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RESEARCH ARTICLE
Putting right the wording and the proof of the Truth Lemma for APAL
Philippe Balbiani*

Toulouse Institute of Computer Science Research, France

(Received 20 December 2013; accepted 5 January 2015)

APAL is an extension of public announcement logic. It is based on a modal operator
that expresses what is true after any arbitrary announcement. An incorrect Truth Lemma
has been stated and ‘demonstrated’ in Balbiani et al. (2008). In this paper, we put right
the wording and the proof of the Truth Lemma for APAL.

Keywords: dynamic epistemic logic; public announcements; arbitrary announcements;
axiomatisation; completeness

1. Introduction

Public announcement logic (P AL) is an extension of epistemic logic with modal operators
that express what is true after such and such announcement Plaza (2007). The modal operator
[¢] means ‘if ¢ holds, then after the announcement of ¢, ...’, whereas the dual modal
operator (¢) means ‘¢ holds and after the announcement of ¢, ...”. Within the context of
P AL, it becomes possible to reason about information flow. Formally, in P AL, a formula
such as (¢) K, stands for ‘¢ holds and after the announcement of ¢, agent a knows that
¥ holds’. Membership in PAL is known to be PSP AC E-complete (Lutz, 2006). Further
examples of announcement-based extensions of epistemic logic abound (for details, see
Van Ditmarsch, van der Hoek, & Kooi, 2007).

Arbitrary public announcement logic (AP AL) is an extension of PAL with a modal
operator that expresses what is true after any arbitrary announcement (Balbiani et al., 2008).
The modal operator O means ‘after every announcement, ...” whereas the dual modal
operator < ‘after some announcement, ... . Within the context of AP AL, formulas such
as O¢ and $¢ are semantically equivalent, respectively, to the infinite conjunction of all
formulas of the form [v/]¢ in which ¢ is a purely epistemic formula and to the infinite
disjunction of all formulas of the form ()¢ in which ¥ is a purely epistemic formula.
Membership in AP AL is known to be undecidable (French & van Ditmarsch, 2008).

PAL is completely axiomatised by the ordinary laws of epistemic logic plus the so-
called ‘reduction axioms’ which allow us to eliminate modal operators of announcement,
one by one, from any PAL formula. To completely axiomatise AP AL is more difficult.
Nevertheless, an axiomatic system has been considered (see Balbiani et al., 2008, Table 2).
A peculiar derivation rule of this axiomatic system is the derivation rule R(0) concerning
the dynamic modal operator that expresses what is true after any arbitrary announcement
(see Balbiani et al., 2008, Definition 4.6). Such rules have been called ‘non-structural rules’
and ‘context dependent rules’(Goranko, 1998; Marx & Venema,1997). Whether they can
be replaced by more orthodox rules is a research subject in itself.
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Presented in Balbiani et al. (2008, Sections 4.4—4.5), the proof of completeness for
AP AL is based on the traditional tools and techniques of the canonical model construction:
the Lindenbaum Lemma and the Truth Lemma. The main effect of the infinitary variant
R®(0) of the derivation rule R(O) considered in Balbiani et al. (2008, Section 4.3) is that
it makes the canonical model (consisting of all maximal consistent sets of formulas closed
under R“(0)) standard for the modal operators of arbitrary announcement. Concerning the
Lindenbaum Lemma considered in Balbiani et al., it happens that its wording and its proof
are correct. In this introduction, let us see why the same cannot be said for the wording and
the proof of the Truth Lemma considered in Balbiani et al.

The Truth Lemma considered in Balbiani et al. (2008, p. 327) can be worded in the
following way: (A) for all non-negative integers m, for all formulas v, ..., ¥, and for
all possible worlds x in the canonical model M, of APAL, if ¥y € x,...,[{¥1]...
[Vm—11¥m € x, then x € ||¢||MCW1~-“/’M iff (Y1)...(¥Ym)¢ € x. In the property (A),
the expression ‘M y, |y, denotes the restriction of M, determined by the formulas
Y1, ..., ¥m. The problem is that the assumptions 1 € x, ..., [¥1]...[Vk—1]Yk € x are
not strong enough to justify the existence of this restriction. It follows that the property (A)
is a piece of nonsense when the restriction of M determined by the formulas ¥y, ..., ¥,
does not exist.

Regardless of this first mistake in the wording of the Truth Lemma, a second mistake
concerns the proof of the Truth Lemma. In the case ¢ = K,¢’ of the proof of (A) that has
been done by induction on ¢, the assumption x ¢ || K ¢’ ||MCW/1 ~I¥m considered in Balbiani
et al. (2008), p. 328) only implies the existence of a maximal consistent theory y such that
v e lplMe, oy € [l xR,y and y ¢ [/ %119 The problem is
that the facts y € [|[y1|Me, ...,y € [[Ym ||j\/lc“/’1""‘/’m—1 are not strong enough to imply that
Yrey,.... [l . [¥m-11¥m € y. And the facts ¥y € y, ..., [Y1]... [Vm—1]¥m €y
are the ones we need in order to infer (Y1) ... (VYy,)¢" € y from y & ||¢’||M"W’1~-Wm.

In this paper, we put right the Truth Lemma for APAL by proving a new property
worded in the following way: (B) for all formulas 1, ..., ¥, if m + deg(¥1) + ... +
deg(y,) + deg(¢) < i, then for all possible worlds x in the canonical model M, of
APAL, x € ||[(¥1)... (wm)qSHMC iff (Y1) ... {(¥m)¢ € x. In Section 6, the proof of (B)
will be done by induction on (i, m, ¢). This means that a well-founded strict partial order
between triples such as (i, m, ¢) will be used to provide the induction hypothesis. We
believe that this new wording of the Truth Lemma for AP AL and its proof by induction
on (i, m, ¢) can be successfully applied to other AP AL-like dynamic epistemic logics
as well (Agotnes, Balbiani, van Ditmarsch, & Seban, 2010; Balbiani, van Ditmarsch, &
Kudinov, 2013; Kuijer, 2014).

The breakdown of this paper is as follows. Section 2 defines the syntax and Section 3
introduces the semantics. In Section 4, an axiomatic system is given. To carry out the proof
of its completeness in Section 6, we need to learn about theories in Section 5.

2. Syntax

Let Atm be a countably infinite set of atoms (with typical members denoted p, ¢, etc.) and
Agt be a finite set of agents (with typical members denoted a, b, etc.). The set L of all
formulas (with typical members denoted ¢, V, etc.) is inductively defined as follows:

e pu=pl=9 (@AY Kag | [&1Y | Do,

where p is an atom and a is an agent. We define the other Boolean constructs as usual.
The formulas K,¢, (¢)y¥ and ¢ are obtained as abbreviations: K,¢ for =K ,—¢, (¢)y



for =[¢]—y and C¢ for =O—¢. We adopt the standard rules for omission of parentheses.
A derivation rule is a pair consisting of a set of formulas and a formula. The set of all
subformulas of a formula ¢, represented by Sub(¢), is the set of formulas inductively
defined as follows:

Sub(p) = {p},

Sub(—¢) = {—¢} U Sub(¢),

Sub(p ANY) = {p AP} U Sub(p) U Sub(yr),
Sub(Kq¢) = {Kq,9p} U Sub(¢),

Sub([¢1¥) = {[¢]¥} U Sub(¢) U Sub(y),
Sub(0¢) = {O¢)} U Sub(¢).

We will say that a formula ¢ is O-free iff Sub(¢) contains no formula of the form 0.
A formula ¢ is said to be [-]-free iff Sub(¢) contains no formula of the form [v/]x. We will
say that a formula ¢ is epistemic iff ¢ is both O-free and [-]-free. The set £, considered
in Balbiani et al. (2008) is nothing but the set of all O-free formulas. As for the set L;
considered in Balbiani et al., it is nothing but the set of all epistemic formulas. The size
of a formula ¢, represented by Size(¢), is the non-negative integer inductively defined as
follows:

Size(p) =2,

Size(—¢) = Size(p) + 1,

Size(p NYr) = Size(p) + Size(y) + 3,
Size(K,¢p) = Size(¢) + 3,

Size([plY) = Size(p) + Size(¥) + 2,
Size(O@) = Size(d) + 1.
We define the binary relation <
o ¢ <512y iff Size(¢) < Size(y).

Proposition 1. <52¢ is a well-founded strict partial order between formulas.

Siz¢ petween formulas in the following way:

Proof. By the well-foundedness of the standard linear order between non-negative
integers. O

The O-depth of a formula ¢, represented by do(¢), is the non-negative integer induc-
tively defined as follows:

dn(p) =0,

do(—¢) = do(¢),

do(¢ A ¥) = max{da(¢), do(¥)},
do(K.¢) = do(),

do([¢]¥) = max{do(¢), du(¥)},
do(O¢) = da(e) + 1.

We define the binary relation <, between formulas in the following way:

o ¢ <4y Viff do(¢) < do(¥).

Proposition 2. <, is a well-founded strict partial order between formulas.

Proof. By the well-foundedness of the standard linear order between non-negative
integers.

The binary relation <§é ¢ between formulas is defined in the following way:



o ¢ <5 y iff either dn(¢) < da(), or do(¢) = do(¥) and Size(¢) < Size(V).

Proposition 3. < géze is a well-founded strict partial order between formulas.

Proof. By Propositions 1 and 2. 0
Proposition 4. Let ¢ be a formula. If ¢ is epistemic, then do(¢) = 0.
Proof. By <5%¢-induction on ¢. 0
Lemma 5. Let ¢, ¥ be formulas and a € Agt.

« ¢ <3 —o,

) <§éze ¢ Ay and <;§éze o NAY,

o ¢ <4 Kad,

o ¢ <) [PV and Y <) [91Y,

o if Y is epistemic, then [ ]¢ <3éze O¢.
Proof. Leaving to the reader the task of proving the first items, we only pay attention to
the last one. Suppose 1 is epistemic and not [y ]¢ <5;ze O¢. Hence, do([¥]¢) > do(O¢).

Thus, max{do({), do(¢)} > do(¢)+1. Since  is epistemic, by Proposition4, do () = 0.
Since max{do(V), da(¢)} > do(¢) + 1, do(¢p) > da(¢) + 1: a contradiction. ]

Now, let us consider a new atom denoted . The set N F of all necessity forms (with
typical members denoted ¢ (), ¢’ (1), etc.) is inductively defined as follows:

e () n=101¢ = o) | Kap(®) | [Plo(1),

where ¢ is a formula and a is an agent. The size of a necessity form ¢(#), represented
by Size(p(f)), is a non-negative integer that can be inductively defined in the same way
as Size(¢) of a formula ¢. A well-founded strict partial order <Size petween necessity
forms can be defined in the same way as the well-founded strict partial order <5/%¢ between
formulas.

Lemma 6. Let () € NF, ¢ be a formula and a be an agent.

o ¢(f) <5 ¢ — p(),
o (1) <5 K.p(f),
o o(f) <5 [plo(n).

Proof. Left to the reader. U

It is well worth noting that in each necessity form ¢ (), # has a unique occurrence. The
result of the replacement of f in its place in ¢ () with a formula ¢ is a formula which will
be denoted as rep(¢(#), ¢). It is inductively defined as follows:

rep(, ¢) = ¢,

rep(Y — (), ®) =¥ — rep(e(t), ¢),
rep(Kqp(8), ¢) = Karep(p(9), @),
rep([Y1e(8), ¢) = [Vrep(e(d), @).

3. Semantics

A model is an ordered triple M = (W, R, V) where W is a non-empty set of possible
worlds (with typical members denoted x, y, etc.), R is a function assigning to each agent a



an equivalence relation R(a) on W and V is a function assigning to each atom p a subset
V(p) of W.For all agents @ and forall S C W,let[R,]S = {x:forall y € W,if xR,y, then
y € S} and (R;)S = {x: there exists y € W such that xR,y and y € S}. Forall § € W, if
S # @, then M(S) will denote the model obtained as the restriction of M to the possible
worlds in §. Since this restriction is not a model when S = ¢, the expression M(S) is a
piece of nonsense when S = (). The truth-set of a formula ¢ in a model M = (W, R, V),
represented by || ¢ ||M, is inductively defined as follows:

IpIM = V(p),

=M = W\ [lgM,

lp Ay IM = llpIM N 1y M,

1K M = [Ra1llpIM,

g1y M = if [ pIM = @, then W, else (W \ |¢[M) U ||y M1,
136 1M = N1 IM: ¥ is epistemic).

The above definition of the truth-set of a formula in a model is implicitly based on the
well-founded strict partial order <§’Dze between formulas and Lemma 5.

Proposition 7. Let ¢, be formulas and a € Agt.

o IKapI™ = (Ra) o], »
o ()Y IM =if oM =0, then 8, else ||¢lI™M N [y |MULITD),
o [CIM = UL IM: x is epistemic).

Proof.  Left to the reader. U

We shall say that a formula ¢ is valid iff for all models M = (W, R, V), ||¢||M =W.
A set I' of formulas is said to be valid iff for all formulas ¢ € I', ¢ is valid. We shall say
that a derivation rule (I", ¢) is admissible iff if I" is valid, then ¢ is valid.

Lemma 8. Let ¢, ¥, x be formulas, p € Atm and a € Agt. The following formulas are
valid:

(AQ) all instantiations of propositional tautologies,
(Al) Ka(p — ¥) = (Kap = Ka),

(A2) Ko — &,

(A3) K¢ — KyKy9,

(A4) ¢ — K.Kap,

(AS5) [¢lp < (¢ — p),

(A6) [p]=Y < (¢ — —lPlY),

(A7) (91 A x) < [91Y A lPlx,

(A8) [@lKaY < (¢ — KaldlV),

(A9) [#ll¥]x < (9 Alol¥]xX,
(A10) if ¥ is epistemic, then O¢ — [Y]¢.

Proof. Leaving to the reader the task of proving the first items, we only pay attention
to the last one. Suppose ¥ is epistemic and O¢ — [ ]¢ is not valid. Hence, there exists
a model M = (W, R, V) such that |O¢ — [1#]¢||M # W. Thus, there exists x € W
such that x € ||D¢||M and x & ||[¢]¢||M. Since i is epistemic, x € ||[w]¢>||M: a
contradiction. O

Lemma 9. Let ¢, ¥ be formulas, a € Agt and ¢(8) € N F. The following derivation rules
are admissible:



(RO) ({¢. ¢ — ¥}, V),

(R1) ({9}, Ka9p),

(R2) ({¢}, [V]e),

(R3) ({rep(e(®), [¥1¢): ¥ is epistemicy, rep(¢(8), Uo)).

Proof. Leaving to the reader the task of proving the first items, we only pay attention to
the last one. Suppose ({rep(¢ (1), [¥]¢): ¥ is epistemic}, rep(¢(f), O¢)) is not admissible.
Hence, {rep(¢(8), [V]¢): ¥ is epistemic} is valid and rep(¢ (%), O¢) is not valid. Thus,
there exists a model M = (W, R, V) such that ||rep(¢(4), D¢>)||M # W. Therefore, there
exists x € W such that x & |rep(e(f), D¢)||M. By Proposition 13 below, there exists
an epistemic formula 6 such that x & |[rep(e(f), [9]¢)||M. Since {rep(¢(8), [V]p): ¥
is epistemic} is valid, rep(¢(), [€]¢) is valid. Consequently, ||[rep(¢(8), [0]®) ||M =W.
Hence, x € ||rep(p(f), [8]¢>)||M: a contradiction. O

Lemma 10. Ler ¢, v be formulas. For all models M = (W, R, V) and for all x € W,

x € (@) IM iff x € I1g1M and x € [l MU,
Proof. By Proposition 7. 0
Proposition 11. Letm be anon-negative integer. Ifm > 1, then for all formulas 1, . .., ¥,

(Y1) o (Y T < (Y1) - (Yi—1) Y Is valid.

Proof. Suppose m > 1. Let ¢y, ..., ¥, be formulas. By Lemma 10, (i,,) T < v, is
valid. Hence, (V1) ... (¥i) T < (Y1) ... (¥im—1) ¥y 1s valid. ]

Proposition 12. For all non-negative integers m,

P(m): forallformulasy, ..., Yy, forall p € Atm, forall formulas ¢, , foralla € Agt,
for all models M = (W, R, V) and forall x € W,

o xellyn) ... (Ym)plI™Miffx € 1Y) ... (Ym) TIM and x € V(p),

o x € [[{Y1)... W)=l iff x € 1) ... (W) TIM and x & |[(y1) ...
(Ym) oI,

x e ) o (Ym) @ AWM i x € 1Y) ... (Ym)@ll™M and x € [[(yr1) . ..
Y M,

x o€ 1) (W) KadlIM iff x € 1) ... (W) TIM and for all y €
1W1) - (W) TIM, if xRy, then y € (Y1) ... (W) M,

x e 1Y) W) B 1M iff x € 1Y) ... (W) TIM and if x € [[(y1) . ..
(Ym) @I, then x € (Y1) ... (Ym) ()Y I,

x € |[{y1) ... (wm)D(pHM iff x € ||[{(Y1)... (wm)THM and for all epistemic
formulas x, if x € (Y1) ... (W) x 1M, then x € (Y1) - .. () (0) I

Proof.  See the Appendix. |

Proposition 13. Forall p(§) € NF,

Q(e(8)): for all formulas ¢, for all models M = (W, R, V) and for all x € W, x €
Irep(e (@), Op) 1M ifffor all epistemic formulas s, x € |rep(p(®), [¥1d) 1M,

Proof.  See the Appendix. 0

4. Axiomatisation

An axiomatic system consists of a collection of formulas and a collection of derivation rules.
Let us consider the axiomatic system consisting of formulas (A0)—(A10) and derivation



rules (R0)—(R3) considered in Lemmas 8 and 9 and let A P AL® be the least subset of L4
containing (A0)—(A10) and closed under (R0)—(R3).

Lemma 14. For all formulas ,

R(): for all formulas ¢, —¢ — [PV isin APAL®.

Size

Proof. By <, *“-induction on . |

Lemma 15. Let ¢, ¥, x be formulas. The following formulas are in APAL®:

(1) [9]L < —o.
2) [Pl Vv x) < ([9l¥ V [P])).
Q) [@1W = x) < (21¥ — [&10).

Proof. (1) Since L is an abbreviation for p A —p, the following formulas are deductively
equivalentin APAL®: [¢]L, [¢]p A [@l=p, (¢ — p) A (¢ — —[9]p), (¢ — p) A (P —
—(¢ = p)), (¢ —> p) A (p = —p), .

(2) Since ¥ Vv x is an abbreviation for =(—y A —y), the following formulas are
deductively equivalentin APAL®: [¢](Y V x), ¢ — —[@](—=¥ A—=x), d — =([¢p]—=¥ A
[p]=x), ¢ — —((p — —[PlY) A (¢ — —[Plx)), ¢ — [¢1¥ V [¢]x. By Lemma 14,
—¢ — [¢plY V]plxisin APAL®. Since [¢p](YV x) and ¢ — [@]Y V [¢p]x are deductively
equivalentin APAL®, [¢](Y V x) and [¢] V [¢]x are deductively equivalentin APAL®.

(3) Since ¥ — x is an abbreviation for —(y» A —x), the following formulas are
deductively equivalent in APAL?: [¢](Yy — x), ¢ — —[dl(¥ A —x), ¢ — —([@]¥ A
[p]=x), & — —(PlY A (@ — —[@IX), ¢ — (¢ly — [¢]x). By Lemma 14,

—¢ — ([¢lY — [@Plx) is in APAL®. Since [¢](y — x) and ¢ — ([¢]Yy — [¢]x)
are deductively equivalent in APAL?, [¢](¥ — x) and [¢p]¥ — [¢]x are deductively

equivalentin APAL®. |
Proposition 16. Letm be anon-negative integer. Ifm > 1, then for all formulasry, . .., ¥,
(V1) W) T < (Y1) ... (Ym—1)¥m € APAL®.

Proof. By Lemma 15. OJ
Proposition 17. For all formulas ¢, if ¢ € APAL®, then ¢ is valid.

Proof. By Lemmas 8 and 9. 0J

Proposition 18. Forall (1) € NF,

S(e()): forall formulas ¢ and for all epistemic formulas r, rep(¢(8), O¢) — rep(p(f),
[V]p) € APAL®.

Proof.  See the Appendix. |

Looking at our axiomatic system attentively, the reader will notice that it contains the
same formulas and derivation rules as the axiomatic system A P A L® considered in Balbiani,
Baltag, van Ditmarsch, Herzig, Hoshi, & de Lima (2008, p. 325).

5. Canonical model

A set x of formulas is called a theory iff it satisfies the following conditions:

e x contains APAL?,
e x is closed under (R0O) and (R3).



Obviously, the least theory is AP AL® whereas the greatest theory is L,pq;. A theory x
is said to be consistent iff | ¢ x. Let us remark that the only inconsistent theory is Lgpa;.
Moreover, the reader may easily verify that a theory x is consistent iff for all formulas ¢,
¢ & x or ~¢ ¢ x. We shall say that a theory x is maximal iff for all formulas ¢, ¢ € x or
—¢ € x.

Lemma 19. Let ¢,  be formulas. For all maximal consistent theories x,

o | &ux,
e ~pexiffp ¢x,
e (VYY) exiffpexory € x.

Proof. Left to the reader. [

Let x be a theory. For all formulas ¢ and foralla € Agt,letx +¢ = {Y: ¢ — ¥ € x},
Kaox = {¢: Ka¢ € x} and [@lx = {y: [@¢]Y € x}.

Lemma 20. Let ¢ be a formula and a € Agt. For all theories x,

e x + ¢ is a theory containing x and @,
e [plx is a theory,
e K,x is a theory.

Proof. By Balbiani et al. (2008, Lemma 4.11). Il
Lemma 21. Let ¢ be a formula. For all theories x, x + ¢ is consistent iff —¢ & x.
Proof. By Balbiani et al. (2008, Lemma 4.11). Il

Lemma 22 (Lindenbaum Lemma). Each consistent theory can be extended to a maximal
consistent theory.

Proof. By Balbiani et al. (2008, Lemma 4.12). O
Lemma 23. Let a € Agt. For all maximal consistent theories x, y, z,

e K, ,x Cx,
o if Kyx Cyand K,y C z, then K,x C z,
e if K,x Cy, then K,y C x.

Proof.  Left to the reader. U

Lemma 24. Let ¢ be a formula and a € Agt. For all theories x, if K,¢ & x, then there
exists a maximal consistent theory y such that K,x C y and ¢ & y.

Proof. Suppose K,¢ ¢ x.Hence, ¢ ¢ K,x.ByLemmas 21 and 22, there exists a maximal
consistent theory y such that K,x + —¢ C y. Thus, K,x C yand ¢ & y. O

Lemma 25. Let ¢ be a formula. For all maximal consistent theories x, if ¢ € x, then [¢]x
is a maximal consistent theory.

Proof. Suppose ¢ € x. If [¢]x is not consistent, then L € [¢]x. Hence, [¢] L € x. Thus,
—¢ € x.Since x is consistent, ¢ ¢ x:acontradiction. If [¢]x is not maximal, then there exists
a formula v such that & [¢]x and = & [¢]x. Therefore, [¢]Y & x and [¢p]—Y & x.
Since x is maximal, =[¢]¥ € x and —[¢]—¢¥ € x. Consequently, =([¢]Y V [¢]—) € x.
Hence, —[¢](yy vV =) € x. Since x is consistent, [¢]({y V =) &€ x. Since ¢ V =y €
APAL®, [¢p](y vV =) € APAL®. Thus, [¢](¥ VvV =) € x: a contradiction. Il



Lemma 26. Let ¢, be formulas. For all maximal consistent theories x, (p) € x iff

¢ € x and ¥ € [P]x.

Proof. (=) Suppose (¢)¥ € x. Hence, (¢)T € x. By Proposition 16, ¢ € x. By
Lemma 25, [¢]x is a maximal consistent theory. Suppose ¥ ¢ [¢]x. Since [¢]x is maximal,
= € [¢]x. Thus, [¢]—y € x. Therefore, —(¢)y € x. Since x is consistent, (¢p) & x:a
contradiction.

(<) Suppose ¢ € x and Y € [¢]x. By Lemma 25, [¢]x is a maximal consistent theory.
Suppose (¢) ¢ x. Since x is maximal, —~(¢)y € x. Hence, [¢]—¢ € x.Thus, =y € [¢p]x.
Since [¢]x is consistent, ¥ & [¢]x: a contradiction. O

Lemma 27. Let ¢ be a formula and a € Agt. For all theories x, if ¢ € x, then K,[¢]x =
[P]1Kax.

Proof. Suppose ¢ € x. For all formulas v, the reader may easily verify that the following
conditions are equivalent:

(1) ¥ € Kalolx,
() Ko € [S]x,
Q) [¢]1Ka¥ € x,
4) ¢ — Kuloly € x,
(S) Kalpl¥ € x,
©) [¢]Y € Kux,
(1) ¢ € [¢]Kax.

OJ

Lemma 28. Let m be a non-negative integer. If m > 1, then for all formulas 1, . .., ¥,
for all formulas ¢ and for all maximal consistent theories x, the following conditions are
equivalent:

o Y1 ex, (Y2)... )T € [V¥1lx andfor all maximal consistent theories y containing
(Vo) ... () T, if Kalilx S y, then (2) ... (Ym)p €y,

o (V1)...(¥m)T € x and for all maximal consistent theories y containing
(1) .. () T, if Kax Sy, then (Y1) ... (Ym)@ € y.

Proof. Suppose m > 1. (=) Suppose ¥1 € x, (¥2)...(¥n) T € [¥1]x and for all maxi-
mal consistent theories y containing (V2) . .. (V) T,if Kg[¥1]x € y,then (Y2) ... (¥m)¢ €
y. By Lemma 26, (Y1) ... (¥,,) T € x. Let z be a maximal consistent theory containing
(V1) ... {(¥m) T.Suppose K,x C z.Hence, [{1]K,x € [v1]z. Since Y1 € x,by Lemma?27,
Ka[¥1]x = [Y1]Kqx. Since [Y1]1Kqx € [Y1]z, Ka[¥1]x € [Y1]z. Since (Y1) ... (Ym) T €
Z, by Lemma 26, Y1 € z and (Y») ... (¥u) T € [¥1]z. Since for all maximal consistent
theories y containing (Vo) ... (V) T, if Ki[¥1]x C vy, then (¥p)...(¥n)@p € y and
Kal¥nlx € [Wilz, (Y2) ... (Ym)¢ € [¥1lz. Since ¥y € z, by Lemma 26, () ...
(Ym)@ € z.

(<) Suppose (Y1) ... (¥,) T € x and for all maximal consistent theories y containing
(1) ... (Ym)T, if Kzx € y, then (Y1) ...(¥n)¢p € y. By Lemma 26, ¥y € x and
(Y2) ... (¥m) T € [¥1]x. Let z be a maximal consistent theory containing (¥2) ... (¥,) T.
Suppose K,[¥1]x € z. Since ¥ € x, by Lemma 27, K,[¢¥1]x = [¥1]K,x. Since
Kq[Y1]lx C z, [¥1]1K.x € z. We consider the following 2 cases.

Case K, [V1]...[V¥ml¢ € x. Hence, [Y1]...[V¥mlp € Kyx. Thus, [¥2]...[¥n]d €
[Y11Kax. Since [Y1]Kqx C z, [Y2]...[¥mle € z. Since (Y2) ... (Ym) T € z, (Y2) ...
(Ym)¢ € z.



Case K, [V1]...[Vm]l¢p & x. Hence, there exists a maximal consistent theory ¢ such
that K,x C ¢ and [Y1]...[¥mlep & t. Thus, (Y1) ... (¥,,) T € t and (Y1) ... (V) & t.

Since for all maximal consistent theories y containing (Y1) ... (¥,) T, if K;x C vy, then

W) .. € v, (Y1) ... (¥m)@ € t: a contradiction. O

Proposition 29. For all non-negative integers m,

T (m): forall formulas i, ..., Y, forall p € Atm, for all formulas ¢, , foralla € Agt
and for all maximal consistent theories x,

Vi) (Ym)p € x iff (Y1) ... (Ym) T €xand p € x,

Vi) oo  (Ym)—p € x iff (Y1) .. (Ym) T € x and (Y1) ... (Ym)® & x,

Vi) - (Um) (@ AY) € x iff ( 1#1 AYUm)¢ € x and (1/f1) AYm) ¥ € x,

1) .. (Um) Ko € xiff (Y1) .. <1ﬁm)—|' € x and for all maximal consistent
theories y containing (Y1) ... (Ym) T, if Kux C y, then (Y1) ... (¥m)@ €y,

o (Y1)... (Um)dlY € x iff ( 1#1 AYm)T € x and if (Y1) ... (Ym)d € x,
then (Y1) ... (Ym) (D) Y € x,

e (V1)...(¥m)Op € x iff (Y1) ... (¥m) T and for all epistemic formulas V, if
(Y1) .. (Ym)¥ € x, then (1/11) oo (Ym) ()@ € x.

Proof. See the Appendix. U

(
(
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(

Lemma 30. Let ¢(8) € NF and ¢ be a formula. For all theories x, if rep(¢(), O¢) € x,
then for all epistemic formulas ¥, rep(e(8), [V]¢) € x.

Proof. By Proposition 18. 0
Now, the canonical structure M, = (W,, R., V.) is defined as follows:

e W, is the set of all maximal consistent theories,
e R, is the function assigning to each agent a the binary relation R.(a) on W, defined
as follows:

- xRc(a)y iff Kox Cy,
e V_isthe function assigning to each atom p the subset V. (p) of W, defined as follows:
- xeV.(p) iff pex.

This is obviously a model: by Lemma 22, W,. is a non-empty set and by Lemma 23, the
binary relation R.(a) is an equivalence relation on W, for each agent a.

6. Completeness
Let X = N x N x L;q. We define the binary relation < on X in the following way:

e (i,m,p) K (j,n, ) iff eitheri < j,ori = jandm < n,ori = j, m = n and
¢ <Size w.
Lemma 31. < is a well-founded strict partial order on X.

Proof. By the well-foundedness of the standard linear order between non-negative integers
and Proposition 1. 0J

The degree of a formula ¢, represented by deg(¢), is the non-negative integer inductively
defined as follows:



deg(p) =0,

deg(—¢) = deg(¢),

deg(¢ A V) = max{deg(¢), deg()},
deg(K,¢) = deg(¢),

deg([¢ly) = deg(¢) + deg(¥) + 2,
deg(O¢) = deg(¢) + 2.

Lemma 32 (Truth Lemma). For all (i, m, ¢) € X,

U(i,m,¢): For all formulas ¥y, ..., Y, if m +deg(y¥1) + ...+ deg(y,) + deg(¢p) <
i, then for all maximal consistent theories x, x € | (Y1) ... <1//m)¢||/\/lC iff

(V1) ...(Im)¢ € x.
Proof See the Appendix. O

The following result is a direct consequence of Lemma 32.

Proposition 33. Let ¢ be a formula. For all maximal consistent theories x, x € ||¢ |[Me iff

¢ € x.
Proof. By Lemma 32. |

Now, we are ready to prove the completeness of APAL®.
Proposition 34. For all formulas ¢, if ¢ is valid, then p € APAL®.

Proof. Suppose¢isvalidand¢ ¢ APAL®.ByLemmas 21 and 22, there exists a maximal
consistent theory x containing —¢. By Proposition 33, x ¢ ||¢||MC. Hence, ||¢||MC #*= We.
Thus, ¢ is not valid: a contradiction. O

7. Remarks

In this paper, the set of agents is finite. In the absence of modal operators that express mutual
knowledge (everybody knows) or common knowledge (everybody knows that everybody
knows that . ..), the change to a countably infinite set of agents would affect neither the
axiomatisation, nor the proof of completeness.

In other respects, the second component in a model M = (W, R, V) is a function
R assigning to each agent a an equivalence relation R(a). The change to relations R(a)
satisfying no specific conditions would affect neither the axiomatisation nor the proof of
completeness — apart from the formulas (A2)—(A4) and Lemma 23.

Several AP AL-like dynamic epistemic logics have been proposed (for details, see
Agotnes et al., 2010; Balbiani et al., 2013; Kuijer, 2014). We believe that their axiomati-
sation/completeness can be successfully based on variants of the axiomatic system and the
proof of completeness developed for AP AL in this paper.
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Appendix

Proof of Proposition 12. Let m be a non-negative integer. Suppose (H) for all non-negative integers
n, if n < m, then P(n). If m = 0, then the reader may easily verify that P(m). Otherwise, let
¥, ..., ¥m be formulas, p € Atm, ¢, ¥ be formulas, a € Agt, M = (W, R, V) be a model and
x € W.Since (H), P(m — 1).

About (V1) ... (¥m) p, the reader may easily verify that the following conditions are equivalent:

() x € llwr) ... (Wm)pIM, .
@) x ey and x € (W) ... () p | MAVIITD),

3) x e [ IM.x € 1) . .. W) TIMIVIIYD and x € v (p),
@) xell(Yr) ... (¥m)TI™Mand x € V(p).

Hence, x € [[(¥1) ... (Ym) pI™M iff x € [[(¥1) ... (Ym) TIM and x € V(p).

About (1) ... (¥m)—¢,the reader may easily verify that the following conditions are equivalent:

(M x € 1) ... (Wm)—oIM, »

@ x ey ™M andx € |(y2) ... (Vm >ﬂ¢||M<“1/’1” ), »
3) x € [ IM.x € 1) .. (Yn) TIMANTAD g §ZII<1/f2> () p MU
@ x € 1) ... (W) TI™ and x & (Y1) . .. (Ym) B

Hence, x € (1) ... (Ym)—= M iff x € (1) . .. <wm>T||M and x & (1) ... (Ym)op|™M.

About (Y1) ...{(¥m)(@ A V), the reader may easily verify that the following conditions are
equivalent:

() xe ||<w/q> Y (@ AWM,

2) x €y || and x € [(¥2) ... (¥m)(@ A w>||M<“W1 I,

3) x ey 1M x e I Vg V) IM AV and x x € llv) .. (Y MV,
@ x e ll{yr)...(¥m)ol andx e 1w - (Ym) ¥ IM

Hence x e 1Y) (Um) (@ A WM x € () ... Wm)glIM and x € [l(yy). ..
(Y)Y M



About (V1) ...(Vm)Kap, the reader may easily verify that the following conditions are
equivalent:

(1) x € 1) ... (Ym)KaopIM, »

@) x € yilM andx € 1(V2) ... (Ym) Kag |MINITD

@ x e M x e ). (W) TIM AV ang for all y € ).
() TIM AV foRay,thenyeu(wg) (Ym >¢||M<W1“ ),

(4) x € | llf}\/[ (Ym) TIM and forall y € [[(yr1) ... (Y) TIM lfoay,theny € y) ...
m)®l

Hence, x € (1) ... (Ym)Kag|M iff x € II(Wl) (Ym) TIM and for all y € || () ...
() TIM, if xRay, then y € [[(¥1) ... (Y )| M

About (1) ... {(¥m)l@]¥, the reader may easily verify that the following conditions are
equivalent:

(1) x € ) .. Wm)glw M,

@ x e [y1IM and x € [(¥a) .. (W) ply MU,

3) x e [[vIM x e 1) ... W) TIMUVIYD and it x € (¥) ... ()| MUV,
then x € [{2) .... {Ym) (@) [MAV1ITD,

@ x € W) ... W) TIM and if x € [[(¥1)... (Um)¢IM, then x € [(¥y)...
(Um) (@) ¥ M.

Hence x o€ W) Wm) @1y I M i x e ). W) TIM and if x e [[(y). .
(Ym) ™, then x € [1(¥1) ... (Ym) (@)¥ M

About (1) ... (V¥ )0¢, the reader may easily verify that the following conditions are equivalent:

M x el (Ym)OgIM,
@ x e llyIM ol e lt) <x/fm>D¢||M<“1/f1” ),

3) x € [y I, x € [(¥a) .. <wm>T||M(W1“ ) and for all epistemic formulas x, if x €
K¥2) ... (Y ))(||/\/l(”1/’1|| ), then x € || (V) ... (Wm){x )¢||M(||‘//1|| ),

@) x € [[(¥y) ... (Wm)TIM and for all epistemic formulas x, if x € ||(1ﬂ1) () x 1M,
then x € [[(¥1) - .. (¥m) ()M

Hence, x € ||[(¥1) .. (wm)D¢||M iff x € || (1) . (1/fm)T||M and for all epistemic formulas
Xoifx € (W) -« (W) x 1ML, then x € 1 (yy) .. <1/fm>(x)¢||M

Remark. Inall cases, the equivalence between (1) and (2) follows from the definition of truth-sets,

the equivalence between (2) and (3) follows from P(m — 1) and the equivalence between (3) and (4)
Jfollows from the definition of truth-sets.

O
Proof of Proposition 13. Let ¢(#) € NF. Supose (H) for all ¢/ () € NF, if ¢/ (1) <5%¢ ¢(4), then

Q(¢'(#)). Let ¢ be a formula, M = (W, R, V) be a model and x € W. We consider the following 4
cases.

Case ¢(f1) = 4. The reader may easily verify that the following conditions are equivalent:

(1) x € lIrep(s 0¢) 1M,

2) x € |9pIM

(3) forall eplstemlc formulas ¥, x € ||[¢]¢||M,

(4) for all epistemic formulas ¥, x € |[rep(t, [1/f]¢)||M

Hence, x € ||rep(f, D¢>)||M iff for all epistemic formulas ¥, x € ||rep(f, [w]q&)llM.

Case ¢(f) = ¥ — ¢'(f). The reader may easily verify that the following conditions are
equivalent:

(1) x € [rep(¥ — ¢'(®). O)IIM,
@) x € |¥ = rep(¢' ). )M,
(3) ifx € [y |M, then x € |rep(¢’ (7). D) IM,



4) ifx e ||W||M then for all epistemic formulas x, x € ||rep(¢’ (1), [X]¢)||M
(5) for all epistemic formulas x, if x € ||w||M then x € ||rep(x>/l(ji) [X]¢)||
(6) for all epistemic formulas x, x € ||y — rep(¢ (%), [x1d)|l

(7) for all epistemic formulas x, x € |[rep(¥ — ¢’ (#), [x 1)l

Hence, x e ||rep(1// — ¢'(#), D¢)||M iff for all epistemic formulas x, x € |rep(yy —
o' (@), [x1¢)|I™M

Case ¢ (%) = K,¢'(£). The reader may easily verify that the following conditions are equivalent:

(1) x € lrep(Ka¢'(9), Op)IM,

(2) x € |[Karep(¢'(2). Op) M,

(3) forally € W,if xR,y, then y € |[rep(¢’ (1), D¢)||M

(4) forall y € W, if xR, y, then for all epistemic formulas x, y € |[rep(¢’ (%), [X]¢)|IM
(5) for all epistemic formulas x and for all y € W, if xR, y, then x € |[rep(¢’ (1), [x1¢)|l
(6) for all epistemic formulas x, x € ||[Kqrep(¢' (1), [x1¢)|l

(7) for all epistemic formulas y, x € |[rep(Kq,¢'(£), [X]¢)||M

Hence,x € ||rep(Kq¢' (1), D¢)||M iff for all epistemic formulas x,x € ||rep(Kq¢' (1), [X]¢)||M.

Case ¢(ff) = [¥]¢’(#). The reader may easily verify that the following conditions are equivalent:

(1) x € lrep(¥l¢' (), DI,

() xe II[W]rep(tﬂ’(ti), 0¢) ™M,

(2) ifx e ||w|| , then x € [|rep(e/ (1), Og) MUV I,

(3) if x € || ||™M, then for all epistemic formulas x, x € |[rep(¢’ (1), [X]¢)||M(W“M>

(4) for all epistemic formulas y, if x € ||w||M then x € ||re ﬁgﬂ @, [ X]¢)||M(|I¢|I ),
(5) for all epistemic formulas x, x € ||[[¥]rep(¢’ (1), [x 1)l
(6) for all epistemic formulas x, x € |[rep([¥]1¢’(#), [x 1)l

Hence x € |rep((¥]e’ (1), D¢)||M iff for all epistemic formulas y, x € |rep([V]¢’ (1),
[x1¢) 1M

Remark. [Inthefirst case, the equivalence between (1) and (2) follows from the definition of rep (-, -),
the equivalence between (2) and (3) follows from the definition of truth-sets and the equivalence
between (3) and (4) follows from the definition of rep (-, -). Note that in all other cases, the equivalence
between (1) and (2) follows from the definition of rep (-, -), the equivalence between (2) and (3) follows
[from the definition of truth-sets, the equivalence between (3) and (4) follows from (H ), the equivalence
between (4) and (5) follows from logical reasoning, the equivalence between (5) and (6) follows from
the definition of truth-sets and the equivalence between (6) and (7) follows from the definition of
rep(-, ). [l

Proof of Proposition 18. Let ¢(1) € NF. Suppose (H) for all ¢’ (t) € NF, if ¢/ () <51%¢ ¢(#), then
S(¢'(#)). Let ¢ be a formula and v be an epistemic formula. We consider the following 4 cases.

Case ¢(ff) = . Since v is epistemic, O¢p — [¥]p € APAL®. Hence, rep(ft, O¢p) —
rep(t, [V]p) € APAL®.

Case w(ﬁ) =x — ¢’ If rep(x — ¢/ (1), 0¢) — rep(x — ¢’ (1), [V1¢) ¢ APAL®, then
x — (rep(¢/'(1),0¢) — rep(¢’ (11) w $)) & APAL®. Hence, rep(¢' (1), O¢p) — rep(¢/(1),

[V]¢) & APAL®. Now, note that ¢’ () <512 ¢(2). By (H), rep(¢/(2), Op) — rep(¢/(£), [¥]1¢) €
APAL®: a contradiction.

Case o(1) = Kag'(®). If rep(Ka¢' (), O¢) — ”ep(Ka(P/(rl)»[W]d)) ¢ APAL®, then

Kq(rep(¢' (), O¢) — rep((ﬂ (ti) [V1$)) ¢ APAL® . Hence,rep(¢' (1), Op) — rep(¢' (1), [V1¢) &
APAL®.Now,notethat g’ (£) <32 ¢(1). By (H),rep(¢’ (), Op) — rep(¢’ (1), [1¢) € APAL®:
a contradiction.

Case ¢() = [xl¢'(®. If rep([x1¢/(#), Op) — rep(lxle’®), (V1) ¢ APAL®, then
[x1(rep(¢’(8), B¢) — rep(¢’(#), [V1h)) ¢ APAL® . Hence,rep(¢' (1), O¢) — rep(¢’ (1), [V19) ¢
APAL® Now, note that ¢’ () <5%%¢ o(1). By (H),rep(¢' (), O¢) — rep(¢’ (1), [V 1) € APAL®:
a contradiction. O



Proof of Proposition 29. Let m be a non-negative integer. Suppose (H ) for all non-negative integers n,
ifn < m,then T (n).If m = 0, then the reader may easily verify that T (m). Otherwise, let ¥, .. ., 1/
be formulas, p € Atm, ¢, ¥ be formulas, a € Agt and x be a maximal consistent theory. Since (H),
T(m—1).

About (V1) ... (¥m) p, the reader may easily verify that the following conditions are equivalent:

() Y1) (¥m)p € x,

(2) Y1 €xand (Y2) ... (Ym)p € [Y1lx,

3) Y1 ex, (Y2)...(¥m) T €[¢¥1lxand p € [Yq]x,
@) (Y1)... (Ym)T €xand p € x.

Hence, (V1) ... (Ym)p € x iff (Y1) ... (Yy)T € x and p € x.

About (1) ... (¥m)—¢,the reader may easily verify that the following conditions are equivalent:

@) W) (Ym)—d € x,

(2) ¥y exand (Y) ... (Ym)—¢ € [Y1]x,

3) V1 ex, (Y2)...(Ym)T € [Y1lxand (Vo) ... (¥m)¢ & [V1]x,
@ ). (m) T € xand (Y1) ... (Ym)o & x.

Hence, (Y1) ... (Ym)—¢ € x iff (Y1) ... (Ym) T € x and (Y1) ... (Ym)¢ & x.

About (Y1) ... {(¥m)(@ A V), the reader may easily verify that the following conditions are
equivalent:

@) W) ) (@ AY) € x,

() Y exand (Ya) ... (Um)(@ AY) € [Y1lx,

(3) V1 ex, (Y2)...(Ym)¢ € [¥1]x and (¥) ... (Ym) ¥ € [Y1]x,
@ W) (Im)¢p € xand (Y1) ... (Ym)VY € x.

Hence, (Y1) ... (Ym)(@ AY) € x iff (Y1) ... (Ym)d € x and (Y1) ... (Y)Y € x.

About (1) ... (Yn) K, ¢, the reader may easily verify that the following conditions are equiva-
lent:

A W) (Ym)Kadp € x,
() Y exand (V) ... (Ym)Kag € [Y1]x,

3) Y1 € x, (Y2)...(¥m)T € [¥1]x and for all maximal consistent theories y containing

(Y2) ... (Ym) T, if Kg[r1]x S y, then (¥2) ... (Ym)@ € y,
@) (Y1)...(¥m)T € x and for all maximal consistent theories y containing (1) ... (¥m) T,

if Kgx C y, then (Y1) ... (¥m)¢ € y.

Hence, (1) ... (Ym)Ka¢p € x iff (Y1) ... (¥,) T € x and for all maximal consistent theories y
containing (Y1) ... (¥m)T,1if Kqx C y, then (1) ... (Ym)p € y.

About (V{) ... (¥m)[¢]¥, the reader may easily verify that the following conditions are equiv-
alent:

D) ). (m)lPl¥ € x,

() Y1 exand (Y2) ... (Ym)PlY € [Y1]x,

3) E/{ﬁl ]Ex,(llfz) o (Ym) T € [Yrlxandif (¥2) ... (Ym)@ € [Y1lx, then (Y2) ... (Y ) (D) €
11x,

@ W) (m) T € xandif (f1)... (Ym)p € x, then (Y1) ... (Ym)(®)Y € x.

Hence, (Y1) ... (Yu)[$1¥ € x iff (¥1)... (m)T € x and if (Y1)...(Ym)d € x, then
W1} (Um)S)W € x.

About (V) ... (¥,,)0¢, the reader may easily verify that the following conditions are equivalent:

M (Y1) (¥m)Oo,

(2) Yy exand (Y2) ... (Yn)O@ € [Y]x,

3) Y1 € x, (Y2)...(¥m)T € [¢¥]x and for all epistemic formulas v, if (Vp) ... (Y)Y €
[V1lx, then (o) ... (Ym) (V) € [Y1lx,

@) (Y1) ... (¥m) T and for all epistemic formulas ¥, if (¥1)...{(¥m)¥ € x, then (Yq)...

(Um) (V)¢ € x.



Hence, (Y1) ... (Y)0¢iff (Y1) ... (¥y) T andfor all epistemic formulas ¥, if (Y1) ... (¥m) ¥ €
x, then (Y1) ... (Ym) (V)¢ € x.

Remark. In the case (Yr1)...{(¥m)Kap, the equivalence between (1) and (2) follows from
Lemma (26), the equivalence between (2) and (3) follows from (H) and the equivalence between
(3) and (4) follows from Lemmas (26) and (28). Note that in all the other cases, the equivalence
between (1) and (2) follows from Lemma (26), the equivalence between (2) and (3) follows from (H)
and the equivalence between (3) and (4) follows from Lemma (26).

O
Proof of Lemma 32. Let (i, m, ¢) € X. Suppose (H) for all (j,n, ) € X, if (j,n, ¥) K (i, m, ¢),
then U(j,n,¥). Let vq,..., Ym be formulas such that m 4 deg(yrq) + ... + deg(¥m) +
deg(¢) <. O

Claim 35. For all maximal consistent theories x, x € ||[{¥1) ... (1/fm)T||MC iff () ... (Ym) T € x.

Proof. Let x be a maximal consistent theory. The case m = 0 is obvious. Hence, we only pay
attention to the case m > 1.

(=) Suppose x € [[(¥1) ... (Ym) TIMe. By Proposition 11, x € [[(¥1) ... (Y1) ¥mll™e.
Now, note that (i, m — 1, ¥) < (i, m, ¢). By (H), Ui, m — 1, ¥y,). Since m + deg(¥y) + ... +
deg(Vm) +deg(p) <i,m—1+deg(¥)+...+deg(¥,,_1)+deg(Vm) <i.SinceU@i,m—1, ¥p),
x € 1) (Ym— ) Um 1M A (1) o (Y1) ¥ € x. Since x € (Y1) ... (Ym—1)Ym [,
(V1) ... (Yym—1)¥m € x. By Proposition 16, (1) ... {(¥m) T € x.

(«<) Suppose (Y1) ... {(¥m)T € x. By Proposition 16, (Y1) ... (¥, —1)¥m € x. Again, note
that (i, m — 1, ¥) < (i, m, ¢). By (H), Ui, m — 1, Yr). Since m + deg(yr1) + ... + deg(¥m) +
deg(¢p) < i, m — 1+ deg(y) + ... + deg(¥,,—1) + deg(¥) < i. Since U(i,m — 1, Yy),
x € 1Y) s (Wme )Y M HE (1) - (Y1) ¥m € x. Since (Yy) ... (Win—1)¥m € X, x €
(Y1) - (Ym—1)¥m|IMe. By Proposition 11, x & [[(y1) ... () TIIMe. O

Claim 36. For all maximal consistent theories x, x € ||[{({¥1) ... (x/fm)qﬁllMC if () ... (Ym)o € x.
Proof.  Let x be a maximal consistent theory. We consider the following 7 cases.

Case ¢ = p.

(=) Suppose x € |{¥71)... (wm)p”MC. By Proposition 12, x € |(¥q)...
(wm)THMC andx € Vq(p). By Claim 35, (Y1) ... (¥u) T € x. Moreover, p € x. By Proposition 29,
V1) (Um)p € x.

(<) Suppose (Y1) ...{(¥m)p € x. By Proposition 29, (¥{)...(¥m)T € x and p € x. By
Claim 35, x € [[(¥1)... (wm)THMC. Moreover, x € V.(p). By Proposition 12, x € |{1)...

(Ym) pl™Me.

Case ¢ = —¢'.

(=) Suppose x € |{(¥q)... (wm)—'qb/llMC. By Proposition 12, x € |[{(¥q)...
W) TIMe and x & [[(¥) ... (Ym)@'|™Me. By Claim 35, (/1) ... (¥m)T € x. Now, note that
(i,m,¢") < (i,m,¢). By (H), U(i,m, ¢'). Since m + deg(¥1) + ... + deg(¥m) + deg(¢) < i,
m + deg(¥) + ... + deg(P¥m) + deg(¢’) < i. Since Ui, m, ¢'), x € | (W) ... m)e | Me iff
(Y1) ... (Ym)¢' € x.Sincex & [1(¥1) ... (Ym)d 1™, (Y1) . (Ym)¢ & x.Since (Y1) ... (Ym)T €
x, by Proposition 29, (Y1) ... (¥m)—¢’ € x.

(<) Suppose (V1) ... (V¥m)—¢’ € x. By Proposition 29, (¥r{)...{(¥m)T € x and (yq)...
(Ym)¢' & x. By Claim 35, x € |{¥)... (wm)THMC. Again, note that (i, m, ¢') < (i,m, ¢).
By (H), U(i,m, ¢). Since m + deg(yr1) + ... + deg(¥m) + deg(¢p) < i, m + deg(y) + ...+
deg(Ym) + deg(¢') < i. Since U(i,m,¢'), x € [{Y1) .. (W)@ M i (Y1) ... (Ym)¢' € x.
Since (Y1) ... (Wm)¢' & x. x & 1(¥1) ... (Um)¢[™e. Since x € [[(y) ... (Ym) TIMe, by
Proposition 12, x € |[(¥) ... (wm)—'gb’HMC.

Case p = ¢’ Ao

(=) Suppose x € [[(1) ... (Ym) (@ A ¢")[™Me. By Proposition 12, x € [[(¥1) . .. {Ym)' M
and x € |[(¥1) ... (Ym)e"|Me. Now, note that (i, m, ¢') < (i,m, ¢) and (i, m, $") < (i, m, ¢).
By (H), U(i,m, ¢) and U (i, m, ¢""). Since m + deg(y1) + ... + deg(¥m) + deg(¢p) < i, m +
deg(Vy) + ... + deg(¥m) + deg(¢’) < i and m + deg(¥1) + ... + deg(V¥) + deg(¢p”) <
i. Since U(i,m,¢’) and UG, m, "), x € (W1 ... Wm)d |"Me iff (Y1)... (Ym)d € x and



x € |{¥1)-. (Wm)‘ﬁ”HMC iff (1) ... (Um)d” € x. Since x € [|(¥1) ... (Ym)¢'II™Me and x €
(1) .. (Wm)d’”” < (Y1) ... (Ym)¢' € xand (Y1) ... (¥m)@” € x. By Proposition 29, (1) . ..
(Ym) (@' N @) € x.

(<) Suppose (V1) ... {(¥m) (@' A@") € x. By Proposition 29, (/1) ... (¥m)¢’ € x and (Y1) . ..
(Ym)@" € x. Again, note that (i, m, ¢') < (i, m, ¢) and (i, m, ¢"") < (i,m, ¢). By (H), Ui, m, ¢')
and U (i, m, ¢"). Since m +deg (1) +. .. +deg (V) +deg(¢) < i,m+deg(Yy) +... +-deg(Ym) +
deg(¢p)) <i andm-l—deg(lﬂl)-i- +deg(z//m)+deg(¢”) <i.Since U (i, m, d) YandU (i, m, ¢""),x €
W) - (W) 1M EE (U)o (W)@ € xandx € [[(Yr1) - . . (Ym)@" M lef(Wl) (Ym)o" €
x. Since (Y1) .. (Wm)¢ e xand (Y1) ... (Ym)d” € x, x € (Y1) ... (Ym)|™Me and x €
(1) .. (1/'m)¢//|| ¢. By Proposition 12, x € [[(¥1) ... (¥m)(¢' A ¢//)||M

Case ¢ = K,¢'.

(=) Suppose x € W) ... (Ym)Kad' ||MC By Proposition 12, x € |[(¥q)...
(Ym)TIMe and for all y € [[(1)... (Ym) TIMe, if xRay, then y € [1(¥1) ... (Ym)o' /e,
By Claim 35, (Y1) ...{(¥m)T € x. Suppose (Y1) ... {(¥m)Kad' & x. Since (Yr1)...{(¥m)T €
x, by Proposition 29, there exists a maximal consistent theory z containing (Y1) ... (¥,) T such
that Kox C z and (Y1) ... (¥m)¢' & z. By Claim 35, z € |[(¥) ... (¥m) T|™ec. Moreover,
xRz, Since for all v € (Y1) ... (Yin) TIP3 xRay, then y € (1) (Ym)¢/ I, 2 €
{vrq) .. (wm)qs || c. Now, note that (i, m,¢') <K (i, m, ¢) By (H), U(i,m, ¢’). Since m +
deg(y) + ...+ deg(wm) + deg(¢) < i,m+deg(yy) + ...+ deg(¥m) + deg(¢) <i. Smce
UG, m, @),z € 1W1) .. (W) I™Me 3 (Y1) ... (W)@’ € 2. Since z € [[(¥1) ... (Ym)g' M
(Y1) ... (¥m)¢’ € z: a contradiction.

(<) Suppose (V1) ... (¥m)Ka¢' € x. By Proposition 29, (¥r1)...{(¥)T € x and for all
maximal consistent theories y containing (Y1) ... {(¥) T, if Kgx C vy, then (Y1) ... {(Y¥m)¢’ €
y. By Claim 35, x € [[(41) ... (¥m) TII™™e. Suppose x & [[(41) ... (¥m)Kag' e, Since x €
I{¥rq) ... (wm)TllMC by Proposmon 12, there exists z € |[(¥q).. (wm)TllMC such that xR,z
and z & ||[(¥1) ... (Um)¢’ || ¢. By Claim 35, (Y1) ... {(¥m) T € z. Moreover, K;x < z. Since for
all maximal consistent theories y containing (wl) o (YU)TLif Kgx C y, then (Yrq) ... (U)o’ €
v, (1) ... (wm)qb’ € z. Now, note that (i, m, ¢') < (i, m, d)) By (H), U(i,m, ¢’). Since m +
deg(V1) + ... + deg(¥m) + deg(¢) < i,m+deg(¥y) + ... + deg(¥) + deg(¢’) < i. Since
UG,m, @),z € (1) ... (Ym)@' 1M 3fE (1) ... (W)@’ € z. Since (Y1) ... (Ym)¢' € 2,z €
1) ... (m) @ [™Me: a contradiction.

Case ¢ = [¢/]¢".

(=) Suppose x € (Y1) ... (Ym)[¢'1¢"|Me. By Proposition 12, x € |(y1) .. - (Ym) TI™M and
ifx € |(¥1)... (Wm)WHM thenx € (Y1) ... (Ym)(p)¢” M. By Claim 35, (1) ... (¥m) T € x.
Suppose (Y1) ... (¥m)[@'1¢” & x.Since (Y1) ... {(¥m)T € x, by Proposition 29, (1) ... (¥m)¢’ €
x and (Y1)...(YUm)(¢")¢” ¢ x. Now, note that (i — 1,m,¢/) < (i,m,¢) and (i — 1,m +
1.¢") < (i.m.¢). By (H). UG — Lm.@) and UG — Lm + 1.¢"). Since m + deg(y)) +

..+ deg(Yim) + deg(p) < i, m +deg(yy) + ... + deg(¥m) + deg(¢p’) <i—1landm + 1 +
deg(¥1) + ...+ deg(¥m) —Fde%/l )+deg(¢”) <i—1.SinceU@G —1,m,¢)and UG — 1, m +
1,¢"), x € ||(W1) (Um) @' |70 ff (Y1) ... (Ym)@' € x and x € (Y1) ... (¥m)(P >¢”||M
iff (Y1) ... (Ym) (@ >¢N € x. Since (Y1) .. (Wm)¢/ € x and (1/f1)-~<1ﬂm)(¢/>¢// ¢ X, X €
H) - W) IV and x & 101) -« (W) (8167 IMC. Simce x € 101) ... (W) TIMe, by
Proposition 12, x & ||{(¥1) ... (¥m)[@'] ¢/’|| c: a contradiction.

(<) Suppose (Y1) ... (¥m)[¢'1¢” € x. By Proposition 29, (V1) ... (¥m)T € x and if (Y1) ...
(Ym)¢' € x, then (yq).. (Wm)((b \¢" € x. By Claim 35, x € [[(¥1)...(Ym)T|™e. Sup-
pose x & |[(¥1) ... (¥m)[d'] ¢”|| ¢. Since x € ||(1p1)...(1pm)T||MC, by Proposition 12, x €
(V1) - (Ym)e’ ||MC andx & (1) ... (¥m)(®")¢" M. Now, note that (i — 1, m, ¢) < (i, m, §)
and (i — 1,m + 1,¢") < (i,m,¢). By (H), UG — 1,m,¢') and UG — 1,m + 1, ¢"). Since
m+deg(yy) + ... +deg(Ym) +deg(p) <i,m+deg(yy)+...+deg(¥m) +deg(¢>) <i—land
m—l—l—i—deg(wl)—i— +deg(1pm)+deg(¢)+deg(¢>”) < i—1.Since UGi—1,m,¢)andUi—1, m+
1,¢"), x € 1W1) - (W)@ IMe S (Yry) ... (W)@ € x and x € (Y1) ... (Ym) (o )¢//||M‘ lff
(Y1)-.. Wm)((b/)(ﬁ” € x. Since x € [[(¥1) ... (Ym)¢'IMe and x & 1(y1) ... (Ym) ()¢ IM
(W) ... (WUm)¢' € x and (Y1) ... (Ym){(®d")¢” & x. Since (Y1) ... {(¥m)T € x, by Proposition 29
(Y1) ... (Um)l¢'1¢” & x: a contradiction.



Case ¢ = 0O¢/.

(=) Suppose x € |{¥1)... (wm)ng’HMC. By Proposition 12, x € |[{¥q)...
(WYm) TIMe and for all epistemic formulas v, if x € |[(¥1) ... (Yp)¥[Me, then x € |(¥y) ...
(wm)(w)¢’||Mf. By Claim 35, (¥/1)...(Ym)T € x. Suppose (¥1)...{(V¥,)0¢" & x. Since
(V1) ... (¥m) T € x,byProposition 29, there exists an epistemic formula x suchthat (1) ... (¥m)x €
xand (Y1) ... (Um)(x)¢' & x. Now, note that i — 1,m, x) < (i,m,¢)and (i — 1, m +1,¢') <«
(i,m,¢).By(H), UG —1,m, x)and U(i — 1, m + 1, ¢’). Moreover, note that since x is epistemic,
by Proposition 4, deg(x) = 0. Since m + deg(¥ry) + ... + deg(¥y,) + deg(op) < i, m +deg(yr1) +
... +deg(Ym) +deg(x) <i—1landm+1+deg(yy)+...+deg(V¥m)+deg(x) +deg(¢’) <i—1.
SinceU(i — 1,m,x)and U(i — 1,m+1,¢'),x € ||(1/fl>...(wm)x||MC iff (Yy)...(¥m)x € x
and x € (V1) ... (Ym) ()P 1M HF (Y1) ... (Ym) (X)¢' € x. Since (Y1) ... (Ym)x € x and
W) (WUm) 09" & X x € 1) .. (W) x I and x & [[(01) ... (Ym) ()9 Ie. Since for
all epistemic formulas ¥, if x € ||({q) ... (wm)l//lle, thenx € || (Y1) ... (1//m)(1p)¢/||MC and y is
epistemic, x € ||{({q) ... (wm)(x)¢/||MC: a contradiction.

(<) Suppose (Y1) ... (¥m)O¢" € x. By Proposition 29, (y1)...(¥»)T € x and for all
epistemic formula's/\f, it (Y1)...(WUm)¥ € x, then (Y1) ... (¥m)(¥)¢' € x. By Claim 35, x €
1) - (W) TIMe. Suppose x & [1{w1) ... (¥m) O/ |Me. Since x € [[(¥y) ... () TIMe,
by Proposition 12, there exists an epistemic formula y such that x € |[{(¥) ... {(¥m) x| ¢ and
x & |{¥1) ...(wm)(x)d/HMf. Now, note that i — 1,m, x) < (i,m,¢)and i —1,m + 1, ¢’) <«
(i,m,¢).By(H),U(i —1,m, x)and U(i — 1, m + 1, ¢’). Moreover, note that since y is epistemic,
by Proposition 4, deg(x) = 0. Since m + deg(¥r1) + ... + deg(¥y,) + deg(op) < i, m +deg(y1) +
... +deg(Ym) +deg(x) <i—1landm+1+deg(yy)+...+deg(V¥m) +deg(x) +deg(¢’) <i—1.
Since U(i — 1,m,x)and U(i — 1,m+1,¢'),x € ||(1ﬂ1)...(wm))(nj\/lC iff (Yp)...(Ym)x € x
and x € [[(¥1) ... (W) OO IMe S (1) .. (Ym)(x)d' € x. Since x € [[(¥1) ... (Ym)xIIMe

and x & (1) ... (W) OO IMe, (Ur1) .. (W) x € x and (Y1) ... (Yi) (X)$' & x. Since for all
epistemic formulas v, if (Y¥1)... (¥m)¥ € x, then (Y1) ... (¥m){(¥)¢' € x and y is epistemic,

(1) ... (Um)(x)¢" € x: a contradiction.
From Claim 36, we infer U (i, m, ¢). [l





