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Expected number and distribution of critical points of real Lefschetz pencils

We give an asymptotic probabilistic real Riemann-Hurwitz formula computing the expected real ramification index of a random covering over the Riemann sphere. More generally, we study the asymptotic expected number and distribution of critical points of a random real Lefschetz pencil over a smooth real algebraic variety.

Introduction

The Riemann-Hurwitz formula says that the total ramification index R of a branched covering f : Σ → Σ of degree d between two compact Riemann surfaces is R = dχ(Σ ) -χ(Σ). In particular, if Σ = CP 1 , R = 2d + 2g -2, where g is the genus of Σ. More generally, if p : X CP 1 is a Lefschetz pencil on a complex manifold X of dimension n, then

(-1) n #crit(p) = χ(X) -2χ(F ) + χ(Y )
where F is a smooth fiber of p and Y is the base locus of p.

The questions that motivate this paper are the following: how do these critical points distribute on the variety? When p is defined over R, what about the number of real critical points of a real Lefschetz pencil?

We answer these questions by computing the asymptotic expected number of real critical points of real Lefschetz pencils and also the asymptotic distribution of such points.

The chosen random setting has already been considered by Schiffman and Zelditch in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] to study the integration current over the common zero locus of k independent random global sections of a line bundle over a complex projective manifold.

In the real case Kac [START_REF] Kac | A correction to "On the average number of real roots of a random algebraic equation[END_REF], Kostlan [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and Shub and Smale [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF] computed the expected number of real roots of a random real polynomial. In higher dimensions, Podkorytov [START_REF] Podkorytov | On the Euler characteristic of a random algebraic hypersurface[END_REF] and Bürgisser [START_REF] Bürgisser | Average Euler characteristic of random real algebraic varieties[END_REF] computed the expected Euler characteristic of random real algebraic submanifolds, Gayet and Welschinger estimated the Betti numbers [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], [START_REF] Gayet | Expected topology of random real algebraic submanifolds[END_REF]. (See also [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF], [START_REF] Nazarov | Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF] and [START_REF] Lerario | Statistics on Hilbert's 16th problem[END_REF]).

In [START_REF] Liviu | Critical sets of random smooth functions on compact manifolds[END_REF] Nicolaescu computed the expected number of critical of a random smooth function on a Riemannian manifold have and how they distruibute.

Statements of the results

Let X be a smooth real projective manifold of dimension n, that is a complex projective manifold equipped with an anti-holomorphic involution c X . We denote by RX = F ix(c X ) its real locus. Let (L, h) be a positive real hermitian line bundle. Then, for large d, for almost every (α, β) ∈ H 0 (X; L d ) 2 (resp. RH 0 (X; L d ) 2 ) the map u αβ : X CP 1 defined by x → [α(x) : β(x)] is a Lefschetz pencil (resp. real Lefschetz pencil) (see Prop. 2.11).

Definition 1.1. We denote the set of critical points of u αβ by crit(u αβ ) and by Rcrit(u αβ ) = crit(u αβ ) ∩ RX the set of real critical points.

The number of real critical points of a Lefschetz pencil depends on the pair (α, β). The main theorem of this article is the computation of the expected value of this number.

Theorem 1.2. Let X be a smooth real projective manifold of dimension n, let (L, h) be a positive real hermitian line bundle over X. Then

lim d→+∞ 1 √ d n E[#Rcrit(u α,β )] = n!! (n-1)!! e R (n) π 2 Vol h (RX) if n is odd n!! (n-1)!! e R (n)Vol h (RX) if n is even.
In this theorem Vol h (RX) is the volume of RX with respect to the Riemannian volume dvol h induced by the metric h. The probability we consider is a natural Gaussian probability on RH 0 (X; L d ) (see Section 2.1) and e R (n) is the expected value of (the absolute value) of the determinant of real symmetric matrices (for the explicit values of e R (n), see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]Section 2]).

We recall that e R (1) = 2 π , then we have:

Corollary 1.3. Let (Σ, c Σ ) be a real Riemann surface and (L, h) a real holomorphic line bundle of degree 1. Then, for every pair (α, β) ∈ RH 0 (X; L d ) 2 without common zeros, u αβ is a degree d branched covering between Σ and CP 1 . Then the expected real total ramification index is equivalent to

π 2 V ol h (RΣ) √ d
as d tends to +∞.

Theorem 1.2 will be a consequence of a more precise equidistribution result. We define

ν αβ = x∈crit(u αβ ) δ x (resp. Rν αβ = x∈Rcrit(u αβ ) δ x ) the Dirac mea- sure on the (real) critical set.
Theorem 1.4. Let X be a smooth real projective manifold of dimension n and (L, h) be a positive real hermitian line bundle over X. Then

lim d→+∞ 1 √ d n E[Rν αβ ] = n!! (n-1)!! e R (n) π 2 dvol h if n is odd n!! (n-1)!! e R (n)dvol h if n is even.
weakly in the sense of distributions.

Theorem 1.4 says that for all continuous function ϕ ∈ C 0 (RX)

lim d→+∞ 1 √ d n E[Rν αβ ](ϕ) = n!! (n-1)!! e R (n) π 2 RX ϕdvol h if n is odd n!! (n-1)!! e R (n) RX ϕdvol h if n is even.
where

E[Rν αβ ](ϕ) = RH 0 (X;L d ) 2
x∈Rcrit(u αβ ) ϕ(x)dµ(α, β). The following equidistribution result in the complex case follows along the same lines.

Theorem 1.5. Let X be a smooth complex projective manifold of dimension n, let (L, h) a positive hermitian line bundle over X. Then

lim d→+∞ 1 d n E[ν αβ ] = (n + 1)!dvol h weakly in the sens of distribution.
As before, Theorem 1.5 says that for all continuous function ϕ on X, we have

lim d→+∞ 1 d n E[ν αβ ](ϕ) = (n + 1)n! X ϕdvol h
where dvol h is the Kählerian volume associated to h.

Organisation of the paper

In Section 2.1 we introduce the Gaussian measure on H 0 (X; L d ) associated to a Hermitian line bundle (L, h) over a complex manifold X (see also [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]). In Section 2.2 we present some classical results about Lefschetz pencils on complex manifolds. In the rest of the Chapter 2 we introduce our main tools, namely the Hörmander peak sections (see also [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]) and the incidence variety (see [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF]).

Chapter 3 is completely devoted to the proofs of the Theorems 1.2, 1.4 and 1.5. In Sections 3.1 and 3.2 we prove the equidistribution of critical points of a (real) Lefschetz pencil over a (real) algebraic variety X. This will be done using coarea formula and peak sections. These ideas are taken from [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. In Section 3.3 we will compute the universal constant by direct computation.

Let X be a smooth complex projective manifold of dimension n. Let L → X be a holomorphic line bundle equipped with a Hermitian metric h of positive curvature ω ∈ Ω (1,1) (X, R). The curvature form induces a Kähler metric on X and a volume form dvol h = ω n n! . Let dx = ω n X ω n be the normalized volume form.

The Hermitian metric h induces a Hermitian metric h d on L d for every integer d > 0 and also a L 2 -Hermitian product on the space H 0 (X; L d ) of global holomorphic sections of L d denoted by , and defined by

α, β = X h d (α, β)dx for all α, β in H 0 (X; L d ).
This Hermitian product induces a Gaussian measure on H 0 (X; L d ) defined by

µ(A) = 1 π N d A e -s ds
for all open subset A ⊂ H 0 (X; L d ) where ds is the Lebesgue measure associated to , and

N d = dim C H 0 (X; L d ).
A Lefschetz pencil on X is a rational map p : X CP 1 having only non degenerated critical points and defined by two sections of a holomorphic line bundle with smooth and transverse vanishing loci.

All these definitions have a real counterpart. Let X a smooth real projective manifold of dimension n, that is a smooth complex projective manifold equipped with an anti-holomorphic involution c X . We denote by RX = F ix(c X ) its real locus. A real holomorphic line bundle p : L → X is a line bundle equipped with an anti-holomorphic involution c L such that p • c L = c X • p and c L is complexantilinear in the fibers. We denote by RH 0 (X; L) the real vector space of real global section of L, i.e. sections s ∈ H 0 (X; L) such that s • c X = c L • s . A real Hermitian metric on L is a Hermitian metric h L such that c * L h L = hL . If (L, h L ) is a line bundle over X with positive curvature ω, then ω(., i.) is a Hermitian metric over X which restricts to a Riemannian metric over RX. With a slight abuse of notation, we denote also the Riemannian volume form by dvol h . The L 2 -Hermitian product , on H 0 (X; L d ) restricts to a L 2 -scalar product on RH 0 (X; L d ), denoted also by , . Then, as in the complex case, also in the real case we have a natural Gaussian measure on RH 0 (X; L d ) defined by

µ(A) = 1 √ π N d A e -s ds
for all open subset A ⊂ RH 0 (X; L d ) where ds is the Lebesgue measure associated to , and

N d = dim C H 0 (X; L d ) = dim R RH 0 (X; L d ).
If (X, c X ) is a smooth real projective manifold then a real Lefschetz pencil is a Lefschetz pencil p : X CP 1 such that p • c X = conj • p. We conclude this section by introducing some notation on symmetric matrices.

Definition 2.1. For every n ∈ N * , denote by Sym(n, R) the real vector space of real symmetric matrices of size n × n. The vector of dimension of these vector spaces is n(n+1) 2 and we equip them with the basis B given by Ẽjj and Ẽij = E ij + E ji for 1 i < j n, where for every k, l with 1 k, l n, E kl is the elementary matrix whose entry at the i-th row and j-th column equals 1 if (i, j) = (k, l) and 0 otherwise.

We equip Sym(n, R) with the scalar product turning B into an orthonormal basis. Let µ R the associated Gaussian probability measure. We then set e R (n) =

A∈Sym(n,R) | det A | dµ R (A).

Lefschetz pencils

In this section, we compute the asymptotic value of the number of critical points of a Lefschetz pencil (see also [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]Section 1]). Recall that a Lefschetz fibration is a map X → CP 1 with only non degenerate critical points. The following proposition is a kind of Riemann-Hurwitz formula for Lefschetz pencils, for a proof see for example Proposition 1 of [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]. Proposition 2.2. Let X be a smooth complex projective manifold of positive dimension n equipped with a Lefschetz fibration p : X → CP 1 and let F be a regular fiber of p. Then we have the following equality:

χ(X) = 2χ(F ) + (-1) n #crit(p).
Remark that if p : X CP 1 a Lefschetz pencil and we blow-up the base locus Base(p) Y , then we obtain a Lefschetz fibration p : X Bl Y X → CP 1 . By additivity of the Euler characteristic, we have that χ( X) = χ(X) + χ(Y ), then by Proposition 2.2 we have

χ(X) = 2χ(F ) -χ(Y ) + (-1) n #crit(p). (1) 
Proposition 2.3. Let L be an ample line bundle over a complex manifold X of dimension n. For almost all global sections α, β ∈ H 0 (X; L d ), the map u αβ defined as x → [α(x) : β(x)] is a Lefschetz pencil (see Prop. 2.11).

Then, as d goes to infinity, we have

#crit(u αβ ) = (n + 1) X c 1 (L) n d n + O(d n-1 ). (2) 
Proof. We will follow the lines of Lemma 2, Lemma 3 and Proposition 4 of [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF].

We have

χ(F ) = F c n-1 (F ) and χ(Y ) = Y c n-2 (Y ).
We remark that the base locus is the intersection of the zero locus of α and

β, that is Y = Z α ∩ Z β . A regular fiber F over [a, b] ∈ CP 1 is the zero locus of the section bα -aβ ∈ H 0 (X; L d ), thus the normal bundle N X/F is L d |F To compute χ(F )
we will use the adjunction formula. We have

0 → T F → T X |F → N X/F → 0 then we have c(X) |F = c(F ) ∧ c(L d ) |F , i.e. (1 + c 1 (X) + ... + c n (X)) |F = (1 + c 1 (F ) + ... + c n-1 (F )) ∧ (1 + dc 1 (L)). If we develop this we have c 1 (X) = c 1 (F ) + dc 1 (L) and, for j ∈ {2, ..., n -1}, we have c j (X) |F = c j (F ) + dc 1 (L) |F ∧ c j-1 (F ).
Then, summing up the term,

c j (F ) = j k=0 (-1) k d k c 1 (L) k |F ∧ c j-k (X) |F .
In particular, for j = n -1 we have

c n-1 (F ) = n-1 k=0 (-1) k d k c 1 (L) k |F ∧ c n-k-1 (X) |F . Then χ(F ) is equal to F n-1 k=0 (-1) k d k c 1 (L) k ) |F ∧ c n-k-1 (X) |F But, for α ∈ H 2n-2 dR (X), we have that F α |F = X α ∧ c 1 (L d ) so, χ(F ) = n-1 k=0 X (-1) k d k+1 c 1 (L) k+1 ∧ c n-k-1 (X)
and asymptotically

χ(F ) ∼ (-1) n-1 ( X c 1 (L) n )d n .
For Y = Z α ∩ Z β , the same argument gives us

c j (Y ) = j k=0 (-1) k d k c 1 (L) k |Y ∧ c j-k (Z α ) |Y .
But, as before,

c j-k (Z α ) = j-k h=0 (-1) h d h c 1 (L) h ∧ c j-k-h (X).
and so, replacing in the above equation

c j (Y ) = j k=0 (-1) k d k c 1 (L) k |Y ∧ ( j-k h=0 (-1) h d h c 1 (L) h |Y ∧ c j-k-h (X) |Y ) For j = n -2 we have c n-2 (Y ) = n-2 k=0 (-1) k d k c 1 (L) k |Y ∧ ( n-2-k h=0 (-1) h d h c 1 (L) h Y ∧ c n-2-k-h (X) |Y )
and this is equivalent to

n-2 k=0 (-1) n-2 d n-2 c 1 (L) n-2 |Y = (-1) n-2 (n -1)d n-2 c 1 (L) n-2 |Y as d → ∞. So we have,as d → ∞, χ(Y ) ∼ (-1) n-2 (n -1)d n-2 Y c 1 (L) n-2 |Y = = (-1) n-2 (n -1)d n-1 Zα c 1 (L) n-2 ∧ c 1 (L) = = (-1) n-2 (n -1)( X c 1 (L) n )d n .
Combining this with χ(X) = 2χ(F ) -χ(Y ) + (-1) n #crit(u αβ ) we obtain the result.

Hörmander's peak sections

Here we introduce the Hörmander's peak sections, an essential tool for our proofs of Theorems 1.4 and 1.5 (see also [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF], [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF], [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]). Let L be a holomorphic line bundle over a smooth complex projective manifold equipped with a Hermitian metric h of positive curvature ω and let dx = ω n X ω n be the normalized volume form. Let x be a point of X. There exists, in the neighborhood of x, a holomorphic trivialization e of L such that the associated potential φ = -logh(e, e) reaches a local minimum at x with Hessian of type (1, 1). The following result was proved in [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] (see also [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]) .

Lemma 2.4. Let (L, h) be a holomorphic Hermitian line bundle of positive curvature ω over a smooth complex projective manifold X. Let x ∈ X, (p 1 , ..., p n ) ∈ N n and p > p 1 + ... + p n . There exists d 0 ∈ N such that for every d > d 0 , the bundle L d has a global holomorphic section σ satisfying

X h d (σ, σ)dx = 1 and X\B(x, log d √ d ) h d (σ, σ)dx = O( 1 d 2p )
Moreover, if (x 1 , ..., x n ) are local holomorphic coordinates in the neighborhood of x, we can assume that in a neighborhood of x,

σ(x 1 , ..., x n ) = λ(x p 1 1 • • • x pn n + O(| x | 2p ))e d (1 + O( 1 d 2p ))
where

λ -2 = B(x, log d √ d ) | x p 1 1 • • • x pn n | 2 h d (e d , e d )dx
and e is a holomorphic trivialization of L in the neighborhood of x whose potential φ = -log h(e, e) reaches a local minimum at x with Hessian equal to πω(., i.).

Here is an analogue of Lemma 2.4 in the real case:

Lemma 2.5. Let (L, h) be a real holomorphic Hermitian line bundle of positive curvature ω over a smooth rel projective manifold X. Let x ∈ RX, (p 1 , ..., p n ) ∈ N n and p > p 1 + ... + p n . There exists d 0 ∈ N such that for every d > d 0 , the bundle L d has a global holomorphic section σ satisfying

X h d (σ, σ)dx = 1 and X\B(x, log d √ d ) h d (σ, σ)dV h = O( 1 d 2p )
Moreover, if (x 1 , ..., x n ) are local real holomorphic coordinates in the neighborhood of x, we can assume that in a neighborhood of x,

σ(x 1 , ..., x n ) = λ(x p 1 1 • • • x pn n + O(| x | 2p ))e d (1 + O( 1 d 2p ))
where

λ -2 = B(x, log d √ d ) | x p 1 1 • • • x pn n | 2 h d (e d , e d )dx
and e is a real trivialization of L in the neighborhood of x whose potential φ = -log h(e, e) reaches a local minimum at x with Hessian πω(., i.).

This real counterpart follows from Lemma 2.4 by averaging the peak sections with the real structure. Let σ 0 be the section given by the Lemma 2.5 with p = 3 and p i = 0 for all i, σ i the section given by Lemma 2.5 with p = 3 and p j = δ ij , σ ij the section given by Lemma 2.5 with p i = p j = 1 and p k = 0 otherwise and σ kk the section given by the Lemma 2.5 with p k = 2 and p l = 0 for l = k. These sections are called peak sections. Their Taylor expansions are:

σ 0 (y) = (λ 0 + O( y 6 ))e d (1 + O( 1 d 6 
));

σ i (y) = (λ i y i + O( y 6 ))e d (1 + O( 1 d 6 )) ∀i; σ ij (y) = (λ ij y i y j + O( y 6 ))e d (1 + O( 1 d 6 )) ∀i = j; σ kk (y) = (λ kk y 2 k + O( y 6 ))e d (1 + O( 1 d 6 )) ∀k.
The following lemma provides the asymptotic of the constants λ 0 , λ i , λ ij et λ kk .

Lemma 2.6. [5, Lemma 2.5] Under the hypothesis of Lemma 2.4 or 2.5, we have lim

d-→∞ 1 √ d n λ 0 = δ L lim d-→∞ 1 √ d n+1 λ i = √ π δ L lim d-→∞ 1 √ d n+2 λ ij = π δ L lim d-→∞ 1 √ d n+2 λ kk = π √ 2 δ L for the L 2 -product induced by dx = ω n X ω n where δ L = X c 1 (L) n is the degree of the line bundle L. Let H 2x = {s ∈ H 0 (X; L d ) | s(x) = 0, ∇s(x) = 0, ∇ 2 s(x) = 0} resp. RH 2x = {s ∈ RH 0 (X; L d ) | s(x) = 0, ∇s(x) = 0, ∇ 2 s(x) = 0} .
This space is formed by sections whose 2-jet vanishes at x. The sections (σ i ) 0≤i≤n (σ ij ) 1≤i≤j≤n provide a basis of a complement of H 2x . This basis is not orthonormal and its spanned subspace is not orthogonal to H 2x . However, this basis is aymptotically an orthonormal basis and its spanned subspace is asymptotically orthonormal to H 2x , in the following sense: 

Incidence varieties

Following [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF] we define an incidence variety associated to the complex (resp. real) manifold X and to the (real) positive line bundle L. We will use this incidence variety to prove that, for global sections α, β ∈ H 0 (X; L d ) (resp. α, β ∈ RH 0 (X; L d )), the map u αβ defined as x → [α(x) : β(x)] is almost surely a Lefschetz pencil (Proposition 2.3).

Let (L, h) be a real Hermitian line bundle with positive curvature ω over a real manifold X of dimension n. Definition 2.8. Let α, β ∈ H 0 (X; L d ) (resp. RH 0 (X; L d )) be (resp. real) global sections such that the map x → [α(x) : β(x)] is a Lefschetz pencil. We define 1. the base locus of a Lefschetz pencil as the points x such that α(x) = β(x) = 0;

2. the critical points as the points x ∈ X \ Base(u αβ ) such that (α∇β -β∇α)(x) = 0 (this expression doesn't depend on the choice of a connexion ∇ on L). We denote by crit(u αβ ) the set of critical points of (u αβ ) and by Rcrit(u αβ ) = crit(u αβ ) ∩ RX the set of real critical points)

We denote by ∆ (resp.R∆) the set of (α,

β, x) ∈ H 0 (X; L d ) 2 × X (resp. (α, β, x) ∈ RH 0 (X; L d ) 2 × RX) such that α(x) = β(x) = 0. Set I = {(α, β, x) ∈ (H 0 (X; L d ) 2 × X)\∆ | x ∈ crit(u αβ )} (resp. RI = {(α, β, x) ∈ (RH 0 (X; L d ) 2 × RX)\R∆ | x ∈ crit(u αβ )})
Proposition 2.9. Let L a (real) holomorphic line bundle over a smooth complex (resp. real) projective manifold X.

If L d is 1-ample, that is if the 1-jet map H 0 (X; L d ) × X → J 1 (L d ) (s, x) → j 1 x (s) = (s(x), ∇s(x)) is surjective, then I (resp. RI) is a manifold of complex (resp. real) dimen- sion 2N d , where N d = dim H 0 (X; L d ).
Proof. We study the differential of the map

q : (H 0 (X; L d ) 2 × X)\∆ → T * X ⊗ L 2d defined by (α, β, x) → (α∇β -β∇α)(x) ∈ T * x X ⊗ L 2d
x defining I. If we prove that 0 is a regular value, then, by Implicit Function Theorem, we have the result. Now, for (α, β, x) ∈ I we have

d |(α,β,x) q•( α, β, ẋ) = ( α∇β-β∇ α+α∇ β-β∇α+α∇ 2 ( ẋ,.) β-β∇ 2 ( ẋ,.) α+∇ ẋα∇β-∇ ẋβ∇α)(x).
Let η ∈ T * x X ⊗ L 2d

x we have to prove that there exists ( α, β, ẋ) such that d |(α,β,x) q • ( α, β, ẋ) = η. As (α, β, x) ∈ ∆, we know that at least one between α(x) and β(x) is not zero. Without loss of generality, suppose that α(x) = 0, then, as L d is 1-ample, there exists β such that β(x) = 0 and α(x

)∇ β(x) = η, then d |(α,β,x) q • (0, β, 0) = η.
If L is ample, then, for large d, L d is 1-ample. So, in our case I (resp. RI ) is a smooth variety for large d, called the incidence variety. The tangent space of I at (α, β, x) is

T (α,β,x) I = { ( α, β, ẋ) ∈ H 0 (X; L d ) × H 0 (X; L d ) × T x X | α∇β -β∇ α + α∇ β -β∇α + α∇ 2 ( ẋ,.) β -β∇ 2 ( ẋ,.) α (x) = 0} . (resp. T (α,β,x) RI = {( α , β, ẋ) ∈ RH 0 (X; L d ) × RH 0 (X; L d ) × T x RX | ( α∇β -β∇ α + α∇ β -β∇α + α∇ 2 ( ẋ,.) β -β∇ 2 ( ẋ,.) α ) (x) = 0} ) . Remark 2.10.
• In the equation defining the tangent space there is also the term (∇ ẋα∇β -∇ ẋβ∇α)(x) but it equals zero both in the complex and real case because on I and RI we have the condition (α∇β -β∇α)(x) = 0 and then

(∇ ẋα∇β -∇ ẋβ∇α) (x) = (∇ ẋα β α -∇ ẋβ)∇α (x) = 0.
• The incidence variety comes equipped with two natural projections

π H : I → H 0 (X; L d ) × H 0 (X; L d ) and π X : I → X resp. π RH : RI → RH 0 (X; L d ) × RH 0 (X; L d ) and π RX : RI → RX Proposition 2.11.
Let L an ample holomorphic line bundle (resp. real holomorphic) over a smooth complex projective manifold X (resp. real projective). For every couple α, β ∈ H 0 (X; L d ) (resp. ∈ RH 0 (X; L d )) the map

u αβ : X CP 1 x → [α(x) : β(x)].
is, for large d, almost surely a Lefschetz pencil (resp. real Lefschetz pencil).

Proof. The critical points of π H (resp. π RH ) are exactly the triples (α, β, x) such that (α∇ 2 β -β∇ 2 α)(x) is degenerate. By Sard's theorem valcrit(π H ) has zero Lebesgue and Gaussian measure. Also, for large d, the set Γ composed by the pairs (α, β) ∈ H 0 (X; L d )×H 0 (X; L d ) such that {x ∈ X, α(x) = β(x) = 0} is not smooth has zero Lebesgue and Gaussian measure (see for example [10, Section 2.2]). Then (Γ ∪ valcrit(π H )) has zero measure and its complement is exactly the set of couple of sections defining a Lefschetz pencil.

Proof of the theorems

In this chapter we prove Theorems 1.2, 1.4 and 1.5.

Coarea formula

Here we will use the incidence variety defined in Section 2.4 and the coarea formula to see the expected distribution of critical points of a (real) Lefschetz pencil as an integral over X (resp. RX). Definition 3.1. The normal jacobian Jac N f of a submersion f : M → N between Riemannian manifolds is the determinant of the differential of the map restricted to the orthogonal of its kernel. Equivalently, if df p is the differential of f at p, then the normal jacobian is equal to det(df p df * p ), where df * p is the adjoint of df p with respect to the scalar product on T p M and T f (p) N . Let X be a smooth complex (resp. real) projective manifold of dimension n and (L, h) be a (real) holomorphic line bundle of positive curvature ω. Definition 3.2. We define a Dirac measure for (real) critical points of a (real) Lefschetz pencil u αβ associated to a couple (α, β) ∈ H 0 (X; L d ) 2 (resp. ∈ RH 0 (X; L d ) 2 ) by

ν αβ = x∈crit(u αβ ) δ x (resp. Rν αβ = x∈Rcrit(u αβ ) δ x ).
Let ϕ be a continuous function on RX. Then, by definition,

E[Rν αβ ](ϕ) = RH 0 (X;L d ) 2 x∈crit(u αβ )
ϕ(x)dµ(α, β).

Proposition 3.3. Following the notation of Section 2.4, we have

E[Rν αβ ](ϕ) = RX ϕ(x) π RH (π -1 RX (x)) 1 | Jac N (π RX ) | dµ |π RH (π -1 RX (x)) dvol h . ( 3 
)
where the measure dµ |π RH (π -1 RX (x)) is the following: first we restrict the scalar product , on RH 0 (X; L d ) 2 to π RH (π -1 RX (x)), that is a codimension n submanifold, then we consider the Riemannian measure associated to this metric, and finally we multiply it by the factor 1 π N d e -α 2 -β 2 , where

N d = dim H 0 (X; L d ).
Proof. We pull-back the integral

E[Rν αβ ](ϕ) = RH 0 (X;L d ) 2 x∈crit(u αβ ) ϕ(x)dµ(α, β)
on the incidence variety RI and we obtain

E[Rν αβ ](ϕ) = RI (π * RX ϕ)(α, β, x)(π * RH dµ)(α, β, x).
Here π * RH dµ is well defined because π RH is (almost everywhere) a local isomorphism. Now we use the coarea formula (see [2, Lemma 3.2.3] or [15, Theorem 1]) for the map π RX and we obtain

E[Rν αβ ](ϕ) = RX ϕ(x) π -1 RX (x) 1 | Jac N (π RX ) | (π * RH dµ) |π -1 RX(x) dvol h
where the measure (π * RH dµ) |π -1 X (x) is the following: first we restrict the (singular) metric π * H , on RI to π -1 RX (x), that is a codimension n submanifold, then we consider the Riemannian measure associated to this metric, and finally we multiply it by the factor 1 π N d e -α 2 -β 2 , where N d = dim H 0 (X; L d ). Then another application of coarea formula gives us the result.

The space π RH (π -1 RX (x)) is formed by pairs (α, β) ∈ RH 0 (X; L d ) 2 such that x ∈ Rcrit(u αβ ). In the next section we will identify this space with an intersection of some quadrics in the vector space RH 0 (X; L d ) 2 . In the complex case, the same argument gives us, for every continous function ϕ on X

E[ν αβ ](ϕ) = X ϕ(x) π H (π -1 X (x)) 1 | Jac N (π X ) | dµ |π H (π -1 X (x)) dvol h . ( 4 
)

Computation of the normal jacobian

In this section we compute the normal jacobian that appears in ( 3) and ( 4). We follow the notations of Sections 2.1, 2.4 and 3.1. The main result of this section is the following proposition: Proposition 3.4. Following the notation of Sections 2.4 and 3.1, under the hypothesis of Theorem 1.4, we have:

E[Rν αβ ](ϕ) = RX ϕ(x)R d (x)dvol h , where R d (x) = ( √ πd n )( Q | det(a 0 b ij -b 0 a ij ) | det ((a i a j + b i b j ) + (a 2 0 + b 2 0 )Id) dµ Q + O( 1 √ d ))
and Q ⊂ R 2(n+1)+n(n+1) is the product of the intersection of quadrics

Q = {(a 0 , b 0 , ..., a n , ..., b n ) ∈ R 2(n+1) | a 0 b i -a i b 0 = 0 ∀i = 1, ..., n}
with the vector space R n(n+1) of coordinates a ij and b ij for 1 ≤ i ≤ j ≤ n and

dµ Q = e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q .
The remaining part of this section is devoted to the proof of this proposition. Our main tool will be the peak sections defined in Section 2.3.

We fix a point x ∈ X (resp. x ∈ RX) and want to compute the integral

π RH (π -1 RX (x)) 1 | Jac N (π RX ) | dµ |π RH (π -1 RX (x)) (5) 
that appears in (3). We recall that the tangent space of I (resp. RI) at (α, β, x) is

{( α, β, ẋ) ∈ H 0 (X; L d ) × H 0 (X; L d ) × T x X | Let (α, β) ∈ H 0 (X; L d ) 2 (resp. RH 0 (X; L d ) 2 ) then α = n i=0 a i σ i + 1 k l n a kl σ kl + τ β = n i=0 b i σ i + 1 k l n b kl σ kl + τ
where τ, τ ∈ kerJ 2

x and σ i , σ kl are the peak section of Lemma 2.5. We remark that (α, β) ∈ π H (π -1 X (x)) if and only if a 0 b i -a i b 0 = 0 ∀i = 1, ..., n, and also that the definition of Jac N (π X ) involves only the 2-jets of sections. With this remark in mind we define the following spaces:

• K 2 (KerJ 2 x × KerJ 2 x ) ⊂ H 0 (X; L d ) 2 (resp. RH 0 (X; L d ) 2 ); • H 2 V ect{(σ i , 0), (σ kl , 0), (0, σ i ), (0, σ kl )} ⊂ H 0 (X : L d ) 2 (resp. RH 0 (X; L d ) 2 ) for i = 0, ..., n and 1 ≤ l ≤ k ≤ n; • Q = H 2 ∩ π H (π -1 X (x)
). We see Q as the product of the intersection of quadrics:

Q = {(a 0 , b 0 , ..., a n , b n ) ∈ R 2(n+1) | a 0 b i -a i b 0 = 0 ∀i = 1, ..., n}
with the vector space R n(n+1) of coordinates a ij and b ij for 1 ≤ i ≤ j ≤ n. Let π 2 : K ⊥ 2 → H 2 be the orthogonal projection. A consequence of Proposition 2.7 is that, for large d, π 2 is invertible. Proposition 3.6. Following the notation of Section 2.4 and 3.1, let A and B be the linear application defined in ( 6) and [START_REF] Kac | A correction to "On the average number of real roots of a random algebraic equation[END_REF]. Then, in the complex case, under the hypothesis of Theorem 1.5,

(π -1 2 ) * Jac N (A) = det((πδ 2 L d 2n+1 )((a i āj +b i bj )E ij +(| a 0 | 2 + | b 0 | 2 )Id+O( 1 √ d )) (π -1 2 ) * Jac(B) =| det(πδ L √ d 2n+2 )((a 0 b ij -b 0 a ij ) Ẽij + O( 1 √ d )) | 2
and, in the real case, under the hypothesis of the Theorem 1.4,

(π -1 2 ) * Jac N (A) = det(πδ 2 L d 2n+1 )((a i a j + b i b j )E ij + (a 2 0 + b 2 0 )Id + O( 1 √ d )) (π -1 2 ) * Jac(B) = det((πδ L √ d 2n+2 )((a 0 b ij -b 0 a ij ) Ẽij + O( 1 √ d )))
where Ẽij for 1 i j n and E ij for i, j = 1, ..., n are the matrices defined in Definition 2.1.

Proof. Let e be a local trivialization of L at x as in Section 2.2 and let (σ i ) i=0,...,n , (σ kl ) 1 k l n as in Lemma 2.4 (resp. Lemma 2.5).

Let (α, β) ∈ H 0 (X; L d ) 2 (resp. RH 0 (X; L d ) 2 ) then α = n i=0 a i σ i + 1 k l n a kl σ kl + τ β = n i=0 b i σ i + 1 k l n b kl σ kl + τ
where τ, τ ∈ kerJ 2

x . In particular we have

α(x) = a 0 σ 0 (x), β(x) = b 0 σ 0 (x), ∇α(x) = n i=0 a i ∇σ i (x), ∇β(x) = n i=0 b i ∇σ i (x), ∇ 2 α(x) = n i=0 a i ∇ 2 σ i (x)+ k,l a kl ∇ 2 σ kl (x), ∇ 2 β(x) = n i=0 b i ∇ 2 σ i (x)+ k,l b kl ∇ 2 σ kl (x).
As basis for T x X and T * x X ⊗ L 2d x (resp. T x RX and R(T * x X ⊗ L 2d x )) we choose ( ∂ ∂x 1 , ..., ∂ ∂xn ) and (dx 1 ⊗ e 2d , ..., dx n ⊗ e 2d ) respectively. We choose (σ i , 0) and (0, σ i ), i = 0, ..., n, as a basis of a complement of kerJ 1

x × kerJ 1 x . Thanks to Lemma 2.7, this basis is asymptotically orthonormal for the L 2 -Hermitian product , . By definition it is an orthonormal basis for the scalar product (π -1

2 ) * , restricted to H 2 . Then we obtain, using Lemma 2.6,

A(σ 0 , 0), dx j ⊗ e 2d = b j √ πδ L √ d 2n+1 + O( √ d 2n ); A(σ i , 0), dx j ⊗ e 2d = -b 0 √ πδ L √ d 2n+1 δ ij + O( √ d 2n ) for i = 1, ...n; A(0, σ 0 ), dx j ⊗ e 2d = -a j √ πδ L √ d 2n+1 + O( √ d 2n ); A(0, σ i ), dx j ⊗ e 2d = a 0 √ πδ L √ d 2n+1 δ ij + O( √ d 2n ) for i = 1, ...n; B( ∂ ∂x i ), dx j ⊗ e 2d = (a 0 b ij -b 0 a ij )πδ L √ d 2n+2 + O( √ d 2n+1 ) for i = j; B( ∂ ∂x k ), dx k ⊗ e 2d = √ 2(a 0 b kk -b 0 a kk )πδ L √ d 2n+2 + O( √ d 2n+1 ).
where the Hermitian (resp. scalar) product on

T * x X ⊗ L 2d x (resp. R(T * x X ⊗ L 2d x )
) is induced by h. What we have just computed are the coefficients of the matrices of A and B with respect to our choice of basis and with respect to the scalar product (π -1

2 ) * , . We recall that B is a square matrix and that Jac N (A) = Jac(AA * ). More precisely, as d → ∞ , A is equivalent to the following matrix: 

√ πδ L √ d 2n+1     b 1 -b 0 0 . . . 0 -a 1 a 0 0 . . . 0 b 2 0 -b 0 . . . 0 
πδ L √ d 2n+2     √ 2(a 0 b 11 -b 0 a 11 ) a 0 b 12 -b 0 a 12 . . . a 0 b 1n -b 0 a 1n a 0 b 21 -b 0 a 21 √ 2(a 0 b 22 -b 0 a 22 ) . . . a 0 b 2n -b 0 a 2n . . . . . . . . . . . . a 0 b n1 -b 0 a n1 a 0 b n2 -b 0 a n2 . . . √ 2(a 0 b nn -b 0 a nn )    
A direct computation shows us that AA * is the matrix

(πδ 2 L d 2n+1 )((a i āj + b i bj )E ij + (| a 0 | 2 + | b 0 | 2 )Id + O( 1 d 
).

The results follows.

The last proposition implies

(π -1 2 ) * 1 Jac N (π X ) = (πd) n ( Jac R ((a 0 b ij -b 0 a ij ) Ẽij ) det((a i āj + b i bj )E ij + (| a 0 | 2 + | b 0 | 2 )Id) +O( 1 √ d )) (π -1 2 ) * 1 Jac N (π RX ) = ( √ πd n ) ( det((a 0 b ij -b 0 a ij ) Ẽij ) det ((a i a j + b i b j )E ij + (a 2 0 + b 2 0 )Id) +O( 1 √ d ))
We want to integrate this quantity over π H (π -1 X (x)). We recall that the measure dµ |π RH (π -1 RX (x)) is the following one: first we restrict the scalar product , on RH 0 (X; L d ) 2 to π RH (π -1 RX (x)), that is a codimension n submanifold, then we consider the Riemannian measure associated to this metric, and finally we multiply it by the factor 1 π N d e -α 2 -β 2 , where N d = dim H 0 (X; L d ). Then ( 8) is equal to

π RH (π -1 RX (x)) | Jac(B) | | Jac N (A) | dµ | π RH (π -1 RX (x)) = = K ⊥ 2 ∩π RH (π -1 RX (x))⊕K 2 | Jac(B) | | Jac N (A) | dµ | π H (π -1 RX (x)) = = K ⊥ 2 ∩π RH (π -1 RX (x)) | Jac(B) | | Jac N (A) | dµ | K ⊥ 2 ∩π RH (π -1 RX (x)) = = Q (π -1 2 ) * | Jac(B) | | Jac N (A) | (π 2 * dµ | K ⊥ 2 ∩π RH (π -1 RX (x)) ). (9) 
Thanks to the Proposition 2.7, the pushforward measure (π 2 ) * (µ |K ⊥ 2 ) on H 2 coincides with the Gaussian measure associated to the orthonormal basis {(σ i , 0), (σ kl , 0), (0, σ i ), (0,

σ kl )} up to a O( 1 √ d ) term. As a consequence we have that (π 2 * dµ | K ⊥ 2 ∩π RH (π -1 RX (x)) ) is equal to e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q up to a O( 1 √ d ) term.
We then have that ( 9) is equal to

Q (π -1 2 ) * | Jac(B) | | Jac N (A) | dµ Q + O( 1 √ d ) = = a i , b i , a ij , b ij a 0 b i -b 0 a i = 0 ( √ πd n )( | det((a 0 b ij -b 0 a ij ) Ẽij ) | det ((a i a j + b i b j )E ij + (a 2 0 + b 2 0 )Id) dµ Q +O( 1 √ d )) (10) 
where

dµ Q = e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q .
Putting [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] in (3), we obtain Proposition 3.4.

Computation of the universal constant

The purpose of this section is the explicit computation of the function R d (x) that appears in Proposition 3.4. We use the notation of Section 3.2.

To understand R d (x), we have to compute

√ πd n Q | det((a 0 b ij -b 0 a ij ) Ẽij ) | det((a i a j + b i b j )E ij + (a 2 0 + b 2 0 )Id) e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q .
The main result of this section is the following computation:

Proposition 3.7. Let Q be as in Proposition 3.4. Then

√ πd n Q | det((a 0 b ij -b 0 a ij ) Ẽij ) | det((a i a j + b i b j )E ij + (a 2 0 + b 2 0 )Id) e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q is equal to n!! (n-1)!! e R (n) π 2 √ d n if n is odd n!! (n-1)!! e R (n) √ d n if n is even. ( 11 
)
where Ẽij and E ij are the matrices of Definition 2.1 and e R (n) is the expected value of the determinant of (the absolute value of ) the real symmetric matrices.

We recall that Q ⊂ R 2(n+1)+n(n+1) is the product of the intersection of quadrics:

Q = {(a 0 , b 0 , ..., a n , ...b n ) ∈ R 2(n+1) | a 0 b i -a i b 0 = 0 ∀i = 1, ..., n}
with R n(n+1) of coordinates a ij and b ij for 1 ≤ i ≤ j ≤ n. We consider the parametrization ψ : R (n+2) → Q defined by ψ(a, b, t 1 , ..., t n ) = (a, b, at 1 , bt 1 , ..., at n , bt n ). Lemma 3.8. We have Jac(ψ) = 1

+ i t 2 i (a 2 + b 2 ) n .
Proof. A computation gives us 

JacψJacψ t = det           1 + n i=1 t 2 i 0 t
0 . . . . . . a 2 + b 2          
We develop the last line and we obtain 

(a 2 +b 2 ) det           1 + n i=1 t 2 i 0 t 1 a t 2 a . . . . . . t n-1 a 0 1 + n i=1 t 2 i t 1 b t 2 b . . . . . . t n-1 b t 1 a t 1 b a 2 + b 2 0 . . . . . . 0 
          +(-1) n t n b det           1 + n i=1 t 2 i t
0 . . . a 2 + b 2 0          
For the second matrix we have: 

det           1 + n i=1 t 2 i t
0 . . . a 2 + b 2 0           = (1 + n i=1 t 2 i ) det         t 1 b
0 0 0 . . . . . . 0 a 2 + b 2 0         = (-1) n+1 (1 + n i=1 t 2 i )t n b(a 2 + b 2 ) n-1 .
where the first equality is obtained by developping the first column and remarking that, in the development, each time we clear the i-th line, the (i -1)-th column and the last column are linearly equivalent.

Similarly, 

det           0 t
0 . . . a 2 + b 2 0           = (-1) n (1 + n i=1 t 2 i )t n a(a 2 + b 2 ) n-1 .
Then we have Passing to the square root we obtain the result.

JacψJacψ t = (a 2 +b 2 ) det           1 + n i=1 t 2 i 0 t 1 a t 2 a . . . . . . t n-1 a 0 1 + n i=1 t 2 i t 1 b t 2 b . . . . . . t n-1 b t 1 a t 1 b a 2 + b 2 0 . . . . . . 0 t 2 a t 2 b 0 a 2 + b 2 . . . . . . 0 
Remark 3.9. In the following we will not write the symbols Ẽij E ij to simplify the notation.

After this change of variables, we have: so we have to compute these three integrals. For the first term, we have where Γ is the Gamma function. For the third term we use spherical coordinates and we obtain

√ πd n Q | det(a 0 b ij -b 0 a ij ) | det((a i a j + b i b j ) + (a 2 0 + b 2 0 )Id) e -i a 2 i -i b 2 i -i,j a 2 ij -i,j b 2 ij π n+1+ n(n+1) 2 dvol Q = = √ πd n a,
t i ∈R 1 1 + i t 2 i n+1 dt i = Vol(S n-1 ) +∞ t=0 t n-1
(1 + t 2 ) n+1 dt.

where Vol(S n-1 ) = 2π if n is even and it is equal to

Proposition 2 . 7 .

 27 [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] Lemma 3.1] The section (σ i ) 0≤i≤n and (σ ij ) 1≤i≤j≤n have L 2 -norm equal to 1 and their pairwise scalar product are O( 1 d ). Likewise, their scalar products with every unitary element of H 2x are O( 1 d 3/2 ).

  -a 2 0 a 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b n 0 0 . . . -b 0 -a n 0 0 . . . a 0     and B to the following one:

ϑ∈( 0 2 πn(n+1) 2 de 2 π 2 db

 02222 ,2π],e ij ∈C | det(Im (e -iϑ c ij )) | e -i,j |e ij | ij dϑ = = 2π e ij ∈C | det(Im e ij ) | e -i,j |e ij | ij = 2πe R (n).Here, e R (n) = B∈Sym(n,R) | det B | dµ R (B) (see the end of Section 2.1). For the explicit value of e R (n), see [5,Section 2].For the second term, we consider the change of variable r 2 = ρ and we obtain

n 2 Γ( n 2 )t 2 dt we change t 2 1+t 2 = 1 -u 2 and we obtain 1 0 √ 1 - 2 0

 2221012 is the volume of the (n -1)-dimensional sphere. For u 2 n-2 du.Finally, set u = sinθ and we have π/cos n-1 θdθ.The formula cos n-1 (θ)du = sin(θ)cos n-2 (θ)

  b,a ij ,b ij ,t i ∈R | det(ab ij -ba ij ) | det((a 2 + b 2 )((t i t j ) + Id)) × × e -(1+ i t 2 i )(a 2 +b 2 )i,j (a 2 ij +b 2 ij ) Now det((a 2 + b 2 )((t i t j ) + Id)) = (1 + i t 2 i )(a 2 + b 2 ) n so we obtain √ πd n a,b,a ij ,b ij ,t i ∈R | det(ab ij -ba ij )) | e -(1+ i t 2 i )(a 2 +b 2 )i,j (a 2 ij +b 2 ij ) π n+1+ n(n+1) 2 dadbda ij db ij dt i .It is more practical to see (a, b) as a complex number c ∈ C and also (a ij , b ij ) as e ij ∈ C. With a slight abuse of notation, we denote dc and de ij instead of -12i dcdc and -1 2i de ij dē ij . Then we have√ πd n c∈C,e ij ∈C,t i ∈R | det(Im (ce ij )) | e -(1+ i t 2 i )|c| 2i,j |e ij | 2 -|c| 2 -i,j |e ij | 2Im (e -iϑ e ij )) | e -i,j |e ij | 2

	2 π n+1+ n(n+1)			(1 +	i	t 2 i ) (a 2 + b 2 )
								π n+1+ n(n+1)
								2 π 1+ n(n+1)	dcde ij
			×	t i ∈R	1 π n 1 + i t 2 i	n+1 dt i =
	√ πd n	ϑ∈(0,2π],e ij ∈C	| det(π	2 n(n+1)	de ij dϑ
	×	+∞ r=0	r n+1 e -r 2 π	dr ×	t i ∈R	1 π n 1 + i t 2 i	n+1 dt i .

n dadbda ij db ij dt i 2 dcde ij dt i . Now, set c = ( 1 + i t 2

i )c and then c = re iϑ . We obtain

√ πd n c∈C,e ij ∈C | det(Im ( ce ij )) | e
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( α∇β -β∇ α + α∇ β -β∇α + α∇ 2 ( ẋ,.) β -β∇ 2 ( ẋ,.) α)(x) = 0} (resp. {( α, β, ẋ) ∈ RH 0 (X; L d ) × RH 0 (X; L d ) × T x RX | ( α∇β -β∇ α + α∇ β -β∇α + α∇ 2 ( ẋ,.) β -β∇ 2 ( ẋ,.) α)(x) = 0)(x) = 0}.

We remark that dπ H|(α,β,x) is (almost everywhere) an isometry, because on I we put the (singular) metric π * H , . We compute Jac N (π X ) (resp. Jac N (π RX )) at (α, β, x) using the following two linear maps:

(resp. B :

we have the Hermitian (resp. scalar) product induced by h. Proposition 3.5. Following the notation of Sections 2.4 and 3.1, we have, for all (α, β, x) ∈ I (resp. RI), Jac N (π X ) = Jac N (A) Jac(B) .

Proof. We have dπ

Fix real holomorphic coordinates (x 1 , ..., x n ) in a neighborhood of a point x ∈ RX such that ( ∂ ∂x 1 , ..., ∂ ∂xn ) is an orthonormal basis of T x X (resp. T x RX). We want to compute the integral

that appears in [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF].

if n is odd. Putting together all these values and using that

we obtain Proposition 3.7.

End of the proofs

From Proposition 3.4 we have

ij dvol Q . In Section 3.3 we proved that (see Proposition 3.7 eq. 11)