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We consider the binary relations of negligibility, comparability and proximity in the 
set of all hyperreals. Associating with negligibility, comparability and proximity 
the binary predicates N , C and P and the connectives [N ], [C] and [P ], we 
consider a first-order theory based on these predicates and a modal logic based 
on these connectives. We investigate the axiomatization/completeness and the 
decidability/complexity of this first-order theory and this modal logic.

1. Introduction

Within the context of the modeling of the behavior of a complex system, when numeric information is 

useless or when available information is unprecise, the use of qualitative reasoning is often required [20,22]. 

It is a fact that engineering practice usually induces the experts to handle the symbols ≪ (“is negligible 

with respect to”) and ≃ (“is in the proximity of”) while simplifying complex equations. Nevertheless, this 

rule of thumb has to be formalized if one intends to mechanically reproduce by means of algorithms the 

engineers ability to reason about the behavior of a complex system. This formalization task is at the heart 

of the qualitative reasoning enterprise.

Restricting his discussion to the relative orders of magnitude paradigm, Raiman [19] introduced a formal 

system, FOG, based on the binary relations Ne (“is negligible with respect to”), Co (“is comparable to”) 

and V o (“is in the proximity of”). Without studying its completeness, he justified the use of FOG by showing 

the soundness of the inference rules of FOG with respect to nonstandard analysis, i.e. by interpreting Ne, 

Co and V o as follows: Ne(a, b) iff a/b is infinitesimal, Co(a, b) iff a/b is appreciable and V o(a, b) iff a/b − 1

is infinitesimal for each hyperreals a, b.
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Variants of FOG have been later introduced in order, for example, to incorporate numeric information

[10] or to relate together different types of order-of-magnitude knowledge [21]. See also [11,17]. Nevertheless, 

there is something wrong with them: if the soundness or the complexity of the proposed formal systems are 

sometimes examined, their completeness with respect to such-and-such semantics is never studied. The first 

purpose of the present paper is to investigate the axiomatization/completeness and the decidability/com-

plexity of the first-order theory the binary relations of negligibility, comparability and proximity give rise 

to in the set of all positive hyperreals.

Recently, modal languages for qualitative order-of-magnitude reasoning have been considered [4,6]. See 

also [5,16]. In these modal languages, connectives are associated to the binary relations of negligibility and 

comparability. Nevertheless, the first-order conditions put on these binary relations in the Kripke frames 

used to interpret these modal languages do not constitute a complete axiomatization of their first-order 

theory in the set of all positive hyperreals. The second purpose of the present paper is to investigate the 

axiomatization/completeness and the decidability/complexity of the modal logic the binary relations of 

negligibility, comparability and proximity give rise to in the set of all positive hyperreals.

The binary relations of negligibility, comparability and proximity in the set of all positive hyperreals 

will be presented in section 2. Section 3 will associate with negligibility, comparability and proximity the 

binary predicates N , C and P and will study the first-order theory based on these predicates. Section 4 will 

associate with negligibility, comparability and proximity the connectives [N ], [C] and [P ] and will study 

the modal logic based on these connectives. Variants of our first-order and modal languages based, in the 

set of all positive hyperreals, on the relation of precedence and the operation of addition will be presented 

in section 5.

2. Hyperreals

2.1. What are the hyperreals?

In the set of all reals, there are no such things as infinitely small and infinitely large numbers. While reals 

all belong to the same order of magnitude, it is the fact that hyperreals are either infinitesimal, appreciable 

or unlimited which sets them apart. The thing is that hyperreals contains the reals as a subset, but also 

contains infinitely small (infinitesimal) numbers and infinitely large (unlimited) numbers. In mathematics, 

these new entities offer new definitions of familiar concepts like convergence and continuity [15]. In other 

areas of science and technology, they justify the algebraic processing of small numbers and large numbers 

that researchers and engineers often do—witness their use in multifarious domains like market models [9] for 

modeling option pricing and in electrical networks [23] for modeling infinite networks. In computer science 

and artificial intelligence, infinitesimal numbers and unlimited numbers have been used for analyzing texts 

[2] and reasoning about time in deductive databases [14].

2.2. Ultrapower construction of the hyperreals

Following the introduction to non-standard analysis proposed in [15], let us introduce a number of basic 

concepts. Let I be the set of all positive integers. We use RI to denote the set of all real-valued sequences, 

P(I) to denote the power set of I and P(P(I)) to denote the power set of P(I). For a start, suppose that 

the notion of a large set of positive integers, in a sense that is to be determined, is at our disposal. Given 

a, b ∈ RI , we shall say that a agrees with b iff {n ∈ I: a(n) = b(n)} is large. The set {n ∈ I: a(n) = b(n)}
may be thought of as a measure of the extent to which the statement “a agrees with b” is true. In order 

to ensure that agreement between real-valued sequences is a non-trivial equivalence relation, the following 

conditions must be satisfied:



• I is large,

• ∅ is not large,

• for all X, Y ∈ P(I), if X is large and Y is large then X ∩ Y is large.

Given a, b ∈ RI , we shall say that a precedes b iff {n ∈ I: a(n) < b(n)} is large. The set {n ∈ I: a(n) <

b(n)} may be thought of as a measure of the extent to which the statement “a precedes b” is true. In order 

to ensure that precedence between real-valued sequences is a total relation modulo agreement, the following 

condition must be satisfied:

• for all X, Y ∈ P(I), if X ∪ Y is large then X is large or Y is large.

The above conditions suggest to determine the notion of a large set of positive integers by means of ultrafilters 

on I. A set U ∈ P(P(I)) is said to have the finite intersection property iff the intersection of any finite 

number of elements of U is non-empty. A set U ∈ P(P(I)) is said to be an ultrafilter on I iff

• I ∈ U ,

• ∅ /∈ U ,

• for all X, Y ∈ P(I), X ∩ Y ∈ U iff X ∈ U and Y ∈ U ,

• for all X, Y ∈ P(I), X ∪ Y ∈ U iff X ∈ U or Y ∈ U .

These requirements imply that for all X ∈ P(I), I \ X ∈ U iff X /∈ U . A large supply of ultrafilters on I is 

provided by the ultrafilter theorem.

Proposition 1. Let U ∈ P(P(I)). If U has the finite intersection property then there exists a set U ′ ∈ P(P(I))
such that U ⊆ U ′ and U ′ is an ultrafilter on I.

Let n ∈ I be a positive integer. Consider the set Un = {X ∈ P(I): n ∈ X}. Clearly, Un is an ultrafilter 

on I. We call such ultrafilters the principal ultrafilters on I. Let Uω = {X ∈ P(I): I \ X is finite}. As the 
reader can easily ascertain, Uω has the finite intersection property. Hence, by the ultrafilter theorem, there 

exists a set U ′
ω ∈ P(P(I)) such that Uω ⊆ U ′

ω and U ′
ω is an ultrafilter on I. Such ultrafilters are called the 

non-principal ultrafilters on I. It is a well-known fact that principal ultrafilters and non-principal ultrafilters 

constitute a partition of the set of all ultrafilters on I. Let U be an ultrafilter on I. We define a binary 

relation ≡U on RI by putting

• a ≡U b iff {n ∈ I: a(n) = b(n)} ∈ U

for each a, b ∈ RI . Note that ≡U is an equivalence relation on RI . Given a ∈ RI , we call the set of all 

b ∈ RI such that a ≡U b, denoted by | a ||≡U
, the equivalence class with a as its representative modulo ≡U . 

The set of all equivalence classes modulo ≡U , denoted by RI
|≡U

, is called the quotient set of RI modulo ≡U . 

We call the elements of R the real numbers while the elements of RI
|≡U

are called the hyperreal numbers 

modulo ≡U . On RI
|≡U

, we define the binary relation ≺|≡U
and the binary operations ⊕|≡U

and ⊗|≡U
by 

putting

• | a |≡U
≺|≡U

| b |≡U
iff {n ∈ I: a(n) < b(n)} ∈ U ,

• | a |≡U
⊕|≡U

| b |≡U
is | a + b |≡U

,

• | a |≡U
⊗|≡U | b |≡U

is | a × b |≡U



for each a, b ∈ RI . The binary relation ≺|≡U
and the binary operations ⊕|≡U

and ⊗|≡U
are well-defined 

seeing that for all a′, b′ ∈ RI and for all a′′, b′′ ∈ RI , if a′ ≡U a
′′ and b′ ≡U b

′′ then {n ∈ I: a
′(n) <

b
′(n)} ∈ U iff {n ∈ I: a

′′(n) < b
′′(n)} ∈ U, | a

′ + b
′ |≡U

=| a
′′ + b

′′ |≡U
and | a

′ × b
′ |≡U

=| a
′′ × b

′′ |≡U
.

Proposition 2. The structure 〈RI
|≡U

, ≺|≡U
, ⊕|≡U

, ⊗|≡U
〉 is an ordered field.

For all reals r ∈ R, we define the real-valued sequence r ∈ RI by putting

• r(n) = r

for each n ∈ I.

Proposition 3. The map r ∈ R Ô→| r ||≡U
∈ RI

|≡U
is an ordered-preserving field isomorphism from R into 

RI
|≡U

.

The construction of RI
|≡U

as the quotient set of RI modulo ≡U depends on the choice of the ultrafilter 

U on I. It has been shown that

• for all principal ultrafilters U on I, 〈RI
|≡U

, ≺|≡U
, ⊕|≡U

, ⊗|≡U
〉 is isomorphic to 〈R, <, +, ×〉,

• for all non-principal ultrafilters U ′, U ′′ on I, 〈RI
|≡U′

, ≺|≡U′
, ⊕|≡U′

, ⊗|≡U′
〉 is isomorphic to 〈RI

|≡U′′
, ≺|≡U′′

,

⊕|≡U′′
, ⊗|≡U′′

〉.

Let U be a fixed non-principal ultrafilter on I. Given a ∈ RI , we will denote more briefly as | a | the 
equivalence class | a ||≡U

with a as its representative modulo ≡U . The quotient set R
I
|≡U

of RI modulo ≡U

will be denoted more briefly by ⋆R. We will denote more briefly as ≺⋆ the binary relation ≺|≡U
on RI

|≡U
. 

The binary operations ⊕|≡U
and ⊗|≡U

on RI
|≡U

will be denoted more briefly by ⊕⋆ and ⊗⋆. We shall say 

that the hyperreal | a | ∈ ⋆R is infinitesimal iff | −r |≺⋆| a | and | a |≺⋆| r | for each real r ∈ R such that 

r > 0. For example, if ǫ ∈ RI is the real-valued sequence defined by putting

• ǫ(n) = 1/n

for each n ∈ I then | ǫ | is infinitesimal. The hyperreal | a | ∈ ⋆R is said to be unlimited iff | a |≺⋆| −r | or 
| r |≺⋆| a | for each real r ∈ R such that r > 0. For example, if ω ∈ RI is the real-valued sequence defined 

by putting

• ω(n) = n

for each n ∈ I then | ω | is unlimited. We shall say that the hyperreal | a | ∈ ⋆R is appreciable iff | a | is 
neither infinitesimal nor unlimited. Hence, on ⋆R, we define the binary relations ≺⋆

ǫ , ≺⋆
ω and ≺⋆

1 by putting

• | a |≺⋆
ǫ | b | iff | a |≺⋆| b | and | b − a | is infinitesimal,

• | a |≺⋆
ω| b | iff | a |≺⋆| b | and | b − a | is unlimited,

• | a |≺⋆
1| b | iff | a |≺⋆| b | and | b − a | is appreciable

for each a, b ∈ RI .



2.3. Primitive relations

Restricting our discussion to the set of all positive hyperreals (with typical members now denoted by a, b, 

etc.), let us examine the primitive relations that may be involved. For obvious reasons, the identity relation 

(denoted by ≡) will be fundamental. But several additional relations arise of which the following three has 

been especially studied: negligibility (denoted by N), comparability (denoted by C) and proximity (denoted 

by P ). According to Raiman [19] and his followers, a is negligible with respect to b iff a/b is infinitesimal, 

a is comparable to b iff a/b is appreciable and a is in the proximity of b iff a/b −1 is infinitesimal. Conditions 

on these three relations may be formulated in a first-order way. To begin with, an important aspect of 

negligibility is the absence of stops, seeing that for all infinitesimal numbers ǫ, ǫ × a is negligible with 

respect to a and a is negligible with respect to a/ǫ. This aspect is expressed by the condition of seriality:

Ser(N): for all a, there exist b, c such that b is negligible with respect to a and a is negligible with respect 

to c.

Another important aspect of negligibility is flow, seeing that if a/c and c/b are infinitesimal then a/b is 

infinitesimal too. This aspect is expressed by the condition of transitivity:

Tra(N): for all a, b, if there exists c such that a is negligible with respect to c and c is negligible with 

respect to b then a is negligible with respect to b.

Reciprocally, seeing that the negligibility of a with respect to b implies the negligibility of a with respect to √
a × b and the negligibility of 

√
a × b with respect to b, the condition of density is called for:

Den(N): for all a, b, if a is negligible with respect to b then there exists c such that a is negligible with 

respect to c and c is negligible with respect to b.

The conditions on comparability and proximity are more evident than the preceding ones:

Ref (C): for all a, a is comparable to a.

Sym(C): for all a, b, if a is comparable to b then b is comparable to a.

Tra(C): for all a, b, if there exists c such that a is comparable to c and c is comparable to b then a is 

comparable to b.

Ref (P ): for all a, a is in the proximity of a.

Sym(P ): for all a, b, if a is in the proximity of b then b is in the proximity of a.

Tra(P ): for all a, b, if there exists c such that a is in the proximity of c and c is in the proximity of b then 

a is in the proximity of b.

There are also mixed conditions connecting negligibility, comparability and proximity. To begin with, seeing 

that if a/b is infinitesimal then a/b is not appreciable, one has to consider the following condition of 

disjointness:

Dis(N, C): for all a, b, if a is negligible with respect to b then a is not comparable to b.

Moreover, seeing that if a/b − 1 is infinitesimal then a/b is appreciable, one has to consider the following 

condition of inclusion:

Inc(C, P ): for all a, b, if a is in the proximity of b then a is comparable to b.



Finally, seeing that a/b is infinitesimal or a/b is appreciable or b/a is infinitesimal, one has to consider the 

following condition of universality:

Uni(N, C): for all a, b, a is negligible with respect to b or a is comparable to b or b is negligible with respect 

to a.

What plausible conditions could be added? By Ref (C), Sym(C), Tra(C), Ref (P ), Sym(P ) and Tra(P ), 

comparability and proximity are equivalence relations. By Inc(C, P ), every equivalence class modulo prox-

imity is contained in exactly one equivalence class modulo comparability. Nevertheless, the above first-order 

conditions do not prevent equivalence classes modulo comparability and equivalence classes modulo proxim-

ity to be finite. This leads us to the following conditions of infinity where n denotes an arbitrary nonnegative 

integer:

Inf n(P, ≡): every equivalence class modulo proximity contains at least n elements.

Inf n(C, P ): every equivalence class modulo comparability contains at least n equivalence classes modulo 

proximity.

3. First-order theory

3.1. Syntax

It is now time to meet the first-order language we will be working with. We assume some familiarity with 

model theory. Readers wanting more details may refer, for example, to [8] or [12]. Our first-order theory is 

based on the idea of associating with negligibility, comparability and proximity the binary predicates N , C

and P . The formulas are given by the rule:

• φ ::= N(x, y) | C(x, y) | P (x, y) | x ≡ y | ⊥ | ¬φ | (φ ∨ ψ) | ∀x.φ

where x and y range over a countable set of variables. The size of φ, denoted by | φ |, is defined as the 

number of symbols occurring in φ. We adopt the standard definitions for the remaining Boolean operations 

and for the existential quantifier. It is usual to omit parentheses if this does not lead to any ambiguity. We 

define the following abbreviations:

• N̄(x, y) := ¬N(x, y),

• C̄(x, y) := ¬C(x, y),

• P̄ (x, y) := ¬P (x, y),

• x Ó≡ y := ¬x ≡ y.

N(x, y), C(x, y), P (x, y) will be respectively read “x is negligible with respect to y”, “x is comparable to 

y”, “x is in the proximity of y”.

3.2. Semantics

Formulas will be interpreted in frames, i.e. relational structures of the form S = (HS , NS , CS , PS) where 

HS is a nonempty set and NS , CS and PS are binary relations on HS . We shall say that a in HS is reflexive

iff NS(a, a). A frame S = (HS , NS , CS , PS) is said to be normal iff the following sentences hold in S:

Ser(N): ∀x.∃y.∃z.(N(y, x) ∧ N(x, z)).



Tra(N): ∀x.∀y.(∃z.(N(x, z) ∧ N(z, y)) → N(x, y)).

Den(N): ∀x.∀y.(N(x, y) → ∃z.(N(x, z) ∧ N(z, y))).

Ref (C): ∀x.C(x, x).

Sym(C): ∀x.∀y.(C(x, y) → C(y, x)).

Tra(C): ∀x.∀y.(∃z.(C(x, z) ∧ C(z, y)) → C(x, y)).

Ref (P ): ∀x.P (x, x).

Sym(P ): ∀x.∀y.(P (x, y) → P (y, x)).

Tra(P ): ∀x.∀y.(∃z.(P (x, z) ∧ P (z, y)) → P (x, y)).

Dis(N, C): ∀x.∀y.(N(x, y) → C̄(x, y)).

Inc(C, P ): ∀x.∀y.(P (x, y) → C(x, y)).

Uni(N, C): ∀x.∀y.(N(x, y) ∨ C(x, y) ∨ N(y, x)).

Inf n(P, ≡): ∀x1. . . . ∀xn.(
∧{P (xi, xj) ∧ xi Ó≡ xj : 1 ≤ i < j ≤ n} → ∃y. 

∧{P (y, xi) ∧ y Ó≡ xi: 1 ≤ i ≤ n}).
Inf n(C, P ): ∀x1. . . . ∀xn.(

∧{C(xi, xj) ∧ P̄ (xi, xj): 1 ≤ i < j ≤ n} → ∃y. 
∧{C(y, xi) ∧ P̄ (y, xi): 1 ≤ i ≤ n}).

In the sentences Inf n(P, ≡) and Inf n(C, P ), n denotes an arbitrary nonnegative integer. Let S =

(HS , NS , CS , PS) be a normal frame. By Ref (C), Sym(C) and Tra(C), obviously, CS is an equivalence 

relation on HS . In the sequel, the set of all elements equivalent to a in HS modulo CS , denoted by [a]CS
, is 

called the equivalence class modulo CS with a as its representative. The set of all equivalence classes of HS

modulo CS , denoted by HS/CS , is called the quotient set of HS modulo CS . Let ≺S be the binary relation 

on HS/CS defined by:

• [a]CS
≺S [b]CS

iff there exist c, d in HS such that CS(a, c), CS(b, d) and NS(c, d).

It is a rather remarkable fact that

Lemma 4. (HS/CS , ≺S) is a dense linear proper order without endpoints.

Proof. Density follows from Den(N), irreflexivity and transitivity follow from Tra(N), Dis(N, C) and 

Uni(N, C), linearity follows from Uni(N, C) and absence of endpoints follows from Ser(N). ✷

By Ref (P ), Sym(P ) and Tra(P ), obviously, PS is an equivalence relation on HS . In the sequel, the set of 

all elements equivalent to a in HS modulo PS , denoted by [a]PS
, is called the equivalence class modulo PS

with a as its representative. By the sentences Inf n(P, ≡), it is a simple matter to check that every equivalence 

class in HS modulo PS is made up of infinitely many elements. The set of all equivalence classes of HS

modulo PS , denoted by HS/PS , is called the quotient set of HS modulo PS . By Inc(C, P ) and the sentences 

Inf n(C, P ), it is worth noting at this point the following: every equivalence class in HS modulo CS is made 

up of infinitely many equivalence classes in HS modulo PS . The truth is that there exist normal frames in 

each infinite power. We should consider, for instance, the frame SP H = (HSP H
, NSP H

, CSP H
, PSP H

). Its set 

HSP H
of elements consists of all positive hyperreals whereas:

• NSP H
(a, b) iff a/b is infinitesimal,

• CSP H
(a, b) iff a/b is appreciable,

• PSP H
(a, b) iff a/b − 1 is infinitesimal.

Clearly, SP H is uncountable and normal. A countable structure approximating SP H is SQQ = (HSQQ
, NSQQ

,

CSQQ
, PSQQ

). Its set HSQQ
of elements consists of all triples of positive rationals whereas:

• NSQQ
((q1, q2, q3), (r1, r2, r3)) iff q1 < r1,



• CSQQ
((q1, q2, q3), (r1, r2, r3)) iff q1 = r1,

• PSQQ
((q1, q2, q3), (r1, r2, r3)) iff q1 = r1 and q2 = r2.

Clearly, SQQ is countable and normal. Now, let us compare normal frames together. The proof of the next 

result necessitates the use of pebble games over (S, [a1, . . . , an]) and (S ′, [a′
1, . . . , a′

n]). See [12] for details. 

Let m, n be nonnegative integers. In the n-pebble m-game over (S, [a1, . . . , an]) and (S ′, [a′
1, . . . , a′

n]), we 

have n pebbles α1, . . . , αn for S and n pebbles α′
1, . . . , α′

n for S ′. Initially, each αi is placed on ai and each 

α′
i is placed on a′

i. Each play consists of a finite sequence of m moves. In its j-th move, the first player selects 

a normal frame, either S or S ′, and a pebble for this structure. If it selects S and αi then the first player 

places αi on some element of S and the second player places α′
i on some element of S ′. If it selects S ′ and 

α′
i then the first player places α′

i on some element of S ′ and the second player places αi on some element 

of S. The second player wins the game if for each j ≤ m, the elements of S marked by α1, . . . , αn and the 

elements of S ′ marked by α′
1, . . . , α′

n constitute a partial isomorphism between the two normal frames.

Proposition 5. Let S, S ′ be normal frames. If S is countable then S is elementary embeddable in S ′.

Proof. Let S = (HS , NS , CS , PS), S ′ = (HS′ , NS′ , CS′ , PS′) be normal frames. Suppose S is countable. 

Let g be an injective homomorphism on (HS/CS , ≺S) to (HS′/CS′ , ≺S′). Since S is countable, such an 

injective homomorphism exists. For each equivalence class [a]CS
in HS modulo CS , let h[a]CS

be an injec-

tive homomorphism on ([a]CS
, PS |[a]CS

) to (g([a]CS
), PS′ g([a]CS

)). Since S is countable, such an injective 

homomorphism exists. Let f be the mapping on HS to HS′ defined by:

• f(a) = h[a]CS
(a).

Obviously, for all nonnegative integers m, n and for all a1, . . . , an in HS , the second player wins all n-pebble 

m-games over (S, [a1, . . . , an]) and (S ′, [f(a1), . . . , f(an)]). Hence, by [12, theorem 3.3.5], for all nonnegative 

integers n, for all a1, . . . , an in HS and for all formulas φ(x1, . . . , xn) with variables among x1, . . . , xn, 

S |= φ(x1, . . . , xn) [a1, . . . , an] iff S ′ |= φ(x1, . . . , xn) [f(a1), . . . , f(an)]. Thus, f is an elementary embedding 

of S to S ′. ✷

As a result, any two normal frames are elementary equivalent. In particular,

Corollary 6. Let φ be a formula. The following conditions are equivalent:

(1) φ holds in every normal frame.

(2) φ holds in SP H .

(3) φ holds in SQQ.

Proof. By Proposition 5, since SP H and SQQ are normal frames. ✷

3.3. Axiomatization

Let SQS be the first-order theory of N , C, P and ≡ that contains Ser(N), Tra(N), Den(N), Ref (C), 

Sym(C), Tra(C), Ref (P ), Sym(P ), Tra(P ), Dis(N, C), Inc(C, P ), Uni(N, C), Inf n(P ) and Inf n(C, P ) as 

proper axioms. The following proposition sums up all the simple properties that we can prove with the 

machinery available to us at present.



Proposition 7.

(1) SQS is ω-categorical.

(2) SQS is not categorical in any uncountable power.

(3) SQS is maximal consistent.

Proof. (1) Let S = (HS , NS , CS , PS), S ′ = (HS′ , NS′ , CS′ , PS′) be countable normal frames. Let g be a 

bijective homomorphism on (HS/CS , ≺S) to (HS′/CS′ , ≺S′). Since S and S ′ are countable, such a bijec-

tive homomorphism exists. For each equivalence class [a]CS
in HS modulo CS , let h[a]CS

be a bijective 

homomorphism on ([a]CS
, PS |[a]CS

) to (g([a]CS
), PS′ g([a]CS

)). Since S and S ′ are countable, such a bijective 

homomorphism exists. Let f be the mapping on HS to HS′ defined by:

• f(a) = h[a]CS
(a).

Obviously, f is an isomorphism on S to S ′.

(2) Let α, α′ be uncountable powers. Let S, S′ be respectively sets of power α, α′. Let S = (HS , NS , CS), 

S ′ = (HS′ , NS′ , CS′) be respectively the normal frames of power α, α′ such that HS = Q+∗ × Q+∗ × S, 

HS′ = Q+∗ × Q+∗ × S′ whereas:

• NS((q1, q2, q3), (r1, r2, r3)) iff q1 < r1,

• CS((q1, q2, q3), (r1, r2, r3)) iff q1 = r1,

• PS((q1, q2, q3), (r1, r2, r3)) iff q1 = r1 and q2 = r2,

• NS′((q′
1, q

′
2, q

′
3), (r

′
1, r

′
2, r

′
3)) iff q′

1 < r′
1,

• CS′((q′
1, q

′
2, q

′
3), (r

′
1, r

′
2, r

′
3)) iff q′

1 = r′
1,

• PS′((q′
1, q

′
2, q

′
3), (r

′
1, r

′
2, r

′
3)) iff q′

1 = r′
1 and q′

2 = r′
2.

A cardinality argument immediately gives that if α Ó= α′ then S and S ′ are not isomorphic.

(3) Obviously, every formula is either true in SQQ or false in SQQ. Hence, by Corollary 6, for all formulas 

φ, either φ is in SQS or ¬φ is in SQS . Thus, SQS is maximal consistent. ✷

3.4. Completeness

Now, we turn to the completeness of SQS .

Proposition 8.

(1) SQS is complete with respect to SP H .

(2) SQS is complete with respect to SQQ.

(3) SQS is not axiomatizable with finitely many variables.

Proof. (1) Immediately follows from item (3) of Proposition 7, since SP H is a model of SQS .

(2) Immediately follows from item (3) of Proposition 7, since SQQ is a model of SQS .

(3) Suppose that SQS is axiomatizable with finitely many variables. Hence, there exists a positive integer 

n and there exists a set Γ of sentences with variables among x1, . . . , xn such that SQS is equal to the set 

of all consequences of Γ. Since SQQ is a model of SQS , SQQ |= Γ. Let Sn = (HSn
, NSn

, CSn
, PSn

) be the 

frame such that HSn
= Q+∗ × Q+∗ × {1, . . . , n} whereas:

• NSn
((q1, q2, q3), (r1, r2, r3)) iff q1 < r1,



• CSn
((q1, q2, q3), (r1, r2, r3)) iff q1 = r1,

• PSn
((q1, q2, q3), (r1, r2, r3)) iff q1 = r1 and q2 = r2.

Obviously, Sn Ó|= Inf n(P ). Moreover, for all a1, . . . , an in HSn
, the second player wins all n-pebble games 

over (Sn, [a1, . . . , an]) and (SQQ, [a1, . . . , an]). Thus, by [12, theorem 3.3.5], for all a1, . . . , an in HSn
and 

for all formulas φ(x1, . . . , xn) with variables among x1, . . . , xn, Sn |= φ(x1, . . . , xn) [a1, . . . , an] iff SQQ |=
φ(x1, . . . , xn) [a1, . . . , an]. Since the variables occurring in Γ are among x1, . . . , xn and SQQ |= Γ, Sn |= Γ. 

Since SQS is equal to the set of all Γ’s consequences, Sn |= Inf n(P ): a contradiction. ✷

3.5. Complexity

In this section, we investigate the decidability/complexity of the membership problem in SQS .

Proposition 9.

(1) The membership problem in SQS is decidable.

(2) The membership problem in SQS is PSPACE-hard.

(3) The membership problem in SQS is in PSPACE.

Proof. (1) Immediately follows from item (3) of Proposition 7.

(2) Let EQ∞ be the first-order theory of ≡ in all infinite sets. Obviously, SQS is a conservative extension 

of EQ∞. Since the membership problem in EQ∞ is PSPACE-hard [1], the membership problem in SQS is 

PSPACE-hard.

(3) To every variable xi, we associate a triple (xi
1, x

i
2, x

i
3) of variables. The function τ(·) assigning to each 

formula φ in N , C, P and ≡ a formula τ(φ) in < and ≡ is given by:

• τ(N(xi, xj)) = xi
1 < xj

1,

• τ(C(xi, xj)) = xi
1 ≡ xj

1,

• τ(P (xi, xj)) = xi
1 ≡ xj

1 ∧ xi
2 ≡ xj

2,

• τ(xi ≡ xj) = xi
1 ≡ xj

1 ∧ xi
2 ≡ xj

2 ∧ xi
3 ≡ xj

3,

• τ(⊥) = ⊥,
• τ(¬φ) = ¬τ(φ),

• τ(φ ∨ ψ) = τ(φ) ∨ τ(ψ),

• τ(∀xi.φ) = ∀xi
1.∀xi

2.∀xi
3.τ(φ).

Obviously, τ(φ) can be computed in space log | φ |. Moreover, for all nonnegative integers n, for all q11, q
1
2 , 

q13 , . . . , qn
1 , q

n
2 , q

n
3 in Q+∗ and for all formulas φ(x1, . . . , xn) with variables among x1, . . . , xn in N , C, P and 

≡,

• if SQQ |= φ(x1, . . . , xn) [(q11 , q12 , q13), . . . , (qn
1 , qn

2 , qn
3 )] then (Q+∗, <) |= τ(φ(x1, . . . , xn)) [q11 , q12 , q13 , . . . ,

qn
1 , qn

2 , qn
3 ],

• if SQQ Ó|= φ(x1, . . . , xn) [(q11 , q12 , q13), . . . , (qn
1 , qn

2 , qn
3 )] then (Q+∗, <) Ó|= τ(φ(x1, . . . , xn)) [q11 , q12 , q13 , . . . ,

qn
1 , qn

2 , qn
3 ].

The two above items can be proved by induction on the complexity of φ. Hence, for all formulas φ in N , C, 

P and ≡, SQQ |= φ iff (Q+∗, <) |= τ(φ). Thus, by item (2) of Proposition 8, for all formulas φ in N , C, P

and ≡, φ is in SQS iff τ(φ) is in the first-order theory of < and ≡ in all dense linear proper orders without 



endpoints. Since the first-order theory of < and ≡ in all dense linear propers order without endpoints is in 

PSPACE [13], the membership problem in SQS is in PSPACE. ✷

3.6. Definability

We tackle the problem of the definability of N , C, P and ≡ in the class of all normal frames. The 

following result implies that C is the only binary predicate in our language that can be eliminated. Its 

proof necessitates the use of Ehrenfeucht games over (S, [a1, . . . , an]) and (S ′, [a′
1, . . . , a′

n]). See [12] for 

details. Let m, n be nonnegative integers. Each play of the n-Ehrenfeucht m-game over (S, [a1, . . . , an])

and (S ′, [a′
1, . . . , a′

n]) consists of a finite sequence of m moves. In its j-th move, the first player selects 

a normal frame, either S or S ′. If it selects S then the first player chooses an element bj of S and the 

second player chooses an element b′
j of S ′. If it selects S ′ then the first player chooses an element b′

j of S ′

and the second player chooses an element bj of S. The second player wins the game if for each j ≤ m, 

the elements a1, . . . , an, b1, . . . , bj of S and the elements a′
1, . . . , a′

n, b′
1, . . . , b′

j of S ′ constitute a partial 

isomorphism between the two normal frames.

Proposition 10.

(1) N is not definable with C, P and ≡ in the class of all normal frames.

(2) C is definable with N in the class of all normal frames.

(3) C is not definable with P and ≡ in the class of all normal frames.

(4) P is not definable with N , C and ≡ in the class of all normal frames.

(5) ≡ is not definable with N , C and P in the class of all normal frames.

Proof. (1) Suppose N is definable with C, P and ≡ in the class of all normal frames. Hence, there exists 

a formula φ(x, y) in C, P and ≡ such that (∗) for all normal frames S = (HS , NS , CS , PS) and for all a, 

b in HS , NS(a, b) iff S |= φ(x, y) [a, b]. Let S = (HS , NS , CS , PS) be a normal frame. By Ser(N), there 

exist a, b in HS such that NS(a, b). By Tra(N), Ref (C) and Dis(N, C), not NS(b, a). Moreover, since (∗), 
S |= φ(x, y) [a, b]. Obviously, the frame (HS , N−1

S , CS , PS) is normal. Moreover, the second player wins all 

Ehrenfeucht games over (S, [a, b]) and ((HS , N−1
S , CS , PS), [a, b]) with respect to C, P and ≡. Thus, by [12, 

theorem 2.2.8], for all formulas ψ(x, y) in C, P and ≡, S |= ψ(x, y) [a, b] iff (HS , N−1
S , CS , PS) |= ψ(x, y) [a, b]. 

Since S |= φ(x, y) [a, b], (HS , N−1
S , CS , PS) |= φ(x, y) [a, b]. Since (∗), N−1

S (a, b). Therefore, NS(b, a): a 

contradiction.

(2) It suffices to observe that for all normal frames S = (HS , NS , CS , PS) and for all a, b in HS , CS(a, b)

iff S |= N̄(x, y) ∧ N̄(y, x) [a, b]. For the verification, use Sym(C), Dis(N, C) and Uni(N, C).

(3) Suppose C is definable with P and ≡ in the class of all normal frames. Hence, there exists a formula 

φ(x, y) in P and ≡ such that (∗) for all normal frames S = (HS , NS , CS , PS) and for all a, b in HS , 

CS(a, b) iff S |= φ(x, y) [a, b]. Let S = (HS , NS , CS , PS) be a normal frame. By Sym(C), Sym(P ) and 

Inf 1(C, P ), there exist a, b in HS such that CS(a, b) and not PS(a, b). Since (∗), S |= φ(x, y) [a, b]. Let 

S ′ = (HS′ , NS′ , CS′ , PS′) be a normal frame. By Ser(N), there exist a′, b′ in HS′ such that NS′(a′, b′). By 

Dis(N, C) and Inc(C, P ), neither CS′(a′, b′) nor PS′(a′, b′). Obviously, the second player wins all Ehrenfeucht 

games over (S, [a, b]) and (S ′, [a′, b′]) with respect to P and ≡. Thus by [12, theorem 2.2.8], for all formulas 

ψ(x, y) in P and ≡, S |= ψ(x, y) [a, b] iff S ′ |= ψ(x, y) [a′, b′]. Since S |= φ(x, y) [a, b], S ′ |= φ(x, y) [a′, b′]. 

Since (∗), CS′(a′, b′): a contradiction.

(4) Suppose P is definable with N , C and ≡ in the class of all normal frames. Hence, there exists a 

formula φ(x, y) in N , C and ≡ such that (∗) for all normal frames S = (HS , NS , CS , PS) and for all a, b in 

HS , PS(a, b) iff S |= φ(x, y) [a, b]. Let S = (HS , NS , CS , PS) be a normal frame. By Sym(P ) and Inf 1(P, ≡), 
there exist a, b in HS such that PS(a, b) and a Ó= b. Since (∗), S |= φ(x, y) [a, b]. Let S ′ = (HS′ , NS′ , CS′ , PS′)



be a normal frame. By Sym(C), Sym(P ) and Inf 1(C, P ), there exist a′, b′ in HS′ such that CS′(a′, b′) and 

not PS′(a′, b′). Obviously, the second player wins all Ehrenfeucht games over (S, [a, b]) and (S ′, [a′, b′]) with 

respect to N , C and ≡. Thus, by [12, theorem 2.2.8], for all formulas ψ(x, y) in N , C and ≡, S |= ψ(x, y) [a, b]

iff S ′ |= ψ(x, y) [a′, b′]. Since S |= φ(x, y) [a, b], S ′ |= φ(x, y) [a′, b′]. Since (∗), PS′(a′, b′): a contradiction.

(5) Suppose ≡ is definable with N , C and P in the class of all normal frames. Hence, there exists a 

formula φ(x, y) in N , C and P such that (∗) for all normal frames S = (HS , NS , CS , PS) and for all a, b

in HS , a = b iff S |= φ(x, y) [a, b]. Let S = (HS , NS , CS , PS) be a normal frame. Let a in HS . Since (∗), 
S |= φ(x, y) [a, a]. Let S ′ = (HS′ , NS′ , CS′ , PS′) be a normal frame. By Sym(P ) and Inf 1(P, ≡), there exist 
a′, b′ in HS′ such that PS′(a′, b′) and a′ Ó= b′. Obviously, the second player wins all Ehrenfeucht games over 

(S, [a, a]) and (S ′, [a′, b′]) with respect to N , C and P . Thus, by [12, theorem 2.2.8], for all formulas ψ(x, y)

in N , C and P , S |= ψ(x, y) [a, a] iff S ′ |= ψ(x, y) [a′, b′]. Since S |= φ(x, y) [a, a], S ′ |= φ(x, y) [a′, b′]. Since 

(∗), a′ = b′: a contradiction. ✷

4. Modal logic

4.1. Syntax

It is now time to meet the modal language we will be working with. We assume some familiarity with 

modal logic. Readers wanting more details may refer, for example, to [3] or [7]. Our modal logic is based 

on the idea of associating with negligibility, comparability and proximity the connectives [N ], [C] and [P ]. 

The formulas are given by the rule:

• φ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [N ]φ | [C]φ | [P ]φ

where p ranges over a countable set of atoms. Let the size of φ, denoted by | φ |, be the number of symbols 
occurring in φ. SF (φ) will denote the set of all φ’s subformulas. We adopt the standard definitions for the 

remaining Boolean operations. It is usual to omit parentheses if this does not lead to any ambiguity. We 

define 〈N〉φ := ¬[N ]¬φ, 〈C〉φ := ¬[C]¬φ and 〈P 〉φ := ¬[P ]¬φ. [N ]φ, [C]φ, [P ]φ will be respectively read 

“at all points with respect to which the current point is negligible with respect to, φ”, “at all points with 

respect to which the current point is comparable to, φ”, “at all points with respect to which the current 

point is in the proximity of, φ”.

4.2. Semantics

A model is a pair M = (S, V ), where S = (HS , NS , CS , PS) is a frame and V is a valuation on S,

i.e. a function assigning to each atom p a subset V (p) of HS . For all a in HS , let V (a) be the set of all 

atoms p such that a is in V (p), θV ([a]PS
) = {V (b): PS(a, b)} and ΘV ([a]CS

) = {θV ([b]PS
): CS(a, b)}. If 

M = (HS , NS , CS , PS , V ) is a model and a is in HS then the formula φ is true in M at a, denoted by 

M, a |= φ, is defined inductively on the complexity of formulas φ as usual. In particular:

• M, a |= [N ]φ iff for all b in HS , if NS(a, b) then M, b |= φ,

• M, a |= [C]φ iff for all b in HS , if CS(a, b) then M, b |= φ,

• M, a |= [P ]φ iff for all b in HS , if PS(a, b) then M, b |= φ.

We shall say that φ is true in the model M = (HS , NS , CS , PS , V ), denoted by M |= φ, iff M, a |= φ for 

all a in HS . φ is said to be valid in the frame S = (HS , NS , CS , PS), denoted by S |= φ, iff M |= φ for 

all models M = (HS , NS , CS , PS , V ) based on S. It is a simple exercise in modal logic to check that the 

following formulas are valid in all normal frames:



ML(weakSer(N)): [N ]φ → 〈N〉φ.
ML(Tra(N)): [N ]φ → [N ][N ]φ.

ML(Den(N)): [N ][N ]φ → [N ]φ.

ML(Ref (C)): [C]φ → φ.

ML(Sym(C)): φ → [C]〈C〉φ.
ML(Tra(C)): [C]φ → [C][C]φ.

ML(Ref (P )): [P ]φ → φ.

ML(Sym(P )): φ → [P ]〈P 〉φ.
ML(Tra(P )): [P ]φ → [P ][P ]φ.

ML(Tra1(N, C)): [N ]φ → [N ][C]φ.

ML(Tra2(N, C)): [N ]φ → [C][N ]φ.

ML(Inc(C, P )): [C]φ → [P ]φ.

ML(weakUni(N, C)): 〈N〉φ ∧ 〈N〉ψ → 〈N〉(φ ∧ 〈N〉ψ) ∨ 〈N〉(φ ∧ 〈C〉ψ) ∨ 〈N〉(ψ ∧ 〈N〉φ).

Now, we will show that

Proposition 11. Let S, S ′ be normal frames. If S is countable then S and S ′ are modally equivalent.

Proof. Let S = (HS , NS , CS , PS), S ′ = (HS′ , NS′ , CS′ , PS′) be normal frames. Suppose S is countable. If S
and S ′ are not modally equivalent then there exists a formula φ such that S |= φ and S ′ Ó|= φ or there exists 

a formula φ such that S Ó|= φ and S ′ |= φ. In the former case, S |= φ and S ′ Ó|= φ. Since S is countable, by 

item (1) of Proposition 7, φ is valid in every countable normal frame. By [3, proposition 2.47], the downward 

Löwenheim–Skolem property and the first-order definability of the class of all normal frames, φ is valid in 

every normal frame. Hence, S ′ |= φ: a contradiction. In the latter case, S Ó|= φ and S ′ |= φ. Thus, there 

exists a model M = (HS , NS , CS , PS , V ) based on S such that M Ó|= φ. Therefore, there exists a0 in HS

such that M, a0 Ó|= φ. Restricting our discussion to the atoms actually occurring in φ, the reader may easily 

verify that there exists aω in HS such that for all a in HS , there exists b in HS such that NS(a, b) and 

ΘV ([b]CS
) = ΘV ([aω]CS

). Let f be the mapping on HS to HS′ defined as in the proof of Proposition 5. 

Obviously, there exists a valuation V ′ on S ′ such that for all b′ in HS′ ,

• if there exists b in HS such that b′ = f(b) then V ′(b′) = V (b),

• if for all b in HS , b
′ Ó= f(b) and there exists b in HS such that PS′(b′, f(b)) then θV ′([b′]P

S′
) = θV ([b]PS

),

• if for all b in HS , not PS′(b′, f(b)) and there exists b in HS such that CS′(b′, f(b)) then ΘV ′([b′]C
S′
) =

ΘV ([b]CS
),

• if for all b in HS , not CS′(b′, f(b)) then ΘV ′([b′]C
S′
) = ΘV ([aω]CS

).

The reader may easily verify that for all formulas ψ in SF (φ) and for all a in HS , M, a |= ψ iff 

(S ′, V ′), f(a) |= ψ. Since M, a0 Ó|= φ, (S ′, V ′), f(a0) Ó|= φ. Consequently, (S ′, V ′) Ó|= φ. Hence, S ′ Ó|= φ: 

a contradiction. ✷

As a result, any two normal frames are modally equivalent. In particular,

Corollary 12. Let φ be a formula. The following conditions are equivalent:

(1) φ is valid in every normal frame.

(2) SP H |= φ.

(3) SQQ |= φ.

Proof. By Proposition 11, since SP H and SQQ are normal frames. ✷



4.3. Axiomatization

Let ML(SQS) be the least normal modal logic of [N ], [C] and [P ] that contains ML(weakSer(N)), 

ML(Tra(N)), ML(Den(N)), ML(Ref (C)), ML(Sym(C)), ML(Tra(C)), ML(Ref (P )), ML(Sym(P )),

ML(Tra(P )), ML(Tra1(N, C)), ML(Tra2(N, C)), ML(Inc(C, P )) and ML(weakUni(N, C)) as proper ax-

ioms. Let S = (HS , NS , CS , PS) be the subframe of the canonical frame for ML(SQS) generated by one of 

its elements. Seeing that ML(weakSer(N)) is a Sahlqvist formula, the following sentence holds in S:

weakSer(N): ∀x.∃y.N(x, y).

Seeing that ML(Tra(N)), ML(Den(N)), ML(Ref (C)), ML(Sym(C)), ML(Tra(C)), ML(Ref (P )),

ML(Sym(P )) and ML(Tra(P )) are Sahlqvist formulas, Tra(N), Den(N), Ref (C), Sym(C), Tra(C), Ref (P ), 

Sym(P ) and Tra(P ) hold in S. Seeing that ML(Tra1(N, C)) and ML(Tra2(N, C)) are Sahlqvist formulas, 

the following sentences hold in S:

Tra1(N, C): ∀x.∀y.(∃z.(N(x, z) ∧ C(z, y)) → N(x, y)).

Tra2(N, C): ∀x.∀y.(∃z.(C(x, z) ∧ N(z, y)) → N(x, y)).

Seeing that ML(Inc(C, P )) is a Sahlqvist formula, Inc(C, P ) holds in S. Seeing that ML(weakUni(N, C)) is 

a Sahlqvist formula, the following sentence holds in S:

weakUni(N, C): ∀x.∀y.∀z.(N(x, y) ∧ N(x, z) → N(y, z) ∨ C(y, z) ∨ N(z, y)).

Since S is point-generated, by Tra(N), Ref (C), Sym(C), Tra(C), Tra1(N, C), Tra2(N, C) and Inc(C, P ), 

Uni(N, C) holds in S. This motivates the following definition. A frame S = (HS , NS , CS , PS) is said to 

be prenormal iff it satisfies weakSer(N), Tra(N), Den(N), Ref (C), Sym(C), Tra(C), Ref (P ), Sym(P ), 

Tra(P ), Tra1(N, C), Tra2(N, C), Inc(C, P ) and Uni(N, C). Obviously, every normal frame is prenormal. 

The importance of prenormal frames lies in the following proposition.

Proposition 13. Let φ be a formula. The following conditions are equivalent:

(1) φ is in ML(SQS).

(2) φ is valid in every prenormal frame.

(3) φ is valid in every countable prenormal frame.

Proof. By Sahlqvist completeness theorem [3, chapter 5], [3, proposition 2.47], the downward Löwenheim–

Skolem property and the first-order definability of the class of all prenormal frames. ✷

4.4. Completeness

Now, we turn to the completeness of ML(SQS). We shall say that a countable prenormal frame S =

(HS , NS , CS , PS) is unlimited iff every equivalence class in HS modulo PS is made up of infinitely many 

elements and every equivalence class in HS modulo CS is made up of infinitely many equivalence classes in 

HS modulo PS . We first prove a simple result.

Proposition 14. Let S be a prenormal frame. If S is countable then there exists a countable unlimited 

prenormal frame S ′ such that S is a bounded morphic image of S ′.



Proof. Let S = (HS , NS , CS , PS) be a prenormal frame. Suppose S is countable. Let S ′ = (HS′ , NS′ , CS′ ,

PS′) be the countable unlimited prenormal frame such that HS′ = HS × Q+∗ × Q+∗ whereas:

• NS′((a, q2, q3), (b, r2, r3)) iff NS(a, b),

• CS′((a, q2, q3), (b, r2, r3)) iff CS(a, b),

• PS′((a, q2, q3), (b, r2, r3)) iff PS(a, b) and q2 = r2.

Obviously, S is a bounded morphic image of S ′. ✷

Let Sg
QQ = (Hg

QQ, Ng
QQ, Cg

QQ, P g
QQ) be the subframe of SQQ generated by one of its elements, say 

(q01 , q02 , q03). Clearly, Sg
QQ is countable, unlimited and normal. Remark that for all (q1, q2, q3) in Hg

QQ, q
0
1 ≤ q1. 

The importance of Sg
QQ lies in the following proposition.

Proposition 15. Let φ be a formula. The following conditions are equivalent:

(1) φ is valid in every countable prenormal frame.

(2) SQQ |= φ.

(3) Sg
QQ |= φ.

We defer proving Proposition 15 till the end of this section. In the meantime, we demonstrate some 

useful results. Let S = (HS , NS , CS , PS) be a countable prenormal frame. Hence, S is generated by 

one of its elements, say a0. Let f : Hg
QQ Ô→ HS be a partial function. Its domain will be denoted by 

dom(f) whereas its range will be denoted by ran(f). We shall say that f is finite iff dom(f) is finite. 

f will be called homomorphism iff for all (q1, q2, q3), (r1, r2, r3) in Hg
QQ, if Ng

QQ((q1, q2, q3), (r1, r2, r3))

then NS(f(q1, q2, q3), f(r1, r2, r3)), if C
g
QQ((q1, q2, q3), (r1, r2, r3)) then CS(f(q1, q2, q3), f(r1, r2, r3)) and if 

P g
QQ((q1, q2, q3), (r1, r2, r3)) then PS(f(q1, q2, q3), f(r1, r2, r3)). Let f0: H

g
QQ Ô→ HS be the partial function 

defined by dom(f) = {(q01 , q02 , q03)} and f(q01, q02 , q03) = a0. Suppose S is unlimited. The following lemmas 

constitute the heart of our method.

Lemma 16. Let (q1, q2, q3) in Hg
QQ and f : Hg

QQ Ô→ HS be a finite homomorphism containing f0. There exists 

a finite homomorphism g: Hg
QQ Ô→ HS containing f and such that (q1, q2, q3) is in dom(g).

Proof. Since f is a finite homomorphism containing f0, there exists a positive integer k and there exist 

(q11 , q12 , q13), . . . , (qk
1 , qk

2 , qk
3 ) in Hg

QQ such that dom(f) = {(q11 , q12 , q13), . . . , (qk
1 , qk

2 , qk
3 )} and q11 ≤ . . . ≤ qk

1 . 

Since f contains f0, q
1
1 = q01 . Now, consider the following cases.

(1) Suppose there exists a positive integer l such that l ≤ k and ql
1 = q1, ql

2 = q2 and ql
3 = q3. Let g: 

Hg
QQ Ô→ HS be the partial function f .

(2) Suppose for all positive integers l, if l ≤ k then ql
1 Ó= q1 or q

l
2 Ó= q2 or q

l
3 Ó= q3 and there exists a positive 

integer l such that l ≤ k and ql
1 = q1 and ql

2 = q2. Since f is finite and S is unlimited, there exists a

in [f(ql
1, q

l
2, q

l
3)]PS

\ ran(f). Let g: Hg
QQ Ô→ HS be the least partial function containing f and such that 

g(q1, q2, q3) = a.

(3) Suppose for all positive integers l, if l ≤ k then ql
1 Ó= q1 or q

l
2 Ó= q2 and there exists a positive integer 

l such that l ≤ k and ql
1 = q1. Since f is finite and S is unlimited, there exists a in [f(ql

1, q
l
2, q

l
3)]CS

\
[f(ql

1, q
l
2, q

l
3)]PS

\ ran(f). Let g: Hg
QQ Ô→ HS be the least partial function containing f and such that 

g(q1, q2, q3) = a.

(4) Suppose for all positive integers l, if l ≤ k then ql
1 Ó= q1. Now, consider the following cases.

(a) Suppose there exists a positive integer l such that 1 ≤ l − 1, l ≤ k and ql−1
1 < q1 < ql

1. Hence, 

Ng
QQ((q

l−1
1 , ql−1

2 , ql−1
3 ), (ql

1, q
l
2, q

l
3)). Since f is a homomorphism, NS(f(q

l−1
1 , ql−1

2 , ql−1
3 ), f(ql

1, q
l
2, q

l
3)). 



Since Den(N) holds in S, there exists a in HS such that NS(f(q
l−1
1 , ql−1

2 , ql−1
3 ), a) and NS(a, f(ql

1, q
l
2,

ql
3)). Let g: H

g
QQ Ô→ HS be the least partial function containing f and such that g(q1, q2, q3) = a.

(b) Suppose qk
1 < q1. Hence, N

g
QQ((q

k
1 , qk

2 , qk
3 ), (q1, q2, q3)). Since weakSer(N) holds in S, there exists a

in HS such that NS(f(q
k
1 , qk

2 , qk
3 ), a). Let g: H

g
QQ Ô→ HS be the least partial function containing f

and such that g(q1, q2, q3) = a.

The reader may easily verify that g is a homomorphism. ✷

The partial function g defined by Lemma 16 is called forward completion of f with respect to (q1, q2, q3).

Lemma 17. Let (q1, q2, q3) in Hg
QQ, a in HS and f : Hg

QQ Ô→ HS be a finite homomorphism containing f0. 

Suppose (q1, q2, q3) is in dom(f).

(1) If NS(f(q1, q2, q3), a) then there exists (r1, r2, r3) in Hg
QQ and there exists a finite homomorphism g: 

Hg
QQ Ô→ HS containing f and such that Ng

QQ((q1, q2, q3), (r1, r2, r3)), (r1, r2, r3) is in dom(g) and 

g(r1, r2, r3) = a.

(2) If CS(f(q1, q2, q3), a) then there exists (r1, r2, r3) in Hg
QQ and there exists a finite homomorphism 

g: Hg
QQ Ô→ HS containing f and such that Cg

QQ((q1, q2, q3), (r1, r2, r3)), (r1, r2, r3) is in dom(g) and 

g(r1, r2, r3) = a.

(3) If PS(f(q1, q2, q3), a) then there exists (r1, r2, r3) in Hg
QQ and there exists a finite homomorphism g: 

Hg
QQ Ô→ HS containing f and such that P g

QQ((q1, q2, q3), (r1, r2, r3)), (r1, r2, r3) is in dom(g) and 

g(r1, r2, r3) = a.

Proof. (1) Suppose NS(f(q1, q2, q3), a). Since f is a finite homomorphism, there exists a nonnegative 

integer k and there exist (r11, r12, r13), . . . , (rk
1 , rk

2 , rk
3 ) in Hg

QQ such that dom(f) ∩ {(r1, r2, r3) in Hg
QQ: 

Ng
QQ((q1, q2, q3), (r1, r2, r3))} = {(r11, r12, r13), . . . , (rk

1 , rk
2 , rk

3 )} and r11 ≤ . . . ≤ rk
1 . Firstly, suppose k = 0. 

Since weakSer(N) holds in Sg
QQ, there exists (r1, r2, r3) in Hg

QQ such that Ng
QQ((q1, q2, q3), (r1, r2, r3)). In 

this case, let g: Hg
QQ Ô→ HS be the least partial function containing f and such that g(r1, r2, r3) = a. 

Secondly, suppose k ≥ 1. Now, consider the following cases.

(1) Suppose there exists a positive integer l such that l ≤ k and f(rl
1, r

l
2, r

l
3) = a. Let (r1, r2, r3) be (r

l
1, r

l
2, r

l
3)

and g: Hg
QQ Ô→ HS be the partial function f .

(2) Suppose for all positive integers l, if l ≤ k then f(rl
1, r

l
2, r

l
3) Ó= a and there exists a positive integer l

such that l ≤ k and PS(f(r
l
1, r

l
2, r

l
3), a). Since f is finite and Sg

QQ is unlimited, there exists (r1, r2, r3)

in [(rl
1, r

l
2, r

l
3)]P g

QQ
\ dom(f). Let g: Hg

QQ Ô→ HS be the least partial function containing f and such that 

g(r1, r2, r3) = a.

(3) Suppose for all positive integers l, if l ≤ k then not PS(f(r
l
1, r

l
2, r

l
3), a) and there exists a positive integer 

l such that l ≤ k and CS(f(r
l
1, r

l
2, r

l
3), a). Since f is finite and Sg

QQ is unlimited, there exists (r1, r2, r3)

in [(rl
1, r

l
2, r

l
3)]Cg

QQ
\ [(rl

1, r
l
2, r

l
3)]P g

QQ
\dom(f). Let g: Hg

QQ Ô→ HS be the least partial function containing 

f and such that g(r1, r2, r3) = a.

(4) Suppose for all positive integers l, if l ≤ k then not CS(f(r
l
1, r

l
2, r

l
3), a). Hence, for all positive integers 

l, if l ≤ k then NS(f(r
l
1, r

l
2, r

l
3), a) or NS(a, f(rl

1, r
l
2, r

l
3)). Now, consider the following cases.

(a) Suppose NS(a, f(r11, r12, r13)). Since Den(N) hold in Sg
QQ, there exists (r1, r2, r3) in Hg

QQ such that 

Ng
QQ((q1, q2, q3), (r1, r2, r3)) and Ng

QQ((r1, r2, r3), (r
1
1, r12, r13)). Let g: H

g
QQ Ô→ HS be the least partial 

function containing f and such that g(r1, r2, r3) = a.

(b) Suppose there exists a positive integer l such that 1 ≤ l − 1, l ≤ k, NS(f(r
l−1
1 , rl−1

2 , rl−1
3 ), a)

and NS(a, f(rl
1, r

l
2, r

l
3)). Since Den(N) holds in Sg

QQ, there exists (r1, r2, r3) in Hg
QQ such that 



Ng
QQ((r

l−1
1 , rl−1

2 , rl−1
3 ), (r1, r2, r3)) and Ng

QQ((r1, r2, r3), (r
l
1, r

l
2, r

l
3)). Let g: H

g
QQ Ô→ HS be the least 

partial function containing f and such that g(r1, r2, r3) = a.

(c) Suppose NS(f(r
k
1 , rk

2 , rk
3 ), a). Since weakSer(N) holds in Sg

QQ, there exists (r1, r2, r3) in Hg
QQ such 

that Ng
QQ((r

k
1 , rk

2 , rk
3 ), (r1, r2, r3)). Let g: H

g
QQ Ô→ HS be the least partial function containing f and 

such that g(r1, r2, r3) = a.

The reader may easily verify that g is a homomorphism.

(2) Suppose CS(f(q1, q2, q3), a). Since f is a finite homomorphism, there exists a positive inte-

ger k and there exist (r11, r12, r13), . . . , (rk
1 , rk

2 , rk
3 ) in Hg

QQ such that dom(f) ∩ {(r1, r2, r3) in Hg
QQ: 

Cg
QQ((q1, q2, q3), (r1, r2, r3))} = {(r11, r12, r13), . . . , (rk

1 , rk
2 , rk

3 )}. Now, consider the following cases.

(1) Suppose there exists a positive integer l such that l ≤ k and f(rl
1, r

l
2, r

l
3) = a. Let (r1, r2, r3) be (r

l
1, r

l
2, r

l
3)

and g: Hg
QQ Ô→ HS be the partial function f .

(2) Suppose for all positive integers l, if l ≤ k then f(rl
1, r

l
2, r

l
3) Ó= a and there exists a positive integer l

such that l ≤ k and P g
QQ(f(r

l
1, r

l
2, r

l
3), a). Since f is finite and Sg

QQ is unlimited, there exists (r1, r2, r3)

in [(rl
1, r

l
2, r

l
3)]P g

QQ
\ dom(f). Let g: Hg

QQ Ô→ HS be the least partial function containing f and such that 

g(r1, r2, r3) = a.

(3) Suppose for all positive integers l, if l ≤ k then not P g
QQ(f(r

l
1, r

l
2, r

l
3), a). Since f is finite and Sg

QQ is 

unlimited, there exists (r1, r2, r3) in [(q1, q2, q3)]Cg
QQ

\ [(q1, q2, q3)]P g
QQ

\ dom(f). Let g: Hg
QQ Ô→ HS be 

the least partial function containing f and such that g(r1, r2, r3) = a.

The reader may easily verify that g is a finite homomorphism.

(3) Suppose PS(f(q1, q2, q3), a). Since f is a finite homomorphism, there exists a positive inte-

ger k and there exist (r11, r12, r13), . . . , (rk
1 , rk

2 , rk
3 ) in Hg

QQ such that dom(f) ∩ {(r1, r2, r3) in Hg
QQ: 

P g
QQ((q1, q2, q3), (r1, r2, r3))} = {(r11, r12, r13), . . . , (rk

1 , rk
2 , rk

3 )}. Now, consider the following cases.

(1) Suppose there exists a positive integer l such that l ≤ k and f(rl
1, r

l
2, r

l
3) = a. Let (r1, r2, r3) be (r

l
1, r

l
2, r

l
3)

and g: Hg
QQ Ô→ HS be the partial function f .

(2) Suppose for all positive integers l, if l ≤ k then f(rl
1, r

l
2, r

l
3) Ó= a. Since f is finite and Sg

QQ is unlimited, 

there exists (r1, r2, r3) in [(q1, q2, q3)]P g
QQ

\ dom(f). Let g: Hg
QQ Ô→ HS be the least partial function 

containing f and such that g(r1, r2, r3) = a.

The reader may easily verify that g is a homomorphism. ✷

The partial function g defined by Lemma 17 in (1) (respectively (2), (3)) is called backward completion 

of f with respect to (q1, q2, q3), a and N (respectively C, P ). We can now prove the following result.

Proposition 18. Let S be a countable prenormal frame. If S is unlimited then S is a bounded morphic image 

of Sg
QQ.

Proof. Let S = (HS , NS , CS , PS) be a countable prenormal frame generated by one of its elements, say a0. 

Suppose S is unlimited. We think of the construction of the surjective bounded morphism from Sg
QQ to S as 

a process approaching a limit via a sequence g0: H
g
QQ Ô→ HS , g1: H

g
QQ Ô→ HS , . . . of finite homomorphisms 

containing f0. The partial function f0 is used to initiate the construction whereas Lemmas 16 and 17 are 

used to make improvements at each step of the construction. Consider an enumeration ((r01, r
0
2, r03), b0, α0), 

((r11, r12, r13), b1, α1), . . . of Hg
QQ × HS × {N, C, P} where each item appears infinitely often. We inductively 

define a sequence g0: H
g
QQ Ô→ HS , g1: H

g
QQ Ô→ HS , . . . of finite homomorphisms containing f0 in the following 

way.



Basis. Let g0: H
g
QQ Ô→ HS be the partial function f0.

Step. Let hn be the forward completion of gn with respect to (rn
1 , rn

2 , rn
3 ) and gn+1 be the backward com-

pletion of hn with respect to (rn
1 , rn

2 , rn
3 ), bn and αn.

The reader may easily verify that the sequence g0, g1, . . . of finite homomorphisms containing f0 is such 

that dom(g0) ⊆ dom(g1) ⊆ . . ., 
⋃{dom(gn): n is a nonnegative integer} = Hg

QQ and for all nonnegative 

integers n, gn+1(r1, r2, r3) = gn(r1, r2, r3) for each (r1, r2, r3) in dom(gn). Let f : Hg
QQ Ô→ HS be the 

function defined by dom(f) = Hg
QQ and f(r1, r2, r3) = gn(r1, r2, r3) for each (r1, r2, r3) in Hg

QQ, n being a 

nonnegative integer such that (r1, r2, r3) is in dom(gn). The reader may easily verify that f is a surjective 

bounded morphism. ✷

The result that emerges from the discussion above is the following

Proof of Proposition 15. (1) ⇒ (2): Obvious, since SQQ is a countable prenormal frame.

(2) ⇒ (3): By [3, theorem 3.14], since Sg
QQ is a generated subframe of SQQ.

(3) ⇒ (1): By [3, theorem 3.14] and Propositions 14 and 18. ✷

As a result,

Corollary 19. The following conditions are equivalent:

(1) φ is in ML(SQS).

(2) φ is valid in every normal frame.

(3) φ is valid in every prenormal frame.

Proof. By Corollary 12 and Propositions 13 and 15. ✷

4.5. Complexity

In this section, we investigate the decidability/complexity of the membership problem in ML(SQS). Let 

φ be a formula.

Lemma 20. If there exists a prenormal frame S = (HS , NS , CS , PS) such that S Ó|= φ then there exists a 

finite prenormal frame S ′ = (HS′ , NS′ , CS′ , PS′) such that S ′ Ó|= φ.

Proof. Suppose there exists a prenormal frame S = (HS , NS , CS , PS) such that S Ó|= φ. Hence, there exists 

a valuation V on S such that (S, V ) Ó|= φ. Thus, there exists a0 in HS such that (S, V ), a0 Ó|= φ. Let Γφ be 

the least set of formulas such that

• φ is in Γφ,

• Γφ is closed under subformulas,

• for all formulas ψ, if there exists α in {N, C, P} such that [α]ψ is in Γφ then for all α in {N, C, P}, [α]ψ
is in Γφ.

Let ≡Γφ
be the equivalence relation on HS defined by

• a ≡Γφ
b iff for all formulas ψ in Γφ, M, a |= ψ iff M, b |= ψ.

For all a in HS , the equivalence class of a modulo ≡Γφ
is denoted by [a]≡Γφ

. The quotient set of HS modulo 

≡Γφ
is denoted by HS/ ≡Γφ

. Let S ′ = (HS′ , NS′ , CS′ , PS′) be the frame such that HS′ = HS/ ≡Γφ
whereas



• NS′([a]≡Γφ
, [b]≡Γφ

) iff for all formulas ψ, if [N ]ψ is in Γφ then

◦ if (S, V ), a |= [N ]ψ then (S, V ), b |= [N ]ψ and (S, V ), b |= [C]ψ,

• CS′([a]≡Γφ
, [b]≡Γφ

) iff for all formulas ψ, if [C]ψ is in Γφ then

◦ (S, V ), a |= [N ]ψ iff (S, V ), b |= [N ]ψ,

◦ (S, V ), a |= [C]ψ iff (S, V ), b |= [C]ψ,

• PS′([a]≡Γφ
, [b]≡Γφ

) iff for all formulas ψ, if [P ]ψ is in Γφ then

◦ (S, V ), a |= [N ]ψ iff (S, V ), b |= [N ]ψ,

◦ (S, V ), a |= [C]ψ iff (S, V ), b |= [C]ψ,

◦ (S, V ), a |= [P ]ψ iff (S, V ), b |= [P ]ψ.

Obviously, S ′ is finite and prenormal. Now, let V ′ be the valuation on S ′ defined by

• V ′(p) = {[a]≡Γφ
: a ∈ V (p)}.

The reader may easily verify that (S ′, V ′) is a filtration of (S, V ) through Γφ. Therefore, by [3, theorem 

2.39], for all formulas ψ, if ψ is in Γφ then for all a in HS , (S, V ), a |= ψ iff (S ′, V ′), [a]≡Γφ
|= ψ. Since 

(S, V ), a0 Ó|= φ, (S ′, V ′), [a0]≡Γφ
Ó|= φ. Consequently, (S ′, V ′) Ó|= φ. Hence, S ′ Ó|= φ. ✷

Lemma 21. If there exists a finite prenormal frame S = (HS , NS , CS , PS) such that S Ó|= φ then there exists 

a prenormal frame S ′ = (HS′ , NS′ , CS′ , PS′) such that Card(HS′) ≤| φ |3 and S ′ Ó|= φ.

Proof. Suppose there exists a finite prenormal frame S = (HS , NS , CS , PS) such that S Ó|= φ. Hence, there 

exists a valuation V on S such that (S, V ) Ó|= φ. Thus, there exists a0 in HS such that (S, V ), a0 Ó|= φ. Let 

≃ be the equivalence relation on HS defined by

• a ≃ b iff CS(a, b) or both NS(a, b) and NS(b, a).

For all a in HS , the equivalence class of a modulo ≃ is denoted by [a]≃. The quotient set of HS modulo ≃
is denoted by HS/ ≃. Next, let ≺ be the binary relation on HS/ ≃ defined by

• [a]≃ ≺ [b]≃ iff NS(a, b) and not NS(b, a).

Obviously, ≺ is a strict linear ordering on HS/ ≃. Let [N ]ψ1, . . . , [N ]ψn be an enumeration of the set of all 

φ’s subformulas which are of the form [N ]ψ and such that (S, V ), a0 Ó|= [N ]ψ. For all positive integers i, if 

i ≤ n then let bi in HS be such that NS(a0, bi), (S, V ), bi Ó|= ψi and for all b in HS , if [bi]≃ ≺ [b]≃ then 

(S, V ), b |= ψi. Let i be a positive integer such that i ≤ n. Let [C]ψ′
i,1, . . . , [C]ψ′

i,ni
be an enumeration of 

the set of all φ’s subformulas which are of the form [C]ψ′ and such that (S, V ), bi Ó|= [C]ψ′. For all positive 

integers j, if j ≤ ni then let ci,j in HS be such that CS(bi, ci,j) and (S, V ), ci,j Ó|= ψ′
i,j . Let j be a positive 

integer such that j ≤ ni. Let [P ]ψ
′′
i,j,1, . . . , [P ]ψ′′

i,j,ni,j
be an enumeration of the set of all φ’s subformulas 

which are of the form [P ]ψ′′ and such that (S, V ), ci,j Ó|= [P ]ψ′′. For all positive integers k, if k ≤ ni,j then 

let di,j,k in HS be such that PS(ci,j , di,j,k) and (S, V ), di,j,k Ó|= ψ′′
i,j,k. Let S ′ = (HS′ , NS′ , CS′ , PS′) be the 

frame such that HS′ = {a0} ∪ {bi: 1 ≤ i ≤ n} ∪ {ci,j : 1 ≤ i ≤ n and 1 ≤ j ≤ ni} ∪ {di,j,k: 1 ≤ i ≤ n, 

1 ≤ j ≤ ni and 1 ≤ k ≤ ni,j} whereas

• NS′ is the restriction of NS to HS′ ,

• CS′ is the restriction of CS to HS′ ,

• PS′ is the restriction of PS to HS′ .



Obviously, S ′ is prenormal. Moreover, Card(HS′) ≤| φ |3. Now, let V ′ be the valuation on S ′ defined by

• V ′(p) = V (p) ∩ HS′ .

The reader may easily verify that for all formulas ψ, if ψ is in Γφ then for all a in HS′ , (S, V ), a |= ψ iff 

(S ′, V ′), a |= ψ. Since (S, V ), a0 Ó|= φ, (S ′, V ′), a0 Ó|= φ. Consequently, (S ′, V ′) Ó|= φ. Hence, S ′ Ó|= φ. ✷

As a result,

Proposition 22.

(1) The membership problem in ML(SQS) is decidable.

(2) The membership problem in ML(SQS) is co-NP-hard.

(3) The membership problem in ML(SQS) is in co-NP.

Proof. (1) By [3, theorem 6.13], Corollary 19, Lemma 20 and the recursive enumerability of the class of all 

prenormal frames.

(2) Let PL be the set of all valid formulas of propositional logic. Obviously, ML(SQS) is a conservative 

extension of PL. Since the membership problem in PL is co-NP-hard [18], the membership problem in 

ML(SQS) is co-NP-hard.

(3) By [3, lemma 6.35], Corollary 19, Lemmas 20 and 21 and the tractability of the problem of deciding 

whether a given finite frame is prenormal. ✷

4.6. Definability

We tackle the problem of the definability of [N ], [C] and [P ] in the class of all normal frames. The 

following results imply that the connectives [N ], [C] and [P ] cannot be eliminated from our language.

Proposition 23.

(1) [N ] is not definable with [C] and [P ] in the class of all normal frames.

(2) [C] is not definable with [N ] and [P ] in the class of all normal frames.

(3) [P ] is not definable with [N ] and [C] in the class of all normal frames.

Proof. (1) Suppose [N ] is definable with [C] and [P ] in the class of all normal frames. Hence, there exists 

a formula φ(p) in [C] and [P ] such that (∗) for all normal frames S = (HS , NS , CS , PS), for all valuations 

V on S and for all a in HS , (S, V ), a |= [N ]p iff (S, V ), a |= φ(p). Let a in HS . Let V be the valuation on 

S defined by V (p) = NS(a) ∪ [a]CS
. Obviously, (S, V ), a |= [N ]p. Thus, by (∗), (S, V ), a |= φ(p). Let V ′ be 

the valuation on S defined by V ′(p) = [a]CS
. Obviously, (S, V ′), a Ó|= [N ]p. Moreover, for all formulas ψ(p)

in [C] and [P ], (S, V ), a |= ψ(p) iff (S, V ′), a |= ψ(p). Since (S, V ), a |= φ(p), (S, V ′), a |= φ(p). Therefore, 

by (∗), (S, V ′), a |= [N ]p: a contradiction.

(2) Suppose [C] is definable with [N ] and [P ] in the class of all normal frames. Hence, there exists a 

formula φ(p) in [N ] and [P ] such that (∗) for all normal frames S = (HS , NS , CS , PS), for all valuations 

V on S and for all a in HS , (S, V ), a |= [C]p iff (S, V ), a |= φ(p). Let a in HS . Let V be the valuation 

on S defined by V (p) = [a]CS
. Obviously, (S, V ), a |= [C]p. Thus, by (∗), (S, V ), a |= φ(p). Let V ′ be the 

valuation on S defined by V ′(p) = [a]PS
. Obviously, (S, V ′), a Ó|= [C]p. Moreover, for all formulas ψ(p) in 

[N ] and [P ], (S, V ), a |= ψ(p) iff (S, V ′), a |= ψ(p). Since (S, V ), a |= φ(p), (S, V ′), a |= φ(p). Therefore, by 

(∗), (S, V ′), a |= [C]p: a contradiction.



(3) Suppose [P ] is definable with [N ] and [C] in the class of all normal frames. Hence, there exists a formula 

φ(p) in [N ] and [C] such that (∗) for all standard frames S = (HS , NS , CS , PS), for all valuations V on S and 

for all a in HS , (S, V ), a |= [P ]p iff (S, V ), a |= φ(p). Let a in HS . By Sym(C), Sym(P ) and Inf 1(C, P ), there 

exists b in HS such that CS(a, b) and not PS(a, b). Let V be the valuation on S defined by V (p) = [a]CS
\{b}. 

Obviously, (S, V ), a |= [P ]p. Thus, by (∗), (S, V ), a |= φ(p). By Sym(P ) and Inf 1(P, ≡), there exists c in 

HS such that PS(a, c) and a Ó= c. Let V ′ be the valuation on S defined by V ′(p) = [a]CS
\ {c}. Obviously, 

(S, V ′), a Ó|= [P ]p. Moreover, for all formulas ψ(p) in [N ] and [C], (S, V ), a |= ψ(p) iff (S, V ′), a |= ψ(p). 

Since (S, V ), a |= φ(p), (S, V ′), a |= φ(p). Therefore, by (∗), (S, V ′), a |= [P ]p: a contradiction. ✷

5. Variants

Other primitives may be defined as well. In this section, we consider the predicate symbol < of precedence 

between positive hyperreals and the function symbol + of addition between positive hyperreals.

5.1. Adding precedence

Let us add a predicate symbol < of arity 2 to our first-order language. The formulas are now given by 

the rule:

• φ ::= N(x, y) | C(x, y) | P (x, y) | x < y | x ≡ y | ⊥ | ¬φ | (φ ∨ ψ) | ∀x.φ.

Let < be interpreted in SP H by means of the relation <SP H
of precedence between positive hyperreals 

in nonstandard analysis. The following result implies that the predicate symbol < really increases the 

expressivity of our first-order language.

Proposition 24. < is not definable with N , C, P and ≡ in SP H .

Proof. Suppose < is definable with N , C, P and ≡ in SP H . Hence, there exists a formula φ(x, y) in N , C, 

P and ≡ such that (∗) for all a, b in HSP H
, a <SP H

b iff SP H |= φ(x, y) [a, b]. Let a, b in HSP H
such that 

PSP H
(a, b) and a <SP H

b. Since (∗), SP H |= φ(x, y) [a, b]. Obviously, the second player wins all Ehrenfeucht 

games over (SP H , [a, b]) and (SP H , [b, a]) with respect to N , C, P and ≡. Thus, by [12, theorem 2.2.8], for all 

formulas ψ(x, y) in N , C, P and ≡, SP H |= ψ(x, y) [a, b] iff SP H |= ψ(x, y) [b, a]. Since SP H |= φ(x, y) [a, b], 

SP H |= φ(x, y) [b, a]. Since (∗), b <SP H
a. Therefore, a ≮SP H

b: a contradiction. ✷

What about the axiomatization/completeness or the decidability/complexity of the first-order theory 

based on the predicates N , C, P and <? As for the modal logic option, the obvious road consists in adding 

a connective [<] interpreted in SP H in the following way:

• (SP H , V ), a |= [<]φ iff for all b in HSP H
, if a <SP H

b then (SP H , V ), b |= φ.

What about the axiomatization/completeness or the decidability/complexity of the modal logic based on 

the connectives [N ], [C], [P ] and [<]?

5.2. Adding addition

Let us add a function symbol + of arity 2 to our first-order language. The formulas are now given by the 

rule:

• φ ::= N(s, t) | C(s, t) | P (s, t) | s ≡ t | ⊥ | ¬φ | (φ ∨ ψ) | ∀x.φ



where s and t range over the set of terms defined by the rule

• s ::= x | (s + t).

Let + be interpreted in SP H by means of the operation +SP H
of addition between positive hyperreals in 

nonstandard analysis. In SP H , it appears that if we restrict the language to the predicate N or if we restrict 

the language to the predicates N and C then the function symbol + can be eliminated. To see this, it 

suffices to observe that the following sentences hold in SP H :

• ∀x.∀y.∀z.(N(x + y, z) ↔ N(x, z) ∧ N(y, z)),

• ∀x.∀y.∀z.(N(x, y + z) ↔ N(x, y) ∨ N(x, z)),

• ∀x.∀y.∀z.(C(x + y, z) ↔ (C(x, z) ∧ N̄(z, y)) ∨ (C(y, z) ∧ N̄(z, x))),

• ∀x.∀y.∀z.(C(x, y + z) ↔ (C(x, y) ∧ N̄(x, z)) ∨ (C(x, z) ∧ N̄(x, y))).

But this leaves open the possibility that the function symbol + can be eliminated if we restrict the language 

to a different set of predicates.

Proposition 25.

(1) In SP H , if we restrict the language to the predicate C then the function symbol + cannot be eliminated.

(2) In SP H , if we restrict the language to a set of predicates containing P then the function symbol + cannot 

be eliminated.

(3) In SP H , if we restrict the language to a set of predicates containing ≡ then the function symbol + cannot 

be eliminated.

Proof. (1) Suppose there exists a formula φ(x, y, z) in C such that (∗) for all a, b, c in HSP H
, CSP H

(a +SP H

b, c) iff SP H |= φ(x, y, z) [a, b, c]. Let a, b, c in HSP H
be such that CSP H

(a +SP H
b, c) and not CSP H

(a−1+SP H

b−1, c−1). Since (∗), S |= φ(x, y, z) [a, b, c]. Obviously, the second player wins all Ehrenfeucht games over 

(SP H , [a, b, c]) and (SP H , [a−1, b−1, c−1]) with respect to C. Thus, by [12, theorem 2.2.8], for all formulas 

ψ(x, y, z) in C, SP H |= ψ(x, y, z) [a, b, c] iff SP H |= ψ(x, y, z) [a−1, b−1, c−1]. Since SP H |= φ(x, y, z) [a, b, c], 

SP H |= φ(x, y, z) [a−1, b−1, c−1]. Since (∗), CSP H
(a−1 +SP H

b−1, c−1): a contradiction.

(2) Suppose there exists a formula φ(x, y, z) in N , C, P and ≡ such that (∗) for all a, b, c in HSP H
, 

PSP H
(a +SP H

b, c) iff SP H |= φ(x, y, z) [a, b, c]. Let a, b, c in HSP H
be such that PSP H

(a +SP H
b, c) and not 

PSP H
(a2 +SP H

b2, c2). Since (∗), S |= φ(x, y, z) [a, b, c]. Obviously, the second player wins all Ehrenfeucht 

games over (SP H , [a, b, c]) and (SP H , [a2, b2, c2]) with respect to N , C, P and ≡. Thus, by [12, theorem 2.2.8], 

for all formulas ψ(x, y, z) in N , C, P and ≡, SP H |= ψ(x, y, z) [a, b, c] iff SP H |= ψ(x, y, z) [a2, b2, c2]. Since 

SP H |= φ(x, y, z) [a, b, c], SP H |= φ(x, y, z) [a2, b2, c2]. Since (∗), PSP H
(a2 +SP H

b2, c2): a contradiction.

(3) Suppose there exists a formula φ(x, y, z) in N , C, P and ≡ such that (∗) for all a, b, c in HSP H
, 

a + b = c iff SP H |= φ(x, y, z) [a, b, c]. Let a, b, c in HSP H
be such that a +SP H

b = c and a2 +SP H
b2 Ó= c2. 

Since (∗), S |= φ(x, y, z) [a, b, c]. Obviously, the second player wins all Ehrenfeucht games over (SP H , [a, b, c])

and (SP H , [a2, b2, c2]) with respect to N , C, P and ≡. Thus, by [12, theorem 2.2.8], for all formulas ψ(x, y, z)

in N , C, P and ≡, SP H |= ψ(x, y, z) [a, b, c] iff SP H |= ψ(x, y, z) [a2, b2, c2]. Since SP H |= φ(x, y, z) [a, b, c], 

SP H |= φ(x, y, z) [a2, b2, c2]. Since (∗), a2 +SP H
b2 = c2: a contradiction. ✷

What about the axiomatization/completeness or the decidability/complexity of the first-order theory 

based on the predicates N , C and P and the function +? As for the modal logic option, the obvious road 

consists in adding a connective ⊕ interpreted in SP H in the following way:



• (SP H , V ), a |= φ ⊕ ψ iff there exist b, c in HSP H
such that a = b +SP H

c, (SP H , V ), b |= φ and 

(SP H , V ), c |= ψ.

What about the axiomatization/completeness or the decidability/complexity of the modal logic based on 

the connectives [N ], [C], [P ] and ⊕?
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