π−1

RX(x))

1

| JacN(πRX) |
dµ|πRH(π−1

RX(x))dvolh. (3)

where the measure dµ|πRH(π−1
RX(x)) is the following: first we restrict the scalar

product 〈, 〉 on RH0(X;Ld)2 to πRH(π−1
RX(x)), that is a codimension n sub-

manifold, then we consider the Riemannian measure associated to this met-
ric, and finally we multiply it by the factor 1

πNd
e−‖α‖

2−‖β‖2, where Nd =

dimH0(X;Ld).

Proof. We pull-back the integral

E[Rναβ](ϕ) =

∫
RH0(X;Ld)2

∑
x∈crit(uαβ)

ϕ(x)dµ(α, β)

on the incidence variety RI and we obtain

E[Rναβ](ϕ) =

∫
RI

(π∗RXϕ)(α, β, x)(π∗RHdµ)(α, β, x).

Here π∗RHdµ is well defined because πRH is (almost everywhere) a local iso-
morphism.
Now we use the coarea formula (see [2, Lemma 3.2.3] or [15, Theorem 1]) for
the map πRX and we obtain

E[Rναβ](ϕ) =

∫
RX

ϕ(x)

∫
π−1
RX(x)

1

| JacN(πRX) |
(π∗RHdµ)|π−1

RX(x)
dvolh

where the measure (π∗RHdµ)|π−1
X (x) is the following: first we restrict the (sin-

gular) metric π∗H〈, 〉 on RI to π−1
RX(x), that is a codimension n submanifold,

then we consider the Riemannian measure associated to this metric, and fi-
nally we multiply it by the factor 1

πNd
e−‖α‖

2−‖β‖2 , where Nd = dimH0(X;Ld).
Then another application of coarea formula gives us the result.

The space πRH(π−1
RX(x)) is formed by pairs (α, β) ∈ RH0(X;Ld)2 such

that x ∈ Rcrit(uαβ). In the next section we will identify this space with an
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intersection of some quadrics in the vector space RH0(X;Ld)2.
In the complex case, the same argument gives us, for every continous function
ϕ on X

E[ναβ](ϕ) =

∫
X

ϕ(x)

∫
πH(π−1

X (x))

1

| JacN(πX) |
dµ|πH(π−1

X (x))dvolh. (4)

3.2 Computation of the normal jacobian

In this section we compute the normal jacobian that appears in (3) and
(4). We follow the notations of Sections 2.1, 2.4 and 3.1. The main result of
this section is the following proposition:

Proposition 3.4. Following the notation of Sections 2.4 and 3.1, under the
hypothesis of Theorem 1.4, we have:

E[Rναβ](ϕ) =

∫
RX

ϕ(x)Rd(x)dvolh,

where

Rd(x) = (
√
πd

n
)(

∫
Q

| det(a0bij − b0aij) |√
det ((aiaj + bibj) + (a2

0 + b2
0)Id)

dµQ +O(
1√
d

))

and Q ⊂ R2(n+1)+n(n+1) is the product of the intersection of quadrics

Q̃ = {(a0, b0, ..., an, ..., bn) ∈ R2(n+1) | a0bi − aib0 = 0 ∀i = 1, ..., n}

with the vector space Rn(n+1) of coordinates aij and bij for 1 ≤ i ≤ j ≤ n and

dµQ = e
−

∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ.

The remaining part of this section is devoted to the proof of this propo-
sition. Our main tool will be the peak sections defined in Section 2.3.

We fix a point x ∈ X (resp. x ∈ RX) and want to compute the integral∫
πRH(π−1

RX(x))

1

| JacN(πRX) |
dµ|πRH(π−1

RX(x)) (5)

that appears in (3).
We recall that the tangent space of I (resp. RI) at (α, β, x) is

{(α̇, β̇, ẋ) ∈ H0(X;Ld)×H0(X;Ld)× TxX |
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(α̇∇β − β∇α̇ + α∇β̇ − β̇∇α + α∇2
(ẋ,.)β − β∇2

(ẋ,.)α)(x) = 0}

(resp. {(α̇, β̇, ẋ) ∈ RH0(X;Ld)× RH0(X;Ld)× TxRX |
(α̇∇β − β∇α̇ + α∇β̇ − β̇∇α + α∇2

(ẋ,.)β − β∇2
(ẋ,.)α)(x) = 0)(x) = 0}.

We remark that dπH|(α,β,x) is (almost everywhere) an isometry, because on I
we put the (singular) metric π∗H〈, 〉. We compute JacN(πX) (resp. JacN(πRX))
at (α, β, x) using the following two linear maps:

A : H0(X;Ld)×H0(X;Ld)→ T ∗xX ⊗ L2d
x (6)

(resp. A : RH0(X;Ld)× RH0(X;Ld)→ R(T ∗X ⊗ L2d)x)

and
B : TxX → T ∗xX ⊗ L2d

x (7)

(resp. B : TxRX → R(T ∗X ⊗ L2d)x
)

defined by
A(α̇, β̇) = (α̇∇β − β∇α̇ + α∇β̇ − β̇∇α)(x)

and
B(ẋ) =

(
α∇2

(ẋ,.)β − β∇2
(ẋ,.)α

)
(x)

On T ∗xX ⊗ L2d
x (resp. R(T ∗X ⊗ L2d)x) we have the Hermitian (resp. scalar)

product induced by h.

Proposition 3.5. Following the notation of Sections 2.4 and 3.1, we have,
for all (α, β, x) ∈ I (resp. RI), JacN(πX) = JacN (A)

Jac(B)
.

Proof. We have dπ |(α,β,x)= B−1◦A and this implies dπ |(α,β,x)|(kerA)⊥= B−1◦
A |(kerA)⊥ . It follows that Jac(dπ |(α,β,x)|(kerA)⊥) = Jac(B−1)Jac(A |(kerA)⊥)
Now, Jac(B−1) = Jac(B)−1 and Jac(A |(kerA)⊥) = JacN(A).

Fix real holomorphic coordinates (x1, ..., xn) in a neighborhood of a point
x ∈ RX such that ( ∂

∂x1
, ..., ∂

∂xn
) is an orthonormal basis of TxX (resp. TxRX).

We want to compute the integral∫
πRH(π−1

RX(x))

1

| JacN(πRX) |
dµ|πRH(π−1

RX(x)) (8)

that appears in (3).
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Let (α, β) ∈ H0(X;Ld)2 (resp. RH0(X;Ld)2) then

α =
n∑
i=0

aiσi +
∑

16k6l6n

aklσkl + τ

β =
n∑
i=0

biσi +
∑

16k6l6n

bklσkl + τ ′

where τ, τ ′ ∈ kerJ2
x and σi, σkl are the peak section of Lemma 2.5.

We remark that (α, β) ∈ πH(π−1
X (x)) if and only if a0bi−aib0 = 0 ∀i = 1, ..., n,

and also that the definition of JacN(πX) involves only the 2-jets of sections.
With this remark in mind we define the following spaces:

• K2 + (KerJ2
x ×KerJ2

x) ⊂ H0(X;Ld)2 (resp. RH0(X;Ld)2);

• H2 + V ect{(σi, 0), (σkl, 0), (0, σi), (0, σkl)} ⊂ H0(X : Ld)2 (resp. RH0(X;Ld)2)
for i = 0, ..., n and 1 ≤ l ≤ k ≤ n;

• Q = H2 ∩ πH(π−1
X (x)).

We see Q as the product of the intersection of quadrics:

Q̃ = {(a0, b0, ..., an, bn) ∈ R2(n+1) | a0bi − aib0 = 0 ∀i = 1, ..., n}

with the vector space Rn(n+1) of coordinates aij and bij for 1 ≤ i ≤ j ≤ n.
Let π2 : K⊥2 → H2 be the orthogonal projection. A consequence of Proposi-
tion 2.7 is that, for large d, π2 is invertible.

Proposition 3.6. Following the notation of Section 2.4 and 3.1, let A and
B be the linear application defined in (6) and (7). Then, in the complex case,
under the hypothesis of Theorem 1.5,

(π−1
2 )∗JacN(A) = det((πδ2

Ld
2n+1)((aiāj+bib̄j)Eij+(| a0 |2 + | b0 |2)Id+O(

1√
d

))

(π−1
2 )∗Jac(B) =| det(πδL

√
d

2n+2
)((a0bij − b0aij)Ẽij +O(

1√
d

)) |2

and, in the real case, under the hypothesis of the Theorem 1.4,

(π−1
2 )∗JacN(A) =

√
det(πδ2

Ld
2n+1)((aiaj + bibj)Eij + (a2

0 + b2
0)Id+O(

1√
d

))
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(π−1
2 )∗Jac(B) = det((πδL

√
d

2n+2
)((a0bij − b0aij)Ẽij +O(

1√
d

)))

where Ẽij for 1 6 i 6 j 6 n and Eij for i, j = 1, ..., n are the matrices
defined in Definition 2.1.

Proof. Let e be a local trivialization of L at x as in Section 2.2 and let
(σi)i=0,...,n, (σkl)16k6l6n as in Lemma 2.4 (resp. Lemma 2.5).
Let (α, β) ∈ H0(X;Ld)2 (resp. RH0(X;Ld)2) then

α =
n∑
i=0

aiσi +
∑

16k6l6n

aklσkl + τ

β =
n∑
i=0

biσi +
∑

16k6l6n

bklσkl + τ ′

where τ, τ ′ ∈ kerJ2
x .

In particular we have

α(x) = a0σ0(x), β(x) = b0σ0(x),

∇α(x) =
n∑
i=0

ai∇σi(x), ∇β(x) =
n∑
i=0

bi∇σi(x),

∇2α(x) =
n∑
i=0

ai∇2σi(x)+
∑
k,l

akl∇2σkl(x), ∇2β(x) =
n∑
i=0

bi∇2σi(x)+
∑
k,l

bkl∇2σkl(x).

As basis for TxX and T ∗xX⊗L2d
x (resp. TxRX and R(T ∗xX⊗L2d

x )) we choose
( ∂
∂x1
, ..., ∂

∂xn
) and (dx1⊗ e2d, ..., dxn⊗ e2d) respectively. We choose (σi, 0) and

(0, σi), i = 0, ..., n, as a basis of a complement of kerJ1
x × kerJ1

x . Thanks
to Lemma 2.7, this basis is asymptotically orthonormal for the L2-Hermitian
product 〈, 〉. By definition it is an orthonormal basis for the scalar product
(π−1

2 )∗〈, 〉 restricted to H2 . Then we obtain, using Lemma 2.6,〈
A(σ0, 0), dxj ⊗ e2d

〉
= bj
√
πδL
√
d

2n+1
+O(

√
d

2n
);〈

A(σi, 0), dxj ⊗ e2d
〉

= −b0

√
πδL
√
d

2n+1
δij +O(

√
d

2n
) for i = 1, ...n;〈

A(0, σ0), dxj ⊗ e2d
〉

= −aj
√
πδL
√
d

2n+1
+O(

√
d

2n
);〈

A(0, σi), dxj ⊗ e2d
〉

= a0

√
πδL
√
d

2n+1
δij +O(

√
d

2n
) for i = 1, ...n;〈

B(
∂

∂xi
), dxj ⊗ e2d

〉
= (a0bij − b0aij)πδL

√
d

2n+2
+O(

√
d

2n+1
) for i 6= j;
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〈
B(

∂

∂xk
), dxk ⊗ e2d

〉
=
√

2(a0bkk − b0akk)πδL
√
d

2n+2
+O(

√
d

2n+1
).

where the Hermitian (resp. scalar) product on T ∗xX ⊗ L2d
x

(resp. R(T ∗xX ⊗ L2d
x )) is induced by h.

What we have just computed are the coefficients of the matrices of A and
B with respect to our choice of basis and with respect to the scalar prod-
uct (π−1

2 )∗〈, 〉. We recall that B is a square matrix and that JacN(A) =√
Jac(AA∗).

More precisely, as d→∞ , A is equivalent to the following matrix:

√
πδL
√
d

2n+1


b1 −b0 0 . . . 0 −a1 a0 0 . . . 0
b2 0 −b0 . . . 0 −a2 0 a0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bn 0 0 . . . −b0 −an 0 0 . . . a0


and B to the following one:

πδL
√
d

2n+2


√

2(a0b11 − b0a11) a0b12 − b0a12 . . . a0b1n − b0a1n

a0b21 − b0a21

√
2(a0b22 − b0a22) . . . a0b2n − b0a2n

. . . . . . . . . . . .

a0bn1 − b0an1 a0bn2 − b0an2 . . .
√

2(a0bnn − b0ann)


A direct computation shows us that AA∗ is the matrix

(πδ2
Ld

2n+1)((aiāj + bib̄j)Eij + (| a0 |2 + | b0 |2)Id+O(
1

d
).

The results follows.

The last proposition implies

(π−1
2 )∗

1

JacN(πX)
= (πd)n(

JacR((a0bij − b0aij)Ẽij)

det((aiāj + bib̄j)Eij + (| a0 |2 + | b0 |2)Id)
+O(

1√
d

))

(π−1
2 )∗

1

JacN(πRX)
= (
√
πd

n
) (

det((a0bij − b0aij)Ẽij)√
det ((aiaj + bibj)Eij + (a2

0 + b2
0)Id)

+O(
1√
d

))

We want to integrate this quantity over πH(π−1
X (x)). We recall that the mea-

sure dµ|πRH(π−1
RX(x)) is the following one: first we restrict the scalar product 〈, 〉

on RH0(X;Ld)2 to πRH(π−1
RX(x)), that is a codimension n submanifold, then
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we consider the Riemannian measure associated to this metric, and finally we
multiply it by the factor 1

πNd
e−‖α‖

2−‖β‖2 , where Nd = dimH0(X;Ld). Then
(8) is equal to

∫
πRH(π−1

RX(x))

| Jac(B) |
| JacN(A) |

dµ |πRH(π−1
RX(x))=

=

∫
K⊥2 ∩πRH(π−1

RX(x))⊕K2

| Jac(B) |
| JacN(A) |

dµ |πH(π−1
RX(x))=

=

∫
K⊥2 ∩πRH(π−1

RX(x))

| Jac(B) |
| JacN(A) |

dµ |K⊥2 ∩πRH(π−1
RX(x))=

=

∫
Q

(π−1
2 )∗

| Jac(B) |
| JacN(A) |

(π2∗dµ |K⊥2 ∩πRH(π−1
RX(x))). (9)

Thanks to the Proposition 2.7, the pushforward measure (π2)∗(µ|K⊥2 ) on H2

coincides with the Gaussian measure associated to the orthonormal basis
{(σi, 0), (σkl, 0), (0, σi), (0, σkl)} up to a O( 1√

d
) term. As a consequence we

have that (π2∗dµ |K⊥2 ∩πRH(π−1
RX(x))) is equal to e

−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ

up to a O( 1√
d
) term. We then have that (9) is equal to

∫
Q

(π−1
2 )∗

| Jac(B) |
| JacN(A) |

dµQ +O(
1√
d

) =

=

∫
ai, bi, aij, bij
a0bi − b0ai = 0

(
√
πd

n
)(

| det((a0bij − b0aij)Ẽij) |√
det ((aiaj + bibj)Eij + (a2

0 + b2
0)Id)

dµQ+O(
1√
d

))

(10)

where dµQ = e
−

∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ.

Putting (10) in (3), we obtain Proposition 3.4.

3.3 Computation of the universal constant

The purpose of this section is the explicit computation of the function
Rd(x) that appears in Proposition 3.4. We use the notation of Section 3.2.

To understand Rd(x), we have to compute

√
πd

n
∫
Q

| det((a0bij − b0aij)Ẽij) |√
det((aiaj + bibj)Eij + (a2

0 + b2
0)Id)

e−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ.
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The main result of this section is the following computation:

Proposition 3.7. Let Q be as in Proposition 3.4. Then

√
πd

n
∫
Q

| det((a0bij − b0aij)Ẽij) |√
det((aiaj + bibj)Eij + (a2

0 + b2
0)Id)

e−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ

is equal to {
n!!

(n−1)!!
eR(n)π

2

√
d
n

if n is odd
n!!

(n−1)!!
eR(n)

√
d
n

if n is even.
(11)

where Ẽij and Eij are the matrices of Definition 2.1 and eR(n) is the ex-
pected value of the determinant of (the absolute value of) the real symmetric
matrices.

We recall that Q ⊂ R2(n+1)+n(n+1) is the product of the intersection of
quadrics:

Q̃ = {(a0, b0, ..., an, ...bn) ∈ R2(n+1) | a0bi − aib0 = 0 ∀i = 1, ..., n}

with Rn(n+1) of coordinates aij and bij for 1 ≤ i ≤ j ≤ n. We consider the
parametrization ψ : R(n+2) → Q̃ defined by

ψ(a, b, t1, ..., tn) = (a, b, at1, bt1, ..., atn, btn).

Lemma 3.8. We have Jac(ψ) =
√

1 +
∑

i t
2
i

√
(a2 + b2)

n
.

Proof. A computation gives us

JacψJacψt = det



1 +
∑n

i=1 t
2
i 0 t1a t2a . . . . . . tna

0 1 +
∑n

i=1 t
2
i t1b t2b . . . . . . tnb

t1a t1b a2 + b2 0 . . . . . . 0
t2a t2b 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
tna tnb 0 0 . . . . . . a2 + b2


We develop the last line and we obtain

(a2+b2) det



1 +
∑n

i=1 t
2
i 0 t1a t2a . . . . . . tn−1a

0 1 +
∑n

i=1 t
2
i t1b t2b . . . . . . tn−1b

t1a t1b a2 + b2 0 . . . . . . 0
t2a t2b 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
tn−1a tn−1b 0 0 . . . . . . a2 + b2


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+(−1)ntnb det



1 +
∑n

i=1 t
2
i t1a t2a . . . . . . tna

0 t1b t2b . . . . . . tnb
t1a a2 + b2 0 . . . . . . 0
t2a 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0
tn−1a 0 0 . . . a2 + b2 0



+(−1)n+1tna det



0 t1a t2a . . . . . . tna
1 +

∑n
i=1 t

2
i t1b t2b . . . . . . tnb

t1b a2 + b2 0 . . . . . . 0
t2b 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0
tn−1b 0 0 . . . a2 + b2 0


For the second matrix we have:

det



1 +
∑n

i=1 t
2
i t1a t2a . . . . . . tna

0 t1b t2b . . . . . . tnb
t1a a2 + b2 0 . . . . . . 0
t2a 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0
tn−1a 0 0 . . . a2 + b2 0



= (1 +
n∑
i=1

t2i ) det


t1b t2b . . . . . . . . . tnb

a2 + b2 0 . . . . . . 0 0
0 a2 + b2 . . . . . . 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . a2 + b2 0 0
0 . . . . . . 0 a2 + b2 0


= (−1)n+1(1 +

n∑
i=1

t2i )tnb(a
2 + b2)n−1.

where the first equality is obtained by developping the first column and
remarking that, in the development, each time we clear the i-th line, the
(i− 1)-th column and the last column are linearly equivalent.
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Similarly,

det



0 t1a t2a . . . . . . tna
1 +

∑n
i=1 t

2
i t1b t2b . . . . . . tnb

t1b a2 + b2 0 . . . . . . 0
t2b 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0
tn−1b 0 0 . . . a2 + b2 0


= (−1)n(1 +

n∑
i=1

t2i )tna(a2 + b2)n−1.

Then we have

JacψJacψt = (a2+b2) det



1 +
∑n

i=1 t
2
i 0 t1a t2a . . . . . . tn−1a

0 1 +
∑n

i=1 t
2
i t1b t2b . . . . . . tn−1b

t1a t1b a2 + b2 0 . . . . . . 0
t2a t2b 0 a2 + b2 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
tn−1a tn−1b 0 0 . . . . . . a2 + b2


−(1 +

n∑
i=1

t2i )t
2
n(a2 + b2)n.

Continuing to develop in the same way, we obtain by induction

JacψJacψt = (1+
n∑
i=1

t2i )
2(a2+b2)n−(1+

n∑
i=1

t2i )
n∑
i=1

t2i (a
2+b2)n = (1+

n∑
i=1

t2i )(a
2+b2)n.

Passing to the square root we obtain the result.

Remark 3.9. In the following we will not write the symbols Ẽij Eij to sim-
plify the notation.

After this change of variables, we have:

√
πd

n
∫
Q

| det(a0bij − b0aij) |√
det((aiaj + bibj) + (a2

0 + b2
0)Id)

e−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ =

=
√
πd

n
∫
a,b,aij ,bij ,ti∈R

| det(abij − baij) |√
det((a2 + b2)((titj) + Id))

×
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×e
−(1+

∑
i t

2
i )(a

2+b2)−
∑
i,j(a

2
ij+b

2
ij)

πn+1+
n(n+1)

2

√
(1 +

∑
i

t2i )
√

(a2 + b2)
n
dadbdaijdbijdti

Now det((a2 + b2)((titj) + Id)) = (1 +
∑

i t
2
i )(a

2 + b2)n so we obtain

√
πd

n
∫
a,b,aij ,bij ,ti∈R

| det(abij−baij)) |
e−(1+

∑
i t

2
i )(a

2+b2)−
∑
i,j(a

2
ij+b

2
ij)

πn+1+
n(n+1)

2

dadbdaijdbijdti.

It is more practical to see (a, b) as a complex number c ∈ C and also (aij, bij)
as eij ∈ C. With a slight abuse of notation, we denote dc and deij instead of
−1
2i
dcdc̄ and −1

2i
deijdēij. Then we have

√
πd

n
∫
c∈C,eij∈C,ti∈R

| det(Im (c̄eij)) |
e−(1+

∑
i t

2
i )|c|2−

∑
i,j |eij |2

πn+1+
n(n+1)

2

dcdeijdti.

Now, set c̃ = (
√

1 +
∑

i t
2
i )c and then c̃ = reiϑ. We obtain

√
πd

n
∫
c̃∈C,eij∈C

| det(Im (¯̃ceij)) |
e−|c̃|

2−
∑
i,j |eij |2

π1+
n(n+1)

2

dc̃deij

×
∫
ti∈R

1

πn
√

1 +
∑

i t
2
i

n+1dti =

√
πd

n
∫
ϑ∈(0,2π],eij∈C

| det(Im (e−iϑeij)) |
e−

∑
i,j |eij |2

π
n(n+1)

2

deijdϑ

×
∫ +∞

r=0

rn+1e−r
2

π
dr ×

∫
ti∈R

1

πn
√

1 +
∑

i t
2
i

n+1dti.

so we have to compute these three integrals. For the first term, we have∫
ϑ∈(0,2π],eij∈C

| det(Im (e−iϑcij)) |
e−

∑
i,j |eij |2

π
n(n+1)

2

deijdϑ =

= 2π

∫
eij∈C

| det(Im eij) |
e−

∑
i,j |eij |2

π
n(n+1)

2

deij =

= 2π

∫
bij∈R

| det(bij) |
e−

∑
i,j b

2
ij

√
π
n(n+1)

2

dbij = 2πeR(n).
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Here, eR(n) =
∫
B∈Sym(n,R)

| detB | dµR(B) (see the end of Section 2.1). For
the explicit value of eR(n), see [5, Section 2].
For the second term, we consider the change of variable r2 = ρ and we obtain∫ +∞

r=0

rn+1e−r
2

π
dr =

1

2

∫ +∞

ρ=0

ρ
n
2
e−ρ

π
dρ =

Γ(n
2

+ 1)

2π

where Γ is the Gamma function. For the third term we use spherical coordi-
nates and we obtain∫

ti∈R

1√
1 +

∑
i t

2
i

n+1dti = Vol(Sn−1)

∫ +∞

t=0

tn−1√
(1 + t2)

n+1dt.

where

Vol(Sn−1) =
2π

n
2

Γ(n
2
)

is the volume of the (n− 1)-dimensional sphere. For

∫ +∞

t=0

tn−1

(
√

1 + t2)n+1
dt =

∫ +∞

t=0

√
t2

(1 + t2)

n−1

1

1 + t2
dt

we change t2

1+t2
= 1− u2 and we obtain∫ 1

0

√
1− u2

n−2
du.

Finally, set u = sinθ and we have∫ π/2

0

cosn−1θdθ.

The formula∫
cosn−1(θ)du =

sin(θ)cosn−2(θ)

n− 1
+
n− 2

n− 1

∫
cosn−3(θ)du

tells us that
∫ π/2

0
cosn−1θdθ is equal to

(n− 2)!!

(n− 1)!!

if n is even and it is equal to
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(n− 2)!!

(n− 1)!!

π

2

if n is odd. Putting together all these values and using that

Γ(n
2

+ 1)

Γ(n
2
)

=
n

2
,

we obtain Proposition 3.7.

3.4 End of the proofs

From Proposition 3.4 we have

E[Rναβ](ϕ) =

∫
RX

ϕ(x)(

∫
Q

| JacN(A) |
| Jac(B) |

dµ(ai, bi, akl, bkl) +O(
1

d
))dvolh =

=

∫
ai, bi, aij, bij
a0bi − b0ai = 0

(
√
πd

n
) (

det(a0bij − b0aij)√
det ((aiaj + bibj) + (a2

0 + b2
0)Id)

+O(
1√
d

)dµQ)dvolh

where dµQ = e−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ijdvolQ.

In Section 3.3 we proved that (see Proposition 3.7 eq. 11)

√
πd

n
∫
Q

| det(a0bij − b0aij) |√
det((aiaj + bibj) + (a2

0 + b2
0)Id)

e−
∑
i a

2
i−

∑
i b

2
i−

∑
i,j a

2
ij−

∑
i,j b

2
ij

πn+1+
n(n+1)

2

dvolQ

is equal to {
n!!

(n−1)!!
eR(n)π

2

√
d
n

if n is odd
n!!

(n−1)!!
eR(n)

√
d
n

if n is even.

Theorem 1.4 is obtained by dividing by
√
d
n
and by passing to the limit.

Theorem 1.2 is Theorem 1.4 for ϕ = 1.
The proof of Theorem 1.5 is similar to the proof of Theorem 1.4. For the
computation of the universal constant we put ϕ = 1 and use Proposition 2.3.
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