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Abstract— In order to study the aging of batteries in 

automotive applications, it is important to understand how and 

under what conditions these batteries are operating in electric 

vehicles (EVs). 

However, because of the specificities of EVs, these uses may be 

very different from those known from internal combustion engine 

cars (ICE). 

In this paper, we present how, from real-life data, we 

determine the different driving modes of electric vehicles. The 

paper presents the different techniques adopted to analyze and 

classify the data and the different EV running modes, which are 

obtained. 

Keywords— Electric vehicle; life-size experimentation; driving 

modes; modes of use; classification; batteries 

I.  INTRODUCTION 

Our planet is more and more suffering from the effects of 
pollution. During the last decades, it has reached records, and 
takes all forms: pollution of soil, water, air, etc. All of these 
increase the health and environmental risks. 

Air pollution is the most difficult to control. It is caused 
mainly by agriculture, industrial waste, homes and 
transportation. In the context of this air pollution, the most 
difficult source to manage is transportation because it is a source 
of mobile pollution. In fact, according to CITEPA in France, the 
transport sector is responsible for the emission of nearly 15% of 
PM10 (particles with a diameter of less than 10 micrometers) 
and more than 50% of carbon soot [1]. Thanks to people's 
awareness of environmental risks and the threats of fossil fuel 
depletion, the electric vehicle (EV) is now booming with a 
number of registrations that are constantly increasing (up 23 % 
between 2015 and 2016) [2]. 

Despite the policy of countries to reduce pollution in cities 
by encouraging the purchase of EVs, they remain nonetheless 
widespread. This is due to the limitations of electric vehicles that 
are mainly related to batteries problems. It is indeed their weak 
autonomy, their relatively high prices (400 € / kWh) which can 
reach 40% of the value of the car and their limited lifetime. 

The problem of autonomy seems to be in the process of being 
resolved since the new models of EVs display a much greater 

autonomy than that of the models of a few years ago. The high 
price of batteries can be mitigated by massive production. 
However, the problem of the lifetime is still relevant. Indeed, 
mastering the lifespan of storage systems can save on the cost of 
replacement at the end of life and also on the right energy 
dimensioning of the system. 

There are several research projects around the world dealing 
with the aging of lithium batteries. However, most of these 
works only take into account calendar aging or cycling aging. 

Yet, in real-life automotive application, lithium batteries are 
facing an alternation between these types of aging. 

Currently, lifetime predictions are based on models and 
results from standardized cycling tests, with accelerated aging 
profiles consisting of partial or total charge / discharge, constant 
currents, or simplified profiles inspired by real uses but which 
consist of simple impulses and only partially represent the 
diversity of uses. 

To study the problems related to battery lifetime in 
automotive applications, many authors count on simulations 
with standardized cycles such as NEDC (New European Driving 
Cycle) and WLTC (Worldwide Harmonized Light Vehicle Test 
Cycles) [3], [4]. The results found are often empirical and cannot 
be very precise. Electric vehicles and their operation depend on 
many specific factors and parameters. They depend, among 
other things, on as temperature, SoC, etc. 

It is for these reasons that it will be more valuable to seek the 
different EVs modes of use, starting from real life batteries data 
recording and their operating conditions, in order to determine 
their effects on aging later. 

In this paper, we will present the methodology followed to 
search for the different electric vehicles modes of use. We will 
start with a presentation of the used database. Then we explain 
the different steps performed to obtain the modes of use. 

II. DATABASE DESCRIPTION 

 This study is based on data extracted from ten EVs. These 
data are provided by the LTE-IFSTTAR laboratory and come 
from the CROME project (CROss-border Mobility for EVs). On 
this project, several French and German partners worked to 



 

 

design, realize and analyze an electric mobility system between 
France and Germany [5]. This project has enabled LTE-
IFSTTAR to acquire a very large database of EVs in real life 
application. 

In fact, these EVs, having the same architecture and 
belonging to private and professional volunteers, have been 
equipped with data loggers that record and transmit via GSM a 
large number (more than 500) of variables related to the 
operation (speed, brake use, acceleration rate, etc.), data related 
to the batteries (current, voltage, cell temperature, etc.) and other 
related to the engine (torque, engine temperature, etc.). 

For each vehicle, the follow-up during a couple of years has 
allowed to collect thousands of files. Each file represents one use 
of the EV, in running or in charging conditions. In this file, we 
find a follow-up of the evolutions of all the variables related to 
EV over time with a high frequency (0.01s). 

Each EV has a battery pack of 16 kWh with a nominal 
voltage of 325.6 V. These battery packs are made of 88 LEV-50 
(LMO) cells mounted in series. Each one has a capacity of 50Ah 
and a nominal voltage of 3.7V. 

As mentioned earlier, we have hundreds of variables to 
study. To determine modes of use, we are convinced that some 
variables are more valuable than others. It is for this reason that 
we will proceed to a selection of parameters that will be 
described in the following part. 

III. SELECTION OF SIGNIFICANT VARIABLES 

To select the most significant variables without losing 
information, we proceeded as follows. At the beginning, we 
started with the elimination of all the variables that have no 
relation with the battery usage modes like the temperature of the 
engine cooling water. So, we kept all the variables related to the 
batteries (current, voltage, etc.) and the conditions of use of the 
VE (speed, temperature, etc.).  

We have drastically reduced the number of variables to track, 
going from more than 500 to 140 variables. Nevertheless, the 
number remains very large and we must still try to reduce it 
without loss of information. 

A. Correlation study 

The main purpose of this manipulation is to remove 
redundancies and keep only one variable on a correlated set. In 
this part, we have calculated and compared the correlation 
coefficients between the variables. 

According to S. Tufféry [6], even if the variables are continuous, 
"it is always interesting to compare the two coefficients of 
Pearson (linear correlation) and Spearman (rank correlation), the 
most reliable of both is the second", in particular to detect non-
linear links. 

In the following paragraphs, we will present these two 
correlation coefficients and the results obtained. 

1) Linear correlation coefficient of Pearson “r” 
 This coefficient is used to study if there is a linear 
relationship between two variables X and Y. This coefficient is 
obtained by dividing the covariance between X and Y (σxy) by the 
product of their standard deviation, respectively σx and σy. 
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 Where n is the observation number, X̅ is the mean of X and 
Y̅ is the mean of Y. 

2) Coefficient of correlation of Spearman “ρ” 
 We also used Spearman's correlation coefficient, which 
allows us to identify a monotonic connection between the 
variables, whether linear or not. This technique studies the 
relationship between the ranks of 2 variables. In other words, we 
do not use the values of the observations in the calculations but 
we use their ranks. To calculate the Spearman coefficient of X 
and Y we can use the equation (1) replacing X by rankX and Y by 
rankY. If X = (10;13;12;22;25;1), rankX = (5;3;4;2;1;6) 

This coefficient can also be given by the following equation. 

 
 𝜌(𝑋,𝑌) =1   ̶ 

6 ∑ di
2n

i=1
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Where n is the number of observations and di is the 
difference between the rankXi and rankYi. 

3) Correlation conditions 
 We have found that there are several correlated variables. 
We subsequently considered that two variables (for example X 
and Y) are highly correlated if they follow the next condition. 

 (r(X,Y)>0.75  AND  ρ(X,Y)>0.8) (3) 

 For the rest of our study, we choose only one variable among 
a correlated set. And to properly choose the variables to keep, 
we computed and compared the amounts of information 
contained in the variables using Shannon's entropy [7]. 

B. Features selection 

1) Shannon Entropy 
 It is a mathematical function that can measure the amount of 
information in a signal. Indeed, the larger the entropy of a signal, 
the more it contains non-redundant information [7]. The entropy 
value for each variables is given by the following equation (4). 

 
H(X)=  ̶ ∑ Pi log
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X being a signal of m individuals, containing n different 
symbols with (n < m). Pi is the probability of the appearance of 

each symbol i with (i  n). 

 For example X= (a;b;a;c;a;b;d), so m=7, n=4 and 

 P= (
3

7
;

2

7
;

1

7
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7
),. then H(X)=1.8424 

Before applying this function, the data have to been 
normalized. The normalization of each variable vector is 
calculated by equation (5). We call Xnorm the normalization 
vector of X.  



 

 

 
Xnorm=

X  min(X)

max(X)  min(X)
 (5) 

For each variable, the maximum value takes 1 and the 
minimum value takes 0. We keep only 4 decimals for Xnorm. 

When we have a correlated set of variables, we take only the 
one that has the greatest entropy. 

2) Result of the study of the correlation 
 This followed methodology allowed us to reduce the number 
of variables to study to 18 non-correlated or weakly correlated 
input variables. We can find the list of selected variables and a 
brief description of each one in Table 1. 

TABLE I.  SELECTED VARIABLES 

Variable name Description Unit 

Soc_init 
State of charge at the 

beginning of driving cycle 
% 

Max charge current 
Maximum current in recovery 

energy phase 
A 

Average charge 

Power 
Average recuperated power W 

Average decel Average deceleration m.s-2 

Qperkm Charge quantity per km Ah/km 

Qchar Recuperated charge Ah 

Dist Distance km 

Q disch Consumed charge Ah 

Average speed Average speed km/h 

Max speed Maximum speed km/h 

Max discharge 

current 
Maximum discharge current A 

Effective current Effective current A 

Average discharge 

power 

Average power when 

discharging 
W 

Relative positive 

acceleration 

Relative Positive Acceleration 

(RPA) 
m.s-2 

Average acceleration Average acceleration m.s-2 

Positive kinetic 

energy 

Positive acceleration Kinetic 

Energy (PKE) 
m.s-2 

Q auxiliaries 
Charge consumed by 

auxiliaries 
Ah 

Ambient temperature Ambient temperature °C 

 

 PKE and RPA are parameters related to the eco-driving and 
that can also be related to the aggressiveness of driving [8], [9]. 

 All of these variables summarize the electrical parameters of 
batteries, how and under which conditions they are used. 
Nevertheless, this number of variables is still very large to make 
a good classification able to determine the modes of use.  

 To deal with this problem, we used the Laplacian score for 
feature selection technique which allows to select the most 
significant variables. 

 

3) Laplacian score for feature selection 

a) Definition and algorithm 

 Overall feature selection methods, we can distinguish two 
main categories. The “wrapper” methods and “filter” methods. 
The wrapper techniques evaluate the features using the learning 
algorithm that will ultimately be employed. Most of the feature 
selection methods are wrapper methods. Algorithms based on 
the filter model examine intrinsic properties of the data to 
evaluate the features prior to the learning tasks. The filter based 
approaches almost always rely on the class labels, most 
commonly assessing correlations between features and the class 
label [10]. 

The Laplacian score (LS) is an unsupervised method of 
selecting significant variables based on the Laplacian 
Eigenmaps and Locality Preserving Projection. For a set of 
variables, we measure and compare the LS for each variables 
and the variables with the highest scores are the most significant.  

 The application of this method to our variables gave us the 
results shown in the Fig. 1. This technique is well described in 
the literature [10], [11]. 

b) Results 

 

Figure 1 : Laplacian score for each variable 

The application of the Laplacian Score method cannot help 
us reduce the number of variables because as shown in the Fig. 1 
we have obtained high and very close scores for all the variables. 
We have also compared the Laplacian scores results with those 
obtained by the Infinite feature selection technique [12]. The 
conclusion is the same; all the scores are very close. When all 
the variables have high scores, we cannot eliminate anyone of 
them for the risk of losing information. We then decided to work 
on the 18 variables together, considering them as the most 
significant variables. 

IV. DIMENSION REDUCTION 

Since the number of variables is still high, we applied the 
principal component analysis (PCA) method in order to reduce 
the dimensions by projecting the variables on the PCA axes. 



 

 

A. Definitions 

 Principal component analysis is a fundamental method in 
multidimensional descriptive statistics. It allows simultaneous 
processing of any number of variables. The aim of the PCA is to 
project data on a small space dimension by distorting the reality 
as little as possible [13]. 

 The PCA projects data on orthogonal axes that means it is a 
transformation of variables that can be correlated, to new 
uncorrelated variables. This process not only reduces the 
number of variables but also makes the information less 
redundant. 

 The choice of the number of components is a very important 
step in PCA. It depends mainly on the quality of the projection 
of the observations and the variables, on PCA axes. 

B. Choice of components number 

 To choose the right number of components to keep, there are 
several adapted practices. We mention here the elbow criterion 
(break of slope) and the Kaiser[14] law that allow to keep only 
the axes that have an inertia higher or equal to the average 
inertia.[15] 

 The Fig. 2 shows the inertia for each principal component. 

 

Figure 2: Inertia for each principal component 

 In our case, following the two criteria mentioned above, we 
can choose 4 axes of the PCA that explaining 80% of the total 
inertia (sum of inertia of the 4 axes). However, it is still 
necessary to check if at only 4 axes, the quality of the projection 
of the variables is acceptable.  The quality of variables projection 
is calculated as follows [6], [16]: 

 
QV

n
= ∑ 𝑐𝑜𝑟𝑟2(V,Axi

n
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 Where QVn is the projection quality of the variable “V” on n 
PCA axes. corr2 is the square of the Pearson correlation. V is the 
data vector of the variable called “V”. Axi is the data vector of 
the ith PCA axe. 

 The Table II illustrates the variables projection quality in 
relation to the number of principal components. The red color is 
for bad quality and the green color is for a good projection 
quality. 

TABLE II.  NUMBER OF COMPONENTS EFFECT ON THE QUALITY OF 

VARIABLES PROJECTION 

 Number of axes 

 1 2 3 4 5 6 7 

Initial SoC 1% 1% 1% 95% 95% 99% 99% 

Max charge current 43% 51% 53% 53% 68% 75% 77% 

Average charge Power 47% 66% 69% 70% 70% 75% 75% 

Average decel 0% 84% 84% 84% 87% 94% 94% 

Qperkm 1% 3% 74% 74% 78% 80% 89% 

Qchar 52% 52% 60% 60% 76% 84% 90% 

Distance 61% 86% 86% 88% 88% 94% 94% 

Q disch 68% 87% 88% 90% 91% 97% 97% 

Average speed 74% 79% 81% 81% 96% 96% 97% 

Max speed 85% 86% 87% 88% 88% 89% 89% 

Max discharge current 66% 68% 73% 75% 81% 83% 83% 

Effective current 81% 92% 94% 94% 95% 96% 97% 

Average discharge power 80% 83% 85% 85% 94% 94% 97% 

Relative Positive Acceleration 41% 91% 92% 92% 96% 96% 96% 

Average acceleration 0% 88% 88% 89% 89% 94% 94% 

Positive Kinetic Energy 9% 79% 82% 83% 92% 92% 92% 

Q  auxiliaries 17% 25% 75% 76% 77% 81% 83% 

Ambient temperature 1% 1% 57% 59% 67% 67% 99% 

  

 The Kaiser and elbow criterion recommend the choice of 4 
principal components for dimension reduction. However, 
according to Table II, there are some variables that are not well 
projected. Therefore, to ensure that all the variables are well 
projected on the axes of the PCA, we chose to keep 7 principal 
components from 18 (number of variables). The projection 
quality of all the variables is greater than 75%. 

 This approach has allowed us to reduce the dimensions and 
eliminate redundancies which will lead to a better identification 
of the operating modes. 

V. IDENTIFICATION OF THE DRIVING CYCLES MODES 

This part focuses on the running modes identification. 

 In fact, we have several thousands of different driving 
cycles, we call it also runs. We are interested in identifying the 
similarities and non-similarities between these runs. We seek to 
obtain, later, several sets of driving cycles. Each set contains a 
large number of runs that are very similar and at the same time 
are very different from another set of runs. So we have tested 
some classification techniques. 

A. Unsupervised Classification techniques 

The classification methods can be divided into two main 
families: 

- supervised classification where we have already classified 
elements and where we are interested in adding new elements, 

-unsupervised classification where we do not have prior 
knowledge of classes. 

 In our case, we need an unsupervised classification method 
to identify VE usage patterns. 

 Unsupervised Classification is a data-processing technique 
that seeks to classify a data set by minimizing intra-class 
distance and maximizing the inter-class distance as much as 
possible. There are many distance measurement techniques [17] 
like Manhattan distance and Euclidian distance. In this part, we 
used the squared Euclidian distance. 



 

 

 There are several methods of unsupervised classification 
(called also clustering methods), the most well-known ones are 
the hierarchical ascending classification (HAC) and the k-means 
[6]. 

1) Hierarchical Ascending Classification (HAC) 
 The HAC regroups iteratively the individuals by aggregating 
2 by 2, the closest elements that allows to build progressively a 
dendrogram (tree diagram) that regroups at the end all the 
individuals in a single class. In Fig. 3, we present an example 
that illustrates the algorithm of the HAC. The algorithm starts 
with regrouping the observations Ob1 and Ob2 because they are 
the closest elements. Then we regroup Ob3 and Ob4. The end of 
calculation is reached when all the observations are regrouped 
in a single group. 

 
Figure 3: Example of HAC 

2) K-means 
The k-means method consists in grouping the observations 

in k groups so that the intra-class distances are minimal and the 
inter-class distances are maximum. The k-means algorithm 
operates as follows: 

 After initializing k points (randomly or not) and considering 
them as centroids, the algorithm distributes the points 
(observations) in the k classes thus formed according to their 
proximity to the centroid. Then the algorithm calculates the 
classes centroids (centers of gravities) and considers them as 
new centroids. Then, the algorithm repeats these 2 steps until 
there is no change. The Fig. 4 illustrates how the k-means 
algorithm works. 

 

Figure 4: k-means algorithm illustration 

The Fig. 4(a) shows the initialization of the centroids, at the 
beginning the points are in blue to say that they do not belong 
yet to any class. The Fig. 4 (b and c) show how the point be 
classed among the 2 classes (grey and orange). Fig. 4 (d and e) 
present the step of centroids recalculations. Fig. 4 (f and g) 
represent another iteration of the previous steps. Finally, Fig. 4 
(h) shows the final result of this classification. 

B. Driving cycles classification 

To classify our runs, we chose the k-means method since it 
is faster and at the opposite of HAC technique, it performs a 
calculation update of the classes centers after each new 
assignment to follow the evolution of its content. In HAC, if two 
individuals are placed in different classes, they are never 
compared again.  

 Our results revealed that to properly classify our runs with a 
minimum of classes, we must keep 5 classes. With only 5 
classes, we can explain about 60% of the variance (to explain 
100% of the variance, the number of classes must be equal to the 
number of runs: nearly 8000). 

 The proportion of the explained variance: R² is given by the 
following equation (7): 

 
R2=
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I
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 Where I is the total inertia, IB is the inter-class inertia and IW 
is the intra-class inertia: 
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 Where k is the number of classes, Ci is the center of class i, 
C is the center of gravity of all runs, n is the number of runs, mi 
is the number of runs belonging to class i and lji is the driving 
cycles number j belonging to class i. 

C. Obtained results 

The driving cycles classification into 5 different operating 
modes gave the results below. 

In the Fig. 5, we present the different classes obtained in a 
reduced dimension (on only 2 axes of the PCA). The data here 
are centered and reduced. This figure shows that we have a good 
classification that separates well the different runs. 

 

Figure 5: Representation of the classification result on the first two principal 
components 

After the driving cycles classification in 5 parts, we 
considered that a mode of operation is the average of the runs 
belonging to the same class. 



 

 

 To understand the differences between the different 
operation modes, we have represented them in Fig. 6. 

 

Figure 6: Characteristics of each running mode 

 Fig. 6 shows the difference between the operation modes 
according to the 18 variables chosen previously. 

 To fully understand Fig. 6, we note that we have proceeded 
to a data normalization so that for each variable the data is 
between 0% and 100%. 0% being the minimum value and 100% 
is the maximum value of all the recorded runs. 

According to variables distance, average speed and max 
speed, we can see that modes 1 and 2 represent urban drive 
cycles and modes 4 and 5 are driving cycles that include 
highway parts. In addition, according to variables RPA, Average 
acceleration, average deceleration and PKE, we can see that 
mode 4 describes a more aggressive behavior compared to mode 
5 and similarly for mode 2 compared to mode 1. This may also 
be related to the traffic density. 

 We can also notice that, for Qperkm and ambient 
temperature variables, all the modes have almost the same 
coordinates. This means that the obtained operating modes do 
not depend or depend very little on these variables. 

This methodology allowed us to obtain several driving 
cycles classes that depend on different variables. In a next step, 
we will study the effect of these driving modes on batteries 
aging. 

VI. CONCLUSION 

 The present work starts from real-life recording of the 
batteries solicitation to determine the different operating modes 
of the batteries in automotive application. The database, which 
is constructed from about 2 years of data recording of 10 EV, 
initially contains more than 140 parameters with potential 
impact on the batteries. By using several selection tools based 
on correlation coefficients of Pearson and Spearman and 
Shannon entropy, we decrease the number of parameters to 18. 
Laplacian Score method cannot manage to reduce anymore this 
number which attests the difficulty to easily characterize a mode 
of use of EVs.  For a better quality of classification, we used the 
PCA technique which made it possible to reduce the dimension 
and to eliminate the redundancies. A K-means analysis enabled 
us to find 5 different modes of use. Each mode is defined by the 
value of 18 parameters previously identified. The tools 

developed in this work will allow to study the potential links 
between the batteries aging rate and the identified modes of use. 
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