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Abstract

We devote this article to the axiomatization/completeness of PRSPDL0—a variant of iteration-free PDL with parallel

composition. Our results are based on the following: although the program operation of parallel composition is not modally

definable in the ordinary language of PDL, it becomes definable in a modal language strengthened by the introduction of

propositional quantifiers. Instead of using axioms to define the program operation of parallel composition in the language of

PDL enlarged with propositional quantifiers, we add an unorthodox rule of proof that makes the canonical model standard for

the program operation of parallel composition and we use large programs for the proof of the Truth Lemma.

Keywords: Iteration-free PDL, parallel composition, axiomatisation, completeness, expressivity.

1 Introduction

Propositional dynamic logic (PDL) is an applied logic par excellence. Designed for reasoning about

the behaviour of programs [12, 15, 17], its syntax is based on the idea of associating with each

program α of some programming language the modal operator [α], formulas [α]φ being read ‘all

executions of α from the current state lead to a state where φ holds’. Syntactically, PDL is a modal

logic with a structure in the set of modal operators: sequential composition (α;β) of programs α and

β corresponds to the composition of the accessibility relations R(α) and R(β); test φ? on formula φ

corresponds to the partial identity relation in the subsets of the Kripke models in which the formula φ

is true; iteration α⋆ corresponds to the reflexive and transitive closure ofR(α). The problemwithPDL

is that the states of the Kripke models in which formulas are evaluated have no internal structure.

However, in the field of applied logics, formalisms with which one can cope with structured data are

needed.

In separation logics, the formula construct (·◦·) of separating conjunction, formulas (φ◦ψ) being

read ‘the memory model can be split into 2 disjoint models respectively satisfying φ and ψ’, and the

formula construct (·–◦·) of adjoint implication, formulas (φ–◦ψ) being read ‘if the memory model

is extended with a model satisfying φ, the resulting model satisfies ψ’, are added to the standard

Boolean constructs [8, 10, 18, 19]. The propositional dynamic logic with storing, recovering and

parallel composition (PRSPDL) introduced by Benevides et al. [5], is a separation-based logic too.

Its Kripke models are structured by means of a function ⋆: the state x belongs to the result of applying

the function ⋆ to the states y,z iff x can be separated in a first part y and a second part z. Its syntax

is obtained from the PDL-syntax by adding the program construct (·‖ ·) of parallel composition,

the storing programs s1 and s2 and the recovering programs r1 and r2. Among the separation logics

considered in [8, 10, 18, 19], the one developed by Collinson and Pym [10] is the sole separation logic



to include modal operators. As a result, it seems to be the one that is the more similar to PRSPDL.

Nevertheless, Collinson and Pym consider neither the construct of sequential composition nor the

construct of test on formula. Moreover, their construct of parallel composition is associative and

commutative whereas PRSPDL’s one is not.

In this variant of PDL, parallel composition (α ‖β) of programs α and β corresponds to the fork

R(α)∇R(β) of the accessibility relations R(α) and R(β). More precisely, whenever x and y are related

via R(α) and z and t are related via R(β), states in x∗z and states in y∗t are related via R(α)∇R(β).

See also [13, Chapter 1] for another interpretation of the fork of two accessibility relations. About s1
and s2, x is related, by R(s1), to the states in x∗z and, by R(s2), to the states in z∗x: to execute s1 and

s2 beginning from the state x is to store x as the first part of a larger state and as the second part of a

larger state. As for r1 and r2, the states in x∗z, by R(r1), and the states in z∗x, by R(r2), are related to

x: to execute r1 and r2 ending in the state x is to recover x as the first part of the current state and as

the second part of the current state. Hence, s1, s2, r1 and r2 enable us to view states as pairs of states.

In the frames considered by Benevides et al. [5], if x belongs both to the result of applying ⋆ to y,z

and to the result of applying ⋆ to t,u, y= t and z=u. After their paper, seeing that the modal operator

[α ‖β] cannot be defined by means of the modal operators [α] and [β], the problem of finding a

complete axiomatization of PRSPDL remained open. The difficulty of this problem lies in the fact

that the modal operator [α ‖β] cannot be defined by means of the modal operators [α] and [β].

Thepurposeof this article is the axiomatization/completeness of the set of all iteration-free formulas

determined by the class of all separated frames. We attack the problem by a method based on an

unorthodox rule of proof that makes the canonical model standard for the program operation of

parallel composition. Our method follows the line of reasoning developed for PDL with intersection

of programs [3, 4]. Nevertheless, this line of reasoning could not be used as it was, seeing that

parallel composition of programs and intersection of programs are not interdefinable in the ordinary

language of PDL. As a result, we had to redefine the fundamental notion of admissible forms used

in [3, 4] to prepare the ground for Lemma 11, our main result. Sections 2 and 3 present the syntax and

the semantics of PRSPDL0—a variant of iteration-free PDL with parallel composition. Expressivity

results and definability results are given in Sections 4 and 5. Sections 6 and 7 contain an axiomatization

of PRSPDL0 and a proof of its completeness.

2 Syntax

This section presents the syntax ofPRSPDL0.As usual, wewill follow the standard rules for omission

of the parentheses. The set PR of all programs and the set FO of all formulas are inductively defined

as follows:

• α,β−→a |φ? |s1 |s2 |r1 |r2 | (α;β) | (α ‖β);

• φ,ψ−→p |⊥|¬φ | (φ∨ψ) | [α]φ;

where a ranges over a countably infinite set AP of atomic programs and p ranges over a countably

infinite set AF of atomic formulas. We will use α,β,... for programs and φ,ψ,... for formulas.

Programs of the form φ? will be called ‘tests’, programs s1 and s2 will be called ‘storing constructs’

and programs r1 and r2 will be called ‘recovering constructs’. The other Boolean constructs for

formulas are defined as usual. Let 〈α〉φ ::=¬[α]¬φ.

Example: If α,β are programs and φ,ψ are formulas, 〈α ‖β〉φ→〈r1;α;s1〉(φ∧ψ)∨〈r2;β;s2〉(φ∧

¬ψ) is a formula.



It is well worth noting that programs and formulas are finite strings of symbols coming from a

countable alphabet. It follows that there are countably many programs and countably many formulas.

Obviously, programs are built up from atomic programs, tests, storing constructs and recovering

constructs by means of the constructs (·;·) and (·‖ ·). The construct (·;·) comes from the class of

algebras of binary relations [20]: the program α;β first executes α and secondly executes β. As for

the construct (·‖ ·), it comes from the class of proper fork algebras [13, Chapter 1]: the program α ‖β

performs a kind of parallel execution of α and β. The construct [·]· comes from the language of

PDL [12, 17]: the formula [α]φ says that ‘every execution of α from the present state leads to a state

bearing the information φ’. Let α(φ1?,...,φn?) be a program with (φ1?,...,φn?) a sequence of some

of its tests. The result of the replacement of φ1?,...,φn? in their places with ψ1?,...,ψn? is another

program which will be denoted α(ψ1?,...,ψn?).

Example: If α,β,γ are programs and φ,ψ are formulas, the result of the replacement of φ? in its

place in the program α ‖ (β;φ?γ ) with ψ? is the program α ‖ (β;ψ?;γ ).

Let f be the function from the set of all programs into itself inductively defined as follows:

• f (a)=a;

• f (φ?)=φ?;

• f (s1)=s1;

• f (s2)=s2;

• f (r1)=r1;

• f (r2)=r2;

• f (α;β)= f (α);⊤?;f (β);

• f (α ‖β)= (⊤?;f (α);⊤?)‖ (⊤?;f (β);⊤?).

Example: By definition, f (a‖ (b;c))= (⊤?;a;⊤?)‖ (⊤?;b;⊤?;c;⊤?). The function f will be of use

to us when we define the axiomatization of PRSPDL0, in particular the formula (A14). The set PAR

of all parametrized programs and the set ADM of all admissible forms are inductively defined as

follows:

• ᾰ,β̆−→¬φ̆? | (ᾰ;β) | (α;β̆) | (ᾰ ‖β) | (α ‖ β̆);

• φ̆,ψ̆−→♯ | [ᾰ]⊥;

where ♯ is a new atomic formula and α,β range over PR.Wewill use ᾰ,β̆,... for parametrized actions

and φ̆,ψ̆,... for admissible forms.

Example: If α,β,γ are programs, α ‖ (β;¬♯?;γ ) is a parametrized program and [α ‖ (β;¬♯?;γ )]⊥

is an admissible form.

Let α(φ?) be a program with φ? some of its tests. The result of the replacement of φ? in its place

with a parametrized program β̆ is a parametrized program which will be denoted α(β̆).

Example: If α,β,γ are programs, φ is a formula and δ̆ is a parametrized program, the result of

the replacement of φ? in its place in the program α ‖ (β;φ?;γ ) with δ̆ is the parametrized program

α ‖ (β;δ̆;γ ).

It is well worth noting that parametrized actions and admissible forms are finite strings of symbols

coming from a countable alphabet. It follows that there are countably many parametrized actions and

countably many admissible forms. Remark that in each expression ˘exp (either a parametrized action,

or an admissible form), ♯ has a unique occurrence. The result of the replacement of ♯ in its place in



˘exp with a formula φ is an expression (either a program, or a formula) which will be denoted ˘exp(φ).

It is inductively defined as follows:

• ¬ψ̆?(φ)=¬ψ̆(φ)?,

• (ᾰ;β)(φ)= ᾰ(φ);β,

• (α;β̆)(φ)=α;β̆(φ),

• (ᾰ ‖β)(φ)= ᾰ(φ)‖β,

• (α ‖ β̆)(φ)=α ‖ β̆(φ),

• ♯(φ)=φ,

• [ᾰ]⊥(φ)=[ᾰ(φ)]⊥.

Example: If ˘exp is the parametrized programs α ‖ (β;¬♯?;γ ), ˘exp(φ) is the program α ‖ (β;¬φ?;γ )

and if ˘exp is the admissible form [α ‖ (β;¬♯?;γ )]⊥, ˘exp(φ) is the formula [α ‖ (β;¬φ?;γ )]⊥.

We will use parametrized actions and admissible forms when we define the axiomatization of

PRSPDL0, in particular the rule of proof (FOR).

3 Semantics

This section presents the semantics of PRSPDL0. A frame is a 3-tuple F = (W ,R,⋆) where W is a

nonempty set of states, R is a function from the set of all atomic programs into the set of all binary

relations between states and ⋆ is a function from the set of all pairs of states into the set of all sets of

states. We will use x,y,... for states. The set W of states in a frame F = (W ,R,⋆) is to be regarded

as the set of all possible states in a computation process, the function R from the set of all atomic

programs into the set of all binary relations between states associates with each atomic program a

the binary relation R(a) on W with xR(a)y meaning that ‘y can be reached from x by performing

atomic program a’ and the function ⋆ from the set of all pairs of states into the set of all sets of

states associates with each pair (x,y) of states the subset x⋆y of W with z∈x⋆y meaning that ‘z is

a possible combination of x and y’. We shall say that a frame F = (W ,R,⋆) is functional iff for all

x,y,z∈W , if xR(a)y and xR(a)z, y=z for every program variable a. For all z∈W , let ⋆(z)={(x,y):

z∈x⋆y}.

Now, card(·) denoting the cardinality function, we consider the following classes of frames:

• separated frames, i.e. frames F = (W ,R,⋆) such that for all x∈W , card(⋆(x)) ≤1;

• rich frames, i.e. frames F = (W ,R,⋆) such that for all x∈W , card(⋆(x))≥1;

• deterministic frames, i.e. frames F = (W ,R,⋆) such that for all x,y∈W , card(x⋆y)≤1;

• serial frames, i.e. frames F = (W ,R,⋆) such that for all x,y∈W , card(x⋆y)≥1.

In separated frames, there is at most one way to decompose a given state; in rich frames, there is

at least one way to decompose a given state; in deterministic frames, there is at most one way to

combine 2 given states; in serial frames, there is at least oneway to combine 2 given states. Each frame

considered in [5] is separated and deterministic whereas each frame considered in [13, Chapter 1] is

separated, deterministic and serial.

Example: Let W1 be the set of all words on an alphabet and ⋆1 be the operation of concatenation.

The structure F1= (W1,⋆1) is not separated. Nevertheless, it is rich, deterministic and serial. Let

W2 be the set of all binary trees and ⋆2 be the operation of join. The structure F2= (W2,⋆2) is not

rich. Nevertheless, it is separated, deterministic and serial. Let W3 be the set of all heaps (partially

defined functions mapping locations to values) and ⋆3 be the operation of union (undefined when



domains overlap). The structure F3= (W3,⋆3) is neither separated, nor serial. Nevertheless, it is rich

and deterministic.

Amodel onF is a 4-tupleM= (W ,R,⋆,V ) whereV : p 7→V (p)⊆W is a valuation onF , i.e. a function

from the set of all atomic formulas into the set of all sets of states. In M, programs are interpreted

as binary relations over W and formulas are interpreted as subsets of W as follows:

• (a)M =R(a);

• (φ?)M ={(x,y): x=y and y∈ (φ)M};

• (s1)
M ={(x,y): there exists z∈W such that y∈x⋆z};

• (s2)
M ={(x,y): there exists z∈W such that y∈z⋆x};

• (r1)
M ={(x,y): there exists z∈W such that x∈y⋆z};

• (r2)
M ={(x,y): there exists z∈W such that x∈z⋆y};

• (α;β)M ={(x,y): there exists z∈W such that x(α)Mz and z(β)My};

• (α ‖β)M ={(x,y): there exists z,t,u,v∈W such that x∈z⋆t, y∈u⋆v, z(α)Mu and t(β)Mv};

• (p)M =V (p);

• (⊥)M is empty;

• (¬φ)M =W \(φ)M;

• (φ∨ψ)M = (φ)M∪(ψ)M;

• ([α]φ)M ={x: for all y∈W , if x(α)My, y∈ (α)M}.

The definition of the binary relation overW interpretating programs of the form α ‖β is in accordance

with the definition given by Benevides et al. [5]. It says that to execute such a program from x to y

consists in three steps: (i) decompose x into z and t; (ii) from z and t, separately execute α and β in

parallel, thus reaching u,v; (iii) combine u and v into y. Of course, α ‖β cannot be executed from x

to y when it is not possible to decompose x and y in pairs (z,t),(u,v) such that z(α)Mu and t(β)Mv.

Obviously,

Proposition 1

Let M= (W ,R,⋆,V ) be a model. For all programs α and for all formulas φ, (〈α〉φ)M ={x: there

exists y∈W such that x(α)My and y∈ (φ)M}.

Proof. By definition. Left to the reader. �

We shall say that a formula φ is valid in a modelM= (W ,R,⋆,V ), in symbolsM |=φ, iff (φ)M =W .

A formula φ is said to be valid in a frame F , in symbols F |=φ, iff for all modelsM on F ,M |=φ.

The validity in a frame F of a set 6 of formulas, in symbols F |=6, is defined in a similar way. We

shall say that a formula φ is valid in a class C of frames, in symbols C |=φ, iff for all frames F in C,

F |=φ. A class C of frames is said to be modally defined by a set 6 of formulas iff for all frames F ,

F is in C iff F |=6. We shall say that a class of frames is modally definable iff it is modally defined

by a set of formulas.

Example: The class of all functional frames is modally defined by the formulas 〈a〉p →[a]p for

every atomic program a.

A model is said to be functional (respectively, separated, rich, deterministic, serial) iff it is based

on a functional (respectively, separated, rich, deterministic, serial) frame. LetM= (W ,R,⋆,V ) be a

model. The property ‘state z can be reached from state x by performing parametrized action ᾰ via

state y in M’—in symbols xRM(ᾰ,y)z—and the property ‘admissible form φ̆ is true at state x via



state y inM’—in symbols x∈VM(φ̆,y)—are inductively defined as follows:

• xRM(¬φ̆?,y)z iff x=z and z∈VM(φ̆,y);

• xRM(ᾰ;β,y)z iff there exists t∈W such that xRM(ᾰ,y)t and t(β)Mz;

• xRM(α;β̆,y)z iff there exists t∈W such that x(α)Mt and tRM(β̆,y)z;

• xRM(ᾰ ‖β,y)z iff there exists t,u,v,w∈W such that x∈ t⋆u, z∈v⋆w, tRM(ᾰ,y)v and u(β)Mw;

• xRM(α ‖ β̆,y)z iff there exists t,u,v,w∈W such that x∈ t⋆u, z∈v⋆w, t(α)Mv and uRM(β̆,y)w;

• x∈VM(♯,y) iff x=y;

• x∈VM([ᾰ]⊥,y) iff there exists z∈W such that xRM(ᾰ,y)z.

These properties are quite abstract. The following Proposition can help the reader to grasp what they

mean.

Proposition 2

Let M= (W ,R,⋆,V ) be a model. For all expressions ˘exp (either a parametrized action, or an

admissible form),

• if ˘exp is a parametrized action, for all formulas φ and for all x,z∈W , x ( ˘exp(φ))Mz iff there

exists y∈W such that xRM( ˘exp,y)z and y 6∈ (φ)M;

• if ˘exp is an admissible form, for all formulas φ and for all x∈W , x∈ ( ˘exp(φ))M iff for all y∈W ,

if x∈VM( ˘exp,y), y∈ (φ)M.

Proof. By induction on ˘exp. Left to the reader. �

We will make use of Proposition 2 when we establish the soundness for PRSPDL0.

Let M= (W ,R,⋆,V ),M′ = (W ′,R′,⋆′,V ′) be models and p be an atomic formula. We shall say

that M and M′ are p-similar, in symbols M∼pM′, if W =W ′, R=R′, ⋆=⋆′ and for all atomic

formulas q, if p 6=q, V (q)=V ′(q). WhenM∼pM′, we will also write V ∼pV
′. Obviously,

Proposition 3

LetM= (W ,R,⋆,V ),M′ = (W ′,R′,⋆′,V ′) be models and p be an atomic formula. IfM∼pM′,

• for all expressions exp (either a program, or a formula), if p does not occur in exp, (exp)M =

(exp)M
′
;

• for all parametrized actions ᾰ, if p does not occur in ᾰ, RM(ᾰ,·)=RM′ (ᾰ,·);

• for all admissible forms φ̆, if p does not occur in φ̆, VM(φ̆,·)=VM′ (φ̆,·).

Proof. By induction on exp, ᾰ and φ̆. Left to the reader. �

The next four Propositions present valid formulas and rules of proof preserving validity.

Proposition 4 (Validity 1)

The following formulas are valid in the class of all frames:

(A1) all instances of propositional tautologies;

(A2) [α](φ→ψ)→ ([α]φ→[α]ψ);

(A3) [φ?]ψ↔ (φ→ψ);

(A4) φ→[s1]〈r1〉φ;

(A5) φ→[s2]〈r2〉φ;

(A6) φ→[r1]〈s1〉φ;

(A7) φ→[r2]〈s2〉φ;

(A8) 〈r1〉⊤↔〈r2〉⊤;

(A9) [α;β]φ↔[α][β]φ;



(A10) 〈α ‖β〉φ→〈r1〉〈α〉〈s1〉(φ∧ψ)∨〈r2〉〈β〉〈s2〉(φ∧¬ψ);

(A11) 〈α(φ?)〉⊤→〈α((φ∧ψ)?)〉⊤∨〈α((φ∧¬ψ)?)〉⊤;

(A12) 〈α〉φ↔〈f (α)〉φ.

Proof. For (A1)–(A10), by definition. For (A11) and (A12), by induction on α. Left to the reader. �

Proposition 5 (Validity 2)

The following formulas are valid in the class of all separated frames:

(A13) 〈r1〉φ→[r1]φ;

(A14) 〈r2〉φ→[r2]φ.

Proof. By definition. Left to the reader. �

Proposition 6 (Admissibility 1)

The following rules of proof preserve validity in the class of all frames:

(MP) from φ,φ→ψ , infer ψ ;

(N) from φ, infer [α]φ.

Proof. The rules of proof (MP) and (N) are probably familiar to the reader. See [7, Chapter 1] for

the proof that they preserve validity in the class of all separated frames. �

Proposition 7 (Admissibility 2)

The following rule of proof preserve validity in the class of all separated frames:

(FOR) from {φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)): p is an atomic formula not occurring in

φ̆,α,β,ψ}, infer φ̆(〈α ‖β〉ψ).

Proof. Suppose (FOR) does not preserve validity in the class of all separated frames. Hence, there

exists an admissible form φ̆, there exists programs α,β and there exists a formula ψ such that

for all atomic formulas p not occurring in φ̆,α,β,ψ , φ̆(〈r1〉〈α〉〈s1〉 (ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p))

is valid in the class of all separated frames and φ̆(〈α ‖β〉ψ) is not valid in the class of all

separated frames. Thus, there exists a separated frame F = (W ,R,⋆) such that F 6|= φ̆(〈α ‖β〉ψ).

Therefore, there exists a model M= (W ,R,⋆,V ) on F such that M 6|= φ̆(〈α ‖β〉ψ). Consequently,

(φ̆(〈α ‖β〉ψ))M 6=W . Hence, there exists x∈W such that x 6∈ (φ̆(〈α ‖β〉ψ))M. By Proposition 2,

there exists y∈W such that x∈VM(φ̆,y) and y 6∈ (〈α ‖β〉ψ)M. Let p be an atomic formula

not occurring in φ̆,α,β,ψ and V ′: q 7→V ′(q)⊆W be a valuation on F such that V ′ ∼pV and

V ′(p)={z: there exists t,u,v,w∈W such that y∈ t⋆u, z∈v⋆w and u(β)Mw}. By Proposition 3,

since x∈VM(φ̆,y), x∈V(W ,R,⋆,V ′)(φ̆,y). Since for all atomic formulas p not occurring in φ̆,α,β,ψ ,

φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)) is valid in the class of all separated frames andF is sep-

arated, F |= φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)). Thus, (W ,R,⋆,V ′) |= φ̆(〈r1〉〈α〉〈s1〉(ψ∧

p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)). Therefore, (φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)))(W ,R,⋆,V
′)=W .

Consequently, x∈ (φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)))(W ,R,⋆,V
′). By Proposition 2, since

x∈V(W ,R,⋆,V ′)(φ̆,y), y∈ (〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p))(W ,R,⋆,V
′). Hence, either y∈

(〈r1〉〈α〉〈s1〉(ψ∧p))(W ,R,⋆,V
′), or y∈ (〈r2〉〈β〉〈s2〉(ψ∧¬p))(W ,R,⋆,V

′).

Case ‘y∈ (〈r1〉〈α〉〈s1〉(ψ∧p))(W ,R,⋆,V
′)’. Hence, there exists z,t,u,v,w∈W such that y∈ t⋆u, z∈

v⋆w, t(α)(W ,R,⋆,V
′)v, z∈ (ψ)(W ,R,⋆,V

′) and z∈V ′(p). By Proposition 3, since p does not occur in α,ψ

and V ′ ∼pV , t(α)
Mv and z∈ (ψ)M. SinceM is separated, y∈ t⋆u, z∈v⋆w and z∈V ′(p), u(β)Mw.

Since y∈ t⋆u, z∈v⋆w and t(α)Mv, y(α ‖β)Mz. Since z∈ (ψ)M, y∈ (〈α ‖β〉ψ)M: a contradiction.



Case ‘y∈ (〈r2〉〈β〉〈s2〉(ψ∧¬p))(W ,R,⋆,V
′)’. Hence, there exists z,t,u,v,w∈W such that y∈ t⋆u,

z∈v⋆w, u(β)(W ,R,⋆,V
′)w, z∈ (ψ)(W ,R,⋆,V

′) and z 6∈V ′(p). By Proposition 3, since p does not occur in

β and V ′ ∼pV , u(β)
Mw. Since y∈ t⋆u and z∈v⋆w, z∈V ′(p): a contradiction. �

The axiomatization of PRSPDL0 given in Section 6 will be based on the formulas and the rules of

proof contained in Propositions 4–7.

4 Expressivity

About expressivity, we now illustrate the interest of our new constructs for programs and formulas.

More precisely, we show that, in the class of all separated models, the following constructs

for programs cannot be eliminated without strictly weakening the expressivity of the language:

tests (Proposition 8), storing programs (Proposition 9), recovering programs (Proposition 10),

sequential composition (Proposition 11) and parallel composition (Proposition 12).

Proposition 8

For all test-free formulas φ, the formulas 〈a‖ (a;〈b〉⊤?;a)〉⊤ and φ are not equally interpreted in all

separated models.

Proof. Suppose there exists a test-free formula φ from the language of PRSPDL0 such that the

formulas 〈a‖ (a;〈b〉⊤?;a)〉⊤ and φ are equally interpreted in all separated models. Without loss

of generality, assume a,b are the only program variables in φ and φ contains no propositional

variable. Moreover, in this proof, we will assume that a and b are the only syntactic elements

occurring in programs and formulas. Let F = (W ,R,⋆) and F ′ = (W ′,R′,⋆′) be the separated frames

defined as follows: W ={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12}, R(a)={(x2,x5),(x3,x4),(x3,

x9),(x4,x6),(x9,x11)}, R(b)={(x4,x8)} and R is otherwise empty, x2⋆x3={x1}, x5⋆x6={x7}, x10⋆

x11={x12} and ⋆ is otherwise empty, W ′ ={x′
1,x

′
2,x

′
3,x

′
4,x

′
5, x′

6,x
′
7,x

′
8,x

′
9,x

′
10,x

′
11,x

′
12}, R′(a)=

{(x′
2,x

′
5),(x

′
3,x

′
4),(x

′
3,x

′
9),(x

′
4,x

′
11),(x

′
9, x

′
6)}, R

′(b)={(x′
4,x

′
8)} and R′ is otherwise empty, x′

2⋆
′ x′
3=

{x′
1}, x

′
5⋆

′ x′
6={x′

7}, x
′
10⋆

′ x′
11={x′

12} and ⋆
′ is otherwise empty. Since 〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ is valid

in the class of all separated frames, F |=〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ and F ′ |=〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ.

Let us consider the following binary relation:

• Z={(x1,x
′
1),(x2,x

′
2),(x3,x

′
3),(x4,x

′
4),(x5,x

′
5),(x5,x

′
10),(x6,x

′
6),(x6,x

′
11),(x7,x

′
7),(x7,x

′
12),

(x8,x
′
8),(x9,x

′
9),(x10,x

′
5),(x10,x

′
10),(x11,x

′
6),(x11,x

′
11),(x12,x

′
7),(x12,x

′
12)}.

Let M= (W ,R,∗,V ) be a model on F and M′ = (W ′,R′,∗′,V ′) be a model on F ′. Obviously,

x1∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤)M and x′
1 6∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤)M

′
. Since F |=〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ

andF ′ |=〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ, x1∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤↔φ)M and x′
1∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤↔

φ)M
′
. Since x1∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤)M and x′

1 6∈ (〈a‖ (a;〈b〉⊤?;a)〉⊤)M
′
, x1∈ (φ)

M and x′
1 6∈

(φ)M
′
.

Claim: Let α be a test-free program from the language ofPRSPDL0. For all u∈W and for all u′ ∈W ′,

• if u(α)Mx9, u(α)
Mx4;

• if u′(α)M
′
x′
4, u

′(α)M
′
x′
9.

Proof: By induction on α. Left to the reader.

Claim: Let α be a test-free program from the language of PRSPDL0. For all u,v∈W and for all

u′,v′ ∈W ′,



• if u∈{x5,x6,x7} and u(α)Mv, v∈{x5,x6,x7};

• if u′ ∈{x′
5,x

′
6,x

′
7} and u′(α)M

′
v′, v′ ∈{x′

5,x
′
6,x

′
7};

• if u∈{x10,x11,x12} and u(α)Mv, v∈{x10,x11,x12};

• if u′ ∈{x′
10,x

′
11,x

′
12} and u′(α)M

′
v′, v′ ∈{x′

10,x
′
11,x

′
12}.

Proof: By induction on α. Left to the reader.

Claim: Let α be a test-free program from the language of PRSPDL0. For all u∈W \{x9} and for all

u′ ∈W ′\{x′
4},

• if u(α)Mx10, there exists v∈W and there exists w′ ∈W ′ such that uZw′, vZw′ and v(α)Mx5;

• if u′(α)M
′
x′
10, there exists v∈W and there exists w′ ∈W ′ such that vZu′, vZw′ and w′(α)M

′
x′
5;

• if u(α)Mx11, there exists v∈W and there exists w′ ∈W ′ such that uZw′, vZw′ and v(α)Mx6;

• if u′(α)M
′
x′
11, there exists v∈W and there exists w′ ∈W ′ such that vZu′, vZw′ and w′(α)M

′
x′
6;

• if u(α)Mx12, there exists v∈W and there exists w′ ∈W ′ such that uZw′, vZw′ and v(α)Mx7;

• if u′(α)M
′
x′
12, there exists v∈W and there exists w′ ∈W ′ such that vZu′, vZw′ and w′(α)M

′
x′
7.

Proof: By induction on α. Left to the reader.

Claim: Let α be a test-free program and ψ be a test-free formula from the language of PRSPDL0.

For all r∈W and for all r′ ∈W ′, if rZr′,

• for all s∈W , if r(α)Ms, there exists s′ ∈W ′ such that r′(α)M
′
s′ and sZs′;

• for all s′ ∈W ′, if r′(α)M
′
s′, there exists s∈W such that r(α)Ms and sZs′;

• r∈ (ψ)M iff r′ ∈ (ψ)M
′
.

Proof: By induction on α and ψ . Left to the reader.

Since φ is test-free, x1Zx
′
1 and x1∈ (φ)

M, x′
1∈ (φ)

M′
: a contradiction. �

Proposition 9

• For all s1-free formulas φ, the formulas 〈s1〉⊤ and φ are not equally interpreted in all separated

models;

• for all s2-free formulas φ, the formulas 〈s2〉⊤ and φ are not equally interpreted in all separated

models.

Proof. Suppose there exists an s1-free formulaφ from the languageofPRSPDL0 such that 〈s1〉⊤↔φ

is valid in the class of all separated frames. Without loss of generality, assume φ contains neither

program variable, nor propositional variable. Moreover, in this proof, we will assume that programs

and formulas contain no syntactic element. Let F = (W ,R,⋆) and F ′ = (W ′,R′,⋆′) be the separated

frames defined as follows:W ={x,y}, R is the empty function, x⋆x={y} and otherwise ⋆ is the empty

function, W ′ ={x′,y′}, R′ is the empty function and ⋆′ is the empty function. Since 〈s1〉⊤↔φ is

valid in the class of all separated frames, F |=〈s1〉⊤↔φ and F ′ |=〈s1〉⊤↔φ. LetM= (W ,R,⋆,V )

be a model on F and M′ = (W ′,R′,⋆′,V ′) be a model on F ′. Obviously, x∈ (〈s1〉⊤)
M and x′ 6∈

(〈s1〉⊤)
M′
. Since F |=〈s1〉⊤↔φ and F ′ |=〈s1〉⊤↔φ, x∈ (〈s1〉⊤↔φ)M and x′ ∈ (〈s1〉⊤↔φ)M

′
.

Since x∈ (〈s1〉⊤)
M and x′ 6∈ (〈s1〉⊤)

M′
, x∈ (φ)M and x′ 6∈ (φ)M

′
.

Claim: Let α be an s1-free program from the language of PRSPDL0. For all r∈W and for all r′ ∈W ′,

• if x(α)Mr, r=x;

• if x′(α)M
′
r′, r′ =x′.

Proof: By induction on α. Left to the reader.



Claim: Let α be an s1-free program and ψ be an s1-free formula from the language of PRSPDL0.

Then,

• x(α)Mx iff x′(α)M
′
x′;

• x∈ (ψ)M iff x′ ∈ (ψ)M
′
.

Proof: By induction on α and ψ . Left to the reader.

Since φ is s1-free and x∈ (φ)M, x′ ∈ (φ)M
′
: a contradiction.

The argument concerning s2 is similar to the previous argument. �

Proposition 10

• for all r1-free formulas φ, the formulas 〈r1 ‖⊤?〉⊤ and φ are not equally interpreted in all

separated models;

• for all r2-free formulas φ, the formulas 〈⊤?‖r2〉⊤ and φ are not equally interpreted in all

separated models.

Proof. Suppose there exists an r1-free formula φ from the language of PRSPDL0 such that the

formulas 〈r1 ‖⊤?〉⊤ and φ are equally interpreted in all separated models.Without loss of generality,

assume φ contains neither program variable, nor propositional variable. Moreover, in this proof,

we will assume that programs and formulas contain no syntactic element. Let F = (W ,R,⋆) be

the separated frame defined as follows: W ={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13}, R is

the empty function, x4⋆x5={x1}, x6⋆x5={x2}, x6⋆x7={x3}, x8⋆x9={x4}, x10⋆x11={x6}, x8⋆x5=

{x12}, x10⋆x7={x13} and ⋆ is otherwise empty. Since 〈r1 ‖⊤?〉⊤↔φ is valid in the class of all

separated frames, F |=〈r1 ‖⊤?〉⊤↔φ. Let us consider the following partition of W :

• W/Z = {{x1,x2,x3},{x4,x6},{x5,x7},{x8,x10},{x9,x11},{x12,x13}}.

Let M= (W ,R,∗,V ) be a model on F . Obviously, x1∈ (〈r1 ‖⊤?〉⊤)M and x2 6∈ (〈r1 ‖⊤?〉⊤)M.

Since F |=〈r1 ‖⊤?〉⊤↔φ, x1∈ (〈r1 ‖⊤?〉⊤↔φ)M and x2∈ (〈r1 ‖⊤?〉⊤↔φ)M. Since x1∈ (〈r1 ‖

⊤?〉⊤)M and x2 6∈ (〈r1 ‖⊤?〉⊤)M, x1∈ (φ)
M and x2 6∈ (φ)

M. LetWL ={x1,x2,x4,x5,x8,x9,x12} and

WR={x3,x6,x7,x10,x11,x13}. Let fLR be the function from L into R inductively defined as follows:

fLR(1)=3, fLR(2)=3, fLR(4)=6, fLR(5)=7, fLR(8)=10, fLR(9)=11 and fLR(12)=13. Let fRL be the

function from R into L inductively defined as follows: fRL(3)=1, fRL(6)=4, fRL(7)=5, fRL(10)=8,

fRL(11)=9 and fRL(13)=12.

Claim: Let α be an r1-free program from the language of PRSPDL0. For all u,v∈W , if u(α)Mv,

• if u∈WL , v∈WL;

• if v∈{x4,x8,x9}, u∈{x4,x8,x9};

• if v=x8, u=x8;

• if v∈{x6,x10,x11}, u∈{x6,x10,x11};

• if v=x10, u=x10.

Proof: By induction on α. Left to the reader.

Claim: Let α be an r1-free program and ψ be an r1-free formula from the language of PRSPDL0.

For all u,v∈W , if u(α)Mv,

• if u,v∈WL , f (u)(α)
Mf (v);

• if u,v∈WR, g(u)(α)
Mg(v);

• if u∈WR and v∈WL , u(α)
Mf (v).

For all u,v∈W , if uZv,



• for all s∈W , if u(α)Ms, there exists t∈W such that v(α)Mt and sZt;

• for all t∈W , if v(α)Mt, there exists s∈W such that u(α)Ms and sZt;

• u∈ (ψ)M iff v∈ (ψ)M.

Proof: By induction on α and ψ . Left to the reader.

Since φ is r1-free, x1Zx2 and x1∈ (φ)
M, x2∈ (φ)

M: a contradiction.

The argument concerning r2 is similar to the previous argument. �

Proposition 11

Let a be an atomic program. For all ;-free formulas φ, the formulas 〈(a;a)‖a〉⊤ and φ are not equally

interpreted in all separated models.

Proof. Suppose there exists a ;-free formulaφ from the language ofPRSPDL0 such that the formulas

〈(a;a)‖a〉⊤ and φ are equally interpreted in all separated models.Without loss of generality, assume

a is the only program variable in φ and φ contains no propositional variable. Moreover, in this

proof, we will assume that a is the only syntactic element occurring in programs and formulas. Let

F = (W ,R,⋆) and F ′ = (W ′,R′,⋆′) be the separated frames defined as follows:W ={x,y,z,t,u,v,w},

R(a)={(y,w),(w,t),(z,u)} and R is otherwise empty, y⋆z={x}, t⋆u={v} and ⋆ is otherwise empty,

W ′ ={x′,y′,z′,t′1,t
′
2,u

′
1,u

′
2,v

′
1,v

′
2,w

′},R′(a)={(y′,w′),(w′,t′1),(z
′,u′
2)} andR

′ is otherwise empty and

y′⋆′ z′ ={x′}, t′1⋆
′u′
1={v′

1}, t
′
2⋆

′u′
2={v′

2} and ⋆
′ is otherwise empty. Since 〈(a;a)‖a〉⊤↔φ is valid

in the class of all separated frames,F |=〈(a;a)‖a〉⊤↔φ andF ′ |=〈(a;a)‖a〉⊤↔φ. Let us consider

the following binary relation:

• Z = {(x,x′),(y,y′),(z,z′),(t,t′1),(t,t
′
2),(u,u

′
1),(u,u

′
2),(v,v

′
1),(v,v

′
2),(w, w

′)}.

Let M= (W ,R,∗,V ) be a model on F and M′ = (W ′,R′,∗′,V ′) be a model on F ′. Obviously, x∈

(〈(a;a)‖a〉⊤)M and x′ 6∈ (〈(a;a)‖a〉⊤)M
′
. Since F |=〈(a;a)‖a〉⊤↔φ and F ′ |=〈(a;a)‖a〉⊤↔φ,

x∈ (〈(a;a)‖a〉⊤↔φ)M and x′ ∈ (〈(a;a)‖a〉⊤↔φ)M
′
. Since x∈ (〈(a;a)‖a〉⊤)M and x′ 6∈ (〈(a;a)‖

a〉⊤)M
′
, x∈ (φ)M and x′ 6∈ (φ)M

′
.

Claim: Let α be a ;-free program from the language of PRSPDL0. For all r∈W and for all r′ ∈W ′,

• if y(α)Mr, r∈{x,y,w};

• if y′(α)M
′
r′, r′ ∈{x′,y′,w′};

• if z(α)Mr, r∈{x,z,u};

• if z′(α)M
′
r′, r′ ∈{x′,z′,u′};

• if t(α)Mr, r∈{t,v};

• if t′1(α)
M′

r′, r′ ∈{t′1,v
′
1};

• if t′2(α)
M′

r′, r′ ∈{t′2,v
′
2};

• if u(α)Mr, r∈{u,v};

• if u′
1(α)

M′
r′, r′ ∈{u′

1,v
′
1};

• if u′
2(α)

M′
r′, r′ ∈{u′

2,v
′
2}.

Proof: By induction on α. Left to the reader.

Claim: Let α be a ;-free program and ψ be a ;-free formula from the language of PRSPDL0. For all

r∈W and for all r′ ∈W ′, if rZr′,

• for all s∈W , if r(α)Ms, there exists s′ ∈W ′ such that r′(α)M
′
s′ and sZs′;

• for all s′ ∈W ′, if r′(α)M
′
s′, there exists s∈W such that r(α)Ms and sZs′;

• r∈ (ψ)M iff r′ ∈ (ψ)M
′
.



Proof: By induction on α andψ . Left to the reader. Since φ is ;-free, xZx′ and x∈ (φ)M, x′ ∈ (φ)M
′
:

a contradiction. �

Proposition 12

Let a be an atomic program. For all ‖-free formulas φ, the formulas 〈a‖a〉⊤ and φ are not equally

interpreted in all separated models.

Proof. Suppose there exists a ‖-free formulaφ from the language ofPRSPDL0 such that the formulas

〈a‖a〉⊤ and φ are equally interpreted in all separated models. Without loss of generality, assume

a is the only program variable in φ and φ contains no propositional variable. Moreover, in this

proof, we will assume that a is the only syntactic element occurring in programs and formulas. Let

F = (W ,R,⋆) and F ′ = (W ′,R′,⋆′) be the separated frames defined as follows: W ={x,y,z,t,u,v},

R(a)={(y,t),(z,u)} and R is otherwise empty, y⋆z={x}, t⋆u={v} and ⋆ is otherwise empty, W ′ =

{x′,y′,z′,t′1,t
′
2,u

′
1,u

′
2,v

′
1,v

′
2}, R

′(a)={(y′,t′1),(z
′,u′
2)} and R′ is otherwise empty and y′⋆′ z′ ={x′},

t′1⋆
′u′
1={v′

1}, t
′
2⋆

′u′
2={v′

2} and ⋆ is otherwise empty. Since 〈a‖a〉⊤↔φ is valid in the class of all

separated frames, F |=〈a‖a〉⊤↔φ and F ′ |=〈a‖a〉⊤↔φ. Let us consider the following binary

relation:

• Z = {(x,x′),(y,y′),(z,z′),(t,t′1),(t,t
′
2),(u,u

′
1),(u,u

′
2),(v,v

′
1),(v,v

′
2),(w, w

′)}.

LetM= (W ,R,∗,V ) be amodel onF andM′ = (W ′,R′,∗′,V ′) be amodel onF ′. Obviously, x∈ (〈a‖

a〉⊤)M and x′ 6∈ (〈a‖a〉⊤)M
′
. Since F |=〈a‖a〉⊤↔φ and F ′ |=〈a‖a〉⊤↔φ, x∈ (〈a‖a〉⊤↔φ)M

and x′ ∈ (〈a‖a〉⊤↔φ)M
′
. Since x∈ (〈a‖a〉⊤)M and x′ 6∈ (〈a‖a〉⊤)M

′
, x∈ (φ)M and x′ 6∈ (φ)M

′
.

Claim: Let α be a ‖-free program and ψ be a ‖-free formula from the language of PRSPDL0. For

all r∈W and for all r′ ∈W ′, if rZr′,

• for all s∈W , if r(α)Ms, there exists s′ ∈W ′ such that r′(α)M
′
s′ and sZs′;

• for all s′ ∈W ′, if r′(α)M
′
s′, there exists s∈W such that r(α)Ms and sZs′;

• r∈ (ψ)M iff r′ ∈ (ψ)M
′
.

Proof: By induction on α and ψ . Left to the reader.

Since φ is ‖-free, xZx′ and x∈ (φ)M, x′ ∈ (φ)M
′
: a contradiction. �

It should be clear from Propositions 8–12 that neither tests, nor the storing programs s1 and s2 and

the recovering programs r1 and r2, nor the program construct (·;·) of sequential composition, nor the

program construct (·‖ ·) of parallel composition can be defined in terms of the other constructs of the

language of PRSPDL0. Nevertheless,

Proposition 13

LetM= (W ,R,⋆,V ) be a separated model and x∈W . For all programs α,β, for all formulas φ and

for all atomic formulas p, if p does not occur in α,β,φ, the following conditions are equivalent:

(1) x∈ (〈α ‖β〉φ)M;

(2) for all separated models M′ = (W ′,R′,⋆′,V ′), if M∼pM′, x∈ (〈r1〉〈α〉 〈s1〉(φ∧p)∨

〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
.

Proof. Suppose there exists programs α,β, there exists a formula φ and there exists an atomic

formula p such that p does not occur in α,β,φ and the above conditions are not equivalent. Hence,

either x∈ (〈α ‖β〉φ)M and there exists a separated model M′ = (W ′,R′,⋆′,V ′) such that M∼pM′

and x 6∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
, or x 6∈ (〈α ‖β〉φ)M and for all separatedmodels

M′ = (W ′,R′,⋆′,V ′), ifM∼pM′, x∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
.



Case ‘x∈ (〈α ‖β〉φ)M and there exists a separated model M′ = (W ′,R′,⋆′,V ′) such that M∼p

M′ and x 6∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
’. Hence, there exists y∈W such that x(α ‖

β)My and y∈ (φ)M. Thus, there exists z,t,u,v∈W such that x∈z⋆t, y∈u⋆v, z(α)Mu and t(β)Mv.

Therefore, x(r1)
Mz, x(r2)

Mt, u(s1)
My and v(s2)

My. Since p does not occur in α,β,φ,M∼pM′,

z(α)Mu, t(β)Mv and y∈ (φ)M, z(α)M
′
u, t(β)M

′
v and y∈ (φ)M

′
.

Subcase ‘y∈V ′(p)’. Since y∈ (φ)M
′
, y∈ (φ∧p)M

′
. Since x(r1)

Mz, z(α)M
′
u and u(s1)

My, x∈

(〈r1〉〈α〉〈s1〉(φ∧p))M
′
. Hence, x∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M

′
: a contradiction.

Subcase ‘y 6∈V ′(p)’. Since y∈ (φ)M
′
, y∈ (φ∧¬p)M

′
. Since x(r2)

Mt, t(β)M
′
v and v(s2)

My, x∈

(〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
. Hence, x∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M

′
: a contradiction.

Case ‘x 6∈ (〈α ‖β〉φ)M and for all separated models M′ = (W ′,R′,⋆′,V ′), if M∼pM′, x∈

(〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M
′
’.LetM′′ = (W ′′,R′′,⋆′′,V ′′) be a separatedmodel such

thatM∼pM′′ and V ′′(p)={y: there exists z,t,u,v∈W such that x∈z⋆t, y∈u⋆v and t(β)Mv}. Since

for all separated modelsM′ = (W ′,R′,⋆′,V ′), ifM∼pM′, x∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧

¬p))M
′
, x∈ (〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))M

′′
. Hence, either x∈ (〈r1〉〈α〉〈s1〉(φ∧p))M

′′
,

or x∈ (〈r2〉〈β〉〈s2〉(φ∧¬p))M
′′
.

Subcase ‘x∈ (〈r1〉〈α〉〈s1〉(φ∧p))M
′′
’.Hence, there exists y,z,t,u,v∈W such that x∈z⋆t, y∈u⋆v,

z(α)M
′′
u, y∈ (φ)M

′′
and y∈V ′′(p). Since p does not occur in α,φ and M∼pM′′, z(α)Mu and

y∈ (φ)M. SinceM is separated, x∈z⋆t, y∈u⋆v and y∈V ′′(p), t(β)Mv. Since x∈z⋆t, y∈u⋆v, and

z(α)Mu, x(α ‖β)My. Since y∈ (φ)M, x∈ (〈α ‖β〉φ)M: a contradiction.

Subcase ‘x∈ (〈r2〉〈β〉〈s2〉(φ∧¬p))M
′′
’. Hence, there exists y,z,t,u,v∈W such that x∈z⋆t, y∈

u⋆v, t(β)M
′′
v, y∈ (φ)M

′′
and y 6∈V ′′(p). Since p does not occur in β andM∼pM′′, t(β)Mv. Since

x∈z⋆t and y∈u⋆v, y∈V ′′(p): a contradiction. �

Let us temporarily add propositional quantifiers of the form ∀p to the language of PRSPDL0 for

each atomic formula p. Such constructs allow to write formulas of the form ∀pφ. In a model M=

(W ,R,⋆,V ), a formula of the form ∀pφ is interpreted as the following subset of W :

• (∀pφ)M =
⋂

{(φ)M
′
:M′ is a model such thatM∼pM′}.

A consequence of Proposition 13 is that the program construct (·‖ ·) of parallel composition becomes

definable in a modal language strengthened by the introduction of propositional quantifiers. To see

this, it suffices to consider the following

Proposition 14

Let α,β be programs, φ be a formula and p an atomic formula. If p does not occur in α,β,φ,

the formulas 〈α ‖β〉φ and ∀p(〈r1〉〈α〉〈s1〉(φ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p)) are equally interpreted in all

separated models.

Proof. By Proposition 13. �

In Sections 6 and 7, instead of using axioms to define the program operation of parallel composition

in the language of PDL enlarged with propositional quantifiers, we add an unorthodox rule of proof

that makes the canonical model standard for the program operation of parallel composition and we

use large programs for the proof of the Truth Lemma. In our canonical model construction, large

programs will constitute the main ingedients in the proofs of the Existence Lemma (Lemma 10) and

the Truth Lemma (Lemma 11).



5 Definability

Now, about definability.We investigate the question whether our new constructs can be used to define

the following elementary classes of frames: the class of all separated frames; the class of all rich

frames; the class of all deterministic frames; the class of all serial frames.

Proposition 15

The class of all separated frames ismodally definable by the formulas 〈r1〉p→[r1]p and 〈r2〉p→[r2]p.

Proof. Left to the reader. �

Proposition 16

The class of all rich frames is modally definable by the formula 〈r1〉⊤ ∨〈r2〉⊤.

Proof. Left to the reader. �

Proposition 17

The class of all deterministic frames is modally definable by the formula 〈⊤?‖⊤?〉p→p.

Proof. Left to the reader. �

Proposition 18

The class of all serial frames is not modally definable.

Proof. Suppose there exists a set 6 of formulas from the language of PRSPDL0 that modally

defines the class of all serial frames. Let F = (W ,R,⋆) and F ′ = (W ′,R′,⋆′) be the frames defined

as follows: W ={x1,x2}, R is the empty function, x1⋆x1={x1}, x2⋆x2={x2} and otherwise ⋆ is the

empty function, W ′ ={x′}, R′ is the empty function and x′⋆′ x′ ={x′}. Obviously, F is not serial and

F ′ is serial. Since 6 modally defines the class of all serial frames, F 6|=6 and F ′ |=6. Hence, there

exists a formula φ∈6 such that F 6|=φ. Since F ′ |=6, F ′ |=φ. Since F 6|=φ, there exists a model

M= (W ,R,⋆,V ) on F such that either x1 6∈ (φ)
M, or x2 6∈ (φ)

M. Without loss of generality, assume

x1 6∈ (φ)
M. LetM′ = (W ′,R′,⋆′,V ′) be the model onF ′ defined as follows: V ′(p)= if x1∈V (p), then

{x′}, else ∅ for every propositional variable p. Since F ′ |=φ, x′ ∈ (φ)M
′
.

Claim: Let α be a program and ψ be a formula from the language of PRSPDL0. Then,

• not x1(α)
Mx2;

• x1(α)
Mx1 iff x

′(α)M
′
x′;

• x1∈ (ψ)
M iff x′ ∈ (ψ)M

′
.

Proof: By induction on α and ψ . Left to the reader.

Since x1 6∈ (φ)
M, x′ 6∈ (φ)M

′
: a contradiction. �

6 Axiomatization

This section presents the axiomatization of PRSPDL0. But before, we need to say more about the rule

of proof (FOR). There is an important point we should make: (FOR) is an infinitary rule of proof,

i.e. it has an infinite set of formulas as preconditions. In some ways, it is similar to the rules of proof

for the program construct (·∩·) of intersection from [3, 4]. Let us consider the following variant of

(FOR):

(FOR′) from φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p))wherep is an atomic formula not occurring

in φ̆,α,β,ψ , infer φ̆(〈α ‖β〉ψ).



Obviously, (FOR′) is a finitary rule of proof, i.e. it has a finite set of formulas—a singleton—as

preconditions. How should we demonstrate the rules of proof (FOR) and (FOR′) are equivalent in

the sense that they are interchangeable? Let PRSPDL0 be the least set of formulas that contains the

formulas (A1)–(A14) and that is closed under the rules of proof (MP), (N) and (FOR) and PRSPDL′
0

be the least set of formulas that contains the formulas (A1)–(A14) and that is closed under the rules of

proof (MP), (N) and (FOR′). We shall say that φ is provable in PRSPDL0 iff φ belongs to PRSPDL0,

whereas we shall say that φ is provable in PRSPDL′
0 iff φ belongs to PRSPDL′

0. The infinitary nature

of the rule of proof (FOR) implies that ‘PRSPDL0-proofs’ can be of infinite length whereas the

finitary nature of the rule of proof (FOR′) implies that ‘PRSPDL′
0-proofs’ are always of finite length.

More precisely, by definition of PRSPDL0 and PRSPDL′
0, for all formulas φ,

• φ belongs to PRSPDL0 iff there exists an ordinal λ and a λ-termed sequence (ψµ)µ≤λ of

formulas—called a λ-proof of φ in PRSPDL0—such that ψλ=φ and for all µ≤λ, either ψµ
is one of the formulas (A1)–(A14), or ψµ is obtained from previous formulas in the λ-termed

sequence (ψµ)µ≤λ by means of one of the rules of proof (MP), (N) and (FOR);

• φ belongs to PRSPDL′
0 iff there exists a non-negative integer λ and a λ-termed sequence

(ψµ)µ≤λ of formulas—called a λ-proof of φ in PRSPDL′
0—such that ψλ=φ and for all µ≤λ,

either ψµ is one of the formulas (A1)–(A14), or ψµ is obtained from previous formulas in the

λ-termed sequence (ψµ)µ≤λ by means of one of the rules of proof (MP), (N) and (FOR′).

Concerning PRSPDL′
0, we have the following.

Lemma 1

Let φ(p) be a formula and λ be a non-negative integer. If there exists a λ-proof of φ(p) in PRSPDL′
0,

for all atomic formulas q not occurring in φ(p), there exists a λ-proof of φ(q) in PRSPDL′
0.

Proof. By induction on λ. Left to the reader. �

The rules of proof (FOR) and (FOR′) are equivalent in the sense that they are interchangeable. More

precisely,

Proposition 19

Let φ be a formula. The following conditions are equivalent:

(1) φ belongs to PRSPDL0;

(2) φ belongs to PRSPDL′
0.

Proof. Suppose the above conditions are not equivalent. Hence, either φ belongs to PRSPDL0 and

φ does not belong to PRSPDL′
0, or φ does not belong to PRSPDL0 and φ belongs to PRSPDL′

0.

Case ‘φ belongs to PRSPDL0 and φ does not belong to PRSPDL′
0’.Hence, there exists an ordinal

λ and a λ-termed sequence (ψµ)µ≤λ of formulas such that ψλ=φ and for all µ≤λ, either ψµ is

one of the formulas (A1)–(A14), or ψµ is obtained from previous formulas in the λ-termed sequence

(ψµ)µ≤λ by means of one of the rules of proof (MP), (N) and (FOR). By induction on λ, let us verify

that φ belongs to PRSPDL′
0.

Cases ‘ψλ is one of the formulas (A1)–(A14)’, ‘ψλ is obtained from previous formulas in the

λ-termed sequence (ψµ)µ≤λ by means of the rule of proof (MP)’ and ‘ψλ is obtained from

previous formulas in the λ-termed sequence (ψµ)µ≤λ by means of the rule of proof (N)’. Left

to the reader.



Case ‘ψλ is obtained from previous formulas in the λ-termed sequence (ψµ)µ≤λ by means

of the rule of proof (FOR)’. Hence, there exists an admissible form φ̆, there exists programs

α,β and there exists a formula ψ such that for all atomic formulas p not occurring in φ̆,α,β,ψ ,

φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)) is the formula ψµ for some µ<λ and φ̆(〈α ‖β〉ψ) is

the formula ψλ. Let p be an atomic formula not occurring in φ̆,α,β,ψ . Thus, φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨

〈r2〉〈β〉〈s2〉(ψ∧¬p)) is the formula ψµ for some µ<λ. By induction hypothesis, φ̆(〈r1〉〈α〉〈s1〉(ψ∧

p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p)) belongs to PRSPDL′
0. Since p does not occur in φ̆,α,β,ψ , ψλ belongs to

PRSPDL′
0: a contradiction.

Case ‘φ does not belong to PRSPDL0 and φ belongs to PRSPDL′
0’. Hence, there exists an

non-negative integer λ and a λ-termed sequence (ψµ)µ≤λ of formulas such that ψλ=φ and for all

µ≤λ, either ψµ is one of the formulas (A1)–(A14), or ψµ is obtained from previous formulas in

the λ-termed sequence (ψµ)µ≤λ by means of one of the rules of proof (MP), (N) and (FOR′). By

induction on λ, let us verify that φ belongs to PRSPDL0.

Cases ‘ψλ is one of the formulas (A1)–(A14)’, ‘ψλ is obtained from previous formulas in the

λ-termed sequence (ψµ)µ≤λ by means of the rule of proof (MP)’ and ‘ψλ is obtained from

previous formulas in the λ-termed sequence (ψµ)µ≤λ by means of the rule of proof (N)’. Left

to the reader.

Case ‘ψλ is obtained from previous formulas in the λ-termed sequence (ψµ)µ≤λ by means

of the rule of proof (FOR′)’. Hence, there exists an admissible form φ̆, there exists programs α,β

and there exists a formula ψ such that φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p))—where p is an

atomic formula not occurring in φ̆,α,β,ψ—is the formula ψµ for some µ<λ and φ̆(〈α ‖β〉ψ)

is the formula ψλ. Thus, there exists a µ-proof of φ̆(〈r1〉〈α〉〈s1〉(ψ∧p)∨〈r2〉〈β〉〈s2〉(ψ∧¬p))

in PRSPDL′
0. By Lemma 1, since p is an atomic formula not occurring in φ̆,α,β,ψ , for all

atomic formulas q not occurring in φ̆,α,β,ψ , there exists a µ-proof of φ̆(〈r1〉〈α〉〈s1〉(ψ∧q)∨

〈r2〉〈β〉〈s2〉(ψ∧¬q)) inPRSPDL′
0. By induction hypothesis, for all atomic formulasq not occurring in

φ̆,α,β,ψ , φ̆(〈r1〉〈α〉〈s1〉(ψ∧q)∨〈r2〉〈β〉〈s2〉(ψ∧¬q)) belongs to PRSPDL0. Therefore,ψλ belongs

to PRSPDL0: a contradiction. �

Hence, as long as one is interested in the notion of derivability, (FOR) and (FOR′) are equivalent.

To see how the rule of proof (FOR) works, let us demonstrate the following

Lemma 2

Let α(φ?) be a program. For all formulas ψ , if φ→ψ ∈PRSPDL0, for all formulas χ , 〈α(φ?)〉χ→

〈α(ψ?)〉χ ∈PRSPDL0.

Proof. By induction on α(φ?).

Cases ‘α(φ?)=a’, ‘α(φ?)=θ?’, ‘α(φ?)=s1’, ‘α(φ?)=s2’, ‘α(φ?)=r1’, ‘α(φ?)=r2’, ‘α(φ?)=

β(φ?);γ ’ and ‘α(φ?)=β;γ (φ?)’. Left to the reader.

Case ‘α(φ?)=β(φ?)‖γ ’. By (A10), 〈β(φ?)‖γ 〉χ→〈r1〉〈β(φ?)〉〈s1〉(χ∧p)∨〈r2〉〈γ 〉〈s2〉(χ∧

¬p)∈PRSPDL0 for every atomic formula p not occurring in β(φ?), γ ,ψ ,χ . By induction hypothesis,

〈β(φ?)‖γ 〉χ→〈r1〉〈β(ψ?)〉〈s1〉(χ∧p)∨〈r2〉〈γ 〉〈s2〉(χ∧¬p)∈PRSPDL0 for every atomic formula

p not occurring in β(φ?), γ , ψ , χ . Hence, [〈β(φ?)‖γ 〉χ?](〈r1〉〈β(ψ?)〉〈s1〉(χ∧p)∨〈r2〉〈γ 〉〈s2〉(χ∧

¬p))∈PRSPDL0, [〈β(φ?)‖γ 〉χ?;¬(〈r1〉〈β(ψ?)〉〈s1〉(χ∧p)∨〈r2〉〈γ 〉〈s2〉(χ∧¬p))?]⊥∈PRSPDL0
and [(〈β(φ?)‖γ 〉χ?;¬♯?)(〈r1〉〈β(ψ?)〉〈s1〉(χ∧p)∨〈r2〉〈γ 〉〈s2〉(χ∧¬p))]⊥∈PRSPDL0 for every

atomic formula p not occurring in β(φ?), γ , ψ , χ . By (FOR), [(〈β(φ?)‖γ 〉χ?;¬♯?)(〈β(ψ?)‖



γ 〉χ )]⊥∈PRSPDL0, [〈β(φ?)‖γ 〉χ?;¬〈β(ψ?)‖γ 〉χ?]⊥∈PRSPDL0 and [〈β(φ?)‖γ 〉χ?]〈β(ψ?)‖

γ 〉χ ∈PRSPDL0. Thus, 〈β(φ?)‖γ 〉χ→〈β(ψ?)‖γ 〉χ ∈PRSPDL0.

Case ‘α(φ?)=β ‖γ (φ?)’. Similar to the case ‘α(φ?)=β(φ?)‖γ ’. �

Having said this, now, let us establish the soundness for PRSPDL0:

Proposition 20 (Soundness for PRSPDL0)

Let φ be a formula. If φ∈PRSPDL0, φ is valid in the class of all separated frames.

Proof. By Propositions 4–7. �

The completeness for PRSPDL0 is more difficult to establish and we defer proving it till next section.

In the meantime, it is well worth noting that for all separated models M= (W ,R,⋆,V ) and for all

x∈W , {φ: x∈ (φ)M} is a set of formulas that contains PRSPDL0 and that is closed under the rule of

proof (MP). Now, we introduce theories. A set S of formulas is said to be a theory iff PRSPDL0⊆S

and S is closed under the rules of proof (MP) and (FOR).We will use S,T ,... for theories. Obviously,

the least theory isPRSPDL0 and the greatest theory is the set of all formulas.Wewill use the following

property of theories without explicit reference.

Lemma 3

Let S be a theory. The following conditions are equivalent:

• S is equal to the set of all formulas;

• there exists a formula φ such that φ∈S and ¬φ∈S;

• ⊥∈S.

Proof. Left to the reader. �

We shall say that a theory S is consistent iff for all formulas φ, either φ 6∈S, or ¬φ 6∈S. By Lemma 3,

there is only one inconsistent theory: the set of all formulas. A theory S is said to be maximal iff

for all formulas φ, either φ∈S, or ¬φ∈S. In Section 7, the canonical frame of PRSPDL0 and the

canonical model of PRSPDL0 will be based on the set of all maximal consistent theories, whereas

in the classical literature [7, Chapter 4], canonical frames and canonical models are based on the set

of all maximal consistent sets of formulas. The truth is that every maximal consistent theory is a

maximal consistent set of formulas in the classical sense, whereas every maximal consistent set of

formulas closed under the rule of proof (FOR) is a maximal consistent theory. Hence,

Lemma 4

Let S be a maximal consistent theory. We have:

• ⊥6∈S;

• for all formulas φ, ¬φ∈S iff φ 6∈S;

• for all formulas φ,ψ , φ∨ψ ∈S iff either φ∈S, or ψ ∈S.

Proof. Left to the reader. �

If α is a program, φ is a formula and S is a theory, let [α]S={φ: [α]φ∈S} and S+φ={ψ : φ→ψ ∈S}.

Sets of the form [a]S will be used while defining the canonical relations Rc(a) in the canonical frame

of PRSPDL0. Sets of the form S+φ will be used while demonstrating Lemma 7. We have the

following.



Lemma 5

Let S be a theory. For all programs α and for all formulas φ, we have:

(1) [φ?]S=S+φ;

(2) [α]S is a theory;

(3) S+φ is a theory;

(4) S+φ is the least theory containing S and φ;

(5) S+φ is consistent iff ¬φ 6∈S.

Proof. (1). By (A3).

(2). By the rule of proof (N), [α]S contains PRSPDL0. By (A2), [α]S is closed under the

rule of proof (MP). We demonstrate [α]S is closed under the rule of proof (FOR). Suppose

φ̆(〈r1〉〈β〉〈s1〉(ψ∧p)∨〈r2〉〈γ 〉〈s2〉(ψ∧¬p))∈[α]S for all atomic formulas p not occurring in

φ̆,β,γ,ψ . Hence, [α]φ̆(〈r1〉〈β〉〈s1〉(ψ∧p)∨〈r2〉〈γ 〉〈s2〉(ψ∧¬p))∈S, [α;¬φ̆?(〈r1〉〈β〉〈s1〉(ψ∧p)∨

〈r2〉〈γ 〉〈s2〉(ψ∧¬p))]⊥∈S and [(α;¬φ̆?)(〈r1〉〈β〉〈s1〉(ψ∧p)∨〈r2〉〈γ 〉〈s2〉(ψ∧¬p))]⊥∈S for all

atomic formulas p not occurring in α,φ̆,β,γ,ψ . Since S is closed under the rule of proof (FOR),

[(α;¬φ̆?)(〈β ‖γ 〉ψ)]⊥∈S, [α;¬φ̆?(〈β ‖γ 〉ψ)]⊥∈S and [α]φ̆?(〈β ‖γ 〉ψ)∈S. Thus, φ̆(〈β ‖γ 〉ψ)∈

[α]S.

(3). By (1) and (2).

(4). Left to the reader.

(5). By Lemma 4. �

In the classical literature, three Lemmas support the canonical model construction: the Lindenbaum

Lemma [7, Lemma 4.17], the Existence Lemma [7, Lemma 4.20] and the Truth Lemma [7,

Lemma4.21].Our canonicalmodel construction is also built on the same threeLemmas.Nevertheless,

the fact that the canonical frame of PRSPDL0 and the canonical model of PRSPDL0 are based on

the set of all maximal consistent theories creates some subtleties that we will now attack from the

front. The Lindenbaum Lemma will say that every consistent theory can be extended to a maximal

consistent theory. Hence, in a first setting, we have to learn how to extend a consistent theory by

means of a formula.

Lemma 6

Let S be a theory. If S is consistent, for all formulas φ, either S+φ is consistent, or there exists a

formula ψ such that the following conditions are satisfied:

• S+ψ is consistent;

• ψ→¬φ∈PRSPDL0;

• if φ is in the form χ̆ (〈α ‖β〉θ ) of a conclusion of the rule of proof (FOR), there exists an atomic

formula p not occurring in φ such that ψ→¬χ̆ (〈r1〉〈α〉〈s1〉(θ∧p)∨〈r2〉〈β〉〈s2〉(φ∧¬p))∈

PRSPDL0.

Proof. Suppose S is consistent and φ is a formula such that S+φ is not consistent. By Lemma 5,

¬φ∈S. Obviously, there are finitely many, say k≥0, representations of φ in the form of a conclusion

of the rule of proof (FOR): χ̆1(〈α1 ‖β1〉θ1),...,χ̆k(〈αk ‖βk〉θk). We define by induction a sequence

(ψ0,...,ψk) of formulas such that for all l∈N, if l≤k, the following conditions are satisfied: S+ψl

is consistent; ψl →¬φ∈PRSPDL0; for all m∈N, if 1≤m≤ l, there exists an atomic formula p

not occurring in φ such that ψl →¬χ̆m(〈r1〉〈αm〉〈s1〉(θm∧p)∨〈r2〉〈βm〉〈s2〉(θm∧¬p))∈PRSPDL0.

First, let ψ0=¬φ. Obviously, the following conditions are satisfied: S+ψ0 is consistent; ψ0→

¬φ∈PRSPDL0. Secondly, let l≥1 be such that l≤k and the formulas ψ0,...,ψl−1 have already



been defined. Hence, S+ψl−1 is consistent; ψl−1→¬φ∈PRSPDL0; for all m∈N, if 1≤m≤ l−1,

there exists an atomic formula p not occurring in φ such that ψl−1→¬χ̆m(〈r1〉〈αm〉〈s1〉(θm∧

p)∨〈r2〉〈βm〉〈s2〉(θm∧¬p))∈PRSPDL0. Thirdly, since S+ψl−1 is consistent and ψl−1→¬φ∈

PRSPDL0,φ 6∈S+ψl−1. Since S+ψl−1 is closed under the rule of proof (FOR), there exists an atomic

formula p not occurring in φ such that χ̆l(〈r1〉〈αl〉〈s1〉(θl∧p)∨〈r2〉〈βl〉〈s2〉(θl∧¬p)) 6∈S+ψl−1. Let

ψl =ψl−1∧¬χ̆l(〈r1〉〈αl〉〈s1〉(θl∧p)∨〈r2〉〈βl〉〈s2〉(θl∧¬p)). Obviously, the following conditions are

satisfied: S+ψl is consistent; ψl →¬φ∈PRSPDL0; for all m∈N, if 1≤m≤ l, there exists an atomic

formula p not occurring in φ such that ψl →¬χ̆m(〈r1〉〈αm〉〈s1〉(θm∧p)∨〈r2〉〈βm〉〈s2〉(θm∧¬p))∈

PRSPDL0. Finally, the reader may easily verify that the following conditions are satisfied: S+ψk is

consistent; ψk →¬φ∈PRSPDL0; if φ is in the form χ̆ (〈α ‖β〉θ ) of a conclusion of the rule of proof

(FOR), there exists an atomic formula p not occurring in φ such that ψk →¬χ̆ (〈r1〉〈α〉〈s1〉(θ∧p)∨

〈r2〉〈β〉〈s2〉(θ∧¬p))∈PRSPDL0. �

Now, knowing how to extend a consistent theory by means of a formula, we can demonstrate the

Lindenbaum Lemma.

Lemma 7 (Lindenbaum Lemma)

Let S be a theory. If S is consistent, there exists a maximal consistent theory containing S.

Proof. SupposeS is consistent. Since there are countablymany formulas, there exists an enumeration

φ1,φ2,... of the set of all formulas. Let T0,T1,... be the sequence of consistent theories inductively

defined as follows. First, let T0=S. Obviously, T0 is consistent. Secondly, let n≥1 be such that

consistent theories T0,...,Tn−1 have already been defined. Thirdly, by Lemma 6, either Tn−1+φn is

consistent, or there exists a formula ψ such that the following conditions are satisfied: Tn−1+ψ is

consistent;ψ→¬φn∈PRSPDL0; if φn is in the form χ̆ (〈α ‖β〉θ ) of a conclusion of the rule of proof

(FOR), there exists an atomic formula p not occurring in χ̆ ,α,β,θ such thatψ→¬χ̆ (〈r1〉〈α〉〈s1〉(θ∧

p)∨〈r2〉〈β〉〈s2〉(θ∧¬p))∈PRSPDL0. In the former case, let Tn=Tn−1+φn. In the latter case, let

Tn=Tn−1+ψ . Obviously, Tn is consistent. Finally, the reader may easily verify that T0∪T1∪ ... is

a maximal consistent theory containing S. �

7 Completeness

This section proves the completeness of PRSPDL0. The canonical frame of PRSPDL0 is the 3-tuple

Fc= (Wc,Rc,⋆c) where Wc is the set of all maximal consistent theories, Rc is the function from the

set of all atomic programs into the set of all binary relations between maximal consistent theories

defined by SRc(a)T iff [a]S⊆T and ⋆c is the function from the set of all pairs of maximal consistent

theories into the set of all sets of maximal consistent theories defined by U∈S⋆cT iff [s1]S⊆U and

[s2]T ⊆U. We firstly demonstrate the following

Lemma 8

Fc is separated.

Proof. Suppose Fc is not separated. Hence, there exists a maximal consistent theory S such that

card(⋆c(S))≥2. Thus, there exists maximal consistent theories T ,U,V ,W such that S∈T ⋆cU, S∈

V ⋆cW and either T 6=V , or U 6=W . Without loss of generality, suppose T 6=V . Hence, there exists

a formula φ such that φ∈T and φ 6∈V . Since S∈T ⋆cU and S∈V ⋆cW , [s1]T ⊆S and [s1]V ⊆S. By

(A4), [r1]S⊆T and [r1]S⊆V . Since φ∈T , 〈r1〉φ∈S. By (A13), [r1]φ∈S. Since [r1]S⊆V , φ∈V : a

contradiction. �



The canonical model of PRSPDL0 is the 4-tupleMc= (Wc,Rc,⋆c,Vc) where Vc: p 7→Vc(p)⊆Wc is

the canonical valuation of PRSPDL0, i.e. the function from the set of all atomic formulas into the

set of all sets of maximal consistent theories defined by S∈Vc(p) iff p∈S. In our canonical model

construction, the ordinary form of the Existence Lemma would be as follows: for all programs α, for

all formulas φ and for all maximal consistent theories S, if [α]φ 6∈S, there exists a maximal consistent

theory T such that [α]S⊆T and φ 6∈T . Nevertheless, it happens that the proof of our Truth Lemma

(Lemma 11) needs a stronger form of the Existence Lemma. This stronger form requires the use of

a new modal concept: large programs. For all consistent theories S, let S̄ be a new symbol at our

disposal. Now, the set of all large programs is inductively defined as follows:

• A−→a | S̄ |s1 |s2 |r1 |r2 | (A;B) | (A‖B).

We will use A,B,... for large programs. Let us be clear that each large program is a finite string

of symbols coming from an uncountable alphabet. It follows that there are uncountably many

large programs. For convenience, we omit the parentheses in accordance with the standard rules.

It is essential that large programs are built up from atomic programs, symbols for consistent

theories, storing constructs and recovering constructs by means of the constructs (·;·) and (·‖ ·).

Let A(S̄1,...,S̄n) be a large program with (S̄1,...,S̄n) a sequence of some of its symbols for consistent

theories. The result of the replacement of S̄1,...,S̄n in their places with T̄1,...,T̄n is another large

program which will be denoted A(T̄1,...,T̄n). A large program A(S̄1,...,S̄n) with (S̄1,...,S̄n) the

sequence of all its symbols for consistent theories will be defined to be maximal if the theories

S1,...,Sn are maximal. In the canonical model, every large program will be interpreted as a binary

relation over the set of all maximal consistent theories. To define such a binary relation, one needs to

view each large program as a set of programs. In this respect, the kernel function ker:A 7→ker(A)⊆PR

is inductively defined as follows:

• ker(a)={a};

• ker(S̄)={φ?: φ∈S};

• ker(s1)={s1};

• ker(s2)={s2};

• ker(r1)={r1};

• ker(r2)={r2};

• ker(A;B)={α;β: α∈ker(A) and β∈ker(B)};

• ker(A‖B)={α ‖β: α∈ker(A) and β∈ker(B)}.

Lemma 9 will be put to good use in the proof of the Existence Lemma.

Lemma 9

Let α be a program. For all maximal consistent theories S and for all formulas φ, if 〈α(φ?)〉⊤∈S,

for all formulas ψ , we have: either 〈α((φ∧ψ)?)〉⊤∈S, or there exists a formula χ such that the

following conditions are satisfied:

• 〈α((φ∧χ )?)〉⊤∈S;

• χ→¬ψ ∈PRSPDL0;

• ifψ is in the form τ̆ (〈β ‖γ 〉θ ) of a conclusion of the rule of proof (FOR), there exists an atomic

formula p not occurring in α,φ,ψ,χ such that χ→¬τ̆ (〈r1〉〈β〉〈s1〉(θ∧p)∨〈r2〉〈γ 〉〈s2〉(θ∧

¬p))∈PRSPDL0.

Proof. Suppose S is a maximal consistent theory and φ is a formula such that 〈α(φ?)〉 ⊤∈S

and ψ is a formula such that 〈α((φ∧ψ)?)〉⊤ 6∈S. By (A11), 〈α((φ∧¬ψ)?)〉⊤∈S. Obviously,



there are finitely many, say k≥0, representations of ψ in the form of a conclusion of the

rule of proof (FOR): τ̆1(〈β1 ‖γ1〉θ1),...,τ̆k(〈βk ‖γk〉θk). We define by induction a sequence

(χ0,...,χk) of formulas such that for all l∈N, if l≤k, the following conditions are satisfied:

〈α((φ∧χl)?)〉⊤∈S; χl →¬ψ ∈PRSPDL0; for all m∈N, if 1≤m≤ l, there exists an atomic formula

p not occurring in α,φ,ψ,χl such that χl →¬τ̆m(〈r1〉〈βm〉〈s1〉(θm∧p)∨〈r2〉〈γm〉〈s2〉(θm∧¬p))∈

PRSPDL0. First, let χ0=¬ψ . Obviously, the following conditions are satisfied: 〈α((φ∧χ0)?)〉⊤∈S;

χ0→¬ψ ∈PRSPDL0. Secondly, let l≥1 be such that l≤k and the formulas χ0,...,χl−1 have

already been defined. Hence, 〈α((φ∧χl−1)?)〉⊤∈S; χl−1→¬ψ ∈PRSPDL0; for all m∈N, if

1≤m≤ l−1, there exists an atomic formula p not occurring in α,φ,ψ,χl−1 such that χl−1→

¬τ̆m(〈r1〉〈βm〉〈s1〉(θm∧p)∨〈r2〉〈γm〉〈s2〉(θm∧¬p))∈PRSPDL0. Third, by Lemma 2, since 〈α((φ∧

χl−1)?)〉⊤∈S and χl−1→¬ψ ∈PRSPDL0, 〈α((φ∧χl−1∧¬ψ)?)〉⊤∈S. Thus, [α((φ∧χl−1∧

¬ψ)?)]⊥ 6∈S, [α(¬[(φ∧χl−1)?;¬ψ?]⊥?)]⊥ 6∈S and [α(¬[(φ∧χl−1)?;¬♯?]⊥?)]⊥(ψ) 6∈S. Since S

is closed under the rule of proof (FOR), there exists an atomic formula p not occurring in α,φ,ψ,χl−1
such that [α(¬[(φ∧χl−1)?;¬♯?]⊥?)]⊥(τ̆l(〈r1〉〈βl〉〈s1〉(θl∧p)∨〈r2〉〈γl〉〈s2〉(θl∧¬p))) 6∈S. There-

fore, [α(¬[(φ∧χl−1)?;¬(τ̆l(〈r1〉〈βl〉〈s1〉(θl∧p)∨〈r2〉〈γl〉〈s2〉(θl∧¬p)))?]⊥?)]⊥ 6∈S, [α((φ∧χl−1∧

¬(τ̆l(〈r1〉〈βl〉〈s1〉(θl∧p)∨〈r2〉〈γl〉〈s2〉(θl∧¬p))))?)]⊥ 6∈S and 〈α((φ∧χl−1∧¬τ̆l(〈r1〉〈βl〉〈s1〉(θl∧

p)∨〈r2〉〈γl〉〈s2〉(θl∧¬p)))?)〉⊤∈S. Let χl =χl−1∧¬τ̆l(〈r1〉〈βl〉〈s1〉(θl∧p)∨〈r2〉〈γl〉〈s2〉(θl∧¬p)).

Obviously, the following conditions are satisfied: 〈α((φ∧χl)?)〉⊤∈S; χl →¬ψ ∈PRSPDL0; for

all m∈N, if 1≤m≤ l, there exists an atomic formula p not occurring in α,φ,ψ,χl such that

χl →¬τ̆m(〈r1〉〈βm〉〈s1〉(θm∧p)∨〈r2〉〈γm〉〈s2〉(θm∧¬p))∈PRSPDL0. Finally, the reader may easily

verify that the following conditions are satisfied: 〈α((φ∧χk)?)〉⊤∈S; χk →¬ψ ∈PRSPDL0; if ψ is

in the form τ̆ (〈β ‖γ 〉θ ) of a conclusion of the rule of proof (FOR), there exists an atomic formula p

not occurring in α,φ,ψ,χk such that χk →¬τ̆ (〈r1〉〈β〉〈s1〉(θ∧p)∨〈r2〉〈γ 〉〈s2〉(θ∧¬p))∈PRSPDL0.

�

Now, we can demonstrate the Existence Lemma and the Truth Lemma.

Lemma 10 (Existence Lemma)

Let α be a program and φ be a formula. For all maximal consistent theories S, if [α]φ 6∈S, there exists

a maximal program A and there exists a maximal consistent theory T such that f (α)∈ker(A), for all

programs β, if β∈ker(A), [β]S⊆T and φ 6∈T .

Proof. Suppose there exists a maximal consistent theory S such that [α]φ 6∈S. Since S is maximal,

〈α〉¬φ∈S. By (A12), 〈f (α)〉¬φ∈S. Without loss of generality, suppose f (α) contains exactly one

test, say ψ?. Since 〈f (α)〉¬φ∈S, 〈f (α)(ψ?);¬φ?〉⊤∈S. Since there are countably many formulas,

there exists an enumeration χ1,χ2,... of the set of all formulas. Let θ
0,θ1,... and τ0,τ1,... be the

sequences of formulas inductively defined as follows such that for all n∈N, 〈f (α)(θn?);τn?〉⊤∈S.

First, let θ0=ψ and τ0=¬φ. Obviously, 〈f (α)(θ0?);τ0?〉 ⊤∈S. Secondly, let n≥1 be such that

formulas θ0,...,θn−1 and τ0,...,τn−1 have already been defined. Hence, 〈f (α)(θn−1?);τn−1?〉⊤∈S.

Thirdly, by Lemma 9, either 〈f (α)((θn−1∧χn)?);τ
n−1?〉⊤∈S, or there exists a formula µ such that

the following conditions are satisfied: 〈f (α)((θn−1∧µ)?);τn−1?〉⊤∈S; µ→¬χn∈PRSPDL0; if χn
is in the form ω̆(〈β ‖γ 〉ν) of a conclusion of the rule of proof (FOR), there exists an atomic formula

p not occurring in α,θn−1,τn−1,χn,µ such that µ→¬ω̆(〈r1〉〈β〉〈s1〉(ν∧p)∨〈r2〉〈γ 〉〈s2〉(ν∧¬p))∈

PRSPDL0. In the former case, let θ
n=θn−1∧χn. In the latter case, let θ

n=θn−1∧µ. Obviously,

〈f (α)(θn?);τn−1?〉⊤∈S. By Lemma 9, either 〈f (α)(θn?);(τn−1∧χn)?〉⊤∈S, or there exists a

formula µ′ such that the following conditions are satisfied: 〈f (α)(θn?); (τn−1∧µ′)?〉⊤)∈S; µ′ →

¬χn∈PRSPDL0; if χn is in the form ω̆(〈β ‖γ 〉ν) of a conclusion of the rule of proof (FOR), there

exists an atomic formula p not occurring in α,θn,τn−1,χn,µ such that µ
′ →¬ω̆(〈r1〉〈β〉〈s1〉(ν∧



p)∨〈r2〉〈γ 〉〈s2〉(ν∧¬p))∈PRSPDL0. In the former case, let τ
n=τ n−1∧χn. In the latter case,

let τn=τ n−1∧µ′. Obviously, 〈f (α)(θn?);τn?〉⊤∈S. Finally, the reader may easily verify that

T =
⋃

{PRSPDL0+θ
n : n∈N} and U=

⋃
{PRSPDL0+τ

n : n∈N} are maximal consistent theories

such that f (α)∈ker(f (α)(T̄ )), for all programs β, if β∈ker(f (α)(T̄ )), [β]S⊆U and φ 6∈U. �

Lemma 11 (Truth Lemma)

Let α be a program and φ be a formula.

• For all maximal consistent theories S,T , S(α)McT iff there exists a maximal program A such

that f (α)∈ker(A) and for all programs β, if β∈ker(A), [β]S⊆T .

• for all maximal consistent theories S, S∈ (φ)Mc iff φ∈S.

Proof. Let P(·) be the property about programs and formulas defined as follows:

• for all programs α, P(α) iff for all maximal consistent theories S,T , S(α)McT iff there exists

a maximal program A such that f (α)∈ker(A) and for all programs β, if β∈ker(A), [β]S⊆T ;

• for all formulas φ, P(φ) iff for all maximal consistent theories S, S∈ (φ)Mc iff φ∈S.

The proof that P(·) holds for all programs and for all formulas will be done by induction on the

formation of programs and formulas.

Hypothesis.Letα be a program andφ be a formula such that for all expressions exp (either a program,

or a formula), if exp is an expression strictly occurring either in α, or in φ, P(exp) holds.

Step.We demonstrate P(α) and P(φ) hold.

Case ‘α=a’. Left to the reader.

Case ‘α=ψ?’. Let S,T be maximal consistent theories.

• Suppose S(ψ?)McT . We demonstrate there exists a maximal program A such that ψ?∈ker(A)

and for all programs β, if β∈ker(A), [β]S⊆T . Since S(ψ?)McT , S=T and T ∈ (ψ)Mc .

Since P(ψ), ψ ∈T . Since S=T , ψ ∈S. Hence, ψ?∈ker(S̄). Now, let χ?∈ker(S̄). Thus, χ ∈S.

Therefore, [χ?]S=S. Since S=T , [χ?]S⊆T . Consequently, for all programs β, if β∈ker(S̄),

[β]S⊆T . Since ψ?∈ker(S̄), it suffices to take A= S̄.

• Suppose there exists a maximal program A such that ψ?∈ker(A) and for all programs β, if

β∈ker(A), [β]S⊆T . We demonstrate S(ψ?)McT . Since ψ?∈ker(A), there exists a maximal

consistent theoryU such thatψ ∈U andA= Ū. Since for all programsβ, ifβ∈ker(A), [β]S⊆T ,

for all formulasχ , ifχ ∈U, [χ?]S⊆T . Sinceψ ∈U and⊤∈U, [ψ?]S⊆T and [⊤?]S⊆T . Since

⊤∈S, [⊤?]S=S. Since [⊤?]S⊆T , S⊆T . Since S is maximal and T is consistent, S=T . Since

[ψ?]S⊆T and [ψ?]ψ ∈S, ψ ∈T . Since P(ψ), T ∈ (ψ)Mc . Since S=T , S(ψ?)McT .

Case ‘α=s1’. Let S,T be maximal consistent theories.

• Suppose S(s1)
McT .We demonstrate there exists amaximal programA such that s1∈ker(A) and

for all programs β, if β∈ker(A), [β]S⊆T . Since S(s1)
McT , there exists a maximal consistent

theory U such that T ∈S⋆cU. Hence, [s1]S⊆T and [s2]U⊆T . Thus, it suffices to take A=s1.

• Suppose there exists a maximal program A such that s1∈ker(A) and for all programs β, if β∈

ker(A), [β]S⊆T . We demonstrate S(s1)
McT . Since s1∈ker(A), A=s1. Since for all programs

β, if β∈ker(A), [β]S⊆T , [s1]S⊆T . By (A4), [r1]T ⊆S. Hence, 〈r1〉⊤∈T . By (A8), 〈r2〉⊤∈T .

By Lemma 10, there exists a maximal program B and there exists a maximal consistent theory

U such that r2∈ker(B) and for all programs γ , if γ ∈ker(B), [γ ]T ⊆U. Thus, B=r2. Since

for all programs γ , if γ ∈ker(B), [γ ]T ⊆U, [r2]T ⊆U. By (A7), [s2]U⊆T . Since [s1]S⊆T ,

T ∈S⋆cU. Therefore, S(s1)
McT .



Case ‘α=s2’. Similar to the case ‘α=s1’.

Case ‘α=r1’. Let S,T be maximal consistent theories.

• Suppose S(r1)
McT .We demonstrate there exists amaximal programA such that r1∈ker(A) and

for all programs β, if β∈ker(A), [β]S⊆T . Since S(r1)
McT , there exists a maximal consistent

theory U such that S∈T ⋆cU. Hence, [s1]T ⊆S and [s2]U⊆S. By (A4), [r1]S⊆T . Thus, it

suffices to take A=r1.

• Suppose there exists a maximal program A such that r1∈ker(A) and for all programs β,

if β∈ker(A), [β]S⊆T . We demonstrate S(r1)
McT . Since r1∈ker(A), A=r1. Since for all

programs β, if β∈ker(A), [β]S⊆T , [r1]S⊆T . By (A6), [s1]T ⊆S. Since [r1]S⊆T , 〈r1〉⊤∈S.

By (A8), 〈r2〉⊤∈S. By Lemma 10, there exists a maximal programB and there exists a maximal

consistent theoryU such that r2∈ker(B) and for all programs γ , if γ ∈ker(B), [γ ]S⊆U. Hence,

B=r2. Since for all programs γ , if γ ∈ker(B), [γ ]S⊆U, [r2]S⊆U. By (A7), [s2]U⊆S. Since

[s1]T ⊆S, S∈T ⋆cU. Therefore, S(r1)
McT .

Case ‘α=r2’. Similar to the case ‘α=r1’.

Case ‘α=β;γ ’. Let S,T be maximal consistent theories.

• Suppose S(β;γ )McT . We demonstrate there exists a maximal program A such that

f (β);⊤?;f (γ )∈ker(A) and for all programs δ, if δ∈ker(A), [δ]S⊆T . Since S(β;γ )McT ,

there exists a maximal consistent theory U such that S(β)McU and U(γ )McT . Since

P(β) and P(γ ), there exists a maximal program A′ such that f (β)∈ker(A′) and for all

programs δ′, if δ′ ∈ker(A′), [δ′]S⊆U and there exists a maximal program A′′ such that

f (γ )∈ker(A′′) and for all programs δ′′, if δ′′ ∈ker(A′′), [δ′′]U⊆T . Since⊤∈U, f (β);⊤?;f (γ )

∈ker(A′;Ū;A′′). Now, let δ′;φ?;δ′′ ∈ker(A′;Ū;A′′) and ψ ∈[δ′;φ?;δ′′]S. Hence, δ′ ∈ker(A′),

φ∈U, δ′′ ∈ker(A′′) and [δ′;φ?;δ′′]ψ ∈S. Thus, [δ′](φ→[δ′′]ψ)∈S. Therefore, φ→[δ′′]ψ ∈

[δ′]S. Since δ′ ∈ker(A′), [δ′]S⊆U. Since φ→[δ′′]ψ ∈[δ′]S, φ→[δ′′]ψ ∈U. Since φ∈U,

[δ′′]ψ ∈U. Consequently, ψ ∈[δ′′]U. Since δ′′ ∈ker(A′′), [δ′′]U⊆T . Since ψ ∈[δ′′]U, ψ ∈T .

Hence, for all programs δ, if δ∈ker(A′;Ū;A′′), [δ]S⊆T . Since f (β);⊤?;f (γ )∈ker(A′;Ū;A′′),

it suffices to take A=A′;Ū;A′′.

• Suppose there exists amaximal programA such that f (β);⊤?;f (γ )∈ker(A) and for all programs

δ, if δ∈ker(A), [δ]S⊆T . We demonstrate S(β;γ )McT . Since f (β);⊤?;f (γ )∈ker(A), there

exists a maximal program A′, there exists a maximal consistent theory U and there exists a

maximal program A′′ such that f (β)∈ker(A′), f (γ )∈ker(A′′) and A=A′;Ū;A′′. Now, let δ′ ∈

ker(A′) and φ∈[δ′]S. Hence, [δ′]φ∈S. Let δ′′ ∈ker(A′′). Since [δ′]φ∈S, [δ′](¬φ→[δ′′]⊥)∈S.

Thus, [δ′;¬φ?;δ′′]⊥∈S. Therefore, ⊥∈[δ′;¬φ?;δ′′]S. Since T is consistent, ⊥6∈T . Since

for all programs δ, if δ∈ker(A), [δ]S⊆T and ⊥∈[δ′;¬φ?;δ′′]S, δ′;¬φ?;δ′′ 6∈ker(A). Since

A=A′;Ū;A′′, δ′ ∈ker(A′) and δ′′ ∈ker(A′′),¬φ 6∈U. SinceU is maximal, φ∈U. Consequently,

for all δ′ ∈ker(A′), [δ′]S⊆U. Since f (β)∈ker(A′) and P(β), S(β)McU. Now, let δ′′ ∈ker(A′′)

and φ∈[δ′′]U. Hence, [δ′′]φ∈U. Let δ′ ∈ker(A′). Thus, [δ′]([δ′′]φ→[δ′′]φ)∈S. Therefore,

[δ′;[δ′′]φ?;δ′′]φ∈S. Consequently, φ∈[δ′;[δ′′]φ?;δ′′]S. Since δ′ ∈ker(A′), [δ′′]φ∈U and δ′′ ∈

ker(A′′), δ′;[δ′′]φ?;δ′′ ∈ker(A′;Ū;A′′). Since A=A′;Ū;A′′, δ′;[δ′′]φ?;δ′′ ∈ker(A). Since for

all programs δ, if δ∈ker(A), [δ]S⊆T , δ′;[δ′′]φ?;δ′′ ∈ker(A) and φ∈[δ′;[δ′′]φ?;δ′′]S, φ∈T .

Hence, for all δ′′ ∈ker(A′′), [δ′′]U⊆T . Since f (γ )∈ker(A′′) and P(γ ), U(γ )McT . Since

S(β)McU, S(β;γ )McT .

Case ‘α=β ‖γ ’. Let S,T be maximal consistent theories.



• Suppose S(β ‖γ )McT . We demonstrate there exists a maximal program A such that

(⊤?;f (β);⊤?)‖ (⊤?;f (γ );⊤?)∈ker(A) and for all programs δ, if δ∈ker(A), [δ]S⊆T . Since

S(β ‖γ )McT , there exists maximal consistent theories U ′,U ′′,V ′,V ′′ such that S∈U ′⋆cU
′′,

T ∈V ′⋆cV
′′, U ′(β)McV ′ and U ′′(γ )McV ′′. Since P(β) and P(γ ), there exists a maximal

program A′ such that f (β)∈ker(A′) and for all programs δ′, if δ′ ∈ker(A′), [δ′]U ′ ⊆V ′ and there

exists a maximal program A′′ such that f (γ )∈ker(A′′) and for all programs δ′′, if δ′′ ∈ker(A′′),

[δ′′]V ′ ⊆V ′′. Since ⊤∈U ′,U ′′,V ′,V ′′, (⊤?;f (β);⊤?)‖ (⊤?;f (γ );⊤?)∈ker((Ū ′,;A′;V̄ ′)‖

(Ū ′′;A′′;V̄ ′′)). Now, let (φ′?;δ′;ψ ′?)‖ (φ′′?;δ′′;ψ ′′?)∈ker((Ū ′,;A′;V̄ ′)‖ (Ū ′′;A′′;V̄ ′′))

and χ ∈[(φ′?;δ′;ψ ′?)‖ (φ′′?;δ′′;ψ ′′?)]S. Hence, φ′ ∈U ′, δ′ ∈ker(A′), ψ ′ ∈V ′, φ′′ ∈U ′′,

δ′′ ∈ker(A′′), ψ ′′ ∈V ′′ and [(φ′?;δ′;ψ ′?)‖ (φ′′?;δ′′;ψ ′′?)]χ ∈S. Thus, 〈(φ′?;δ′;ψ ′?)‖

(φ′′?;δ′′;ψ ′′?)〉¬χ 6∈S. Since S is closed under the rule of proof (FOR), there exists an atomic

formula p not occurring in φ′,δ′,ψ ′,φ′′,δ′′,ψ ′′,χ such that 〈r1〉〈φ
′?;δ′;ψ ′?〉〈s1〉(¬χ∧

p)∨〈r2〉〈φ
′′?;δ′′;ψ ′′?〉〈s2〉(¬χ∧¬p) 6∈S. Therefore, 〈r1〉〈φ

′?;δ′;ψ ′?〉〈s1〉(¬χ∧

p) 6∈S and 〈r2〉〈φ
′′?;δ′′;ψ ′′?〉〈s2〉(¬χ∧¬p) 6∈S. Consequently, [r1][φ

′?;δ′;

ψ ′?][s1](χ∨¬p)∈S and [r2][φ
′′?;δ′′;ψ ′′?][s2](χ∨p)∈S. Hence, [r1](φ

′ →[δ′](ψ ′ →

[s1](χ∨¬p)))∈S and [r2](φ
′′ →[δ′′](ψ ′′ →[s2](χ∨p)))∈S. Since S∈U ′⋆cU

′′,

[s1]U
′ ⊆S and [s2]U

′′ ⊆S. By (A4) and (A5), [r1]S⊆U ′ and [r2]S⊆U ′′. Since

[r1](φ
′ →[δ′](ψ ′ →[s1](χ∨¬p)))∈S and [r2](φ

′′ →[δ′′](ψ ′′ →[s2](χ∨p)))∈S,

φ′ →[δ′](ψ ′ →[s1](χ∨¬p))∈U ′ and φ′′ →[δ′′](ψ ′′ →[s2](χ∨p))∈U ′′. Since φ′ ∈U ′

and φ′′ ∈U ′′, [δ′](ψ ′ →[s1](χ∨¬p))∈U ′ and [δ′′](ψ ′′ →[s2](χ∨p))∈U ′′. Since δ′ ∈ker(A′)

and δ′′ ∈ker(A′′), [δ′]U ′ ⊆U ′′ and [δ′′]V ′ ⊆V ′′. Since [δ′](ψ ′ →[s1](χ∨¬p))∈U ′ and

[δ′′](ψ ′′ →[s2](χ∨p))∈U ′′, ψ ′ →[s1](χ∨¬p)∈V ′ and ψ ′′ →[s2](χ∨p)∈V ′′. Since

ψ ′ ∈V ′ and ψ ′′ ∈V ′′, [s1](χ∨¬p)∈V ′ and [s2](χ∨p)∈V ′′. Since T ∈V ′⋆cV
′′, [s1]V

′ ⊆T

and [s2]V
′′ ⊆T . Since [s1](χ∨¬p)∈V ′ and [s2](χ∨p)∈V ′′, χ∨¬p∈T and χ∨p∈T .

Thus, χ ∈T . Therefore, for all programs δ, if δ∈ker((Ū ′,;A′;V̄ ′)‖ (Ū ′′;A′′;V̄ ′′)), [δ]S⊆T .

Since (⊤?;f (β);⊤?)‖ (⊤?;f (γ );⊤?)∈ker((Ū ′,;A′;V̄ ′)‖ (Ū ′′;A′′;V̄ ′′)), it suffices to take

A= (Ū ′,;A′;V̄ ′)‖ (Ū ′′;A′′;V̄ ′′).

• Suppose there exists a maximal program A such that (⊤?;f (β);⊤?)‖ (⊤?;

f (γ );⊤?)∈ker(A) and for all programs δ, if δ∈ker(A), [δ]S⊆T . We demonstrate

S(β ‖γ )McT . Since (⊤?;f (β);⊤?)‖ (⊤?;f (γ );⊤?)∈ker(A), there exists maximal consistent

theories U ′,U ′′,V ′,V ′′ and there exists maximal programs A′,A′′ such that f (β)∈ker(A′),

f (γ )∈ker(A′′) and A= (Ū ′,;A′;V̄ ′)‖ (Ū ′′;A′′;V̄ ′′). Let φ∈[s1]U
′. Hence, [s1]φ∈U ′. Since

for all programs δ, if δ∈ker(A), [δ]S⊆T , 〈([s1]φ?;δ
′;⊤?)‖ (⊤?;δ′′;⊤?)〉⊤∈S for each

program δ′ ∈ker(A′) and for each program δ′′ ∈ker(A′′). By (A10), 〈r1〉〈[s1]φ?;δ
′;⊤?〉〈s1〉(⊤∧

⊤)∨〈r2〉〈⊤?;δ
′′;⊤?〉〈s2〉(⊤∧¬⊤)∈S. Thus, 〈r1〉〈[s1]φ?;δ

′;⊤?〉〈s1〉⊤∈S. Therefore,

〈r1〉[s1]φ∈S. By (A6), φ∈S. Consequently, [s1]U
′ ⊆S. The argument showing [s2]U

′′ ⊆S

is obtained in a similar way. Hence, S∈U ′⋆cU
′′. Let φ∈[s1]V

′. Hence, [s1]φ∈V ′.

Suppose φ 6∈T . Thus, ¬φ∈T . Since for all programs δ, if δ∈ker(A), [δ]S⊆T ,

〈(⊤?;δ′;[s1]φ?)‖ (⊤?;δ
′′;⊤?)〉¬φ∈S for each program δ′ ∈ker(A′) and for each program

δ′′ ∈ker(A′′). By (A10), 〈r1〉〈⊤?;δ
′;[s1]φ?〉〈s1〉(¬φ∧⊤)∨〈r2〉〈⊤?;δ

′′;⊤?〉〈s2〉(¬φ∧¬⊤)∈S.

Thus, 〈r1〉〈⊤?;δ
′;[s1]φ?〉〈s1〉¬φ∈S. Therefore, 〈r1〉〈δ

′〉([s1]φ∧〈s1〉¬φ)∈S: a contradiction

with the consistency of S. Consequently, φ∈T . Hence, [s1]V
′ ⊆T . The argument

showing [s2]V
′′ ⊆T is obtained in a similar way. Hence, T ∈V ′⋆cV

′′. Let δ′ ∈ker(A′)

and φ∈[δ′]U ′. Thus, [δ′]φ∈U ′. Suppose φ 6∈V ′. Therefore, ¬φ∈V ′. Since for all programs

δ, if δ∈ker(A), [δ]S⊆T , 〈([δ′]φ?;δ′;¬φ?)‖ (⊤?;δ′′;⊤?)〉⊤∈S for each program δ′′ ∈ker(A′′).

By (A10), 〈r1〉〈[δ
′]φ?;δ′;¬φ?〉〈s1〉(⊤∧⊤)∨〈r2〉〈⊤?;δ

′′;⊤?〉〈s2〉(⊤∧¬⊤)∈S. Consequently,

〈r1〉〈[δ
′]φ?;δ′;¬φ?〉〈s1〉⊤∈S. Hence, 〈r1〉([δ

′]φ∧〈δ′〉¬φ∈S; a contradiction with the



consistency of S. Thus, φ∈V ′. Therefore, for all δ′ ∈ker(A′), [δ′]U ′ ⊆V ′. The argument

showing for all δ′′ ∈ker(A′′), [δ′′]U ′′ ⊆V ′′ is obtained in a similar way. Since f (β)∈ker(A′)

and f (γ )∈ker(A′′), by induction hypothesis, U ′(β)McV ′ and U ′′(γ )McV ′′. Since S∈U ′⋆cU
′′

and T ∈V ′⋆cV
′′, S(β ‖γ )McT .

Case ‘φ=p’. Left to the reader.

Cases ‘φ=⊥’, ‘φ=¬ψ’ and ‘φ=ψ∨χ ’. Left to the reader.

Case ‘φ=[β]ψ’. Let S be a maximal consistent theory.

• Suppose S∈ ([β]ψ)Mc . We demonstrate [β]ψ ∈S. If not, by Lemma 10, there exists a maximal

program A and there exists a maximal consistent theory T such that f (β)∈ker(A), for all

programs γ , if γ ∈ker(A), [γ ]S⊆T andψ 6∈T . SinceP(β) andP(ψ), S(β)McT and T 6∈ (ψ)Mc .

Hence, S 6∈ ([β]ψ)Mc : a contradiction.

• Suppose [β]ψ ∈S. We demonstrate S∈Mc ([β]ψ)Mc . If not, there exists a maximal consistent

theory T such that S(β)McT and T 6∈ (ψ)Mc . Since P(β) and P(ψ), there exists a maximal

program A such that f (β)∈ker(A) and for all programs γ , if γ ∈ker(A), [γ ]S⊆T and ψ 6∈T .

Hence, [f (β)]S⊆T . By (A12), since [β]ψ ∈S, [f (β)]ψ ∈S. Thus, ψ ∈[f (β)]S. Since [f (β)]S⊆

T , ψ ∈T : a contradiction.

�

And now, the grand finale:

Proposition 12 (Completeness for PRSPDL0)

Let φ be a formula. If φ is valid in the class of all separated frames, φ∈PRSPDL0.

Proof. By Lemmas 5, 7, 8 and 11. �

8 Conclusion

We have given a complete axiomatization of iteration-free PDL with storing, recovering and parallel

composition. Because of the subtleties brought about by the construct (·‖ ·) of parallel composition,

we have used maximal programs in the proofs of the Existence Lemma and the Truth Lemma of the

canonical model construction.

Although we know that validity in the class of all separated frames is 511-complete when the

construct ·⋆ of iteration is added to the language [2], we expect that maximal programs can also be

applied for proving the completeness of an axiomatization of the full version ofPRSPDL. Remind that

after [5], the problem of finding a complete axiomatization of PRSPDL remained open. We believe

our complete axiomatization of PRSPDL0 constitutes a first step in the direction of an axiomatization

of the full version of PRSPDL.

Another issue concerns the complete axiomatization ofPRSPDLwhen parallel composition (α ‖β)

of programsα andβ is interpreted in such away that state x and states in y∗z are related viaR(α)∇R(β)

whenever x and y are related via R(α) and x and z are related via R(β). See [13, Chapter 1] for such

an interpretation.

But the general problem that remains open is the following: is it possible to replace the rule of

proof (FOR) by finitely many additional axiom schemes? The solution to a similar problem about

iteration-free PDL with intersection given in [1] has revealed interesting validities like formulas of

the form [(α;(ψ∧[(β;φ?;α)∩ψ?]⊥)?;β)∩φ?]⊥.We believe that the elimination of the rule of proof

(FOR) from our axiom system for iteration-free PRSPDL could reveal similar interesting validities.



Finally, Proposition 8 implies that tests cannot be defined in terms of the other constructs of

the language of PRSPDL0. Within the context of the language of PDL, a similar result has been

generalized in [6] where a strict hierarchy PDL0⊂PDL1⊂ ... of fragments of the language of PDL

has been defined in such a way that for all non-negative integers n, a test φ? is permitted to occur in

a formula of PDLn only if φ belongs to PDL0∪ ...∪PDLn−1. We believe that Proposition 8 can be

generalized in a similar way.

Acknowledgements

Special acknowledgement is heartily granted to Tinko Tinchev and to the participants of the scientific

project DynRes (ANR project no. ANR-11-BS02-011) who made several helpful comments for

improving the correctness and the readability of this article.

References

[1] P. Balbiani. Eliminating unorthodox derivation rules in an axiom system for iteration-free PDL

with intersection. Fundamenta Informaticæ, 56, 211–242, 2003.

[2] P. Balbiani and T. Tinchev. Definability and computability for PRSPDL. Advances in Modal

Logics, pp. 16–33. College Publications, 2014.

[3] P. Balbiani and D. Vakarelov. Iteration-free PDL with intersection: a complete axiomatization.

Fundamenta Informaticæ, 45, 173–194, 2001.

[4] P. Balbiani and D. Vakarelov. PDL with intersection of programs: a complete axiomatization.

Journal of Applied Non-Classical Logics, 13, 231–276, 2003.

[5] M. Benevides, R. de Freitas and P. Viana. Propositional dynamic logic with storing, recovering

and parallel composition. Electronic Notes in Theoretical Computer Science, 269, 95–107,

2011.

[6] F. Berman and M. Paterson. Propositional dynamic logic is weaker without tests. Theoretical

Computer Science, 16, 321–328, 1981.

[7] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Cambridge University Press, 2001.

[8] J. Brotherston and C. Calcagno. Classical BI: its semantics and proof theory. Logical Methods

in Computer Science, 6, 1–42, 2010.

[9] D. Calvanese and G. De Giacomo. Expressive description logics. In The Description

Logic Handbook. Theory, Implementations, and Applications, Baader, F., Calvanese, D.,

McGuinness, D., Nardi, D., Patel-Schneider, P. eds. pp. 178–218. Cambridge University Press,

2003.

[10] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.

Mathematical Structures in Computer Science, 19, 959–1027, 2009.

[11] R. Danecki. Nondeterministic propositional dynamic logic with intersection is decidable. In

Computation Theory, Skowron, A. ed., pp. 34–53. Springer, 1985.

[12] M. Fisher andR. Ladner. Propositional dynamic logic of regular programs. Journal of Computer

and System Sciences, 18, 194–211, 1979.

[13] M. Frias. Fork Algebras in Algebra, Logic and Computer Science. World Scientific, 2002.

[14] M. Frias, P. Veloso and G. Baum. Fork algebras: past, present and future. Journal of Relational

Methods in Computer Science, 1, 181–216, 2004.

[15] R. Goldblatt. Logics of Time and Computation. Center for the Study of Language and

Information, 1987.



[16] S. Göller,M. Lohrey andC. Lutz.PDLwith intersection and converse: satisfiability and infinite-

state model checking. The Journal of Symbolic Logic, 74, 279–314, 2009.

[17] D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[18] P. O’Hearn and D. Pym. The logic of bunched implications. The Bulletin of Symbolic Logic, 5,

215–244, 1999.

[19] VJ. Reynolds. Separation logic: a logic for shared mutable data structures. In 17th Annual IEEE

Symposium on Logic in Computer Science, pp. 55–74. IEEE, 2002.

[20] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6, 73–89, 1941.




