Imen Bensaid

Mohamed Amine Chaabane

Rafik Bouaziz

Eric Andonoff

A Version-based Approach to Address Flexibility of BPMN Collaborations and Choreographies

Keywords: Process Flexibility, BPMN, Collaboration, Choreography, Version

Process flexibility is an important issue in the business process management area: it has mainly been investigated in the context of intra-organisational processes but it received little attention in the context of processes crossing the boundaries of companies. This paper addresses the issue of BPMN collaborations and choreographies flexibility, advocating a version-based approach. Indeed versions, which have been recognised as a powerful mechanism to face flexibility of internal processes of companies, are used to address flexibility of processes crossing the boundaries of companies, modelled as collaborations or choreographies in BPMN. Thus this paper extends BPMN collaborations using versions. It also introduces algorithms supporting the mapping from versions of collaborations into versions of choreographies. This paper mainly focuses on static aspects of collaboration and choreography versioning.

INTRODUCTION

Flexibility has been the focus of numerous works in the Business Process Management (BPM) domain. On the one hand, several taxonomies to characterise process flexibility have been proposed in literature. The more suitable one is given in [START_REF] Reichert | Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies[END_REF]. This taxonomy differentiates between two times for process flexibility: flexibility at design-time, which refers to foreseeable changes which can be taken into account in modelled process schemas, and flexibility at run time, which refers to unforeseeable changes occurring during process execution. In addition, this taxonomy identifies four needs of flexibility:  Variability, for representing a process differently, depending on the context. Each process schema is represented as a variant: variants share the same core process whereas the activity execution differs from variant to variant.  Adaptation, for handling occasional situations or exceptions which have not been necessarily foreseen in the process schema.  Evolution, for handling changes in processes, which require occasional or permanent modifications in their schemas.  Looseness, for handling processes whose schemas are not known before, and which correspond to non-repeatable, unpredictable, and emergent processes. Such processes require loose specifications. On the other hand, several contributions have been made to address process flexibility, mainly in the context of intra-organisational processes -e.g., [START_REF] Rosemann | A Configurable Reference Modeling Language[END_REF], [START_REF] Adams | Dynamic and Extensible Exception Handling for Worklows: a Service-Oriented Implementation[END_REF], [START_REF] Hallerbach | Capturing Variability in Business Process Models: the Provop Approach[END_REF], [START_REF] Ekanayake | Fragment-based Version Management for Repositories of Business Process Models[END_REF], [START_REF] Zhao | Version Management for Business Process Schema Evolution[END_REF]. However, process flexibility is still an open issue in the context of Interorganisational Processes (IoP), which are processes crossing the boundaries of companies, and which are modelled as collaborations or choreographies in BPMN (Business Process Model and Notation). Note that BPMN is the standard notation for process modelling: it is promoted by the OMG (OMG, 2011) and serves as a basis for process specification in several process management systems. IoP flexibility may be related to the availability of involved processes or to the collaboration or the choreography schema. Research efforts about IoP flexibility mainly address process availability in the context of dynamic inter-organisational processes. Dynamic inter-organisational processes refer to processes where the different partners involved are not necessarily known at design-time, or can evolve at run-time -e.g., they become unavailable or their quality of service decreases significantly [START_REF] Chebbi | The View-based Approach to Dynamic Inter-Organizational Workflow Cooperation[END_REF]. The provided solutions support finding new partners offering requested services, along with negotiation, contracting and service execution. Flexibility of schema collaboration or choreography has been rather neglected and the following research question has to be addressed: how to model collaborations or choreographies able to deal with IoP variability, adaptation and evolution?

This paper addresses this research question advocating a version-based approach. Indeed the notion of version has been recognised as a key notion to deal with process flexibility in intraorganisational context [START_REF] Ekanayake | Fragment-based Version Management for Repositories of Business Process Models[END_REF], [START_REF] Zhao | Version Management for Business Process Schema Evolution[END_REF], [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF], and more precisely, to deal with process variability, process evolution and process adaptation (when adaptation can be defined at design-time), according to Reichert and Weber's taxonomy. On the other hand, versions make the migration of processes running according to an old schema to a new one easier to perform [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF].

More precisely, the paper contribution is twofold. First the paper extends BPMN for collaboration versioning, mainly focusing on static aspects. Secondly the paper gives a set of algorithms implementing the mapping from versions of collaborations into versions of choreographies.

Accordingly this paper is organised as follows. Section 2 gives the background of the paper. It also introduces the radiological examination process, which motivates the need for flexibility of processes crossing the boundaries of companies. Section 3 addresses the modelling of versions of collaborations: it introduces BPMN4V which is an extension of BPMN to support version of collaboration modelling, mainly focusing on static aspects of version modelling. Section 4 describes recommended algorithms implementing the mapping from version of collaborations into corresponding versions of choreographies using a tree-based approach. Section 5 compares our approach with related works and concludes the paper, giving some directions for future works.

BACKGROUND

This section introduces the background of the paper, namely collaboration and choreography modelling in BPMN. It also presents the radiological examination example, which will be used through the paper to illustrate collaboration and choreography versioning.

Concepts for BPMN Collaboration and Choreography

BPMN 2.0 allows the creation of three basic types of diagrams within an end-to-end process (OMG, 2011): (i) a Private Process is internal to a specific company. It describes a sequence of activities performed within the organisation in order to carry out an objective. It is depicted as a directed graph.

(ii) a Collaboration depicts the interactions between two or more business entities (each one represented by a process) in order to carry out a common business target. These interactions specify the orchestration between the partners involved as message flows, i.e. messages exchanged between partners. (iii) a Choreography is another way to model interactions between partners. Unlike collaborations, the focus is not on orchestration of the work performed within partners, but rather on the exchange of information (messages) between them. Note that BPMN collaboration describes both orchestration of partners activities and messages exchanged, thus BPMN choreography can be deduced from BPMN collaboration.

As this paper deal with BPMN collaboration and choreography flexibility, we present below the necessary concepts for collaborations and choreographies modelling.

Regarding collaborations, each involved partner is seen as a participant that represents a PartnerEntity (e.g., a company) or a PartnerRole (e.g., a buyer, a seller, or a manufacturer). A participant is often responsible for the execution of a Process. A process involved in a collaboration is a FlowElementContainer that may contain SequenceFlow and FlowNode (Gateway, Event and Task). More precisely, processes of collaboration are provided within tasks, events and the way these tasks and events are synchronised using sequence flow and gateways. Furthermore, within a collaboration, participants are prepared to send and receive Messages within Message flows. A message flow illustrates the flow of messages between two interaction nodes. An Interaction node is used to provide a single element as the source (send relationship) or the target (receive relationship) of a message flow, and therefore of a message. An interaction node can be a participant, a task or an event. Note that within a collaboration, tasks (and events) are considered as the "touch point" between participants. Only those tasks (or events) that are used to communicate with the other participants are included. They define the public part of the process. As a consequence, all other internal (i.e., private) tasks or events of the process are not shown in a collaboration diagram [START_REF] Omg | Business Process Model and Notation (BPMN) Version 2.0[END_REF].

A Choreography is a FlowElementContainer that may contain sequence flow and FlowNode (gateway, event and choreography activitiy). A Choreography activity represents a point in a choreography flow where an interaction occurs between two or more participants. A choreography activity can be a choreography task or a sub choreography. A ChoreographyTask is an atomic activity in a choreography that represents an interaction in which one or two messages are exchanged between two participants. A SubChoreography is a compound activity in a chorography that contains the flow of other choreography activities.

The Radiological Examination Collaboration

The radiological examination collaboration, inspired from [START_REF] Reichert | Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies[END_REF], describes how a clinic interacts with a radiology centre for X-ray examination towards clinic patients. Note that these two companies are independent. Three cases are possible, each one corresponding to a version of the collaboration. Due to lack of space, Figure 1 only shows the first version of the collaboration, in which each participant process is represented in a specific pool. This first version starts when a clinic's patient needs a radiological examination. Thus the clinic sends a request for an X-ray examination to the radiology centre. After checking the request, either the centre sends back a reject notification to the clinic, or it notifies the clinic of the chosen X-ray appointment. On the appointment day, the clinic drives the patient to the radiology centre. After the X-ray examination, the radiologist interprets the examination and sends the result of this interpretation to the clinic. Note that in this first version of collaboration, messages exchanged (e.g., result of the interpretation) are paper documents transmitted manually.

The second version of the collaboration is suitable when the patient cannot be driven to the radiology centre. In this case, a radiologist from the radiology centre takes specific portable X-ray material from the radiology centre to the clinic to perform the requested X-ray in the patient's room.

In order to improve the quality of their services, both the clinic and the radiology centre implement a specific application supporting the automation of their interaction. Thus a new version of the collaboration is defined. In this version, exchanged messages are electronically transmitted within application. In addition, before interpreting the examination, the radiologist can interact with the patient's doctor for additional information.

According to the taxonomy of Reichert and Weber, this example highlights two flexibility needs: variability and evolution. Indeed the second version of the process is a variant of the first version as it is suitable, when the patient cannot move to the radiology centre. The third version is rather an evolution of the first version of the process as the interactions between the clinic and the radiology centre are no longer manual interactions but they are directly encoded in a specific application.

VERSIONING BPMN COLLABORATIONS

This section introduces the notion of version and presents the versioning pattern we recommend to model both entities and their corresponding versions.

Then the section describes the provided extensions to BPMN for version of collaboration modelling. Finally, this section illustrates the modelling of the first version of the Radiological Examination collaboration.

Version Concept

A version corresponds to one of the significant states (i.e., values) an entity (e.g., a collaboration, a process) may have during its life cycle. So, it is possible to describe changes occurring to entities through their different versions. These versions are linked by a derivation link; they form a derivation hierarchy.

When created, an entity is described by only one version. The definition of every new version is done by derivation from a previous one: such versions are called derived versions. Of course, several versions may be derived from the same previous one: these are called alternatives; they capture the variability of the corresponding process and they correspond to their various variants. Thus, using the notion of version, it becomes possible to model collaborative process flexibility and more precisely, collaborative process schema variability (through the notion of alternative or variant), collaborative process schema adaptation which can be modelled a priori in the schema, and collaborative process schema evolution. [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF]. We introduce a versioning pattern to support version modelling. The underlying idea is to model, for each versionable class (a versionable class is a class for which we handle versions) of the BPMN meta-model for collaborations, both entities and their corresponding versions. The versioning pattern is given in Figure 2. Each versionable class is described as a class, called Versionable. We associate to each versionable class, a new class, called Version of Versionable, whose instances are versions of Versionable, and two links: (i) the is_version_of composition, which links each instance of the Versionable class with its corresponding instances of the Version of Versionable class; and (ii) the derived_from relationship, which supports version derivation hierarchy modelling. This latter relationship is reflexive and the semantics of both relationship sides is: (i) a version (SV) succeeds another one in the derivation hierarchy and, (ii) a version (PV) precedes another one in the derivation hierarchy. Regarding versions, we also introduce attributes such as version number, creator name, creation date and state in the Version_of_Versionable class.

BPMN4V: Extension of BPMN for Collaboration Version Modelling

We model versions of collaborative processes providing extensions to the BPMN 2.0 collaboration meta-model previously presented. More precisely, we use the previous versioning pattern to make some classes of BPMN 2.0 collaboration meta-model versionable. Figure 3 presents the resulting metamodel, namely BPMN4V (BPMN for Versions). BPMN 2.0 classes are visualised in white while BPMN4V classes are visualised in grey.

In order to keep track of collaboration flexibility, we propose to make some classes of BPMN2.0 meta-model versionable using the versioning pattern introduced before. More precisely, we recommend handling versions for the following BPMN 2.0 classes: Collaboration, Message, Process, Task and Event. In fact, each of these classes represents key concepts for collaborations and plays a strong role in the definition of a collaboration. The idea is to keep track of changes occurring to components which play a part in the description of how the collaboration is carried out.

Generally speaking, a new version of an element (e.g., collaboration) is defined according to changes occurring to it: these changes may correspond to the addition of information (property or relationship) or to the modification or the deletion of existing ones. More precisely, regarding messages, we consider that a modification of their property ItemDefinition results in the creation of a new version of message. For instance, if Report is a message referring to a paper document (Itemkind value is physical), and as a result of technical changes, if it becomes an electronic document (Itemkind value is information) then a new version of Report has to be created. However we do not necessarily create a new version of message if there is change in the interaction in which the message is involved. Indeed an interaction (i.e., a message flow) being defined as the triplet (message, send node, receive node), where send and receive nodes are interaction nodes involved in the message exchange that either correspond to versions of task or versions of event, changing the interaction does not necessarily lead to the creation of a new message. For instance, if message M is sent from task A to task B, and if a new task C is defined after an organizational change and the message is no longer sent from A to B but rather from C to B, then we do not create a new version of the message M if it carries the same information. Thus we manage M.v1 as a message exchanged between A and B, and M.v1 and we also manage M.v1 as a message exchanged between C and B.

Regarding processes, we create new versions when there are changes to the involved tasks and/or events or in the way they are linked together using sequence flows and gateways. In the same way, changes to tasks and events may result in the creation of new task and event versions. In addition, we create new versions of tasks or events involved in message exchange, when there are changes to the exchanged messages.

Finally, regarding collaborations, new versions may result from changes to participants involved. Thus when we add or delete a participant, it is necessary to adapt the current collaboration to this change: we have to incorporate the added participant or to possibly replace the deleted one. New versions of collaborations may also result from changes to involved processes or exchanged messages. Exchanged messages have an important impact in collaboration flow. Thus any change in a sent or a received message affects the involved tasks or events, and consequently the involved process. So, when we add (or delete) a message, we have to add (or to delete) a received and a send activity, which leads to changing the process schema. In this case, the other processes involved in the collaboration have in turn to be adapted to this change to ensure continued collaboration.

On the other hand, BPMN 2.0 meta-model provides extension mechanisms through classes Extension, ExtensionDefinition and Extension AttributeDefinition, and, as suggested in [START_REF] Omg | Business Process Model and Notation (BPMN) Version 2.0[END_REF], each recommended extension has to be assigned to these classes. Therefore, we recommend adding the classes VersionExtensionDefinition and VersionExtensionAttributeDefinition to model the specific attributes which versionable classes include (version number, creator name, creation date and state). Thus each Version of Versionable class of the meta-model is a sub-class of the abstract class VersionExtensionDefinition.

BPMN4V Instantiation: Modelling the Radiological Examination Collaboration

MAPPING VERSIONS OF CHOREORGAPHIES

As indicated before, BPMN collaboration describes both orchestration of partners activities and messages exchanged, thus BPMN choreography can be deduced from BPMN collaboration. For this reason, we provide algorithms mapping versions of collaborations into versions of choreographies instead of directly model versions of choreographies. This section presents our approach supporting the mapping versions of collaborations into versions of choreographies. It includes four steps: The following sub-sections detail these four steps, mainly providing the recommended algorithms for each step.



Figure 1 :

 1 Figure 1: Version 1 of the Radiology Examination collaboration.

Figure 2 :

 2 Figure 2: Versioning pattern.

Figure 3 :

 3 Figure 3: BPMN4V: extension of BPMN for version of collaboration modelling.

Figure 4

 4 Figure 4 gives an instantiation of BPMN4V for the modelling of the first and third versions of the Radiological Examination collaboration (C.v1 and C.v3). In this figure, we model both the versions of the collaboration and the versions of the two processes involved in this collaboration.

Figure 4 :

 4 Figure 4: Instantiation of BPMN4V meta-model.

 Step 1 builds a VP-Tree for each version of process involved in the considered version of collaboration. Building a VP-Tree requires breaking down each version of process into fragments.  Step 2 links the VP-Trees built in the previous step. More precisely, a Linked-VP-Tree is composed of the VP-Trees of the considered version of collaboration along with links corresponding to messages exchanged.  Step 3 deduces the corresponding VC-Tree i.e., the corresponding version of choreography represented as a tree.  Finally, step 4 deduces the corresponding choreography, represented according to the BPMN meta-model, from the VC-Tree.

From Versions of Collaborations to VP-Trees

The first step of the approach consists of building VP-Trees for each version of process involved in the considered version of collaboration. To do so, we decompose these versions of process into fragments and we deduce the corresponding VP-Trees.

Process Fragmentation

Process fragmentation consists of decomposing each version of process involved in the considered collaboration into canonical single-entry single-exit (SESE) fragments. To do so, we propose to use the algorithm proposed by [START_REF] Polyvyanyy | Structuring Acyclic Process Models[END_REF] to decompose a process model into canonical SESE fragments. Figure 5 shows the result of SESE decomposition for the Radiology Centre process of the first version of the Radiological Examination collaboration, according to [START_REF] Polyvyanyy | Structuring Acyclic Process Models[END_REF]'s algorithm. This decomposition results in F0, F1, and F2 SESE fragments. As the name suggests, each SESE fragment has exactly one incoming and exactly one outgoing edge. For instance, the internal structure of fragment F2 is a sequence of tasks (Send Appointment, Examine Patient, Send Report) whereas fragment F1 consists of a branching of Send Reject Notification task and F2 fragment. Furthermore, SESE fragments can be embedded in other SESE fragments: note how fragment F0 aggregates the Start Event, Receive Request for Xray task, F1 fragment and End Event to a SESE fragment. To sum up, a fragment of a process version involved in a version of collaboration is composed of versions of tasks, start and end events, and fragments synchronised by control patterns (modelled as sequence flows or gateways).

Examine Patient

Deducing VP-Trees from Fragments

VP-Trees are deduced from the identified fragments. A VP-Tree is a tree having the following structure, according to the ML language syntax. A VP-tree is defined as a VP-node. We distinguish two types of nodes: terminal nodes and non-terminal nodes. A non-terminal node can be a sequence (SEQ), a choice (CHC), a parallelism (PAR) or a repetition (RPT) of -a set of-nodes. A terminal node corresponds to a task (supporting message exchange). Note that it is useless to keep the start and end events of fragments. These events will be added at step 4 when deducing the BPMN choreography.

Our recommended algorithm, namely Build-VP-Tree, implementing the mapping from a fragmented version of process to its corresponding VP-Tree, uses the mapping rules given in Table1.

From VP-Trees to Linked-VP-Trees

The result of step 1 is a set of VP-Trees representing versions of processes involved in the considered version of collaboration. The second step of the approach aims at linking these VP-Trees to capture messages exchanged in the considered version of collaboration. The result is a Linked-VP-Trees, defined according to the following structure:

Linked-VP-Trees:= ({VP-Tree},{Link}) Link:= (SourceNode, TargetNode, Message) SourceNode := Task TargetNode := Task A Linked-VP-Trees involves a set of VP-Trees and a set of links. A link is defined as the triplet (SourceNode, TargetNode, Message), where the source and target nodes are terminal VP-nodes, more precisely tasks, involved in each involved VP-Tree and the message is the information transmitted between these nodes.

Our recommended algorithm for building Linked-VP-Trees, namely Build-Linked-VP-Trees, uses the mapping rules presented in Table 2.

From Linked-VP-Trees to VC-Tree

The third step of the approach deduces a VC-Tree (Version of Choreography Tree) from the obtained Linked-VP-Trees. A VC-Tree has the following structure: A VC-Tree includes non-terminal VC-nodes and terminal VC-nodes, which are choreography tasks.

A non-terminal VC-node can be a sequence (SEQ), a choice (CHC), a parallelism (PAR) or a repetition (RPT) of -a set of-VC-nodes. A choreography task is defined as a triplet (SenderParticipant, Message, ReceiverParticipant) indicating that a message is sent from a participant to another one. We detail in the following the recommended algorithm for deducing VC-Trees. This algorithm, namely Build-VC-Tree, uses the following mapping rules. The first value for this parameter is root(initial(l-vpt)), which corresponds to the root of the initial VP-Tree of the mapped Linked-VP-Trees l-vpt. In the considered example (cf. Figure 5), the initial VP-Tree is the VP-Tree of the Clinic process. Note that the deduced VC-Tree have to be reduced to delete the control patterns unnecessarily added to the VC-Tree. For instance, the following VC-Tree SEQ(A,SEQ(B)) have to be reduced to SEQ(A,B). Due to lack of space, we do not detail the algorithm implementing this reduction.

Deducing Versions of Choreographies

The final step of the approach deduces BPMN choreographies from VC-Trees. The recommended algorithm implementing the mapping from VC-Tree to BPMN choreography uses the mapping rules given in Table 4. More precisely, Table 4 indicates that choreography terminal nodes of VC-Tree correspond to Choreography Task of BPMN choreography whereas non-terminal nodes of VC-Tree, and more particularly the nature of these nodes (SEQ, CHC, PAR, RPT) helps in identifying the BPMN coordination pattern, defined using sequence flows and/or gateways. Note that we obviously specify a start event and an end event in the deduced BPMN choreography.

CONCLUSION

This paper has addressed BPMN collaborations and choreographies flexibility using versions. More precisely it has extended the BPMN meta model for collaboration to support collaboration versioning.

Then it has introduced a set of algorithms implementing a four step approach for mapping versions of collaborations to corresponding versions of choreographies.

Our contribution addresses an important issue in the BPM area which is Inter-organisation Process (IoP) flexibility. Indeed, process flexibility has been mainly considered in an intra organisational context. In such a context, several contributions have addressed one or several flexibility needs: for instance, [START_REF] Rosemann | A Configurable Reference Modeling Language[END_REF] and [START_REF] Hallerbach | Capturing Variability in Business Process Models: the Provop Approach[END_REF] dealt with intra-organisational process variability using variants, while [START_REF] Adams | Dynamic and Extensible Exception Handling for Worklows: a Service-Oriented Implementation[END_REF] addressed intra-organisational process adaptation and more precisely exception handling for processes. We also found contributions advocating versioning to deal with process flexibility needs and more precisely process variability, evolution and adaptation: e.g., [START_REF] Ekanayake | Fragment-based Version Management for Repositories of Business Process Models[END_REF], [START_REF] Zhao | Version Management for Business Process Schema Evolution[END_REF], [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF]. More particularly, [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF] proposed to extend BPMN to model versions of private processes, considering thus only processes internal to a single company.

On the other hand, process flexibility has been rather neglected in the context of Interorganisational Processes (IoPs). However, we have found two main contributions dealing with this issue. Firstly [START_REF] Fdhila | Dealing with Change in Process Choreographies: Design and Implementation of Propagation Algorithms[END_REF] addressed change propagation from a partner process towards the processes of the other partners involved in a collaboration or in a choreography. More precisely, they provide a set of algorithms to deal with changes of process schema by adding, deleting, replacing or updating process fragments, but they do not consider changes that can affect messages (i.e., information) exchanged between process partners. Moreover, this contribution does not exactly deal with the issue addressed in this paper which is how to model collaborations or choreographies able to deal with IoP variability, adapation and evolution. Secondly, [START_REF] Boukhedouma | Adaptation Patterns for Service-based Inter-Organizational Workflows[END_REF] proposed a servicebased approach to model IoPs by combining processes and SOA. More precisely, they provide high-level patterns for service (adding, removing, substituting services), control flow and interaction adaptation. Note that this contribution addresses IoP evolution but it does not address IoP variability and adaptation. Thus IoP flexibility is still an open issue and we believe our contribution, which extends [START_REF] Ben Said | Context-Aware Adaptive Process Information Systems: The Context-BPMN4V Meta-Model[END_REF] considering versions of processes crossing the boundaries of companies, to be a step forward in addressing the flexibility of BPMN collaborations and choreographies.

However this contribution has the following drawbacks, which will be addressed in future works. Firstly this paper has extended BPMN to model versions of collaborations and has proposed algorithms to deduce the corresponding versions of choreographies. This choice is mainly due to BPMN collaborations, which subsume choreographies, highlighting both the orchestration of involved partners activities and messages exchanged. However, BPMN practitioners can also directly model choreographies without modelling corresponding collaborations: thus we also have to extend BPMN to directly model versions of choreographies. The second drawback is related to the algorithms supporting the mapping from version of collaborations into versions of choreographies. These algorithms are based on the following assumption: the mapped versions of collaboration have to be consistent in that they do not include any dead-lock, cycle and so on. On the other hand, the recommended algorithms take into account neither intermediate events of collaboration versions, nor events source or target of message flows. Finally these algorithms have to be implemented and evaluated. Their implementation is in progress and their evaluation will be addressed shortly.