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h i g h l i g h t s

• Thermal model capturing both spatial and temporal temperature correlations in datacenters.
• Formulation of a spatio-temporal thermal-aware scheduling problem for HPC applications.
• Scheduling heuristic using thermal-aware load for job assignment and thermal management.
• Simulations to show the effectiveness of heuristic under a wide range of parameters.
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a b s t r a c t

Datacenters have become an important part of today’s computing infrastructure. Recent studies have
shown the increasing importance of thermal considerations to achieve effective resource management.
In this paper, we study thermal-aware scheduling for homogeneous high-performance computing (HPC)
datacenters under a thermal model that captures both spatial and temporal correlations of the temper-
ature evolution. We propose an online scheduling heuristic to minimize the makespan for a set of HPC
applications subject to a thermal constraint. The heuristic leverages the novel notion of thermal-aware
load to perform both job assignment and thermal management. To respect the temperature constraint,
which is governed by a complex spatio-temporal thermal correlation, dynamic voltage and frequency
scaling (DVFS) is used to regulate the job executions during runtimewhile dynamically balancing the loads
of the servers to improve makespan. Extensive simulations are conducted based on an experimentally
validated datacenter configuration and realistic parameter settings. The results show improved perfor-
mance of the proposed heuristic compared to existing solutions in the literature, and demonstrate the
importance of both spatial and temporal considerations. In contrast to some scheduling problems, where
DVFS introduces performance–energy tradeoffs, our findings reveal the benefit of applying DVFS with
both performance and energy gains in the context of spatio-temporal thermal-aware scheduling.

1. Introduction

Datacenters have become an important part of today’s comput-
ing infrastructure. With the ever increasing power consumption
andhigh packing density of servers, both the heat dissipated in dat-
acenters and the temperature have increased dramatically. High
temperature is undesirable in the operation of a datacenter for
several reasons: (1) It reduces the reliability of the servers. In par-
ticular, some studies have shown that the failure rate of computing
nodes will double for every 10 ◦C increase in temperature [1,2].
(2) Increased temperature induces a larger cooling cost, which has
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been shown to increase nonlinearly with the temperature [3,4]. (3)
A higher temperature also leads to more leakage current, which in
turn increases the static power consumption of the servers [5]. As
a result, thermal management has been widely recognized as an
important technique for optimizing the application performance
and reducing the energy consumption in modern datacenters.

Modeling the thermal behavior of datacenters is an essential
first step to the design of effective thermal management tech-
niques. The literature contains three main approaches to charac-
terize the thermal map of a datacenter. The first approach ap-
proximates the temperatures of the servers using simple analytical
models, which are usually based on classical heat transfer laws
and cyber–physical properties of the datacenters [4,6,7]. The sec-
ond approach applies complex predictive models, which use more
sophisticated techniques, such as machine learning and neural



networks, to predict the temperatures at various locations of a dat-
acenter [8,9]. The last approach employs elaborate computational
fluid dynamics (CFD) simulations to model the temperature evo-
lution in a datacenter [10–12]. Although the CFD-based approach
offers the best accuracy, it is too slow to facilitate fast and real-time
decision making. In contrast, the first two approaches incur much
lower overheads while offering reasonable temperature estimates,
which can be validated offline by CFD simulations or calibrated
online by ambient and onboard temperature sensors (if available).
Hence, many researchers have relied on the first two approaches
for modeling the temperature in datacenters and for designing
scheduling solutions.

In this paper, we present a spatio-temporal analytical model to
characterize the thermal behavior of datacenters, thus allowing the
resource management system to make fast and online scheduling
decisions in real time. Indeed, recent studies [4,7] have shown
that the server temperature in a datacenter exhibits both spatial
and temporal correlations. Spatially, the inlet temperatures of the
servers are related to each other via a heat-distribution matrix,
which is determined by the complex airflow and heat recirculation
in the datacenter. Temporally, the temperature of each server at
any time is related to both its current power consumption and its
historical temperature due to the physical law of cooling. Although
the literature has considered eithermodel separately (see Section 2
for details), to the best of our knowledge, no previous work has
studied a holistic spatio-temporal thermalmodel, which is capable
of providingmore accurate approximations to the datacenter ther-
mal map. Moreover, the considered spatio-temporal model does
not require any knowledge or characteristic of the benchmarks,
and conforms only to physical laws and datacenter configurations.

Based on this spatio-temporal model, we study a thermal-
aware scheduling problem for homogeneous high-performance
computing (HPC) datacenters. The objective is to minimize the
makespan for a set of computation-intensive applications subject
to a temperature threshold, which cannot be violated at any time
during the execution. Indeed, such a threshold is imposed in many
resourcemanagement systems for either energy reduction consid-
erations or reliability concerns [2,3]. To tackle this problem, we
introduce a novel notion, called thermal-aware load, to capture
more precisely the loads of the servers under the thermal con-
straint.We propose an online scheduling heuristic that applies this
notion to both job assignment and thermal management aspects
of the scheduling decision. For job assignment, we strategically
choose the server to assign each arriving job in such a way that
leads to well-balanced loads (in the thermal-aware sense) among
all servers, which helps to minimize the makespan. For thermal
management, we rely on dynamic voltage and frequency scaling
(DVFS) to regulate the job executions during runtime for respect-
ing the temperature threshold. To further improve the makespan,
thermal-aware load is again used for prioritizing the servers while
applying DVFS to cope with the complex space–time correlation
of the temperature evolution. The proposed scheme guarantees
to respect the thermal threshold while reducing the makespan
with low computational overhead. The use of DVFS also allows the
heuristic to significantly reduce the energy consumption.

We conduct extensive simulations to evaluate the effectiveness
of our approach based on an experimentally validated datacenter
configuration and realistic parameter settings. The results confirm
that our algorithm outperforms several existing solutions in the
literature, and hence demonstrate the importance of both spa-
tial and temporal considerations in the context of thermal-aware
scheduling. Finally, in contrast to some other scheduling problems,
where DVFS introduces performance–energy tradeoffs, our find-
ings reveal the benefit of applying DVFS with both performance
and energy gains in the context of spatio-temporal thermal-aware
scheduling.

The main contributions of this paper are summarized as fol-
lows:

• An analytical thermal model that captures both spatial and
temporal behaviors of the temperature evolution in data-
center environments.

• The formulation of a spatio-temporal thermal-aware
scheduling problem for high-performance computing (HPC)
applications in homogeneous datacenters.

• An online scheduling heuristic that applies the notion of
thermal-aware load for both job assignment and thermal
management.

• A comprehensive set of simulations to demonstrate the ef-
fectiveness of the proposed heuristic under a wide range of
parameter settings in a realistic datacenter configuration.

Finally, we stress once again that our proposed solution works
for computation-intensive jobs and we leave the consideration of
I/O-intensive and communication-intensive jobs for future work.
The rest of this paper is organized as follows. Section 2 reviews
some related work on thermal modeling and scheduling. Sec-
tion 3presents the spatio-temporal thermalmodel, based onwhich
we formulate a thermal-aware scheduling problem in Section 4.
Section 5 describes our thermal-aware scheduling heuristic. The
simulation results are presented in Section 6. Finally, Section 7
concludes the paper with future directions.

2. Related work

Many papers have studied thermal-aware scheduling in data-
centers with either a spatial model or a temporal model. In this
section, we review some related work on thermal modeling and
scheduling. Interested readers can refer to [13] for a recent survey
of the field.

2.1. Work on spatial correlation

To characterize the spatial correlation of the temperatures in
a datacenter, Moore et al. [3] first introduced the notion of heat
recirculation. They also proposed ‘‘Weatherman’’, a software tool
to predict the thermal profile of a datacenter by taking the topology
and heat flow into account [8]. Tang et al. [4] formally defined
a heat-distribution matrix via an abstract heat flow model, and
applied it in the optimization of the cooling cost of a datacenter.
This abstract spatial model has been subsequently adopted by a
series of research, and it was also successfully validated by com-
putational fluid dynamics (CFD) simulations in [14,15]. Pakbaznia
and Pedram [16] considered the problem of minimizing the total
energy consumption of a datacenter by performing server con-
solidation while accounting for heat recirculation. Mukherjee et
al. [17] considered a similar problemwhile taking the temporal job
placements into account (but without a temporal thermal model).
Sun et al. [18] studied performance–energy tradeoff in heteroge-
neous datacenters with heat recirculation effect. They also pro-
posed effective server placement strategies in order to minimize
the cooling cost. The latter problem was independently studied
by Pahlavan et al. [19], who utilized integer linear programming
(ILP)-based methods to find the optimal location of each server in
the datacenter. By assuming specific heat recirculation patterns,
Mukherjee et al. [20] designed approximation algorithms for a
couple of related thermal-aware scheduling problems.

2.2. Work on temporal correlation

The temporal temperature correlation has also attracted much
attention. Ramos and Bianchini [6] presented ‘‘C-Oracle’’, a soft-
ware infrastructure to predict the servers’ temperatures in a data-
center based on simple temporal models governed by heat trans-
fer laws. Skadron et al. [21] was the first to apply the lumped-
RC model to capture the transient behavior of temperatures in



processors. They also developed ‘‘HotSpot’’, a thermal modeling

and simulation tool for microprocessor architectures [22]. This

simple temporal model has then been widely adopted by a lot

of subsequent research. Wang et al. [7] applied the lumped RC

model to predict the temperatures of the servers in a datacenter

in order to make workload placement decisions. Rajan and Yu [23]

relied on the same model to maintain the temperature threshold

of the system by using DVFS while maximizing the throughput.

Zhang and Chatha [24] designed polynomial-time approximation

schemes for the discrete version of the problem (where there is

only a discrete set of DVFS levels) with the objective of minimizing

the makespan. Yang et al. [25] proposed intelligent ordering of the

jobs based on their thermal characteristics for reducing the num-

ber of thermal violations. Bansal et al. [26] designed competitive

algorithms for the online scheduling problem of minimizing the

maximum temperature of a server subject to the deadlines of the

jobs. Chrobak [27] proposed an online algorithm for the problem of

maximizing the number of jobs that meet their deadlines subject

to a thermal threshold.

2.3. Other work on thermal-aware scheduling

Many other papers have been devoted to thermal-aware

scheduling and resource management for datacenters from differ-

ent perspectives. Chavan et al. [28] proposed TIGER, a thermal-

aware technique specifically designed to reduce the cooling cost

due to storage systems in datacenters. Meng et al. [29] consid-

ered communication-bound HPC applications and studied joint

optimization of cooling and communication costs via job alloca-

tion. Piaţek [30] studied thermal-aware load balancing with fan

management in air-cooled server systems in order to improve

the energy efficiency. Polverini et al. [31] proposed a provably-

efficient thermal-aware scheduler to dispatch jobs across geo-

graphically distributed datacenters while taking the energy con-

sumption (including that due to cooling) into consideration. Abbasi

and Gupta [32] considered a similar problem for geo-distributed

datacenters, but with the additional constraint of carbon cap-

ping requirement. They proposed a predictive solution to handle

the tradeoffs of energy cost and carbon footprint. Cupertino et

al. [33] provided a holistic approach, considering workload and

application profiles, power and coolingmodels, as well as resource

management and scheduling policies whileminimizing the energy

consumption at different levels of a datacenter. Finally, Sarood et

al. [34] proposed thermal-aware load balancing for HPC datacen-

ters using DVFS and implemented the algorithm in the Charm++

runtime system. However, they considered neither heat recircula-

tion nor the temporal temperature evolutionwhileminimizing the

cooling energy consumption.

In this paper, we consider a spatio-temporal thermalmodel and

an induced scheduling problem by capturing both dimensions of

the temperature correlation. To the best of our knowledge, this is

the first time such a model is studied in a datacenter environment

and used by a scheduling algorithm.

3. Spatio-temporal thermal model

In this section, we present a spatio-temporal model to charac-

terize the thermal behavior for a set M = {M1,M2, . . . ,Mm} of m
homogeneous computing nodes (or servers) in a typical datacenter

environment.

Fig. 1. The heat-distribution matrix of a datacenter consisting of 50 servers.

3.1. Spatial model

Typical datacenters exhibit the heat recirculation phenomenon
[3], where the hot air from the server outlets recirculates in the
room and is mixed with the supplied cool air from the Computer
Room Air Conditioning (CRAC) unit, causing the temperature at
the server inlets to be higher than that of the supplied cool air.
We characterize this effect by a heat-distribution matrix [4], which
is a m-by-m matrix D and each element di,k ∈ D denotes the
temperature increase at the inlet of server Mi per unit of power
consumed by server Mk. The inlet temperature T in

i (t) of server Mi

at time t thus satisfies:

T in
i (t) = Tsup +

m∑

k=1

di,kPk(t) , (1)

where Pk(t) denotes the power consumption of server Mk at time
t and Tsup denotes the temperature of the supplied air by the
CRAC unit. In this paper, we assume that Tsup is fixed and leave
the investigation of varying the supplied air temperature (e.g., for
cooling optimization) for future work.

In an ideal (but unrealistic) datacenter without any heat recir-
culation, the heat generated by all servers returns directly back to
the CRAC unit, and the heat-distribution matrix becomes an all-
zero matrix. The inlet temperature of all nodes is then the same
as the supplied air temperature. In a typical datacenter, where the
cool air is supplied through raised floors, previous research [3,4]
has observed that the inlet temperature of servers at upper levels of
the racks is affectedmore by the power consumption of the servers
at lower levels, but not the other way around. This is because
of the fact that hot air tends to move upwards. In general, the
heat-distribution matrix of a datacenter depends on the pattern
of air movement, which is usually fixed for a given datacenter
configuration and physical layout.

Fig. 1 plots the heat-distribution matrix of a datacenter con-
sisting of 50 servers used for the experimental study in Section 6.
Note that the diagonal of the matrix is not zero, meaning that the
inlet temperature of a server is also affected by its own power
consumption with heat recirculation.

3.2. Temporal model

Weapply the lumped RCmodel [22] to characterize the temporal
behavior of a computing node’s temperature. In this model, the
temperature is assumed to obey the Newton’s law of cooling, that
is, its rate of decrease is proportional to the temperature difference
between the node and the ambient environment, which in the
case of a datacenter is the air from the server inlet. The rate of



Fig. 2. The temperature variation of a server with fixed inlet temperature.

temperature increase, on the other hand, is proportional to the
server’s power consumption. Let Ti(t) denote the temperature of
node Mi ∈ M at time t . The overall rate of change for Ti(t) can be
described by the following ordinary differential equation:

dTi(t)

dt
= −

1

RC
(Ti(t) − T in

i (t)) +
1

C
Pi(t) , (2)

where R and C denote the thermal resistance and thermal capaci-

tance of serverMi, respectively, Pi(t) denotes the power consump-
tion of serverMi at time t , and T in

i (t) denotes the inlet temperature
of server Mi at time t . We assume that time is divided into equal-
length intervals, which are called time steps, and each time step has
length ∆t . Solving Eq. (2), we can get the temperature of node Mi

at time t as follows:

Ti(t) =
∫ t

t−∆t

(
Pi(t

′)

C
+

T in(t ′)

RC

)
e− t−t′

RC dt ′ + Ti(t − ∆t)e− ∆t
RC . (3)

For simplicity, we scale the length of a time step so that ∆t = 1.

Now, define f = e− 1
RC , and suppose the inlet temperature and

power consumption of node Mi are constant during time step t

or interval (t − 1, t], and they are denoted by T in
i (t) and Pi(t),

respectively. We can then simplify Ti(t) as:

Ti(t) = (1 − f )
(
Pi(t)R + T in

i (t)
)
+ fTi(t − 1) . (4)

According to Eq. (4), the temperature of a node at any time t

is affected by several factors, namely, the node’s temperature at
previous time t−1, the thermal resistance, the power consumption
as well as the inlet temperature during time step t .

Fig. 2 plots the temperature variation of a server during the
execution of a job alongside its power consumption based on the
thermal parameters described in Section 6.1. In this example, the
inlet temperature of the server is fixed, while, in practice, the
inlet temperature could vary due to the activities of other nodes
according to the spatial model described above. While the actual
workload used in this example is not important, the point is to
illustrate the temporal thermalmodel by showing the temperature
evolution.

3.3. Spatio-temporal model

The preceding two subsections presented a spatial model and
a temporal model that characterize, respectively, the thermal be-
haviors of two different components in a datacenter. Specifically,
the spatial model describes the correlated behavior for the inlet
temperatures of all the servers in the room, while the temporal
model describes the temperature evolution for an individual com-
puting node inside each server. Traditionally, these two different
types of temperatures have not been considered simultaneously
by the literature: the inlet temperature is often linked to cooling

optimization, while the node temperature often comes as an op-
timization objective or constraint. Since the two phenomena co-
exist in practical datacenters and are orthogonal to each other, both
of them should be taken into account in order to accurately model
the temperature evolution of a computing node (as the temporal
behavior of a computing node depends on its inlet temperature,
which is in turned spatially correlated with other servers). In
this subsection, we present a spatio-temporal thermal model by
combining the lumped RC model and heat recirculation model.

To this end, substituting Eq. (1) into Eq. (4), we get the following
expression for the temperature of computing node Mi at any time
t:

Ti(t) = (1 − f )

(
Pi(t)R + Tsup +

m∑

k=1

di,kPk(t)

)
+ fTi(t − 1) . (5)

Define the steady-state temperature of nodeMi at time t as

T ss
i (t) = Pi(t)R + Tsup +

m∑

k=1

di,kPk(t) . (6)

Then, we can write Ti(t) as

Ti(t) = (1 − f )T ss
i (t) + fTi(t − 1) . (7)

The thermal model described by Eq. (7) essentially shows that
the temperature evolution of a computing node is determined
by both spatial and temporal correlations. With constant power
consumption and supplied air temperature, the node’s transient

temperature will converge exponentially to the steady state after
sufficiently long time. Due to heat recirculation, varying the power
consumption of any particular nodemay also lead to a new steady-
state temperature for all nodes.

While both spatial and temporal models have been separately
studied and validated by the literature (see Section 2), a holistic
thermal model that incorporates both dimensions appears to be
novel and has not been considered. Given the characteristics of the
temperature evolution in a datacenter, it is mandatory to consider
such a model while designing effective resource management and
scheduling solutions.

4. Thermal-aware scheduling problem

In this section, we consider a thermal-aware scheduling prob-
lem motivated by the spatio-temporal thermal model for the on-
line scheduling of high-performance computing (HPC) applications
in homogeneous datacenters.

4.1. Models and objective

We consider the scheduling of computation-intensive HPC ap-
plications (such as linear algebra kernels: matrix multiplications
or factorizations, etc.) in homogeneous datacenters. These appli-
cations arise in many scientific computing and machine learn-
ing domains, and can be implemented as parallel jobs that ex-
ecute on servers with multiple processors. Specifically, let J =
{J1, J2, . . . , Jn} denote a set of n independent jobs, and let M =
{M1,M2, . . . ,Mm} denote a set of m homogeneous servers, where
each server may contain multiple processors or cores. Each server
Mi ∈ M has a static power consumption Pstatic when it is idle. Each
job Jj ∈ J is characterized by a release time rj, a processing time (or
work) wij and a dynamic power consumption pij on server Mi. Since
we assume homogeneous servers, the work and power are the
same on all servers, i.e.,wij = wj and pij = pj for all 1 ≤ i ≤ m. Jobs
arrive over time in an onlinemanner, and the scheduler is unaware
of a job before it arrives, but the work and power characteristics
of the job become known after arrival by prior profiling of the



application or user estimates (e.g., based on the size of the matrix
to be factorized). We assume the moldable scheduling model [35],
in which a job upon arrival is configured to execute on all the
processors of a server in parallel to minimize the execution time
with better data locality. Thus, each server is assumed to be able
to host only one job at any time for efficiency. Job migration is
not allowed, as the cost associated with migrating the job across
different servers could be expensive in HPC datacenters. However,
idle time can be inserted during a job’s execution, which at times is
necessary to cool the server down so as to prevent its temperature
from exceeding a critical threshold.

Dynamic voltage and frequency scaling (DVFS) is an effective
technique to manage both power and temperature on modern
architectures. The dynamic power consumption of a server is well
known to be a convex function of its processing speed [36,37].
Suppose the processing time wj and dynamic power pj of a job
Jj are measured with respect to the maximum speed smax of the
servers, which is scaled to be 1. The dynamic power consumption
of a server when executing job Jj at speed s ∈ [0, 1] can then be
approximated by sαpj, where α > 1 denotes the power parameter

(usually 2 or 3 for CMOS-based processors), and the execution time
of the job is wj/s. Since practical systems only have a few discrete
speeds to choose from, let S = {s0, s1, . . . , smax} denote the set
of available speeds. For convenience, we include the null speed
s0 = 0 in S , which corresponds to the server in the idle state
without running any job. Let xij(t) ∈ {0, 1} be a binary variable that
takes value 1 if job Jj is executed on server Mi at time step t and 0
otherwise. Let si(t) ∈ S denote the processing speed of serverMi at
time step t . The total power consumption of serverMi at time step
t can be expressed as follows:

Pi(t) = Pstatic +
n∑

j=1

xij(t)si(t)
αpj . (8)

The temperature Ti(t) of the server at time t is governed by the
spatio-temporal model presented in the preceding section.

The completion time cj of job Jj is defined as the smallest time in-
stance by which all the work of the job is completed. The objective
is to minimize the maximum completion time of the jobs, or the
makespan, subject to a temperature threshold Tthresh for all servers
at all time. The following shows the optimization problem:

minimize Cmax = max
j

cj

subject to Ti(t) ≤ Tthresh, ∀i, t.

The temperature threshold is usually imposed by the datacenter
resource management system for the following considerations:
(1) To reduce the additional energy cost (e.g., due to cooling and
linkage power) [3,5]. (2) To reduce the failure rate of the proces-
sors for reliability concerns [2]. (3) To avoid hardware interrupt
triggered by some chips when the temperature exceeds a certain
redline value, which can cause severe performance degradation
and energy increase [25].

4.2. Dynamic energy consumption

Furthermore, we consider the dynamic energy consumed by
executing the jobs as an additional metric, which is defined as

Edyn =
∫ Cmax

0

m∑

i=1

n∑

j=1

xij(t)si(t)
αpjdt . (9)

We point out that energy is not an optimization objective in this
paper; it is considered simply to observe the impact of DVFS on the
energy consumption, which can usually be traded off against a per-
formance metric (e.g., makespan) in many scheduling problems.
In Section 6, we make the interesting observation that makespan

and energy can be improved simultaneously for the thermal-aware
scheduling problem presented above. Note that we only consider
the dynamic energy due to computing. For a fixed supplied air
temperature Tsup, the literature [3,4,17] suggests that reduced com-
puting energy also leads to reduce cooling energy, thus improving
the total energy consumption. The quantitative optimization of
cooling energy is out of scope of this paper, andwe leave it as future
work.

4.3. Peak power and thermal characterization

Based on the previously described thermal model and schedul-
ingmodel, we now define the peak power consumption of a server
and derive a thermal characterization. First, since the contributions
of the supplied air and static power to the servers’ temperatures do
not change over time, by scaling the initial steady-state tempera-
tures of the servers, we can simplify the model by setting Tsup = 0
and Pstatic = 0. According to Eq. (7), the temperature of server Mi

at any time t then becomes

Ti(t) = (1 − f )

(
P
dyn

i (t)R +
m∑

k=1

di,kP
dyn

k (t)

)
+ fTi(t − 1) , (10)

where P
dyn

i (t) denotes the dynamic power consumption of Mi at
time t . We define the peak power of any server (also known as the
thermal design power) as follows.

Definition 1. The peak power P
peak

i of a node Mi is the maximum
dynamic power that can be consumed on the node such that the
temperature threshold can be feasibly maintained, assuming the
node’s temperature starts at zero (e.g., by inserting sufficient idle
time) and no cross interference from other nodes. From Eq. (10), by
setting Ti(t−1) = 0, P

dyn

k (t) = 0 for∀k 6= i, and by enforcing Ti(t) ≤
Tthresh, we can get (1 − f )

(
P
dyn

i (t)R + di,iP
dyn

i (t)
)

≤ Tthresh. This

leads to the following expression for the peak power (ormaximum
dynamic power) of nodeMi:

P
peak

i =
Tthresh

(1 − f )(R + di,i)
. (11)

Thus, a job with dynamic power consumption above a server’s
peak power cannot possibly be scheduled using the maximum
speed without violating the temperature threshold. However, the
power consumptions of practicalworkloads rarely exceed the ther-
mal design power of the chips. Furthermore, the temperature of
an idle server cannot exceed the thermal threshold due to heat
recirculation alone, because the major contribution of heat still
comes from local job execution. Thus, for any serverMi at any time
t , we should have

∑m

k=1di,kP
dyn

k (t) ≤ Tthresh if P
dyn

k (t) ≤ P
peak

k for all
1 ≤ k ≤ m. This implies, for any serverMi, the following property:

m∑

k=1

di,k

(1 − f )(R + dk,k)
≤ 1 . (12)

Note that Eq. (12) provides a thermal characterization of a datacen-
ter system, which should be satisfied regardless of the workloads
and scheduling strategies.

5. Spatio-temporal thermal-aware scheduling

In this section, we discuss the challenge of the thermal-aware
scheduling problem and propose a heuristic algorithm that con-
sists in a job assignment policy and a thermal management policy
based on the novel notion of thermal-aware load.



5.1. Challenge and strategy

The thermal-aware scheduling problem poses a complex op-
timization challenge due to its thermal constraints from both
temporal and spatial dimensions. The offline version of this prob-
lem contains the classical multiprocessor makespan scheduling
problem, which is known to be NP-hard [38], as a special case.
Hence, the thermal-aware problem is NP-hard as well. In this
paper, we focus on the online version of this problem. Besides
the usual constraint that job arrival information is not available
to the scheduler a priori, the following describes two additional
challenges faced by the design of a scheduling solution because of
the thermal constraints.

• From the temporal point of view, the thermal threshold may
prevent the (full-speed) execution of a power-intensive job
on a node at certain time steps.

• From the spatial point of view, the execution of a local job
may also be restricted by the cross interference from other
nodes due to heat recirculation.

In particular, the second challenge requires the local scheduling
decisions on each node to be made with a more global perspec-
tive. To cope with the challenges, we complement conventional
scheduling with a thermal management policy, which uses DVFS
to resolve any potential conflict that may arise when the servers
execute simultaneously their jobs. Specifically, we design policies
for the following two aspects of the scheduling problem.

• Job assignment: Decides to which server each arrived job
should be assigned. The assigned jobs are maintained in a
local queue Qi for each server Mi. Each server has a load
(commonly referred to as the sum of the work of all the jobs
currently in its local queue). Since the loads are generally
different on different servers due to the diversity in the jobs’
work, this policy will strategically choose a server to assign
each job so thatmore balanced loads can be achieved, which
helps to minimize the makespan.

• Thermal management: Decides at which speed each server
should execute its local jobs during each time step in order
to respect the temperature threshold. This policy may re-
duce the speed of, or even completely idle, a server. In the
latter case, the temperature threshold of the node is guaran-
teed to be respected because of the thermal characterization
described in Section 4.3. Note that, because of the speed
adjustment, the makespan is also indirectly affected by the
thermal management policy.

5.2. Thermal-aware load

We first introduce the notion of thermal-aware load, based on
which the scheduling decisions are performed. The following gives
the relevant definitions.

Definition 2. The critical power Pcrit
i of a node Mi is the dynamic

power that can be continuously consumed on the node, such that
the steady-state temperature does not violate the temperature
threshold, assuming no cross interference from other nodes. From
the thermal model given by Eq. (7) and by setting Tsup = 0 and
Ti(t − 1) = Ti(t), we get

Pcrit
i =

Tthresh

R + di,i
. (13)

Note the difference between the peak power of a node given
in Eq. (11) and the critical power given in Eq. (13). The former

may require inserting idle times during the execution in order to
respect the temperature threshold, while the latter couldmaintain
the threshold without idle times. Both quantities assume no inter-
ference from other nodes.

Definition 3. The critical speed scritij of executing job Jj on nodeMi is
the largest available speed in S to run the job such that the critical
power of the node is not exceeded, i.e.,

scritij = max
{
s ∈ S : sαpj ≤ Pcrit

i

}
, (14)

where pj denotes the full-speed power consumption of job Jj.

Intuitively, the critical speed represents the fastest continuous
speed a job can be completed on a node. If the value scritij obtained

above is 0, the critical speed is then defined as scritij = α

√
Pcrit
i

pj
, whose

value is not inS but ensures that the notion of thermal-awarework
below is properly defined. In this case, the critical speed can be
approximated by alternating the job execution between a higher
speed and a lower speed in S .

Definition 4. The thermal-aware work wT
ij (t) of job Jj on node Mi

at any time t is the time to execute the remaining work of the job
using the critical speed, i.e.,

wT
ij (t) =

wj(t)

scritij

, (15)

where wj(t) denotes the remaining work of job Jj at time t .

Definition 5. The thermal-aware load LTi (t) of node Mi at any time
t is the sum of the thermal-aware work of all the jobs currently in
its local queue, i.e.,

LTi (t) =
∑

Jj∈Qi

wT
ij (t) . (16)

In contrast to the thermal-aware load, the traditional definition
of a server’s load is the sum of the work (unit-speed execution
time) of the jobs assigned to it. In this context, we can adapt the
traditional load definition by the following one using the sum of
the jobs’ remaining work, and we call it work-based load.

Definition 6. Thework-based load LWi (t) of nodeMi at any time t is
the sum of the remaining work of all the jobs currently in its local
queue, i.e.,

LWi (t) =
∑

Jj∈Qi

wj(t) . (17)

Note that the term ‘‘load’’ is used in both definitions to follow
the literature convention. It also enables a generic approach to de-
sign job assignment and thermal management policies presented
shortly in the next two subsections. We point out that both load
definitions do not take the cross interference of the servers into
account, thus cannot guarantee exact prediction on the actual ex-
ecution time of a job. This would require knowledge of interaction
among all servers at all time steps, which is very difficult (if not
impossible) to model with tractable complexity.

Compared to the work-based load, however, thermal-aware
load is able to provide a more relevant measure of a server’s actual
load in the thermal-aware context, and therefore better approx-
imates the time to execute the jobs without interference from
the other servers. An important contribution of our thermal-aware
scheduling heuristic is to apply the concept of thermal-aware load
to make scheduling decisions in both job assignment (Section 5.3)
and thermal management (Section 5.4). The limitation of neglect-
ing cross interference is handled by thermal management policy,



Algorithm 1 Job Assignment Policy

Input: newly arrived jobs during (t − 1, t], and existing load Li(t) of each
serverMi ∈ M at time t

Output: job assignment decision for time step t + 1
1: if new jobs arrived then

2: for each arrived job Jj do

3: i∗ = 0 and Lmin = ∞
4: for i = 1 tom do

5: if Li(t) + wij(t) < Lmin then

6: Lmin = Li(t) + wij(t) and i∗ = i

7: end if

8: end for

9: assign job Jj to node Mi∗

10: update Li∗ (t) = Li∗ (t) + wi∗ j(t)
11: end for

12: end if

which prioritizes the servers based on their thermal-aware loads,
and dynamically adjusts priorities and speed assignments during
runtime by incorporating the cross interference.

5.3. Job assignment policy

Algorithm 1 presents the generic job assignment policy, which
is invoked at time t (the beginning of time step t+1) for all t ∈ Z≥0.
Specifically, if there are newly arrived jobs during the previous
time step t , the policy assigns each new job to a server that results
in the smallest cumulative load, which shares the same spirit as
the well-known LIST scheduling algorithm [39] for homogeneous
servers or the HEFT scheduling algorithm [40] for heterogeneous
servers. Job assignment policy is also commonly referred to as load
balancing policy in the literature.

An interesting feature of the policy lies in its generality in
a sense that different notions of ‘‘load’’ can be applied for job
assignment. Depending on the specified ‘‘load’’, the part of the
pseudocode highlighted in red (Lines 5, 6 and 10) can be replaced
by the corresponding definition. For example, in case of thermal-
aware load,we have Li(t) = LTi (t) andwij(t) = wT

ij (t). If work-based

load is used instead, we have Li(t) = LWi (t) and wij(t) = wj(t).
The complexity of assigning each job is linear in the number

m of servers. If thermal-aware load is used, the complexity is
O(m log K ), where K = |S| denotes the number of available speeds
in S . This is due to the computation of the job’s critical speed on
each server by performing a binary search on the list of speeds.

5.4. Thermal management policy

Algorithm 2 shows the thermal management policy, which
applies DVFS to regulate the temperatures of the servers during
their execution. First, the servers are prioritized according to their
current loads: heavier load implies higher priority. In the pseu-
docode (Line 1), γ (·) denotes a permutation of the servers sorted
in the non-increasing order of load at time t . Again, as in the
job assignment policy, the notion of ‘‘load’’ is also generic here:
either thermal-aware load LTγ (i)(t) or work-based load LWγ (i)(t) can
be applied (highlighted in red).

In the event of potential conflict, the policy will try to maintain
faster speed for servers with higher priority (thus heavier load)
while reducing the speed of low-priority servers. Intuitively, this
strategy provides better dynamic load balancing during runtime so
as tominimize the overall execution time. Specifically, the strategy
relies on the following concepts.

Definition 7. The temperature slack T̂i(t) of node Mi in any time
step t is the remaining steady-state temperature allowed on the
node so as to respect the temperature threshold.

Algorithm 2 Thermal Management Policy

Input: local queue Qi, temperature Ti(t) and load Li(t) of each server
Mi ∈ M at time t

Output: thermal management decision for time step t + 1
1: sort the servers in non-increasing order of load, i.e., Lγ (1)(t) ≥

Lγ (2)(t) ≥ · · · ≥ Lγ (m)(t)
2: for i = 1 tom do

3: compute T̂i(t + 1) = Tthresh−f ·Ti(t)
1−f

4: end for

5: for i = 1 tom do

6: if Qγ (i) 6= ∅ then

7: compute server Mγ (i)’s power slack P̂γ (i)(t + 1) =
min

(
T̂γ (1)(t+1)

dγ (1),γ (i)
, . . . ,

T̂γ (i−1)(t+1)

dγ (i−1),γ (i)
,

T̂γ (i)(t+1)

R+dγ (i),γ (i)

)

8: find largest speed s ∈ S that satisfies s ≤ α

√
P̂γ (i)(t+1)

pj
, where pj is

the full-speed power consumption of the first job Jj ∈ Qγ (i), and
set sγ (i)(t + 1) = s

9: update T̂γ (i)(t + 1) = T̂γ (i)(t + 1) − sαpjR

10: for k = 1 to m do

11: update T̂k(t + 1) = T̂k(t + 1) − sαpjdk,γ (i)

12: end for

13: end if

14: end for

Definition 8. The power slack P̂i(t) of node Mi in any time step t

is the remaining power consumption allowed on the node so as to
respect the temperature slacks of all nodes.

For each nodeMi, the algorithm computes its temperature slack
T̂i(t+1) for the next time step t+1 based on the temporal thermal
model (Lines 2–4). In particular, by solving Ti(t + 1) ≤ Tthresh from
Eq. (7), we can get

T ss
i (t + 1) ≤

Tthresh − f · Ti(t)
1 − f

= T̂i(t + 1) . (18)

Since the steady-state temperature is related to the power con-
sumptions of all servers based on the spatial thermal model (see
Eq. (6)), the temperature slack of a server will drop as jobs start to
be assigned. The goal is to maximize the execution speeds (so as to
maximize the throughput), while keeping the temperature slacks
nonnegative for all servers. To this end, servers are considered one
by one in the prioritized order, so that a high-priority server re-
ceives speed assignment first, which helps to dynamically balance
the loads of all servers during runtime. Hence, it is possible for a
high-priority server to delay the execution of a low-priority one,
but not the other way around.

For each server Mγ (i), the algorithm computes its power slack
P̂γ (i)(t + 1) (Line 7), based on the temperature slack of the
server itself as well as those of the higher priority servers, i.e.,
Mγ (1), . . . ,Mγ (i−1). These servers are considered because they have
already received speed assignments, and we need to ensure that
their temperature slacks will not become negative due to the
new speed assignment for server Mγ (i). The lower priority servers,
i.e., Mγ (i+1), . . . ,Mγ (m) need not be considered, since no speed has
been assigned to them yet for this time step. Hence, the charac-
teristic of the system (Eq. (12)) guarantees that their temperatures
will not exceed the threshold (or equivalently, their temperature
slacks will not be negative).

From the spatio-temporal thermal model (Eq. (6)), we know
that the power consumption of server Mγ (i) affects its own tem-
perature slack through thermal resistance R and the temperature
slacks of all the nodes (including itself) through heat-distribution
matrix D. Therefore, to keep the thermal slacks nonnegative, the
power slack P̂γ (i)(t + 1) must satisfy the following constraints



simultaneously:

T̂γ (i)(t + 1) ≥
(
R + dγ (i),γ (i)

)
P̂γ (i)(t + 1) , (19)

T̂γ (k)(t + 1) ≥ dγ (k),γ (i)̂Pγ (i)(t + 1), ∀1 ≤ k < i . (20)

Hence, the power slack P̂γ (i)(t + 1) is given by

P̂γ (i)(t + 1) = min

(
T̂γ (1)(t + 1)

dγ (1),γ (i)

,
T̂γ (2)(t + 1)

dγ (2),γ (i)

, . . .,

T̂γ (i−1)(t + 1)

dγ (i−1),γ (i)

,
T̂γ (i)(t + 1)

R + dγ (i),γ (i)

)
. (21)

To execute the current job in the local queueQγ (i), the process-
ing speed of serverMγ (i) is then set to be the largest one in the set of
available speeds such that the resulting power consumption does
not exceed the power slack (Line 8). Finally, the temperature slacks
are updated by considering the contributions of actual power con-
sumption of server Mγ (i) to itself by convection (Line 9) and to all
the nodes by heat recirculation (Lines 10–12).

The complexity of this procedure is dominated by the com-
putation of power slack and the update of temperature slack for
each server, which takes O(m2) time. As a typical time step in HPC
servers is in the order of milliseconds or seconds, the overhead to
compute the scheduling decisions is in practice negligible in front
of the job executions for current common datacenters.

Remark. We point out that both job assignment and thermal
management policies presented above can be generally applied to
processors without DVFS. In this case, the set S of available speeds
contains only two values, i.e., {0, 1}. Hence, each server either
executes a job with the full speed or is left completely idle during a
time step. The dynamic energy consumptionwill not be affected by
the scheduling heuristics, and is simply given by the total dynamic
energy of all jobs executed in full speed, i.e., E

full

dyn =
∑n

j=1wjpj.

5.5. An illustrating example

We now use a simple example to illustrate the performance
of the thermal-aware scheduling heuristic. This example applies
the same experimental settings presented in Section 6.1. Specifi-
cally, the effective temperature threshold is Tthresh = 60 ◦C (after
discounting the static temperature), the thermal parameters are
R = 0.7, f = 0.5, and there are 4 non-idle speeds for the servers:
s1 = 0.6, s2 = 0.733, s3 = 0.866, s4 = 1. However, we consider
only two servers M = {M1,M2} and a 2 ×2 heat-distribution
matrix whose elements are all 0.1. We point out that practical
datacenters should have more servers and the values of the heat-
distribution matrix are usually much smaller (see Fig. 1). Here, we
consider two servers for the ease of illustration and the values of
the matrix are amplified to demonstrate the cumulative effect of
cross interference from multiple servers. A set of four jobs J =
{J1, J2, J3, J4} are released one after another, with work w1 = 10,
w2 = 9, w3 = 9, w4 = 10, and dynamic power p1 = 50, p2 = 150,
p3 = 150, p4 = 50.

To better understand the scheduling framework, we apply both
thermal-aware load and work-based load in the job assignment
(JA) and thermal management (TM) policies. This leads to four
heuristics, namely, JA(W)+TM(W), JA(W)+TM(T), JA(T)+TM(W),
JA(T)+TM(T), where ‘‘W’’ means work-based load is used in the
corresponding policy and ‘‘T’’ means thermal-aware load is used.
Fig. 3 depicts the scheduling decisions made by each heuristic,
together with the execution speed, dynamic power consumption
and temperature of each server at any time during execution. In
this example, we assume that all jobs must start at an integer
time instance. We note that, due to the relatively low power

consumption of jobs J1 and J4, their initial thermal-aware load at
time 0 is the same as the work-based load of 10. For jobs J2 and
J3, although they have a smaller work-based load of 9, because
of the high power consumption, the thermal-aware load is larger,
which is more than 12.1 All heuristics assign J1 to M1 and then J2
to M2. Their differences are in the assignments of J3 and J4, as well
as the priorities of M1 and M2 at runtime. The following explains
the decisions made by each of the four heuristics as well as the
calculations of the runtime parameters (i.e., temperature slack,
power slack).

JA(W)+TM(W). Fig. 3(a) shows that this heuristic assigns J3 toM2,
which has a smaller work-based load at the time of assignment,
and finally assigns J4 to M1. During the initial execution (i.e., the
first step), higher priority is given to M1 due to its higher work-
based load (10 + 10 = 20 v.s. 9 + 9 = 18), despite the fact
that M2 has a higher thermal-aware load (10 + 10 = 20 v.s.
12.28+12.28 = 24.56). According toAlgorithm2, the temperature
slacks of the two servers are first calculated as T̂1(1) = T̂2(1) =
Tthresh
1−f

= 60
0.5

= 120. The power slack of M1 is then calculated

as P̂1(1) = T̂1(1)

R+d1,1
= 120

0.7+0.1
= 150 and its execution speed is

chosen to be s1(1) = 1 < 3

√
P̂1(1)

p1
= 3

√
150
50

= 3
√
3. After that,

the temperature slacks of the two servers are updated as T̂1(1) =
T̂1(1) − s1(1)

3p1(R + d1,1) = 120 − 50 · (0.7 + 0.1) = 80 and
T̂2(1) = T̂2(1) − s1(1)

3p1d2,1 = 120 − 50 · 0.1 = 115. The power

slack of M2 is then calculated as P̂2(1) = min
(

T̂1(1)

d1,2
,

T̂2(1)

R+d2,2

)
=

min
(

80
0.1

, 115
0.7+0.1

)
= 143.75, and its execution speed is chose to be

s2(1) = 0.866 < 3

√
P̂2(1)

p2
= 3

√
143.75
150

≈ 0.986. Hence, M2 executes

with a lower speed rather than at the full speedduring the first time
step. Since all decisions are made without considering thermal-
aware load, this heuristic leads to a fairly unbalanced completion
time between the two servers, and results in a makespan of 26.

JA(W)+TM(T). This heuristic, as shown in Fig. 3(b), makes the
same job assignment decision as JA(W)+TM(W), but runs server
M2 with higher priority, due to its consideration of thermal-aware
load for thermal management. This is reflected by the full execu-
tion speed and high power consumption of M2 at the first step
of the execution, which raises the temperature of the server to
the threshold. The following shows the detailed calculation of
the runtime parameters during the first step. As in the previous
heuristic, the initial temperature slacks of the two servers are
T̂1(1) = T̂2(1) = 120. The power slack of M2 is first calculated

as P̂2(1) = T̂2(1)

R+d2,2
= 120

0.7+0.1
= 150 and its execution speed is

s2(1) = 1 ≤ 3

√
P̂2(1)

p2
= 3

√
150
150

= 1. The temperature slacks of the

two servers are then updated as T̂1(1) = T̂1(1) − s2(1)
3p2d1,2 =

120 − 150 · 0.1 = 105 and T̂2(1) = T̂2(1) − s2(1)
3p2(R + d2,2) =

120−150 ·(0.7+0.1) = 0. The power slack ofM1 becomes P̂1(1) =
min

(
T̂1(1)

R+d1,1
,

T̂2(1)

d2,1

)
= min

(
105

0.7+0.1
, 0

0.1

)
= 0, so its execution speed

is s1(1) = 0. As a result,M1 is not able to run any jobduring this step
and has to be left idle; otherwise the thermal threshold of M2 will
be violated due to cross interference. Compared to the previous
heuristic, the makespan of this heuristic is improved to 25.

1 The thermal-aware loads wT
11(0) and wT

12(0) of jobs J1 and J2 on server M1 at
time t = 0 are computed as follows. From Definition 2, the critical power of M1 is
given by Pcrit

1 = 60
0.7+0.1

= 75. Given the two jobs’ power consumptions p1 = 50 and
p2 = 150 as well as the set of available speeds {0, 0.6, 0.733, 0.866, 1}, the critical
speeds of J1 and J2 onM1 can be shown to be scrit11 = 1 and scrit12 = 0.733, respectively,
according to Definition 3. The initial thermal-aware loads of the two jobs onM1 are
therefore computed as wT

11(0) = 10
1

= 10 and wT
12(0) = 9

0.733
≈ 12.28 based

on Definition 4. The corresponding values for the other job–server pairs can be
similarly computed.



(a) JA(W)+TM(W). (b) JA(W)+TM(T).

(c) JA(T)+TM(W). (d) JA(T)+TM(T).

Fig. 3. A simple examplewith two servers and four jobs to illustrate the performance of four different scheduling heuristics. The red line in each figure represents the evolution
of temperature with time, and the bars represent the power consumption. The color of each bar corresponds to the speed used at that time step. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

JA(T)+TM(W). Fig. 3(c) shows that this heuristic further improves
the makespan to 24, because it achieves a better balancing of the
loads of the two servers by considering thermal-aware load in the
first place. In particular, J3 is assigned to M1 instead of M2, thus
avoiding executing two jobs with high thermal-aware load on the
same server. The execution of the first step turns out to be the same
as the JA(W)+TM(W) heuristic, and the temperatures of the two
servers at the end of the first step are given by T1(1) = 24.87 and
T2(1) = 41.47 (again, after discounting the static temperature of
40◦C). However, this heuristic uses work-based load for thermal
management, so it gives higher priority toM2 after the first step as
M2 has a higher work-based load remaining (18 v.s. 18.134). The
temperature slacks, power slacks and execution speeds of the two
servers at the second step can be calculated similarly as before and
are omitted here. Note that, due to cross interference, an idle slot
has to be inserted at the second execution step of M1, because the
temperature slack T2(2) and power slack P2(2) of M2 at that step
are again both 0. This results in delayed overall execution, asM1 in
fact has a larger thermal-aware load at this point.

JA(T)+TM(T). The above problem of the JA(T)+TM(W) heuristic
can be avoided by utilizing thermal-aware load to make both
scheduling decisions, as shown in Fig. 3(d). In particular, after
the first time step, although M1 has completed more work, it
has a larger remaining thermal-aware load. Hence, JA(T)+TM(T)
gives higher priority to M1, which avoids delaying its execution
and eventually leads to the best makespan of 23 among the four
heuristics.

This example, albeit simple, confirms the superiority of
thermal-aware load in contrast to the work-based load for making
job assignment and thermalmanagement decisions. It also demon-
strates the importance of spatio-temporal awareness as considered
in Algorithm 2 for meeting temperature constraint in the thermal-
aware scheduling context. The next sectionwill rely on simulations
to further evaluate the performance of these heuristics at a larger
scale.

6. Performance evaluation

In this section, we conduct simulations to evaluate the perfor-
mance of the proposed thermal-aware scheduling algorithm and
to compare it with the traditional work-based scheduling under
various parameter settings.

6.1. Simulation settings

We simulate a datacenter with m = 50 servers using a heat-
distributionmatrix shown in Fig. 1, which has been experimentally
validated [14] and used in several previous studies [4,17,18]. Fol-
lowing the settings in [41], the processors inside the servers have
five discrete (including idle) speeds, which are normalized to be
S = {0, 0.6, 0.733, 0.866, 1}. The power parameter is set to be
α = 3 according to the well-adopted cube-root model [36]. The
thermal resistance (with unit ◦C/Watt) depends on the cooling and



packaging of the processors, and is typically in the range of 0.3–
1.5 [24].We set it to be R = 0.7. The thermal capacitance (with unit
Joule/◦C) is proportional to the thickness and area of the processor
die [22]. The literature usually considers the RC constant, which is
in the order ofmilliseconds or seconds [22,25]. Since the length of a
time step is in the same order, we set the factor f defined in Eq. (4)

to be f = e− ∆t
RC = 0.5. This is consistent with the values observed

in the literature [22,25].
Following the guidelines of American Society of Heating, Re-

frigerating, and Air-Conditioning Engineers (ASHRAE) [42], the
supplied air temperature is set to be Tsup = 25◦C. The maximum
temperature of the chips (also known as junction temperature) is
between 85 and 100 ◦C as shown in [43], and we set it to be 100◦C.
The static power of the processors varies from chip to chip, but it
is typically in the range of 10–30 Watt. With the chosen thermal
resistance, it contributes 15 ◦C to the temperature of each proces-
sor. Therefore, the temperature of an idle server is 25◦C + 15◦C =
40◦C. According to the simplification of themodel (Section 4.3), the
temperature threshold after discounting the static temperature is
given by Tthresh = 100◦C − 40◦C = 60◦C.

The processing time of the jobs follows exponential distribu-
tion, which is commonly used to model service demands in com-
puter systems [44,45]. In our experiment, the mean processing
time is set to be 300 time steps. Suppose that each time step
takes milliseconds or seconds to run (incorporating the overhead
to compute the scheduling decisions and to adjust the processor
speeds). The average processing time ranges from a few seconds to
tens of minutes, corresponding to the length of typical HPC appli-
cations. The dynamic power consumption of the jobs is uniformly
distributed in (0, Ppeak), where Ppeak = miniP

peak

i is derived from
Eq. (11) with the thermal parameters defined above.

In the simulations, we will also vary these parameters to study
their impacts. Specifically, from Sections 6.3.2 to 6.3.5, we change
the processing time distributions and power consumption ranges,
adjust the DVFS settings and heat-distribution matrices, and vary
the thermal parameters (R and f ) in order to evaluate their impacts
on the performance of the scheduling heuristics.

6.2. Evaluated heuristics

In the simulations, we evaluate and compare the performance
of four heuristics mentioned in Section 5.5, as well as two other
heuristics that are commonly applied in the literature. The follow-
ing describes the evaluated heuristics in detail.

• JA(W)+TM(W): Makes both job assignment and thermal
management decisions using work-based load.

• JA(W)+TM(T): Makes job assignment decision using work-
based load and makes thermal management decision using
thermal-aware load.

• JA(T)+TM(W):Makes job assignment decisionusing thermal-
aware load and makes thermal management decision using
work-based load.

• JA(T)+TM(T): Makes both job assignment and thermal man-
agement decisions using thermal-aware load.

• RR+Random: Uses the Round Robin (RR) policy for job as-
signment, and uses the Random policy for thermal manage-
ment, i.e., by prioritizing the servers in an arbitrary/random
order.

• Coolest: Makes both job assignment and thermal manage-
ment decisions by favoring the server whose current tem-
perature is the lowest [3,4,18].

6.3. Simulation results

We now present the simulation results, all of which are ob-
tained by averaging 50 runs with different work and power values
randomly generated from the respective distributions.

Fig. 4. Performance comparison of various scheduling heuristics under different
number of jobs.

6.3.1. Performance comparison of different heuristics

Fig. 4 presents the simulation results as the number of jobs is
varied from 1000 to 9000. The makespan is normalized by C lb

max =
1
m

∑n

j=1wj, which is a theoretical lower bound even when all jobs
are executed at full speed. First, we can see that the two heuristics
RR+Random and Coolest perform much worse than the other
heuristics in terms of makespan. This is because RR+Random does
not consider the actual (thermal-aware) loads of the servers when
making both scheduling decisions, and Coolest considers only the
current temperatures of the servers but ignores the balancing of
the system load in the long run. As a result, both heuristics lead
to very unbalanced loads among the servers, and thus fare poorly
for makespan. In contrast, the other four heuristics have much
better performance. Specifically, the normalized makespan of the
thermal-aware heuristic JA(T)+TM(T) improves with the load of
the system, while the work-based heuristic JA(W)+TM(W) is less
sensitive to the load. In particular, the thermal-aware heuristic
improves makespan by up to 10% at medium to heavy load, most
of which is due to thermal management. The results confirm the ad-

vantage of using thermal-aware load as the load indicator, especially

when making dynamic thermal management decisions.

In the subsequent experiments, we will not consider the
RR+RandomandCoolest heuristics, due to their poor performance.
Furthermore, wewill only focus on themediumworkload scenario
with 5000 jobs.

6.3.2. Sensitivity to processing time distribution and power consump-

tion range

Some studies that analyze real workload logs in supercom-
puting centers have shown that the processing time distributions
of some parallel jobs are in fact heavy-tailed [45]. Therefore, be-
sides the exponential distribution, we test the sensitivity of the
results by using a heavy-tail distribution as well as two other
distributions that appeared in the scheduling literature for the
job processing times. Specifically, the following distributions are
used in the experiments: uniform [46,47], uniform-log [45,48] and
bounded–pareto (heavy-tail) [45,47,49].We experiment with these
distributions with the same mean processing time of 300, while
setting the lower bound to 60, the upper bound to 1200, and the
pareto index to 3 for bounded–pareto distribution. Furthermore,
we also experiment with jobs that have different power consump-
tion ranges. Specifically, besides the full range (0, Ppeak), we also
consider the low range (0, Pcrit ), the high range (Pcrit , Ppeak), and the

medium range
(

Pcrit
2

,
Pcrit+Ppeak

2

)
, where Pcrit = 1

m

∑m

i=1P
crit
i denotes

the average critical power of all nodes.
Fig. 5 shows the normalized makespan of four heuristics. We

can see that their relative performance is barely affected by the



(a) Job work distribution. (b) Power consumption range.

Fig. 5. Impact of job work distributions and power consumption ranges on the makespan of different heuristics.

processing time distribution, and the thermal-aware heuristic
maintains its advantage for all distributions. The power consump-
tion range has a more interesting impact on the makespan. For the
low range, the power of the jobs is small enough such that they
can be safely executed even without thermal management. In fact,
the critical speeds of all the jobs in this case become the full speed
of the servers, and the thermal-aware load is equivalent to the
work-based load. Thus, all heuristics have the same performance,
which is very close to the theoretical lower bound. When the jobs’
power is in the medium or high range, the critical speeds of the
jobs are reduced, since thermal management becomes essential to
maintaining the temperature threshold. Naturally, the makespan
of all heuristics degrades. Compared to the full range, however,
the performance gap among different heuristics is also smaller.
The reason is because the critical speeds of the jobs, although
reduced, fall again in a similar range, which in turn makes the
ratios of thermal-aware loads similar to those of work-based loads.
The results show that the thermal-aware heuristic offers the best

performance when the jobs exhibit a large variation on the power

consumption.

In the rest of the experiments, we will not consider the two
mixed heuristics JA(W)+TM(T) and JA(T)+TM(W). Instead, wewill
just focus on the purely work-based heuristic JA(W)+TM(W) and
purely thermal-aware heuristic JA(T)+TM(T) in order to demon-
strate the advantage of using thermal-aware load under other
parameter settings.

6.3.3. Impact of DVFS

We study how DVFS affects the makespan as well as the energy
consumption, which is normalized by the total dynamic energy
E
full

dyn =
∑n

j=1wjpj of all jobs when executed at full speed. Fig. 6(a)
shows the result for JA(W)+TM(W) and JA(T)+TM(T) with and
without using DVFS. For both heuristics, using DVFS improves the
makespan by more than 65% and at the same time improves the
dynamic energy by about 20%. In contrast to many scheduling
problems, where the use of DVFS results in a tradeoff between
performance and dynamic energy, the thermal-aware scheduling
problem benefits from DVFS for the two otherwise conflicting ob-
jectives. The reason is because, by reducing the execution speeds,
DVFS enables the computing nodes to respect the thermal thresh-
old, to decrease the energy consumption, and at the same time to
provide better dynamic load balancing, which directly translates
to improvement in makespan. The results reinforce the usefulness of
DVFS in the context of thermal-aware scheduling with simultaneous

performance and energy gains.

In another experiment, we change the number of intermediate
DVFS levels between the null speed 0 and full speed 1, and observe
its impact on the performance. To be coherent with the existing
setting, the lowest non-zero speed is always set to be 0.6, and the
different intermediate speeds are equally spaced in [0.6, 1]. Note

that the existing setting, i.e., {0, 0.6, 0.733, 0.866, 1}, corresponds
to having 3 intermediate DVFS levels, and having 0 intermediate
level means that DVFS is not used. We can see from Fig. 6(b) that
the makespan improves dramatically by having at least two DVFS
levels due to the flexibility to execute the jobs with higher inter-
mediate speeds but not at the full speed. Having additional DVFS
levels, however, does not seem to improve the makespan further.
This is because, asmore speed levels are available, higher execution
speeds tend to be used. And when the speeds become sufficiently
high, the cross interference among the servers as well as the
temporal correlation of the servers’ temperature will prevent the
jobs from being executed continuously under such high speeds.
Hence, idle times or lower execution speeds must be inserted in
order to respect the thermal threshold, which adversely affects
the makespan. On the other hand, the energy consumption also
improves significantly by starting to use DVFS, but after that, it in-
creaseswith the number of DVFS levels. Again, this is becausemore
jobs can be feasibly executedwith higher intermediate speeds, and
using higher speeds means consuming more energy due to the
convexity of the power function.

6.3.4. Impact of heat-distribution matrix

We now study the impact of heat-distribution matrix on the
performance of the scheduling heuristics. First, we compare the
experimentally validated matrix from [14] with a random matrix,
which has the same average cross-interference factor dmean =
1

m2

∑m

i=1

∑m

k=1di,k, but whose elements are uniformly generated in
the range [0, 2dmean]. Fig. 7(a) shows the result. We can see that
the random matrix renders a slightly worse performance for both
heuristics, but the relative performance of the two heuristics are
unaffected by the matrix of choice.

Next, we vary the original matrix by scaling its elements by a
factor of c , which varies from 1/8 to 32, thus representing different
levels of cross interference in the datacenter. The result is shown
in Fig. 7(b). When the cross interference is weak (small c), thermal
management becomes less important in the scheduling decision,
which according to the discussion in Section 6.3.1 is a key policy
to influence the makespan. Hence, both heuristics have similar
performance. When the cross interference is too strong (large
c), thermal-aware load is no longer sufficient to characterize the
priorities of the servers. Hence, the makespan of both heuristics is
again similar and the energy increases due to increasedmakespan.
The result demonstrates that the thermal-aware heuristic has the best

relative performance compared to the work-based one with moderate

levels of cross-interference among servers, which is practically the case

in most realistic datacenters.

6.3.5. Impact of thermal parameters

Finally, We study the impact the thermal parameters on the
performance of the scheduling heuristics. Specifically, we vary



Fig. 6. Impact of DVFS on the makespan and energy of thermal-aware heuristic JA(T)+TM(T) and work-based heuristic JA(W)+TM(W).

Fig. 7. Impact of heat-distribution matrix on the makespan and energy of thermal-aware heuristic JA(T)+TM(T) and work-based heuristic JA(W)+TM(W).

Fig. 8. Impact of factor f and thermal resistance R on the makespan and energy of thermal-aware heuristic JA(T)+TM(T) and work-based heuristic JA(W)+TM(W).

factor f from 0.1 to 0.9 and vary thermal resistance R from 0.3 to
1.5. Note that, in our simulation, the power consumption of the jobs
changes in accordance with the thermal parameters (see Eq. (11)),
which is true in practice since even the same job would consume
different amount of power on different processors or architectures
(thus having different thermal behaviors).

Fig. 8 shows the results for the two heuristics JA(W)+TM(W)
and JA(T)+TM(T). First, the increase of factor f increases the jobs’
power consumption, which strengthens the cross-interference ef-
fect of the servers, and hence increases the makespan. However,
increasing the thermal resistance R reduces the power, weakens
the cross interference, and thus decreases the makespan. The
makespan gap of the two heuristics is relatively stable, except for
very large values of f , in which case the cross interference becomes
so strong that the thermal-aware load alone is not sufficient to
define the priorities of the servers. However, since a large f would
imply a very high value of thermal resistance or thermal capaci-
tance, this situation is unlikely to happen according to the practical
values of thermal parameters [22]. Lastly, the energy consumed by
both heuristics is always very similar, suggesting that the speed
scaling patterns are largely determined by the power profiles of
the jobs, which are decided by the thermal parameters but are

independent of the scheduling heuristics. The result shows that the

performance of the thermal-aware heuristic is consistent on practical

datacenter systems with different thermal parameters.

7. Conclusion and future work

In this paper, we studied a thermal-aware scheduling problem
for homogeneous high-performance computing datacenters. We
presented a spatio-temporal thermal model that captures both
dimensions of the temperature evolution in datacenters. We pro-
posed a scheduling algorithm with both job assignment and ther-
mal management policies based on the notion of thermal-aware
load and dynamic voltage and frequency scaling. By means of
simulations, we have shown that the proposed algorithm outper-
forms the existing heuristics in the literature on an experimentally
validated datacenter configuration over a wide range of parameter
settings. The results also confirm the benefits of using DVFS in the
context of thermal-aware scheduling.

The thermal model and scheduling algorithm presented in this
paper can be readily extended to heterogeneous datacenter envi-
ronments, where the execution time and power consumption of
the jobs are server dependent. Such heterogeneity may arise from



the use of heterogeneous servers or from processor variations.
For future work, we plan to extend the scheduling problem to
include cooling cost and static power in the optimization, which
have been shown to contribute significantly to the total energy
consumption of today’s datacenters. While computation-intensive
applications are the focus of this paper, many HPC applications
running in modern datacenters are accessing a massive amount
of data. Hence, another important direction is to consider I/O-
intensive or communication-intensive applications by incorporat-
ing the cost associated with data movement in the scheduling
framework.
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