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ABSTRACT
OSGi is a module system and service framework that aims to fill
Java’s lack of support for modular development. Using OSGi, devel-
opers divide software into multiple bundles that declare constrained
dependencies towards other bundles. However, there are various
ways of declaring and managing such dependencies, and it can
be confusing for developers to choose one over another. Over the
course of time, experts and practitioners have defined “best prac-
tices” related to dependency management in OSGi. The underlying
assumptions are that these best practices (i) are indeed relevant
and (ii) help to keep OSGi systems manageable and efficient. In
this paper, we investigate these assumptions by first conducting
a systematic review of the best practices related to dependency
management issued by the OSGi Alliance and OSGi-endorsed orga-
nizations. Using a large corpus of OSGi bundles (1,124 core plug-ins
of the Eclipse IDE), we then analyze the use and impact of 6 selected
best practices. Our results show that the selected best practices are
not widely followed in practice. Besides, we observe that following
them strictly reduces classpath size of individual bundles by up to
23% and results in up to ±13% impact on performance at bundle
resolution time. In summary, this paper contributes an initial empir-
ical validation of industry-standard OSGi best practices. Our results
should influence practitioners especially, by providing evidence of
the impact of these best practices in real-world systems.

CCS CONCEPTS
• Software and its engineering → Software configuration man-
agement and version control systems; Software libraries and reposito-
ries;
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1 INTRODUCTION
The time-honored principle of separation of concerns entails split-
ting the development of complex systems into multiple components
interacting through well-defined interfaces. This way, the develop-
ment of a system can be broken down into multiple, smaller parts
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that can be implemented and tested independently. This also fos-
ters reuse by allowing software components to be reused from one
system to the other, or even to be substituted by one another pro-
vided that they satisfy the appropriate interface expected by a client.
Three crucial aspects [33] of successful separation of concerns are
module interfaces, module dependencies, and information hiding—
a module’s interface hides any number of different functionalities,
possibly depending on other modules transitively.

Historically, the Java programming language did not offer any
built-in support for the definition of versioned modules with ex-
plicit dependency management [41]. This led to the emergence of
OSGi, a module system and service framework for Java standard-
ized by the OSGi Alliance organization [42]. Initially, one of the
primary goals of OSGi was to fill the lack of proper support for
modular development in the Java ecosystem (popularly known as
the “JAR hell”). OSGi rapidly gained popularity and, as of today,
numerous popular software of the Java ecosystem, including IDEs
(e.g., Eclipse, IntelliJ), application servers (e.g., JBoss, GlassFish),
and application frameworks (e.g., Spring) rely internally on the
modularity capabilities provided by OSGi.

Just like any other technology, it may be hard for newcomers
to grasp the complexity of OSGi. The OSGi specification describes
several distinct mechanisms to declare dependencies, each with
different resolution and wiring policies. Should dependencies be
declared at the package level or the component level? Can the con-
tent of a package be split amongst several components or should
it be localized in a single one? These are questions that naturally
arise when attempting to modularize Java applications with OSGi.
There is little tool support to help writing the meta-data files that
wire the components together, and so modularity design decisions
are mostly made by the developers themselves. The quality of this
meta-data influences the modularity aspects of OSGi systems. The
reason is that OSGi’s configurable semantics directly influences
all the aforementioned key aspects of modularity: the definition
of module interfaces, what a dependency means (wiring), and in-
formation hiding (e.g., transitive dependencies). A conventional
approach to try and avoid such issues is the application of so-called
“best practices” advised by experts in the field. To the best of our
knowledge, the assumptions underlying this advice have not been
investigated before: are they indeed relevant and do they have a
positive effect on OSGi-based systems? Our research questions are:

Q1 What OSGi best practices are advised?
Q2 Are OSGi best practices being followed?
Q3 Does each OSGi best practice have an observable effect on

the relevant qualitative properties of an OSGi bundle?
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To begin answering these questions, this paper reports on the fol-
lowing contributions:

• A systematic review of best practices for dependency man-
agement in OSGi emerging from either the OSGi Alliance
itself or OSGi-endorsed partners; we identify 11 best prac-
tices and detail the rationale behind them (Q1);

• An analysis of the bytecode andmeta-data of a representative
corpus of OSGi bundles (1,124 core plug-ins of the Eclipse
IDE) to determine whether best practices are being followed
(Q2), and what is their impact (Q3).

Our results show that:
• Best practices are not widely followed in practice. For instance,
half of the bundles we analyze specify dependencies at the
bundle level rather than at the package level—despite the
fact that best practices encourage to declare dependencies
at the package level;

• The lack of consideration for best practices does not signifi-
cantly impact the performance of OSGi-based systems. Strictly
following the suggested best practices reduces classpath size
of individual bundles by up to 23% and results in up to ±13%
impact on performance at bundle resolution time.

The remainder of this paper is structured as follows. In Section 2,
we introduce background notions on OSGi itself. In Section 3, we
detail the methodology of the systematic review from which we
extract a set of best practices related to dependencies management.
In Section 4, we evaluate whether best practices are being followed
on a representative corpus of OSGi bundles extracted from the
Eclipse IDE. We discuss related work in Section 5 and conclude in
Section 6.

2 BACKGROUND: THE OSGI FRAMEWORK
OSGi is a module system and service framework for the Java pro-
gramming language standardized by the OSGi Alliance organiza-
tion [42], which aims at filling the lack of support for modular devel-
opment with explicit dependencies in the Java ecosystem (aka. the
“JAR hell”). Some of the ideas that emerged in OSGi were later incor-
porated in the Java standard itself, e.g., as part of the module system
released with Java 9. In OSGi, the primary unit of modularization
is a bundle. A bundle is a cohesive set of Java packages and classes
(and possibly other arbitrary resources) that together provide some
meaningful functionality to other bundles. A bundle is typically
deployed in the form of a Java archive file (JAR) that embeds a
Manifest file describing its content, its meta-data (e.g., version, plat-
form requirements, execution environment), and its dependencies
towards other bundles. The OSGi framework itself is responsible
for managing the life cycle of bundles (e.g., installation, startup,
pausing). As of today, several certified implementations of the OSGi
specification have been defined, including Eclipse Equinox1 and
Apache Felix2 to name but a few. OSGi is a mature framework that
comprises many aspects ranging from module definition and ser-
vice discovery to life cycle and security management. In this paper,
we focus specifically on its support for dependencies management.

1https://www.eclipse.org/equinox/
2https://felix.apache.org/

Listing 1: An idiomatic MANIFEST.MF file
Bundle-ManifestVersion: 2
Bundle-Name: Dummy
Bundle-SymbolicName: a.dummy
Bundle-Version: 0.2.1.build-21
Bundle-RequiredExecutionEnvironment: JavaSE-1.8
Export-Package: a.dummy.p1,
a.dummy.p2;version="0.2.0"

Import-Package: b.p1;version="[1.11,1.13]",
c.p1

Require-Bundle: d.bundle;bundle-version:="3.4.1",
e.bundle;resolution:=optional

2.1 The Manifest File
Every bundle contains a meta-data file located in META-INF/-
MANIFEST.MF. This file contains a list of standardized key-value
pairs (known as headers) that are interpreted by the framework to
ensure all requirements of the bundle are met. Listing 1 depicts an
idiomatic Manifest file for an imaginary bundle named Dummy.

In this simple example, the Manifest file declares the bundle
a.Dummy in its version 0.2.1.build-21. It requires the execution envi-
ronment JavaSE-1.8. Themain purpose of this header is to announce
what should be available to the bundle in the standard java.* names-
pace, as the exact content may vary according to the version and
the implementer of the Java virtual machine on which the frame-
work runs. The Manifest file specifies that the bundle exports the
a.dummy.p1 package, and the a.dummy.p2 package in version 0.2.0.
These packages form the public interface of the bundle—its API.
Next, the Manifest file specifies that the bundle requires the pack-
age b.p1 in version 1.11 to 1.13 (inclusive) and the package c.p1.
Finally, the Manifest declares a dependency towards the bundle
d.bundle in version 3.4.1 and an optional dependency towards the
bundle e.bundle. We dive into greater details of the semantics of
these headers and attributes in the next section.

It is important to note that the Manifest file is typically written
by the bundle’s developer herself, and has to co-evolve with its
implementation. Therefore, discrepancies between what is declared
in the Manifest and what is actually required by the bundle at the
source or bytecode level may arise. Although some tools provide
assistance to the developers (for instance using bytecode analy-
sis techniques on bundles to automatically infer the appropriate
dependencies), getting the Manifest right remains a tedious and
error-prone task.

2.2 OSGi Dependencies Management
The OSGi specification declares 28 Manifest headers that relate
to versioning, i18n, dependencies, capabilities, etc. Amongst them,
six are of particular interest regarding dependencies management:
Bundle-SymbolicName which “together with a version must identify a
unique bundle”, Bundle-Version which “specifies the version of this
bundle”, DynamicImport-Package which “contains a comma-separated
list of package names that should be dynamically imported when
needed”, Export-Package which “contains a declaration of exported
packages”, Import-Package which “declares the imported packages for
this bundle”, and Require-Bundle which “specifies that all exported
packages from another bundle must be imported, effectively requiring
the public interface of another bundle” [42]. The OSGi specification

https://www.eclipse.org/equinox/
https://felix.apache.org/
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prescribes two distinct mechanisms for declaring dependencies:
at the package level, or at the bundle level. In the former case, it
is the responsibility of the framework to figure out which bundle
provides the required package—multiple bundles can export the
same package in the same version. Conversely, the latter explicitly
creates a strong dependency link between the two bundles.

The Import-Package header consists of a list of comma-separated
packages the declaring bundle depends on. Each package in the list
accepts an optional list of attributes that affects the way packages
are resolved. The resolution attribute accepts the values mandatory
(default) and optional, which indicate, respectively, that the package
must be resolved for the bundle to load, or that the package is
optional and will not affect the resolution of the requiring bundle.
The version attribute restricts the resolution on a given version
range, as shown in Listing 1.

When it requires another bundle through the Require-Bundle

header, a bundle imports not only a single package but the whole
public interface of another bundle, i.e., the set of its exported pack-
ages. As the Require-Bundle header requires to declare the symbolic
name of another bundle explicitly, this creates a strong dependency
link between both. Thus, not only does this header operate on a
coarse-grained unit of modularization, but it also tightly couples
the components together.

For a bundle to be successfully resolved, all the packages it
imports must be exported (Export-Package) by some other bundle
known to the framework, with their versions matching. Similarly,
all the bundles it requires must be known to the framework, with
their versions matching. This wiring process is carried out auto-
matically by the framework as the bundles are loaded.

3 OSGI BEST PRACTICES
The OSGi specification covers numerous topics in depth and it can
be hard for developers to infer idiomatic uses and good practices.
Should dependencies be declared at the package or the bundle level?
Can the content of a package be split amongst several bundles or
should it be localized in a single one? These are questions that
naturally arise when attempting to modularize Java applications
with OSGi. Although all usages are valid according to the specifica-
tion, OSGi experts tend to recommend or discourage some of them.
In this section, we intend to identify a set of best practices in the
use of OSGi. In particular, we look for best practices related to the
specification of dependencies between bundles, thus answering our
first research question:

Q1 What OSGi best practices are advised?

3.1 Systematic Review Methodology
To perform the identification of best practices related to OSGi de-
pendencies management, we follow the guidelines specified by
Kitchenham et al. [26], which include the definition of the research
question, search process, study selection, data extraction, and search
results. In this regards, Q1 is selected as the research question of the
systematic review.

3.1.1 Search process. Given the absence of peer-reviewed re-
search tackling OSGi best practices (cf. Section 5), we select as

primary data sources web resources of the OSGi Alliance and OSGi-
endorsed products. The complete list of certified products3 cor-
responds to Knopflerfish, ProSyst Software, SuperJ Engine, Apache
Felix, Eclipse Equinox, Samsung OSGi, and KT OSGi Service Platform
(KOSP). With the aim to identify best practices, we define a search
string that targets a set of standard best practices synonyms, and
their corresponding antonyms:

((good OR bad OR best) AND (practices OR design)) OR smell

Some of the official web pages of the selected organizations pro-
vide their own search functionality. However, we seek to minimize
the heterogeneous conditions of the searching environment and
only use Google Search to explore the set of web resources. We use
JSoup, an HTML parser for Java, to execute the search queries and
to scrap the results. We compute all possible keyword combina-
tions from the original search string and execute one query per
combination and organization domain. For instance, to search for
the best AND practices keywords in English-written resources on
the OSGi Alliance domain, we define the following Google Search
query: http://www.google.com/search?q=best+practices+sit
e:www.osgi.org&domains:www.osgi.org&hl=en. We retrieved the
resources in January 2018.

3.1.2 Study selection. Figure 1 details the resource selection pro-
cess we follow in this study. First, we only include web resources
written in English in the review. As shown before in the Google
Search query, this language restriction is included as a filtering
option in all searches: hl=en. In the end, the search engine returns
a total of 268 resources.4 Second, selected documents should de-
scribe best practices related to the management of dependencies in
OSGi. To this aim, we conduct a two-task selection where we first
consider the occurrences of keywords in the candidate resources,
and then we perform a manual selection of relevant documents. On
the one hand, we count the occurrences of the searched keywords
in each web resource (including HTML, XML, PDF, and PPT files).
If one of the keywords is missing in the resource, we automatically
discard it. Using this criterion, we reduce the set to 156 resources,
and finally 87 after removing duplicates. On the other hand, we
manually review the resulting set, looking for documents that ad-
dress the research question. In particular, if a resource points to
another document (through an HTML link) that is not part of the
original set of candidates, it is also analyzed and, if it is relevant
to the study, it is included as part of our data sources. This task is
performed by two reviewers to minimize selection bias. In the end,
we select 21 web resources to derive the list of best practices related
to OSGi dependencies specification. Some of the OSGi-endorsed
organizations do not provide relevant information for the study.

3.1.3 Data extraction. During the data extraction phase, we con-
sider the organization that owns the resource (e.g., OSGi Alliance),
its title, year of publication, authors, and the targeted best prac-
tices. To have a common set of best practices, one reviewer reads
the selected resources and groups the obtained results in 11 best
practices. Afterwards, two reviewers check which best practices
are suggested per web resource. Table 1 presents the results of the

3https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/.
4https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts

https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/
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Google 
search

Select based on 
keyword occurrences

Remove 
duplicates

Select based 
on relevance

26
8

87 21

Automatic task Task Number of resources

15
6

Figure 1: Resources selection of the systematic review.

review. The best practices labels in the table correspond to the best
practices presented in Section 3.2.

3.2 Dependencies Specification Best Practices
In this section, we review the best practices identified and summa-
rized in Table 1. We elaborate on the rationale behind each best
practice using peer-reviewed research articles and the OSGi Core
Specification Release 6 [42].

3.2.1 Prefer package-level dependencies [B1]. Dependencies
should be declared using the Import-Package header instead of us-
ing the Require-Bundle header. The latter creates a tight coupling
between the requiring bundle and the required bundle, which is an
implicit dependency towards an implementation rather than an in-
terface. Thus, it impacts the flexibility of dependency resolution, as
the resolver has only one source to provide the dependency (i.e., the
required bundle itself). This also naturally complicates refactoring
activities: moving a package from one bundle to the other requires
to patch all bundles depending on it to point to the new bundle.
In contrast, the Import-Package header only relies on an interface
and various bundles may offer the corresponding package. Finally,
Require-Bundle automatically imports all the exported packages of
the required bundle, which may introduce unnecessary dependen-
cies. This can get worse in some cases, since package shadowing
can be introduced unwittingly [42].

3.2.2 Use versions when possible [B2]. Versions should be set
when requiring bundles, or when importing or exporting packages.
When a bundle requires another bundle or imports a package, a ver-
sion range or a minimum required version can be defined. Versions
must be consciously used to control the dependencies of a bun-
dle, avoiding the acceptance of new versions that might break the
component. Version ranges are preferred over minimum versions,
because both upper and lower bounds, as well as all in between
versions, are supposed to be tested and considered by bundle devel-
opers [9]. In addition, with version ranges the dependency resolver
has fewer alternatives to resolve the given requirements, allegedly
speeding up the process.

3.2.3 Export only needed packages [B3]. Only the packages that
may be required by other bundles should be exported. Internal and
implementation packages should be kept hidden. Because the set
of exported packages forms the public API of a bundle, changes in
these packages should be accounted for by the clients [8]. Conse-
quently, the more packages are exported, the more effort is required
to maintain and evolve the corresponding API.

3.2.4 Minimize dependencies [B4]. Unnecessary dependencies
should be avoided, given their known impact on failure-proneness [6]

and performance of the resolution process. In the case of OSGi
framework and the employment of the Require-Bundle header, a
required bundle might depend on other bundles. If these transitive
dependencies are not considered in the OSGi environment, then
the requiring bundle may not be resolved [42]. Moreover, depen-
dencies specification in Require-Bundle and Import-Package headers
may impact performance during the resolution process of the OSGi
environment. A bundle is resolved if all its dependencies are avail-
able [42]. Presumably, the more dependencies are added to the
Manifest file, the longer the framework will take to start and re-
solve the bundle assuming that all dependencies are included in
the environment.

3.2.5 Import all needed packages [B5]. All the external packages
required by a bundle must be specified in the Import-Package header.
If this is not the case, a ClassNotFoundExceptionmay be thrownwhen
there is a reference to a class of an unimported package [42]. This
also applies to dynamic dependencies, e.g., classes that are dynami-
cally loaded using the reflective API of Java. The only packages that
are automatically available to any bundle are the ones defined in
the namespace java.*, which are offered by the selected execution
environment. However, this environment can offer other packages
included in other namespaces. Thus, if these packages are not ex-
plicitly imported and the execution environment is modified, they
will become unavailable and the bundle will not get resolved.

3.2.6 Avoid DynamicImport-Package [B6]. This header lists a set
of packages that may be imported at runtime after the bundle has
reached a resolved state. In this case, dependency resolution failures
may appear in later stages in the life cycle of the system and are
harder to diagnose. This effectively hurts the fail fast idiom adopted
by the OSGi framework [40]. Also, the DynamicImport-Package cre-
ates an overhead due to the need to dynamically resolve packages
every time a dynamic class is used [42].

3.2.7 Separate implementation, API, and OSGi-specific packages
[B7]. It is highly recommended to separate API packages from both
implementation and OSGi-specific packages. Therefore, many im-
plementation bundles can be provided for a given API, favoring
system modularity. The OSGi service registry is offered to select
an implementation once a bundle is requiring and using the associ-
ated API packages. With this approach, API packages can be easily
exported in isolation from implementation packages, allowing a
change of implementation if needed. Moreover, implementation
changes that result in breaking changes for clients bundles are
avoided. The abovementioned APIs are known as clean APIs, i.e., ex-
ported packages that do not use OSGi, internal, or implementation
packages in a given bundle [42].

3.2.8 Use semantic versioning [B8]. Semantic versioning5 is a
version naming scheme that aims at reducing risks when upgrad-
ing dependencies. This goal is achieved by providing concrete
rules and conventions to label breaking and non-breaking soft-
ware changes [35]. Following these rules, a version number should
be defined as major.minor.micro. In some cases, the version number
is extended with one more alphanumerical slot known as qualifier.

5http://semver.org/
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Table 1: Systematic review of OSGi dependencies specification best practices.

Resource Year Author(s)
Best practices

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

O
SG

iA
lli
an
ce

Automatically managing service dependencies in
OSGi [31]

2005 M. Offermans # # # # #  # # # # #

OSGi best practices! [17] 2007 B.J. Hargrave et al.   #   #  # # # #
Very important bundles [36] 2009 R. Roelofsen  # # # #  # # #  #
OSGi: the best tool in your embedded systems
toolbox [16]

2009 B. Hackleman et al.  # # # # #  # # # #

bndtools: mostly painless tools for OSGi [5] 2010 N. Bartlett et al. # #  #  # #  # # #
Developing OSGi enterprise applications [4] 2010 R. Barci et al. # # # # # #  # # # #
Experiences with OSGi in industrial applica-
tions [10]

2010 B. Dorninger # # # # # #  # # # #

Migration from Java EE application server to
server-side OSGi for process management and
event handling [23]

2010 G. Kachel et al. # #  # # # # # #  #

10 Things to know you are doing OSGi in the
wrong way [30]

2011 J. Moliere   # # # #   # # #

Structuring software systems with OSGi [13] 2011 U. Fildebrandt   # # # #  # # # #
Best practices for (enterprise) OSGi applica-
tions [44]

2012 T. Ward     # # #   # #

Building a modular server platform with
OSGi [19]

2012 D. Jayakody    # # #   # # #

OSGi application best practices [22] 2012 E. Jiang   # # # #    # #
TRESOR: the modular cloud - Building a domain
specific cloud platform with OSGi [15]

2013 A. Grzesik # # # # # #  # # # #

Guidelines [2] n.d. OSGi Alliance # # # # # #  # # # #
OSGi developer certification - Professional [3] n.d. OSGi Alliance # # # # #  # # # # #

Fe
lix

Using Apache Felix: OSGi best practices [32] 2006 M. Offermans  # #  # #  # # # #
OSGi frequently asked questions [11] 2013 Apache Felix # # # # # #  # # #  
Dependency manager - Background [12] 2015 Apache Felix  # # # # #  # # # #

Eq
ui
no

x Best practices for programming Eclipse and
OSGi [18]

2006 B.J. Hargrave et al.  # # # # # # # # # #

OSGi component programming [45] 2006 T. Watson et al.  # # # # #  # # # #

The major number is used when incompatible changes are intro-
duced to the system, while the other three components represent
backward-compatible changes related to functionality, bugs fixing,
and system identification, respectively. The use of semantic ver-
sioning supposedly communicate more information and reduces
the chance of potential failures.

3.2.9 Avoid splitting packages [B9]. A split package is a package
whose content is spread in two or more required bundles [42]. The
main pitfalls related to the use of split packages consist on the
mandatory use of the Require-Bundle header, which is labeled as
a bad practice, and the following set of drawbacks mentioned in
the OSGi Core Specification [42]: (i) completeness, which means that
there is no guarantee to obtain all classes of a split package; (ii)
ordering, an issue that arises when a class is included in different
bundles; (iii) performance, an overhead is introduced given the need
to search for a class in all bundle providers; and (iv)mutable exports,
if a requiring bundle visibility directive is set to reexport, its value
may suddenly change depending on the visibility value of the
required bundle.

3.2.10 Declare dependencies that do not add value to the final user
in the Bundle-Classpath header [B10]. If a non-OSGi dependency is

used to support the internal functionality of a bundle, it should be
specified in the Bundle-Classpath header. These dependencies are
known as containers composed by a set of entries, which are then
grouped under the resources namespace. They are resolved when no
package or bundle offers the required functionality [42]. Given that
a subset of these resources is meant to support private packages
functionality, they should be kept as private packages and defined
only in the classpath of the bundle.

3.2.11 Import exported API packages [B11]. All the packages
that are exported and used by a given bundle should also be im-
ported. This may seem counter-intuitive, as exported packages are
locally contained in a bundle and can thus be used without being
imported explicitly. Nevertheless, it is a best practice to import
these packages explicitly, so that the OSGi framework can select
an already-active version of the required package. Be aware that
this best practice is only applicable to clean API packages [42].

4 OSGI CORPUS ANALYSIS
The best practices we identify in Section 3 emerge from experts
of the OSGi ecosystem. The goal of the following two research
questions is to assess their relevance and impact critically:
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Q2 Are OSGi best practices being followed?
Q3 Does each OSGi best practice have an observable effect on the

relevant qualitative properties of an OSGi bundle?

Specifically, because beyond their qualitative aspect they are
meant to improve performance, we study their impact on the class-
path size and resolution time of individual bundles. We first discuss
the initial setup and method of our evaluation, and then go through
all the selected best practices, aiming at answering our research
questions for each of them. After some concluding remarks, we dis-
cuss the threats to validity. A complete description of all the artifacts
discussed in this section (corpora, transformations, results), along
with their source code, is available on the companion webpage.6

4.1 Studied Corpus
We use an initial corpus consisting of 1,124 OSGi bundles (cf. Ta-
ble 2) corresponding to the set of core plug-ins of the Eclipse IDE 4.6
(Neon.1). This corpus emerges from the specific needs of a partner
in the collaborative project CROSSMINER in which the authors are
involved. The Eclipse IDE consists of a base platform that can be
extended and customized through plug-ins that can be remotely in-
stalled from so-called update sites. Both the base platform and the set
of plug-ins are designed around OSGi, which enables this dynamic
architecture. The Eclipse IDE relies on its own OSGi-certified imple-
mentation of the specification: Eclipse Equinox. Because the Eclipse
IDE is a mature and widely-used platform, its bundles are supposed
of high quality. As they all contribute to the same system, they
are also highly interconnected: the combination of Import-Package,
Require-Bundle, and DynamicImport-Package dependencies results in
a total of 2,751 dependency links. As a preliminary step, we clean
the corpus to eliminate duplicate bundles and bundles that deviate
from the very nature of Eclipse plug-ins. This includes:

• Bundles with multiple versions. We only retain the most recent
version for each bundle to avoid a statistical bias towards bundles
which (accidentally) occur multiple times for different versions.

• Documentation bundles that neither contain any code nor any
dependency towards other bundles are considered as outliers
to be ignored. The best practices are specifically about actual
code bundles so these documentation bundles would introduce
arbitrary noise.

• Source bundles that only contain the source code of another bi-
nary bundle are ignored since they are a (technical) accident not
pertaining to the best practices either.

• Similarly, test bundles which do not provide any functionality to
the outside would influence our statistical observations without
relating to the studied best practices.

We identify and remove these bundles from the corpus according
to their names. The (strong) convention in this Eclipse corpus is
that these, respectively, end with a .doc, .source, or .tests suffix.
The remaining bundles constitute our control corpus C0.

4.2 Method
The overall analysis process we follow is depicted in Figure 2 and
detailed below.

6https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts

Table 2: Characteristics of the Eclipse 4.6 OSGi Corpus

Attribute Value

Initial corpus size 1,124
Number of documentation bundles 17
Number of source bundles 446
Number of test bundles 97
Number of duplicate bundles 192

Studied corpus (C0) 372
Total size of C0 (MB) 163.76
Number of dependencies declared in C0 2,751
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Figure 2: Analysis process.

4.2.1 Selected best practices. For the current analysis, we focus
on a subset of the best practices ([B1–B6]) elicited in Section 3,
which can be studied using a common research method. The other
best practices are interesting as future work: [B7, B10, B11] require
distinguishing between implementation and API packages, [B8] re-
quires distinguishing between breaking and non-breaking software
changes, and [B9] requires refactoring the source code organization
of the bundles in addition to their meta-data.

4.2.2 Are OSGi best practices being followed? (Q2). To answer
this research question, we develop an analysis tool, written in Ras-
cal [27], that computes a set of metrics on the control corpus C0.
Specifically, the tool analyses the meta-data (the Manifest files) and
bytecode of each bundle to record in which way dependencies and
versions are declared, which packages are actually used in the byte-
code compared to what is declared in their meta-data, etc. Based
on this information, we then count per best practice how many
bundles (or bundle dependencies) satisfy it in the corpus. Using de-
scriptive statistics we then analyze the support for the best practice
in the corpus to answer Q2. For each best practice, based on the
maturity of the Eclipse corpus the hypothesis is that they are being
followed (H2.i).

4.2.3 Does each OSGi best practice have an observable effect on
the relevant qualitative properties of an OSGi bundle? (Q3). To an-
swer this research question, we hypothesize that each best practice
would indeed have an observable impact on the size of dynamically
computed classpaths (H3.1.i) and on the time it takes to resolve
and load the bundles (H3.2.i). If either hypothesis is true, then
there is indeed evidence of observable impact of the best practice
of some kind, if not then deeper analysis based on hypothesizing
other forms of impact would be motivated. We are also interested
to find out if there exists a correlation between classpath size and
related resolution time (H3.3). Since the latter requires an accurate

https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts


An Empirical Evaluation of OSGi Dependencies Best Practices in the Eclipse IDE MSR ’18, May 28–29, 2018, Gothenburg, Sweden

time measurement setup, while the former can be computed from
meta-data, it would come in handy for IDE tool builders (recom-
mendations, smell detectors, and quick fix) if classpath size would
be an accurate proxy for bundle resolution time.

Figure 2 depicts how we compare the original corpusC0 to alter-
native corporaCi in which each best practice Bi has been simulated.
For each Bi , a specialized transformation T (Bi ) takes as input the

control corpus C0 and turns it into a new corpus C0
T (Bi )
−−−−−→ Ci

where bundles are automatically transformed to satisfy the best
practice Bi . For all transformations T (Bi ), we ensure that for all
bundles that can be resolved in the original corpus, the correspond-
ing bundle in the transformed corpus can also be resolved. For in-
stance, the transformation T (B1) transforms every Require-Bundle

header to a set of corresponding Import-Package headers, accord-
ing to what is actually used in the bundle’s bytecode. Note that
bundles using extension points declared by other bundles must
use the Require-Bundle header and therefore cannot be replaced
with the corresponding Import-Package headers. Below, we discuss
such detailed considerations with the result of each transformation.
Then, we load every corpusCi in a bare Equinox OSGi console and
compute, for every bundle, (i) the size of its classpath, including the
classes defined locally and the classes that are accessible through
wiring links according to the semantics of OSGi, and (ii) measure
the exact time it takes to resolve it. Resolution time of a bundle is
measured as the delta between the time it enters the INSTALLED

state (“The bundle has been successfully installed”) and the time it
enters the RESOLVED state (“All Java classes that the bundle needs
are available”), according to the state diagram given in the OSGi
specification [42, p. 107]. To report a change in terms of classpath
size or performance, we also compute the relative change between
observations in Ci and observations in C0 as di j =

v0j−vi j
v0j

× 100%,

where di j is the relative change between the jth observation of C0
(i.e., v0j ) and the corresponding observation in Ci (i.e., vi j ). The
median (x̃ ) value of the set of relative changes is used as a compari-
son measure.7 All performance measurements are conducted on a
macOS Sierra version 10.12.6 with an Intel Core i5 processor 2GHz,
and 16GB of memory running OSGi version 3.11.3 and JVM version
1.8. Measurements are executed 10 times each after discarding the
2 initial warm-up observations [7].

4.3 Results
To evaluate H3.3 we use both scatter plots and correlations (per
corpus) that show the relation between our two studied variables,
classpath size and resolution time. Figure 3 shows the graph to
identify the hypothesized correlation in C0. Given that there is
no linear relation between the variables, we compute the non-
parametric Spearman’s rank correlation coefficient ρ0 = −0.17,
resulting in a weak negative relation. Similar results are observed
on all corpora Ci : ρ1 = −0.06, ρ2 = −0.17, ρ3 = −0.11, ρ4 =
−0.13, ρ5 = −0.17, and ρ6 = −0.17. According to both visual and
statistical analysis, we can reject hypothesis H3.3. Therefore, it
remains interesting to study these variables independently. The
benchmark results regarding classpath size and resolution time for

7We use x̃c and x̃p , respectively, for classpath size and performance comparisons.
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Figure 3: Classpath size is a poor indicator for resolution
time (ms) in C0 (ρ0 = −0.17).

every corpus Ci , compared to the control corpus C0, are given in
Figures 4 and 5.

4.3.1 Prefer package-level dependencies [B1].

H2.1. To test this hypothesis, we count the number of bundles
using the Require-Bundle and Import-Package headers. We cross-
analyze these results by computing the number of extension plug-
ins and the number of bundles declaring split packages, which may
impact the use of the Require-Bundle header. The bundles declare
1,283 Require-Bundle dependencies and 1,459 Import-Package depen-
dencies. 57.79% of the bundles use the Require-Bundle header, 50.00%
use the Import-Package header, and 34.95% use both. These results
suggest that this best practice tends not to be widely followed by
Eclipse plug-ins developers. The declaration of extension points and
extension bundles, as well as the use of split packages, contribute
to these results. In fact, 38.98% of the bundles in C0 are extension
bundles that require a dependency on the bundle declaring the
appropriate extension point to provide the expected functionality.
Two of the bundles in C0 use a Require-Bundle dependency to cope
with the requirements of split packages.

H3.1.1 and H3.2.1. Transforming bundle-level dependencies to
package-level dependencies reduces the classpath size of bundles
by x̃c = 15.40%. This is because, in the case of Require-Bundle, every
exported package in a required bundle is visible to the requiring
bundle, whereas the more fine-grained Import-Package only imports
the packages that are effectively used in the bundle’s code. We
observe a gain of x̃p = 7.11% regarding performance (Figure 5).

4.3.2 Use versions when possible [B2].

H2.2. To tackle this question, we compute the number of ver-
sioned Require-Bundle, Import-Package, and Export-Package relations
and the proportion of those that specify a version range. 84.80%
of the Require-Bundle dependencies are versioned, of which 71.97%
(i.e., 783) use a version range. In the case of Import-Package, 59.22% of
the dependencies are versioned, of which 45.14% use a version range.
Finally, 24.88% of the 2,620 exported packages tuples are explicitly
versioned. The remaining tuples get a value of 0.0.0 according
to the OSGi specification. We observe a tendency to use versions
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Figure 4: Comparing classpath size of corpora Ci (with best
practices Bi applied) to the original corpus C0.

when defining Require-Bundle relations, which is highly advised
given the need to maintain a tight coupling with a specific bun-
dle. Nonetheless, the frequency of version specifications decreases
when using Import-Package and even more so with Export-Package.

H3.1.2 and H3.2.2. The transformation T (B2) takes all unver-
sioned Import-Package and Require-Bundle headers in C0 and assign
a strict version range of the form [V , V ] to them, where V is the
highest version number of the bundle or package found in the cor-
pus. In the resulting corpus C2, we observe that this best practice
has no impact on classpath size (x̃c = 0%), and close to zero impact
on resolution time (x̃p = 1.56%) of individual bundles.

4.3.3 Export only needed packages [B3].

H2.3. In this case, we investigate how many of the exported
packages in the corpus are imported by other bundles, using either
Import-Package or Require-Bundle, taking versions into account. If
an exported package is never imported, this may indicate that this
package is an internal or implementation package that should not be
exposed to the outside. Theremay, however, be a fair amount of false
positives: some of the exported packages may actually be part of a
legitimate API but are just not used by other bundles yet. From the
whole set of exported package tuples, 14.62% are explicitly imported
by other bundles. This suggests that a large portion of the packages
that are exported are never used by other bundles. Nevertheless,
if we also consider packages imported through the Require-Bundle
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Figure 5: Comparing resolution time (ms) of corporaCi (with
best practices Bi applied) to the original corpus C0.

header, at least 80.34% of the total tuples are imported by other
bundles. The question that arises is: is this situation intended, or is
it a collateral effect of the use of Require-Bundle?

H3.1.3 and H3.2.3. [B3] has an impact on classpath size in the
transformed corpusC3: exporting only the needed packages results
in a x̃c = 23.27% gain sizewise. We also observe an improvement
of x̃p = 12.83% in terms of resolution time for individual bundles.

4.3.4 Minimize dependencies [B4].

H2.4. To investigate whether bundles declare unnecessary de-
pendencies, we cross-check the meta-data declared in the Manifest
files with bytecode analysis. We deem any package that is required
but never used in the bytecode as superfluous. In the corpus, 19.25%
of the Require-Bundle dependencies are never used locally, i.e., none
of the packages of the required bundle are used in the requiring bun-
dle’s code. Regarding Import-Package dependencies, 13.78% of the
explicitly-imported packages are not used in the bytecode. Digging
deeper into the relations, we find that the Require-Bundle decla-
rations are implicitly importing 15,399 packages that have been
exported by the corresponding required bundles. From this set, only
16.50% are actually used in the requiring bundle bytecode. These
results suggest that developers tend not to use all the dependencies
they declare and that these could be minimized. The situation is
much worse in the case of implicitly imported packages through
the Require-Bundle header, which backs the arguments of [B1].
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H3.1.4 and H3.2.4. [B4] has a close to zero impact on classpath
size in the transformed corpus C4 (x̃c = 0.14%). However, the
improvement is higher with regards to resolution time (x̃p = 7.24%).

4.3.5 Import all needed packages [B5].

H2.5. We compute the number of packages that are used in
the code but are never explicitly imported in the Manifest file by
analyzing the bundles meta-data and bytecode. Our analysis identi-
fies 2,194 packages (269 unique) that are never explicitly imported.
Overall, 45.70% of the bundles in C0 use a package that they do not
explicitly import (excluding java.* packages).

H3.1.5 and H3.2.5. For every package that can be found some-
where in the corpus but is missing in the Import-Package list of a
given bundle, the transformationT (B5) creates a new Import-Package

statement pointing to it. The resulting corpus C5 does not differ
fromC0 in terms of classpath size, but appears to be slower in terms
of resolution time (x̃p = −13.35%). By creating new explicit depen-
dencies to be resolved, this best practice adds to the dependency
resolution process, which in turn may explain this difference.

4.3.6 Avoid DynamicImport-Package [B6].

H2.6. In the corpus, only 7 bundles declare DynamicImport-Package
dependencies, for a total of 9 dynamic relations declared in C0. 4
of these dynamically imported packages are not exported by any
bundle. This may result in runtime exceptions after the resolution
of the involved bundles. While there are some occurrences in the
corpus of this not-advisable type of dependency, results suggest that
developers tend to avoid using the DynamicImport-Package header
and thus generally follow this best practice.

H3.1.6 and H3.2.6. We do not observe any impact in terms of
classpath size, and in terms of performance we observe a gain of
x̃p = 3.47%. As our benchmark stops at resolution time and [B6]
only has an impact after resolution time, this is unsurprising.

4.4 Analysis of the results
Figure 6 summarizes the overall results regarding relative change
of our analysis for classpath size and resolution time.

4.4.1 Are OSGi best practices being followed? (Q2). Overall, we
observe that most of the best practices we identify are not widely
followed in the corpus. This is for instance the case with [B1],
despite being the most-widely advocated best practice among the
ones we select (cf. Table 1).

Q2: OSGi best practices related to dependency management
are not widely followed within the Eclipse ecosystem.

4.4.2 Does each OSGi best practice have an observable effect on
the relevant qualitative properties of an OSGi bundle? (Q3). [B1] and
[B3] appear to have a positive impact on classpath size (15.40% and
23.27%, respectively), whereas we observe a close to zero impact
for [B2], [B4], [B5], and [B6]. Moreover, five of the selected best
practices (i.e., [B1], [B2], [B3], [B4], and [B6]) show an improvement
on performance that oscillates between 1.55% and 12.83%. [B5]
shows a negative impact of 13.35% relative change for the same
variable. The absence of larger gains may be explained by the fact
that the time required to build the classpath is negligible compared

●

●

●●
●●
●●●●●●●●●●●●

●

●
●●
●●

●●

●
●

●●●

●

●●●●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

C1 C2 C3 C4 C5 C6

−200

−150

−100

−50

0

50

100

C
la

s
s
p
a
th

 S
iz

e
 R

e
la

ti
ve

 C
h
a
n
g
e
 (

in
 %

)

S
h
o
rt

e
r

L
a
rg

e
r

C1 C2 C3 C4 C5 C6

−15

−10

−5

0

5

10

15

Corpus
R

e
s
o
lu

ti
o
n
 T

im
e
 R

e
la

ti
ve

 C
h
a
n
g
e
 (

in
 %

)

F
a
s
te

r
S

lo
w

e
r

Figure 6: Relative change in classpath size and resolution
time between the control (C0) and transformed corpora (Ci ).

to the other phases involved in bundle resolution (e.g., solving
dependencies constraints, as can be observed for [B5]).

Q3:Only one third of the OSGi best practices we analyze have
a positive impact (of up to ∼23% change) on the classpath
size of individual bundles. Either way, impact on resolution
times does not exceed ±13% relative change for all practices.

4.5 Threats to Validity
In principle, the construct of measuring classpath size and resolu-
tion time for OSGi bundles can show the presence of a specific kind
of impact of a best practice, but not the absence of any other kind
of impact. Hence, for where we observed no impact, future analysis
of possible other dependent quality factors (e.g. coupling metrics)
is duly motivated. However, since the prime goal of OSGi is con-
figuring which bundles to dynamical load into the classpath, any
change to OSGi configurationmust also be reflected in the classpath.
Therefore, in theory, we would not expect any other unforeseen
effects when a classpath does not change much. Although relevant,
our research methods did not focus on the downstream effects of
OSGi best practices on system architecture or object-oriented de-
sign quality in source code. However, minor changes to a classpath
may have large impact on those aspects, in particular class visibil-
ity may impact software evolution aspects such as design erosion
and code cloning. In IDEs specifically, performance is not always a
key consideration and other aspects of dependency management
remain to be studied as future work. With respect to internal va-
lidity of the research methods, we calculated classpath size using
the OSGi classloader and wiring APIs. Internally, for every bundle,
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OSGi creates a Java classloader that holds every class local to the
bundle, plus all the classes of the bundles it depends on, regardless
of the granularity of the dependencies, their visibilities, etc. The
OSGi classloaders, on the other hand, hide classes from the required
bundles when necessary, e.g., when a bundle only requires a few
packages from another one using the Import-Package header. We
aimed to calculate classpath size as seen by the OSGi framework
itself, but results may vary if we look at Java classloaders instead.
Besides, our analysis and transformation tools may be incorrect in
some way. We tried to mitigate this pitfall by having our code writ-
ten and reviewed by several developers, as well as by writing a set of
sanity tests that would catch the most obvious bugs. The corpus we
use for the analysis may also greatly influence the results we obtain
for Q2—our conclusions only hold for the Eclipse IDE. Nonetheless,
we tried to mitigate this effect as much as possible, for instance by
taking into account the specificities of the extensions and extension
points mechanism within Eclipse which influences our conclusions
for [B1]. Similarly, for Q3, a different implementation of the OSGi
specification may influence the benchmark results.

5 RELATEDWORK
Seider et al. explore modularization of OSGi-based components us-
ing an interactive visualization tool [37]. They extract information
from meta-data files and organize it at different abstraction levels
(e.g., package and service). Forster et al. perform static analyses of
software dependencies in the OSGi and Qt frameworks [14]. They
identify runtime connections using source code analysis. Manage-
ment of false positives is still a challenge in their research. Both
approaches study dependencies in the OSGi framework but are
more focused on the current state of the framework rather than
potential dependencies specification pitfalls or smells.

With regards to smell detection in configuration management
frameworks, Sharma et al. present a catalog of configuration man-
agement code smells for 4K Puppet repositories on GitHub [38].
Smell distributions and co-occurrences are also analyzed. Jha et al.
provide a static analysis tool that aims at detecting common errors
made in Manifest files of 13K Android apps [21]. Common mistakes
are classified as: misplaced elements and attributes, incorrect at-
tribute values, and incorrect dependency. Karakoidas et al. [24] and
Mitropoulos et al. [29] describe a subset of Java projects hosted in
the Maven Central Repository. They use static analysis to compute
metrics related to object-oriented design, program size, and pack-
age design [24]. FindBugs tool is also used to detect a set of bugs
present in the selected projects. They discover that bad practices
are the main mistakes made by developers, but do not detail the
kinds of recurrent smells. Finally, Raemaekers et al. analyze a set of
projects hosted in the Maven Central Repository to check whether
they adhere to the semantic versioning scheme [35]. They find that
developers tend to introduce breaking changes even if they are
related to a minor change.

With regards to dependency modeling approaches, Shatnawi
et al. aim at identifying dependency call graphs of legacy Java
EE applications to ease their migration to loosely coupled archi-
tectures [39]. Kula et al. also study JVM-based projects to sup-
port migration to more recent versions of a given open source

library [28]. Nevertheless, manifold dependencies are not only spec-
ified in source code but also in configuration files. To face this chal-
lenge, both approaches parse dependencies from these sources and
extract information in their own models: the Knowledge Discov-
ery Meta-model (KDM) [34, 39] and the Software Universe Graph
(SUG) [28]. Jezek et al. statically extract dependencies and potential
smells from the source code and bytecode of applications [20]. Simi-
larly, Abate et al. dig into Debian, OPAM, and Drupal repositories to
identify failing dependencies and to present actionable information
to the final user [1]. To this aim, dependencies information are gath-
ered from components’ meta-data files, which is then represented
in the Common Upgradability Description Format (CUDF) model.

Considering software repositories and dependencies description,
Decan et al. conduct an empirical analysis of the evolution of npm,
RubyGems, andCRAN repositories [9]. Kikas et al. [25] also consider
the first two mentioned repositories and the Crates ecosystem. In
both cases, dependencies are identified and modeled in dependency
graphs or networks to analyze the evolution of the repositories and
the ecosystem resilience. Tufano et al. study the evolution of 100
Java projects, finding that 96% of them contain broken snapshots,
mostly due to unresolved dependencies [43]. Finally, Williams et al.
study more than 500K open source projects taken from Eclipse,
SourceForge, and GitHub. They cross-check users needs against
projects properties, by means of computing and analyzing metrics
provided at forge-specific and forge-agnostic levels [46].

6 CONCLUSIONS & FUTUREWORK
In this paper, we first conducted a systematic review of OSGi best
practices to formally document a set of 11 known best practices
related to dependency management. We then focused on 6 of them
and, using a corpus of OSGi bundles from the Eclipse IDE, we
studied whether these best practices are being followed by devel-
opers and what their impact is on the classpath size and bundle
resolution times. On the one hand, the results show that many
best practices tend not to be widely followed in practice. We also
observed a positive impact of applying two of the best practices
(artificially) to classpath sizes (i.e., [B1] and [B3]), from which we
can not conclude that the respective best practices are irrelevant.
Based on this we conjecture most of the identified advice is indeed
relevant. Deeper qualitative analysis is required to validate this.
On the other hand, the performance results show that OSGi users
can expect a performance improvement of up to ±13% when apply-
ing certain best practices (e.g., [B3]). For future work, building on
this initial study, we plan to scale up our analysis on other OSGi-
certified implementations (e.g., Apache Felix) and other corpora of
bundles (e.g., bundles extracted from JIRA or Github), and to cross-
reference relevant quality attributes on the system architecture and
object-oriented design levels with the current OSGi meta-data and
bytecode analyses.
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