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Abstract

The core of our article is the computability of the problem of deciding the modal definability of first-order sentences with

respect to classes of frames. It gives a new proof of Chagrova’s Theorem telling that, with respect to the class of all frames,

the problem of deciding the modal definability of first-order sentences is undecidable. It also gives the proofs of new variants

of Chagrova’s Theorem.
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1 Introduction

Modal formulas can be used to define classes of frames. In many cases, they define classes of

frames that cannot be defined by first-order sentences. As well, there exists sentences, such as the

ones describing the frame properties of irreflexivity and anti-symmetry, that no modal formula can

define. Hence, questions about the correspondences between modal formulas and sentences arise:

which sentences are modally definable, which modal formulas are first-order definable. The study

of these correspondences was begun in the 1970s. Now, it has a comprehensive literature. See [4,

15, 25] or [5, Chapter 3] for an introductory discussion about similar correspondence results. The

characterization of Goldblatt and Thomason [15] tells us that a sentence is modally definable iff it

is preserved under taking disjoint union, generated subframes and bounded morphic images and it

reflects ultrafilter extensions.Although it can be used to give algorithmic and graph-theoretic criteria

of modal definability for restricted families of sentences [19], Goldblatt–Thomason Theorem cannot

be used to decide the modal definability of sentences: as shown by Chagrova [10], the problem of

deciding the modal definability of sentences is undecidable. See [6, 7, 11] or [9, Chapter 17] for

an introductory discussion about similar undecidability results. Concerning modal definability, the

above lines seem to imply that the problem of deciding the modal definability of sentences is the

only problem of interest. In our opinion, when we are using a modal language, it is also interesting

to consider the problem of deciding the modal definability of sentences with respect to some specific

classes of frames (the class of all reflexive frames, the class of all strict partial orders, etc.). The core

of our article is the modal definability of sentences with respect to classes of frames.

Surely, the most interesting contribution of Chagrova [10] is the undecidability of the first-

order definability of intuitionistic formulas. Nevertheless, in order to simplify the presentation of

our article, her result about the undecidability of the modal definability of sentences will also

be called ‘Chagrova’s Theorem’. The proof of Chagrova’s Theorem—the undecidability of the

modal definability of sentences—is based on the undecidability of a variant of the halting problem



concerning Minsky machines. It cannot be easily repeated for demonstrating that, with respect to

different classes of frames, the problem of deciding themodal definability of sentences is undecidable

too. In our article, by means of simple frame constructions, we give a new proof of Chagrova’s

Theorem (Corollary 1) and we repeat our proof for demonstrating that, with respect to different

classes of frames, the problem of deciding the modal definability of sentences is undecidable too

(Corollaries 2–14). In some sense, our method might be called direct. Using the fact that ⊥ is not

a modal definition of a sentence D with respect to a class C of frames iff there exists a frame F in

C such that F |=D, we show how to reduce the problem of deciding the validity of sentences in C

to the problem of deciding the modal definability of sentences with respect to C (Theorem 1). This

reduction constitutes the key result of our method. We assume that the reader has enough experience

in modal logic and first-order logic to decide on the notions that we do not define in our article. From

now on, a frame will be a structure of the form F = (W ,R1,...,Rn) where W is a non-empty set of

worlds and R1, ..., Rn are binary relations onW . In Sections 2–5 and 6.1, nwill be equal to 1 whereas

in Section 6.2, n will be equal to 2. We shall say that a subset U of W is Ri-closed if for all states

s, t in F , if s is in U and sRit then t is in U. If Ri is an equivalence relation, an equivalence class

modulo Ri is said to be degenerate if it is a singleton. A list s1,...,sm of worlds in F will sometimes

be written s̄. We leave it to the context to determine the length of such list.

2 Modal language and truth

2.1 Modal language

Let us consider a countable set of propositional variables (with typical members denoted p, q, ...).

The set of all modal formulas (denoted φ, ψ , ...) is inductively defined as follows:

• φ ::=p |⊥|¬φ | (φ∨ψ) |✷φ.

We define the other Boolean constructs as usual. The modal formula ✸φ is obtained as the well-

known abbreviation: ✸φ ::=¬✷¬φ. We adopt the standard rules for omission of the parentheses.

2.2 Truth

A model based on a frame F = (W ,R) is a triple M= (W ,R,V ) where V is a function assigning to

each propositional variable p a subset V (p) ofW . Given a modelM= (W ,R,V ), the satisfiability of

a modal formula φ at a world s inM, in symbolsM,s |=φ, is inductively defined as follows:

• M,s |=p iff s∈V (p),

• M,s 6|=⊥,

• M,s |=¬φ iffM,s 6|=φ,

• M,s |=φ∨ψ iff eitherM,s |=φ, orM,s |=ψ ,

• M,s |=✷φ iff for all worlds t inM, if sRt thenM,t |=φ.

Obviously,M,s |=✸φ iff there exists a world t inM such that sRt andM,t |=φ. We shall say that

a modal formula φ is true in a modelM, in symbolsM |=φ, if φ is satisfied at all worlds inM. A

modal formula φ is said to be valid in a frame F , in symbols F |=φ, if φ is true in all models based

on F . We shall say that a modal formula φ is valid in a class C of frames, in symbols C |=φ, if φ is

valid in all frames in C. A frame F is said to be weaker than a frame F ′, in symbols F �F ′, if for

all modal formulas φ, if F |=φ then F ′ |=φ.



2.3 Generated subframes and bounded morphisms

Let F = (W ,R), F ′ = (W ′,R′) be frames. We shall say that F ′ is a generated subframe of F if the

following conditions are satisfied:

• F ′ is a subframe of F ,

• for all worlds s′ in F ′ and for all worlds t in F , if s′Rt then t is in F ′.

Generated subframes give rise to the following

Lemma 1 (Generated Subframe Lemma)

Let F , F ′ be frames. If F ′ is a generated subframe of F then F �F ′.

Proof. See [5, Theorem 3.14 (ii)]. �

Let F = (W ,R), F ′ = (W ′,R′) be frames. A function f assigning to each world s in F a world f (s) in

F ′ is called a bounded morphism from F to F ′ if the following conditions are satisfied:

• for all worlds s, t in F , if sRt then f (s)R′f (t); and

• for all worlds s in F and for all worlds t′ in F ′, if f (s)R′t′ then there exists a world t in F such

that sRt and f (t)= t′.

F ′ is said to be a bounded morphic image of F if there exists a surjective bounded morphism from

F to F ′. Bounded morphic images give rise to the following

Lemma 2 (Bounded Morphism Lemma)

Let F , F ′ be frames. If F ′ is a bounded morphic image of F then F �F ′.

Proof. See [5, Theorem 3.14 (iii)]. �

3 First-order language and truth

3.1 First-order language

Let us consider a countable set of individual variables (with typical members denoted x, y, ...). A list

x1,...,xm of individual variables will sometimes be written x̄. We leave it to the context to determine

the length of such list. The set of all first-order formulas (denoted A, B, ...) is inductively defined as

follows:

• A ::=R✷(x,y) |x=y |¬A | (A∨B) |∀x A.

Wedefine the otherBoolean constructs as usual.The first-order formula∃x A is obtained as thewell-

known abbreviation: ∃x A ::=¬∀x ¬A. We adopt the standard rules for omission of the parentheses.

For all first-order formulas A, let fiv(A) be the set of all free individual variables occurring in A.When

x̄ is a list of pairwise distinct individual variables, we write A(x̄) to denote a first-order formula A

whose free individual variables belongs to x̄. Afirst-order formula A is called a sentence if fiv(A)=∅.

The relativization of a first-order formula C with respect to a first-order formula A and an individual

variable x, in symbols (C)Ax , is inductively defined as follows:

• (R✷(y,z))
A
x is R✷(y,z),

• (y=z)Ax is y=z,

• (¬C)Ax is ¬(C)Ax ,

• (C∨D)Ax is (C)
A
x ∨(D)Ax ,



• (∀y C)Ax is ∀y (A[x/y]→ (C)Ax ).

In the above definition, A[x/y] denotes the first-order formula obtained from the first-order formula

A by replacing every free occurrence of the individual variable x in A by the individual variable

y. From now on, when we write (C)Ax , we will always assume that the sets of individual variables

occurring in A andC are disjoint. The reader may easily verify by induction on the first-order formula

C that fiv((C)Ax )⊆ (fiv(A)\{x})∪fiv(C). Hence, if C is a sentence then fiv((C)Ax )⊆fiv(A)\{x}. Let Ŵ,

1 be disjoint sets of sentences. We shall say that Ŵ and 1 are recursively inseparable if there exists

no recursive set 3 of sentences such that Ŵ⊆3 and 1∩3=∅. In this case, remark that neither Ŵ,

nor 1 is recursive. Moreover, if Ŵ (respectively, 1) is r.e. then Ŵ’s complement (respectively, 1’s

complement) is co-r.e.-hard. See [24, Chapter 7] for an introductory discussion about disjoint pairs

of sets.

3.2 Truth

Given a frame F = (W ,R), the satisfiability of a first-order formula A(x̄) in F with respect to a list s̄

of worlds in F , in symbols F |=A(x̄) [s̄], is inductively defined as follows:

• F |=R✷(xi,xj) [s̄] iff siRsj,

• F |=xi =xj [s̄] iff si =sj,

• F |=¬A [s̄] iff F 6|=A [s̄],

• F |=A∨B [s̄] iff either F |=A [s̄], or F |=B [s̄],

• F |=∀x A(x̄,x) [s̄] iff for all worlds s in F , F |=A(x̄,x) [s̄,s].

Obviously, F |=∃x A(x̄,x) [s̄] iff there exists a world s in F such that F |=A(x̄,x) [s̄,s]. We shall say

that a first-order formula A(x̄) is valid in a frame F , in symbols F |=A(x̄), if A(x̄) is satisfied in F

with respect to all lists s̄ of worlds in F . A first-order formula A is said to be valid in a class C of

frames, in symbols C |=A, if A is valid in all frames in C.

3.3 Relativizations

Let F , F ′ be frames. We shall say that F ′ is the relativized reduct of F if there exists a first-order

formula A(x̄,x) and there exists a list s̄ of worlds in F such that F ′ is the restriction of F to the set

of all worlds s in F such that F |=A(x̄,x) [s̄,s]. In this case, F ′ is called the relativized reduct of F

with respect to A(x̄,x) and s̄. Obviously, F possesses a relativized reduct with respect to A(x̄,x) and

s̄ iff F |=∃x A(x̄,x) [s̄]. Relativized reducts give rise to the following.

Lemma 3 (Relativization Theorem)

Let F , F ′ be frames, A(x̄,x) be a first-order formula and s̄ be a list of worlds in F . If F ′ is the

relativized reduct of F with respect to A(x̄,x) and s̄ then for all first-order formulas C(ȳ) and for all

lists t̄ of worlds in F ′, F |= (C(ȳ))
A(x̄,x)
x [s̄, t̄] iff F ′ |=C(ȳ) [t̄].

Proof. See [17, Theorem 5.1.1]. �

4 Modal definability

Let C be a class of frames. A sentence A is said to be modally definable with respect to C if there

exists a modal formula φ such that for all frames F in C, F |=A iff F |=φ. In this case, we shall say



that φ is a modal definition of A with respect to C. Now, we relate the problem of deciding the modal

definability of sentences with respect to C to the problem of deciding the validity of sentences in C.

In this respect, a special role is played by the concept of a stable class of frames. C is said to be stable

if there exists a first-order formula A(x̄,x) and there exists a sentence B such that

(a) for all frames F in C, for all lists s̄ of worlds in F and for all frames F ′, if F ′ is the relativized

reduct of F with respect to A(x̄,x) and s̄ then F ′ is in C;

(b) for all frames F0 in C, there exists frames F , F ′ in C and there exists a list s̄ of worlds in F such

that F0 is the relativized reduct of F with respect to A(x̄,x) and s̄, F |=B, F ′ 6|=B and F �F ′.

In this case, (A(x̄,x),B) is called a witness of the stability of C. The following theorem states that if

C is stable, then the problem of deciding the modal definability of sentences with respect to C is at

least as difficult as the problem of deciding the validity of sentences in C.

Theorem 1

If C is stable then the problem of deciding the validity of sentences in C is reducible to the problem

of deciding the modal definability of sentences with respect to C.

Proof. Suppose C is stable. Let (A(x̄,x),B) be a witness of the stability of C. LetC be a sentence. Let

D be the sentence ∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x )∧B, we demonstrate C |=C iff D is modally definable

with respect to C.

SupposeC |=C. For the sake of the contradiction, supposeD is notmodally definablewith respect toC.

LetF be a frame in C such thatF |=D. Such a frame exists, otherwise⊥would be a modal definition

of D with respect to C. Let s̄ be worlds in F such that F |=∃x A(x̄,x) [s̄] and F 6|= (C)
A(x̄,x)
x [s̄].

Let F ′ be the relativized reduct of F with respect to A(x̄,x) and s̄. Such a frame exists, otherwise

F 6|=∃x A(x̄,x) [s̄]. Since F is in C, by (a), F ′ is in C. Since F ′ is the relativized reduct of F with

respect to A(x̄,x) and s̄, by Lemma 3, F |= (C)
A(x̄,x)
x [s̄] iff F ′ |=C. Since F 6|= (C)

A(x̄,x)
x [s̄], F ′ 6|=C.

Since F ′ is in C, C 6|=C: a contradiction.

Suppose D is modally definable with respect to C. Let φ be a modal definition of D with respect to

C. For the sake of the contradiction, suppose C 6|=C. Let F0 be a frame in C such that F0 6|=C. Let

F , F ′ be frames in C and let s̄ be a list of worlds in F such that F0 is the relativized reduct of F

with respect to A(x̄,x) and s̄, F |=B, F ′ 6|=B and F �F ′. Since F0 is in C, by (b), such frames and

such a list of worlds exist. Since F ′ 6|=B, F ′ 6|=D. Since φ is a modal definition of D with respect

to C, F , F ′ are in C and F �F ′, F 6|=D. Hence, either F 6|=∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x ) or F 6|=B.

Since F |=B, F 6|=∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x ). Since F0 is the relativized reduct of F with respect

to A(x̄,x) and s̄, by Lemma 3, F |= (C)
A(x̄,x)
x [s̄] iff F0 |=C. Moreover, F |=∃x A(x̄,x) [s̄]. Since F 6|=

∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x ), either F 6|=∃x A(x̄,x) [s̄], or F |= (C)

A(x̄,x)
x [s̄]. Since F |=∃x A(x̄,x) [s̄],

F |= (C)
A(x̄,x)
x [s̄]. Since F |= (C)

A(x̄,x)
x [s̄] iff F0 |=C, F0 |=C: a contradiction. �

This tight relationship between the problem of deciding the modal definability of sentences with

respect to C and the problem of deciding the validity of sentences in C constitutes the key result of our

method. The onlymodal-related constraint in condition (b) being thatF �F ′, themodal language and

its semantics are inessential in the proof of Theorem 1. A single property is really needed: the modal

language should contain or define a formula, such as ⊥, that is valid in no C-frame. In other respect,

in order to achieve the constraint that F �F ′, let us note that there is no obligation to use the frame

constructions of generated subframes and bounded morphic images considered in Section 2.3: any

frame construction preserving frame-validity could be used as well. Now, we will use Theorem 1 in



order to investigate the computability of the problem of deciding the modal definability of sentences

with respect to the class Call of all frames.

Theorem 2

Call is stable.

Proof. Let A(x1,x) be the first-order formula R✷(x1,x). Let B be the sentence ∀y ∃z R✷(z,y).

Obviously, Call and A(x1,x) satisfy the condition (a). As for the condition (b), let F0= (W0,R0)

be a frame in Call. Consider the frames F = (W ,R), F ′ = (W ′,R′) in Call defined as follows:

• W =W0∪{s1,t1},

• R is the least relation on W containing R0, {s1}×W0, (t1,s1) and (t1,t1),

• W ′ =W0∪{s1},

• R′ is the least relation on W ′ containing R0 and {s1}×W0.

Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a generated subframe of F . �

In the above proof of Theorem 2, we assume that s1 and t1 are distinct new elements, i.e. s1 6= t1,

s1 6∈W0 and t1 6∈W0.Analogous assumptions will bemade in the proofs of analogous theorems below.

Putting Theorems 1 and 2 together leads us to a new proof of Chagrova’s Theorem.

Corollary 1 (Chagrova’s Theorem)

The problem of deciding the modal definability of sentences with respect to Call is undecidable.

Proof. By [18], the problem of deciding the validity of sentences in a first-order language with at

least one non-logical symbol, which is a predicate of arity 2 or more, is reducible to the problem

of deciding the validity of sentences in a first-order language with exactly one non-logical symbol,

which is a predicate of arity 2. The conclusion follows by Theorems 1 and 2 and the well-known

undecidability of the problem of deciding the validity of sentences in a first-order language.

�

In the proof of Theorem 2, if the frame F0 is finite then the frames F , F ′ are finite too. This

immediately gives us the following.

Theorem 3

The class Cfin
all
of all finite frames is stable.

Putting Theorems 1 and 3 together leads us to a proof of the following new result.

Corollary 2

The problem of deciding the modal definability of sentences with respect to Cfin
all
is co-r.e.-hard.

Proof. By [29], the following sets of sentences are recursively inseparable: {A: Call |=A} and {A:

Cfin
all

6|=A}. Since {A: Cfin
all

6|=A} is r.e., the problem of deciding the validity of sentences in Cfin
all
is

co-r.e.-hard. The conclusion follows by Theorems 1 and 3. �

5 Stable classes of frames

The frame manipulation method we have used to prove Theorem 2 is flexible. It has many interesting

variations. The following theorem explores this theme.



Theorem 4

The following classes of frames are stable: (1) the class Cref of all reflexive frames; (2) the class

Csym of all symmetric frames; (3) the class Ctra of all transitive frames; (4) the class Cref ,sym of all

reflexive symmetric frames; (5) the class Cref ,tra of all reflexive transitive frames.

Proof. (1) Let A(x1,x) be the first-order formula R✷(x1,x)∧x1 6=x. Let B be the sentence

∀y ∃z (R✷(z,y)∧z 6=y). Obviously, Cref and A(x1,x) satisfy the condition (a).As for the condition (b),

let F0= (W0,R0) be a frame in Cref . Consider the frames F = (W ,R), F ′ = (W ′,R′) in Cref defined

as follows:

• W =W0∪{s1,t11,t12},

• R is the least reflexive relation on W containing R0, {s1}×W0, (t11,s1), (t12,s1), (t12,t11) and

(t11,t12),

• W ′ =W0∪{s1},

• R′ is the least reflexive relation on W ′ containing R0 and {s1}×W0.

Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a generated subframe of F .

(2) Let A(x1,x2,x) be the first-order formula R✷(x1,x)∧R✷(x2,x). Let B be the sentence

∀y ∃z1 ∃z2 (R✷(z1,y)∧z1 6=y∧R✷(z2,y)∧z2 6=y∧z1 6=z2). Obviously, Csym and A(x1,x2,x) satisfy

the condition (a). As for the condition (b), let F0= (W0,R0) be a frame in Csym. Consider the frames

F = (W ,R), F ′ = (W ′,R′) in Csym defined as follows:

• W =W0∪{s1,s2,t11,t12,t21,t22},

• R is the least symmetric relation on W containing R0, {s1,s2}×W0, (t11,s1), (t12,s1), (t21,s2),

(t22,s2), (t12,t11) and (t22,t21),

• W ′ =W0∪{s′
1,s

′
2,t

′
1,t

′
2},

• R′ is the least symmetric relation onW ′ containing R0, {s
′
1,s

′
2}×W0, (t

′
1,s

′
1), (t

′
2,s

′
2), (t

′
1,t

′
1) and

(t′2,t
′
2).

Obviously,F0 is the relativized reduct ofF with respect to A(x1,x2,x) and s1,s2,F |=B,F ′ 6|=B and

F ′ is a bounded morphic image of F .

(3) Let A(x1,x) be the first-order formula R✷(x1,x). Let B be the sentence ∀y ∃z R✷(z,y). Obviously,

Ctra and A(x1,x) satisfy the condition (a). As for the condition (b), let F0= (W0,R0) be a frame in

Ctra. Consider the frames F = (W ,R), F ′ = (W ′,R′) in Ctra defined as follows:

• W =W0∪{s1,t1},

• R is the least transitive relation on W containing R0, {s1}×W0, (t1,s1) and (t1,t1),

• W ′ =W0∪{s1},

• R′ is the least transitive relation on W ′ containing R0 and {s1}×W0.

Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a generated subframe of F .

(4) Similar to the proof of item (2).

(5) LetA(x1,x) be the first-order formulaR✷(x1,x)∧x1 6=x. LetB be the sentence∀y ∃z (R✷(z,y)∧z 6=

y). Obviously, Cref ,tra and A(x1,x) satisfy the condition (a).As for the condition (b), letF0= (W0,R0)

be a frame in Cref ,tra. Consider the frames F = (W ,R), F ′ = (W ′,R′) in Cref ,tra defined as follows:

• W =W0∪{s1,t11,t12},

• R is the least reflexive transitive relation on W containing R0, {s1}×W0, (t11,s1), (t12,s1),

(t12,t11) and (t11,t12),



• W ′ =W0∪{s1},

• R′ is the least reflexive transitive relation on W ′ containing R0 and {s1}×W0.

Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a generated subframe of F . �

Putting Theorems 1 and 4 together leads us to a proof of

Corollary 3

The problem of deciding the modal definability of sentences with respect to the following classes of

frames is undecidable: (1) Cref ; (2) Csym; (3) Ctra; (4) Cref ,sym; (5) Cref ,tra.

Proof. (1) By [27], the problem of deciding the validity of sentences in lattices is undecidable. Since

the first-order theory of lattices is a finite extension of the first-order theory of Cref , by [28, Theorem

5, Page 17], the problem of deciding the validity of sentences in Cref is undecidable. The conclusion

follows by Theorem 1 and item (1) of Theorem 4.

(2) By [12], the problem of deciding the validity of sentences in Csym is undecidable. The conclusion

follows by Theorem 1 and item (2) of Theorem 4.

(3) Similar to the proof of item (1).

(4) By [23], the problem of deciding the validity of sentences in Cref ,sym is undecidable. The

conclusion follows by Theorem 1 and item (4) of Theorem 4.

(5) Similar to the proof of item (1). �

Cpar denoting the class of all partitions, let us remark, as proved in [1, 2], that the problem of deciding

the modal definability of sentences with respect to Cpar is PSPACE-complete. In each item of the

proof of Theorem 4, if the frame F0 is finite then the frames F , F ′ are finite too. This immediately

gives us the following.

Theorem 5

The following classes of frames are stable: (1) the class Cfin
ref
of all finite reflexive frames; (2) the

class Cfinsym of all finite symmetric frames; (3) the class Cfintra of all finite transitive frames; (4) the class

Cfin
ref ,sym

of all finite reflexive symmetric frames; (5) the class Cfin
ref ,tra

of all finite reflexive transitive

frames.

Putting Theorems 1 and 5 together leads us to a proof of the following new results.

Corollary 4

The problem of deciding the modal definability of sentences with respect to the following classes of

frames is co-r.e.-hard: (1) Cfin
ref
; (2) Cfinsym; (3) C

fin
tra ; (4) C

fin
ref ,sym

; (5) Cfin
ref ,tra

.

Proof. (1) By [26], Cpo denoting the class of all partial orders and Cfinpo denoting the class of all

finite partial orders, the following sets of sentences are recursively inseparable: {A: Cpo |=A} and {A:

Cfinpo 6|=A}. Since the first-order theory of Cpo is a finite extension of the first-order theory of Cref , by a

simple variant of [28, Theorem 5, p. 17], the following sets of sentences are recursively inseparable:

{A: Cref |=A} and {A: Cfin
ref

6|=A}. Since {A: Cfin
ref

6|=A} is r.e., the problem of deciding the validity of

sentences in Cfin
ref
is co-r.e.-hard. The conclusion follows by Theorem 1 and item (1) of Theorem 5.

(2) By [20], the following sets of sentences are recursively inseparable: {A: Csym |=A} and {A:

Cfinsym 6|=A}. Since {A: Cfinsym 6|=A} is r.e., the problem of deciding the validity of sentences in Cfinsym is

co-r.e.-hard. The conclusion follows by Theorem 1 and item (2) of Theorem 5.

(3) Similar to the proof of item (1).



(4) By [20], the following sets of sentences are recursively inseparable: {A: Cref ,sym |=A} and {A:

Cfin
ref ,sym

6|=A}. Since {A: Cfin
ref ,sym

6|=A} is r.e., the problem of deciding the validity of sentences in

Cfin
ref ,sym

is co-r.e.-hard. The conclusion follows by Theorem 1 and item (4) of Theorem 5.

(5) Similar to the proof of item (1). �

The following theorem illustrates again the flexibility of the frame manipulation method we have

used to prove Theorem 2.

Theorem 6

The following classes of frames are stable: (1) the class Cspo of all strict partial orders; (2) Cpo.

Proof. (1) Let A(x1,x2,x) be the first-order formula R✷(x1,x)∧R✷(x2,x). Let B be the sentence

∃y ∀z (y=z∨R✷(y,z)). Obviously, Cspo and A(x1,x2,x) satisfy the condition (a). As for the

condition (b), let F0= (W0,R0) be a frame in Cspo. Consider the frames F = (W ,R), F ′ = (W ′,R′) in

Cspo defined as follows:

• W =W0∪{s1,s2,t},

• R is the least transitive relation on W containing R0, {s1,s2}×W0, (t,s1) and (t,s2),

• W ′ =W0∪{s1,s2},

• R′ is the least transitive relation on W ′ containing R0 and {s1,s2}×W0.

Obviously,F0 is the relativized reduct ofF with respect to A(x1,x2,x) and s1,s2,F |=B,F ′ 6|=B and

F ′ is a generated subframe of F .

(2) Similar to the proof of item (1). �

Putting Theorems 1 and 6 together leads us to a proof of the following new results.

Corollary 5

The problem of deciding the modal definability of sentences with respect to the following classes of

frames is undecidable: (1) Cspo; (2) Cpo.

Proof. (1) By [27], the problem of deciding the validity of sentences in lattices is undecidable. Since

the first-order theory of lattices is a finite extension of the first-order theory of Cspo, by [28, Theorem

5, p. 17], the problem of deciding the validity of sentences in Cspo is undecidable. The conclusion

follows by Theorem 1 and item (1) of Theorem 6.

(2) Similar to the proof of item (1). �

In each item of the proof of Theorem 6, if the frame F0 is finite then the frames F , F ′ are finite too.

This immediately gives us the following

Theorem 7

The following classes of frames are stable: (1) the class Cfinspo of all finite strict partial orders; (2) C
fin
po .

Putting Theorems 1 and 7 together leads us to a proof of the following new results.

Corollary 6

The problem of deciding the modal definability of sentences with respect to the following classes of

frames is co-r.e.-hard: (1) Cfinspo; (2) C
fin
po .

Proof. (1) By [26], the following sets of sentences are recursively inseparable: {A: Cspo |=A} and

{A: Cfinspo 6|=A}. Since {A: Cfinspo 6|=A} is r.e., the problem of deciding the validity of sentences in Cfinspo is



co-r.e.-hard. The conclusion follows by Theorem 1 and item (1) of Theorem 7.

(2) Similar to the proof of item (1). �

6 Lattices, partitions and linear orders

Up to now, the classes of frames that we have considered were always definable by a universal

sentence. Moreover, we have always considered a modal language with only one modal connective

and a first-order languagewith only one relation symbol. In Section 6.1, we study the computability of

the problem of deciding the modal definability of sentences with respect to a class of frames definable

by a universal-existential sentence. In this respect, we will consider the class of all lattices, i.e. partial

orders in which each pair of worlds has a greatest lower bound and a least upper bound. In Section 6.2,

we study the computability of the problem of deciding the modal definability of sentences when the

modal language has two modal connectives and the first-order language has two relation symbols. In

this respect, we will consider the class of all bi-partitions, i.e. frames with two equivalence relations,

the class of all linear partitions, i.e. frames with a linear order and an equivalence relation, and the

class of all bilinear orders, i.e. frames with two linear orders.

6.1 Lattices

Remark that universal sentences are preserved under subframes. For this reason, obviously, each of

the classes of frames considered in Theorems 2, 4 and 6 satisfies the condition (a) for any first-order

formula A(x̄,x). Since the class Clat of all lattices is definable by a universal-existential sentence, the

formula A(x1,x) used in the proof of the following theorem has to be more specific.

Theorem 8

Clat is stable.

Proof. Let A(x1,x) be the first-order formula A′∧(A′′)A
′

x where A′ denotes the first-order formula

R✷(x1,x)∧x1 6=x and A′′ denotes the conjunction of the following sentences:

• ∀y R✷(y,y),

• ∀y ∀z (R✷(y,z)∧R✷(z,y)→y=z),

• ∀y ∀z ∀t (R✷(y,z)∧R✷(z,t)→R✷(y,t)),

• ∀y ∀z ∃t (R✷(t,y)∧R✷(t,z)∧∀u (R✷(u,y)∧R✷(u,z)→R✷(u,t))),

• ∀y ∀z ∃t (R✷(y,t)∧R✷(z,t)∧∀u (R✷(y,u)∧R✷(z,u)→R✷(t,u))).

Let B be the sentence ¬∃y ∃z (y 6=z∧∀t (R✷(y,t)∧(y 6= t →R✷(z,t)))). Remark that for all frames

F in Clat , for all worlds s1 inF and for all framesF ′, ifF ′ is the relativized reduct ofF with respect

to A(x1,x) and s1 then F ′ is in Clat . Hence, Clat and A(x1,x) satisfy the condition (a). As for the

condition (b), let F0= (W0,R0) be a frame in Clat . Consider the frames F = (W ,R), F ′ = (W ′,R′) in

Clat defined as follows:

• W =W0∪{s1,t1,u1,u2,v},

• R is the least reflexive transitive relation onW containing R0, {s1}×W0, (t1,s1), (u1,t1), (u2,t1)

and (v,u1),

• W ′ =W0∪{s1,t1},

• R′ is the least reflexive transitive relation on W ′ containing R0, {s1}×W0 and (t1,s1).



Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′

is a generated subframe of F . �

Putting Theorems 1 and 8 together leads us to a proof of the following new result.

Corollary 7

The problem of deciding the modal definability of sentences with respect to Clat is undecidable.

Proof. By [27], the problem of deciding the validity of sentences in lattices is undecidable. The

conclusion follows by Theorems 1 and 8. �

In the proof of Theorem 8, if the frame F0 is finite then the frames F , F ′ are finite too. This

immediately gives us the following.

Theorem 9

The class Cfin
lat
of all finite lattices is stable.

Putting Theorems 1 and 9 together leads us to a proof of the following new result.

Corollary 8

The problem of deciding the modal definability of sentences with respect to Cfin
lat
is co-r.e.-hard.

Proof. By [26], the following sets of sentences are recursively inseparable: {A: Clat |=A} and {A:

Cfin
lat

6|=A}. Since {A: Cfin
lat

6|=A} is r.e., the problem of deciding the validity of sentences in Cfin
lat
is

co-r.e.-hard. The conclusion follows by Theorem 1 and 9. �

6.2 Partitions and linear orders

Let us consider the variant of our modal language with two modal connectives ✷1 and ✷2. Given

a model M= (W ,R1,R2,V ), the satisfiability of the modal formulas ✷1φ and ✷2φ at a world s in

M is defined by means of the binary relations R1 and R2 as expected. The concepts of a generated

subframe and a bounded morphic image being accordingly defined, invariance results such as the

ones described in Lemmas 1 and 2 can be easily obtained. Let us consider the variant of our first-order

language with two relation symbols R✷1 and R✷2 , the concept of a relativization being accordingly

defined. Given a frame F = (W ,R1,R2), the satisfiability of the first-order formulas R✷1 (xi,xj) and

R✷2 (xi,xj) with respect to a list s̄ of worlds in F is defined by means of the binary relations R1
and R2 as expected. The concept of a relativized reduct being accordingly defined, an invariance

result such as the one described in Lemma 3 can be easily obtained. A frame F = (W ,R1,R2)

is said to be a bi-partition if R1 and R2 are equivalence relations. We shall say that a frame

F = (W ,R1,R2) is a linear partition if R1 is a linear order and R2 is an equivalence relation. A

frame F = (W ,R1,R2) is said to be a bilinear order if R1 and R2 are linear orders. Now, defining

the concept of modal definability as in Section 4, let us see if results such as the ones described

in Corollaries 1 and 2 can be obtained too for bi-partitions and bilinear orders. We do not know

whether the class Cbip of all bi-partitions is stable. Nevertheless, it is still possible to prove the

following.

Theorem 10

The problem of deciding the validity of sentences in Cbip is reducible to the problem of deciding the

modal definability of sentences with respect to Cbip.



Proof. Let A(x1,x) be the first-order formula¬R✷1 (x1,x). LetC be a sentence. Let B be the sentence

∃y1 ...∃yd+1 B′ where d denotes the quantifier depth of C and B′ denotes the conjunction of the

following first-order formulas:

•
∧

{R✷1 (yi,yj): 1≤ i< j≤d+1},

•
∧

{¬R✷2 (yi,yj): 1≤ i< j≤d+1},

• ∀z ∀z′ (R✷1 (y1,z)∧R✷2 (z,z
′)→R✷1 (y1,z

′)),

• ∀z (R✷1 (y1,z)→∃z′ (R✷2 (z,z
′)∧z 6=z′)).

Remark that for all frames F = (W ,R1,R2) in Cbip, F |=B iff there exists an R2-closed equivalence

class modulo R1 containing d+1 pairwise disjoint equivalence classes modulo R2 and containing no

degenerate equivalence class modulo R2. Let D be the sentence ∃x1 (∃x A(x1,x)∧¬(C)
A(x1,x)
x )∧B,

we demonstrate Cbip |=C iff D is modally definable with respect to Cbip. Contrary to what was the

situation in the proof of Theorem 1, remark that the B-part of D now depends on the given C.

Suppose Cbip |=C. For the sake of the contradiction, supposeD is not modally definable with respect

to Cbip. Following an argument similar to the one considered in the first part of the proof of Theorem 1,

the reader may easily obtain a contradiction.

Suppose D is modally definable with respect to Cbip. Let φ be a modal definition of D with respect

to Cbip. For the sake of the contradiction, suppose Cbip 6|=C. Let F0= (W0,R01,R02) be a frame

in Cbip such that F0 6|=C. We shall say that a R02-closed equivalence class U modulo R01 is d-

reparable if U contains d+1 pairwise disjoint equivalence classes modulo R02 and U contains no

degenerate equivalence class modulo R02. Let ·̃ be a function assigning to each d-reparable R02-

closed equivalence class U modulo R01 a subset Ũ of U consisting of exactly d equivalence classes

modulo R02. Let F1= (W1,R11,R12) be the subframe of F0 obtained by replacing each d-reparable

R02-closed equivalence class U modulo R01 by Ũ. Obviously, F1 6|=B. Moreover, player ∃ has a

winning strategy in the Ehrenfeucht–Fraïssé game of length d on F0 and F1. As is well-known, the

d-roundEhrenfeucht–Fraïssé game captures elementary equivalence up to quantifier depth d. See [13,

Chapter 1] for an introductory discussion about similar characterization results. SinceC is a sentence

of quantifier depth d and F0 6|=C, F1 6|=C. Consider the frames F = (W ,R1,R2), F
′ = (W ′,R′

1,R
′
2)

in Cbip defined as follows:

• W =W1∪{s1,...,sd+1,sd+2,...,s2d+2},

• R1 is the least equivalence relation on W containing R11 and {(si,sj): 1≤ i< j≤2d+2},

• R2 is the least equivalence relation on W containing R12 and {(si,si+d+1): 1≤ i≤d+1},

• W ′ =W1∪{s1,...,sd+1},

• R′
1 is the least equivalence relation on W ′ containing R11 and {(si,sj): 1≤ i< j≤d+1},

• R′
2 is the least equivalence relation on W ′ containing R12.

Obviously, F1 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a bounded morphic image of F . Following an argument similar to the one considered in the end of

the second part of the proof of Theorem 1, the reader may easily obtain a contradiction. �

Theorem 10 alone leads us to a proof of the following new result.

Corollary 9

The problem of deciding the modal definability of sentences with respect to Cbip is undecidable.

Proof. By [23], the problem of deciding the validity of sentences in Cbip is undecidable. The

conclusion follows by Theorem 10. �



Let Cfin
bip
be the class of all finite bi-partitions. In the proof of Theorem 10, if the frame F0 is finite

then the frames F , F ′ are finite too. This immediately gives us the following

Theorem 11

The problem of deciding the validity of sentences in Cfin
bip
is reducible to the problem of deciding the

modal definability of sentences with respect to Cfin
bip
.

Theorem 11 alone leads us to a proof of the following new result.

Corollary 10

The problem of deciding the modal definability of sentences with respect to Cfin
bip
is co-r.e.-hard.

Proof. By [20], the following sets of sentences are recursively inseparable: {A: Cbip |=A} and {A:

Cfin
bip

6|=A}. Since {A: Cfin
bip

6|=A} is r.e., the problem of deciding the validity of sentences in Cfin
bip
is

co-r.e.-hard. The conclusion follows by Theorem 11. �

As for the class Clip of all linear partitions, we have the following.

Theorem 12

Clip is stable.

Proof. Let A(x1,x) be the first-order formula R✷1 (x1,x)∧x1 6=x. Let B be the sentence

∃y (∀z R✷1 (y,z)∧∃z (R✷2 (y,z)∧y 6=z)). Obviously, Clip and A(x1,x) satisfy the condition (a). As

for the condition (b), letF0= (W0,R01,R02) be a frame in Clip. Consider the framesF = (W ,R1,R2),

F ′ = (W ′,R′
1,R

′
2) in Clip defined as follows:

• W =W0∪{s1,t},

• R1 is the least reflexive transitive relation on W containing R01, {s1}×W0 and (t,s1),

• R2 is the least equivalence relation on W containing R02 and (t,s1),

• W ′ =W0∪{s′},

• R′
1 is the least reflexive transitive relation on W ′ containing R01 and {s′}×W0,

• R′
2 is the least equivalence relation on W ′ containing R02.

Obviously, F0 is the relativized reduct of F with respect to A(x1,x) and s1, F |=B, F ′ 6|=B and F ′ is

a bounded morphic image of F . �

Putting Theorems 1 and 12 together leads us to a proof of the following new results.

Corollary 11

The problem of deciding the modal definability of sentences with respect Clip is undecidable.

Proof. By [22, 23], the problem of deciding the validity of sentences in Clip is undecidable. The

conclusion follows by Theorems 1 and 12. �

In the proof of Theorem 12, if the frame F0 is finite then the frames F , F ′ are finite too. This

immediately gives us the following.

Theorem 13

The class Cfin
lip
of all finite linear partitions is stable.

Putting Theorems 1 and 13 together leads us to a proof of the following new results.



Corollary 12

The problem of deciding the modal definability of sentences with respect to Cfin
lip
is co-r.e.-hard.

Proof. By [20], the following sets of sentences are recursively inseparable: {A: Clip |=A} and {A:

Cfin
lip

6|=A}. Since {A: Cfin
lip

6|=A} is r.e., the problem of deciding the validity of sentences in Cfin
lip
is

co-r.e.-hard. The conclusion follows by Theorems 1 and 13. �

Concerning the class Cbil of all bilinear orders, we have the following.

Theorem 14

Cbil is stable.

Proof. Let A(x1,x2,x) be the first-order formula R✷1 (x1,x)∧R✷2 (x2,x). Let B be the sentence

¬∃y ∀z (R✷1 (y,z)∧R✷2 (y,z)). Obviously, Cbil and A(x1,x2,x) satisfy the condition (a). As for the

condition (b), let F0= (W0,R0) be a frame in Cbil. Consider the frames F = (W ,R), F ′ = (W ′,R′) in

Cbil defined as follows:

• W =W0∪{s1,s2},

• R1 is the least reflexive transitive relation on W containing R0, {s1}×W0 and (s2,s1),

• R2 is the least reflexive transitive relation on W containing R0, {s2}×W0 and (s1,s2),

• W ′ =W0∪{s′},

• R′
1 is the least reflexive transitive relation on W ′ containing R0 and {s′}×W0,

• R′
2 is the least reflexive transitive relation on W ′ containing R0 and {s′}×W0.

Obviously,F0 is the relativized reduct ofF with respect to A(x1,x2,x) and s1,s2,F |=B,F ′ 6|=B and

F ′ is a bounded morphic image of F . �

Putting Theorems 1 and 14 together leads us to a proof of the following new results.

Corollary 13

The problem of deciding the modal definability of sentences with respect Cbil is undecidable.

Proof. By [22, 23], the problem of deciding the validity of sentences in Cbil is undecidable. The

conclusion follows by Theorem 1 and item Theorem 14. �

In the proof of Theorem 14, if the frame F0 is finite then the frames F , F ′ are finite too. This

immediately gives us the following.

Theorem 15

The class Cfin
bil
of all finite bilinear orders is stable.

Putting Theorems 1 and 15 together leads us to a proof of the following new results.

Corollary 14

The problem of deciding the modal definability of sentences with respect to Cfin
bil
is co-r.e.-hard.

Proof. By [20], the following sets of sentences are recursively inseparable: {A: Cbil |=A} and {A:

Cfin
bil

6|=A}. Since {A: Cfin
bil

6|=A} is r.e., the problem of deciding the validity of sentences in Cfin
bil
is

co-r.e.-hard. The conclusion follows by Theorems 1 and 15. �



7 Final remarks

We shall say that a first-order formula

• A(x̄) is preserved under taking generated subframes if for all frames F , if F |=A(x̄) then for all

frames F ′, if F ′ is a generated subframe of F then F ′ |=A(x̄),

• A(x̄) is preserved under taking bounded morphisms if for all frames F , if F |=A(x̄) then for all

frames F ′, if F ′ is a bounded morphic image of F then F ′ |=A(x̄).

Let C be a class of frames. Theorem 1 can be changed in such a way that it states that if C is

stable then the problem of deciding the preservability under taking generated subframes of sentences

with respect to C and the problem of deciding the preservability under taking bounded morphisms of

sentences with respect to C are at least as difficult as the problem of deciding the validity of sentences

in C. In this respect, we need to change our definition of stability. C is said to be gs-stable (for

‘generated subframe stable’) if there exists a first-order formula A(x̄,x) and there exists a sentence B

such that

(a) for all frames F in C, for all lists s̄ of worlds in F and for all frames F ′, if F ′ is the relativized

reduct of F with respect to A(x̄,x) and s̄ then F ′ is in C,

(b) for all frames F0 in C, there exists frames F , F ′ in C and there exists a list s̄ of worlds in F such

that F0 is the relativized reduct of F with respect to A(x̄,x) and s̄, F |=B, F ′ 6|=B and F ′ is a

generated subframe of F .

We shall say that C is bm-stable (for ‘bounded morphism stable’) if there exists a first-order formula

A(x̄,x) and there exists a sentence B such that

(a) for all frames F in C, for all lists s̄ of worlds in F and for all frames F ′, if F ′ is the relativized

reduct of F with respect to A(x̄,x) and s̄ then F ′ is in C,

(b) for all frames F0 in C, there exists frames F , F ′ in C and there exists a list s̄ of worlds in F such

that F0 is the relativized reduct of F with respect to A(x̄,x) and s̄, F |=B, F ′ 6|=B and F ′ is a

bounded morphic image of F .

In both cases, (A(x̄,x),B) is called a witness of the stability of C. The following theorem states that

if C is gs-stable then the problem of deciding the preservability undertaking generated subframes of

sentences with respect to C is at least as difficult as the problem of deciding the validity of sentences

in C. As the reader will see, its proof is similar to the proof of Theorem 1.

Theorem 16

If C is gs-stable then the problem of deciding the validity of sentences in C is reducible to the problem

of deciding the preservability undertaking generated subframes of sentences with respect to C.

Proof. Suppose C is gs-stable. Let (A(x̄,x),B) be a witness of the gs-stability of C. Let C be a

sentence. Let D be the sentence ∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x )∧B, we demonstrate C |=C iff D is

preserved under taking generated subframes with respect to C.

Suppose C |=C. For the sake of the contradiction, supposeD is not preserved under taking generated

subframes with respect to C. Let F be a frame in C such that F |=D. Such a frame exists, otherwise

D would be preserved under taking generated subframes with respect to C. Let s̄ be worlds inF such

that F |=∃x A(x̄,x) [s̄] and F 6|= (C)
A(x̄,x)
x [s̄]. Let F ′ be the relativized reduct of F with respect to

A(x̄,x) and s̄. Such a frame exists, otherwise F 6|=∃x A(x̄,x) [s̄]. Since F is in C, by (a), F ′ is in C.

Since F ′ is the relativized reduct of F with respect to A(x̄,x) and s̄, by Lemma 3, F |= (C)
A(x̄,x)
x [s̄]



iff F ′ |=C. Since F 6|= (C)
A(x̄,x)
x [s̄], F ′ 6|=C. Since F ′ is in C, C 6|=C: a contradiction.

Suppose D is preserved under taking generated subframes with respect to C. For the sake of the

contradiction, suppose C 6|=C. Let F0 be a frame in C such that F0 6|=C. Let F , F ′ be frames in C

and let s̄ be a list of worlds in F such that F0 is the relativized reduct of F with respect to A(x̄,x)

and s̄, F |=B, F ′ 6|=B and F ′ is a generated subframe of F . Since F0 is in C, by (b), such frames

and such a list of worlds exist. Since F ′ 6|=B, F ′ 6|=D. Since D is preserved under taking generated

subframeswith respect to C,F ,F ′ are in C andF ′ is a generated subframe ofF ,F 6|=D. Hence, either

F 6|=∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x ), or F 6|=B. Since F |=B, F 6|=∃x̄ (∃x A(x̄,x)∧¬(C)

A(x̄,x)
x ). Since F0

is the relativized reduct ofF with respect to A(x̄,x) and s̄, by Lemma 3,F |= (C)
A(x̄,x)
x [s̄] iffF0 |=C.

Moreover, F |=∃x A(x̄,x) [s̄]. Since F 6|=∃x̄ (∃x A(x̄,x)∧¬(C)
A(x̄,x)
x ), either F 6|=∃x A(x̄,x) [s̄], or

F |= (C)
A(x̄,x)
x [s̄]. Since F |=∃x A(x̄,x) [s̄], F |= (C)

A(x̄,x)
x [s̄]. Since F |= (C)

A(x̄,x)
x [s̄] iff F0 |=C,

F0 |=C: a contradiction. �

The following theorem states that if C is bm-stable then the problem of deciding the preservability

under taking bounded morphisms of sentences with respect to C is at least as difficult as the problem

of deciding the validity of sentences in C.

Theorem 17

If C is bm-stable then the problem of deciding the validity of sentences in C is reducible to the problem

of deciding the preservability under taking bounded morphisms of sentences with respect to C.

Proof. Similar to the proof of Theorem 16. �

From the proofs of Theorems 2, 4, 6, 8, 10, 12 and 14, the reader may easily conclude that:

Theorem 18

The following classes of frames are gs-stable: (1) Call; (2) Cref ; (3) Ctra; (4) Cref ,tra; (5) Cspo; (6) Cpo;

(7) Clat .

Theorem 19

The following classes of frames are bm-stable: (1) Csym; (2) Cref ,sym; (3) Cbip; (4) Clip; (5) Cbil.

Hence,

Corollary 15

The problem of deciding the preservability under taking generated subframes of sentences with

respect to the following classes of frames is undecidable: (1) Call; (2) Cref ; (3) Ctra; (4) Cref ,tra;

(5) Cspo; (6) Cpo; (7) Clat .

Corollary 16

The problem of deciding the preservability under taking bounded morphisms of sentences with

respect to the following classes of frames is undecidable: (1) Csym; (2) Cref ,sym; (3) Cbip; (4) Clip;

(5) Cbil.



Table 1. Computability of the problem of deciding the modal definability of sentences with

respect to classes of frames

Class of all ... Computability References

frames undecidable [10] and Corollary 1
fin. frames co-r.e.-hard Corollary 2
reflexive frames undecidable Item (1) of Corollary 3
symmetric frames undecidable Item (2) of Corollary 3
transitive frames undecidable Item (3) of Corollary 3
reflexive symmetric frames undecidable Item (4) of Corollary 3
reflexive transitive frames undecidable Item (5) of Corollary 3
partitions PSPACE-complete [1, 2]
fin. reflexive frames co-r.e.-hard Item (1) of Corollary 4
fin. symmetric frames co-r.e.-hard Item (2) of Corollary 4
fin. transitive frames co-r.e.-hard Item (3) of Corollary 4
fin. reflexive symmetric frames co-r.e.-hard Item (4) of Corollary 4
fin. reflexive transitive frames co-r.e.-hard Item (5) of Corollary 4
strict partial orders undecidable Item (1) of Corollary 5
partial orders undecidable Item (2) of Corollary 5
fin. strict partial orders co-r.e.-hard Item (1) of Corollary 6
fin. partial orders co-r.e.-hard Item (2) of Corollary 6
lattices undecidable Corollary 7
fin. lattice co-r.e.-hard Corollary 8
bi-partitions undecidable Corollary 9
fin. bi-partitions co-r.e.-hard Corollary 10
linear partitions undecidable Corollary 11
fin. linear partitions co-r.e.-hard Corollary 12
bilinear orders undecidable Corollary 13
fin. bilinear orders co-r.e.-hard Corollary 14

8 Conclusion and open problems

Bymeans of the notion of a stable class of frames, we have given a new proof of Chagrova’s Theorem

(Corollary 1) andwehave repeatedour proof for demonstrating that,with respect to different classes of

frames, the problem of deciding themodal definability of sentences is undecidable too (Corollaries 2–

14). See Table 1 for a review of the results we know so far. The key result of our method is the fact

that for all stable classes C of frames, the problem of the C-validity of sentences is reducible to the

problem of deciding the modal definability of sentences with respect to C (Theorem 1). Hence, if

the problem of the C-validity of sentences is undecidable, then the problem of deciding the modal

definability of sentences with respect to C is also undecidable. For example, by demonstrating, as

in Theorem 2, that Call is stable, Chagrova’s Theorem appears as a particular case of Theorem 1.

Moreover, if the problem of the C-validity of sentences is decidable then any lower bound on its

complexity is also a lower bound of the problem of deciding the modal definability of sentences with

respect to C. For example, by demonstrating, as in [1, 2], that the problem of the Cpar-validity of

sentences is PSPACE-hard and by demonstrating that Cpar is stable, the reader may easily conclude

as a particular case of Theorem 1 that the problem of deciding the modal definability of sentences

with respect to Cpar is PSPACE-hard. In fact, as proved in [1, 2], this problem is PSPACE-complete.

In order to show the stability of a class of frames, note that there is no obligation to use the frame

constructions of generated subframes and bounded morphic images, the only important thing in

condition (b) being that F �F ′. See also the remark after the proof of Theorem 1.



Much remains to be done. Firstly, the frame constructions of generated subframes and bounded

morphic images that we have used to prove our stability theorems have counterparts in modal

languages with modal connectives of arity 2 and more. See [5, Definition 3.13]. We believe that

results similar to the theorem of Chagrova and our undecidability results can be proved in the case of

modal languages with modal connectives of arity 2 and more. Secondly, between worlds in a frame,

the universal relation and the difference relation are important relations that the ordinary modal

language cannot express. See [16, 21] or [5, Chapter 7]. What become the theorem of Chagrova and

our undecidability results in modal languages enriched by the universal modality (interpreted by the

universal relation), or the difference modality (interpreted by the difference relation)? Thirdly, the

proof of the undecidability of other properties (first-order definability, Kripke completeness, etc.)

has also been based on the undecidability of the halting problem concerning Minsky machines.

See [6, 7, 11] or [9, Chapter 17]. By means of the notion of a stable class of frames, can we

give a new proof of these undecidability results? Fourthly, in [1, 2], Balbiani and Tinchev have

proved that, with respect to Cpar , the problem of deciding the modal definability of sentences is

PSPACE-complete. What happens, with respect to the class of all symmetric transitive frames?

Fifthly, in [3], Balbiani et al. have introduced modal logics for region-based theories of space.

Within their context, it also makes sense to consider the modal definability of sentences. Can we

obtain for these modal logics undecidability results similar to the theorem of Chagrova and our

undecidability results? Sixthly, some of the stable classes considered in Theorems 2, 4 and 6 are

definable by universal Horn formulas. See [14]. Can we demonstrate that all such Horn classes are

stable? Seventhly, are there any counter-examples to the equivalence between the decidability of

validity in a class of frames and the decidability of modal definability with respect to the same class

of frames?
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