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GROMOV-WITTEN THEORY WITH DERIVED ALGEBRAIC

GEOMETRY

ETIENNE MANN AND MARCO ROBALO

Abstract. In this survey we add two new results that are not in our paper [MR15].

Using the idea of brane actions discovered by Toën, we construct a lax associative

action of the operad of stable curves of genus zero on a smooth variety X seen as an

object in correspondences in derived stacks. This action encodes the Gromov-Witten

theory of X in purely geometrical terms.
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1. Introduction

This paper is a survey1 of [MR15]. We explain without technical details the ideas of

[MR15] where we use derived algebraic geometry to redefine Gromov-Witten invariants

and highlight the hidden operad picture.

Gromov-Witten invariants were introduced by Kontsevich and Manin in algebraic ge-

ometry in [KM94, Kon95]. The foundations were then completed by Behrend, Fantechi

and Manin in [BM96a], [BF97] and [Beh97]. In symplectic geometry, the definition is

due to Y. Ruan and G. Tian in [RT94], [Rua96] and [RT97]. Mathematicians developed

several techniques to compute them: via a localization formula proved by Graber and

Pandharipande in [GP99], via a degeneration formula proved by J. Li in [Li02] and

another one called quantum Lefschetz proved by Coates-Givental [CG07] and Tseng

[Tse10].

These invariants can be encoded using different mathematical structures: quantum

products, cohomological field theories (Kontsevich-Manin in [KM94]), Frobenius man-

ifolds (Dubrovin in [Dub96]), Lagrangian cones and Quantum D-modules (Givental

[Giv04]), variations of non-commutative Hodge structures (Iritani [Iri09] and Kont-

sevich, Katzarkov and Pantev in [KKP08]) and so on, and used to express different

aspects of mirror symmetry. Another important aspect of the theory concerns the study

of the functoriality of Gromov-Witten invariants via crepant resolutions or flop tran-

sitions in terms of these structures (see [Rua06], [Per07], [CIT09], [CCIT09], [BG09],

[Iri10], [BCR13], [BC14], [CIJ14], etc).

We first recall the classical construction of these invariants. Let X be a smooth pro-

jective variety (or orbifold). The basic ingredient to define GW-invariants is the moduli

stack of stable maps to X, denoted by Mg,n(X, β), with a fixed degree β ∈ H2(X,Z) 2.

The evaluation at the marked points gives maps of stacks evi : Mg,n(X, β) → X and

forgetting the morphism and stabilising the curve gives a map p : Mg,n(X, β) → Mg,n

(See Remark 2.1.3).

To construct the invariants, we integrate over “the fundamental class” of the moduli

stack Mg,n(X, β). For this integration to be possible, we need this moduli stack to be

proper, which was proved by Behrend-Manin [BM96a] and some form of smoothness.

In general, the stack Mg,n(X, β) is not smooth and has many components with different

1We add two new results Theorem 5.3.11 and 5.4.2
2The (co)homology in this paper are the singular ones.
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dimensions. Nevertheless and thanks to a theorem of Kontsevich [Kon95], it is quasi-

smooth - in the sense that locally it looks like the intersection of two smooth sub-

schemes inside an ambient smooth scheme. In genus zero however this stack is known

to be smooth under some assumptions on the geometry of X, for instance, when X is

the projective space or a Grassmaniann, or more generally when X is convex, i.e., if

for any map f : P1 → X, the group H1(P1, f ∗(TX)) vanishes. See [FP97].

This quasi-smoothness has been used by Behrend-Fantechi to define in [BF97] a

“virtual fundamental class”, denoted by [Mg,n(X, β)]vir, which is a cycle in the Chow

ring of Mg,n(X, β) that plays the role of the usual fundamental class.

One of the most important result of Gromov-Witten invariants is that they form a

cohomological field theory, that is, there exist a family of morphisms

IXg,n,β : H∗(X)⊗n → H∗(Mg,n)(1.0.1)

(α1 ⊗ . . .⊗ αn) 7→ Stb∗

([
Mg,n(X, β)

]vir
∪ (∪iev

∗
i (αi))

)

that satisfy some properties. Another formulation of this result is that we have a mor-

phism of operads between
(
H∗(Mg,n)

)
n∈N

and the endomorphism operad End(H∗(X))

(see Corollary 2.2.5). Yet a more concise way to explain this, is to say that H∗(X)

owns a structure of algebra over the operads H∗(Mg,n).

The main result of [MR15] is that it is possible to remove (co)homology from the

previous statement. The main result of [MR15] is the following

Theorem 1.0.2 (See Theorem 3.1.2). Let X be a smooth projective variety.

The diagrams

∐
β RM0,n+1(X, β)

p,e1,...,en

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧
p,en+1

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

M0,n+1 ×Xn M0,n+1 ×X

give a family of morphisms

ϕn : M0,n+1 → Endcor(X)[n] := Homcor(Xn, X)

that forms a lax morphism of ∞-operads in the category of derived stacks.

We restrict our work to genus 0 because we lack fundamental aspects for ∞-modular

operads.

In this survey we omit the technical details and we insist on the ideas behind the the-

orem. Nevertheless, we add some new statements with respect to [MR15] as Theorem

5.3.11 and Theorem 5.4.2 with the proofs given in the appendices.

Acknowledgements: We want to thank Bertrand Toën for the organisation of the

État de la Recherche and also for some ideas to prove Theorem 5.3.11. The first author

thanks Daniel Naie who explains how to make these figures.
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2. Moduli space of stable maps, cohomological field theory and

operads

In this section, we recall some notions and ideas related to Gromov-Witten theory.

Most of them are in the book of Cox-Katz [CK99]. The mathematical story started

with the paper of Kontsevich [Kon95] (see also Kontsevich-Manin [KM96]) and was

followed by many more and interesting questions that we will skip here.

2.1. Moduli space of stable maps. Let X be a smooth projective variety over C.

Let β ∈ H2(X,Z). Let g, n ∈ N. Denote by (Aff − sch) the category of affine scheme

and by (Grps) the category of groupoids. We define the moduli space of stable maps

by the following functor:

Mg,n(X, β) : (Aff − sch)op −→(Grps)

where Mg,n(X, β)(S) is the following groupoids. Objects are flat proper morphisms

π : C → S together with n-sections σi : S → C and a morphism f : C → X such that

for any geometric point s ∈ S, we have

(1) the fiber Cs is a connected nodal curve of genus g with n distinct marked points

which live on the smooth locus of Cs.

(2) fs : Cs → X is of degree β, meaning f∗[Cs] = β.

(3) the automorphism group of Aut(C, σ, f) is finite where we denote σ = (σ1, . . . , σn).

This condition is called stability condition.

For any affine scheme S, the morphism in the groupoid Mg,n(X, β)(S) ar the isomor-

phisms ϕ : C → C′ such that the following diagram is commutative:

C

π

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

ϕ

∼
//

f

��❄
❄❄

❄❄
❄❄

C′

π′

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍f ′

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X

S

σi

NN

σ′
i

PP

Let ϕ : S → S ′ be a morphism of affine schemes. Let (C → S, σ, f) be an object

in Mg,n(X, β)(S), then the pullback family defined by the diagram below satisfies the

three conditions above that is it is in Mg,n(X, β)(S ′)

C′ ×S′ S

��

ϕ̃
//

ϕ̃◦f ′

$$❍
❍❍

❍❍
❍❍

❍❍
C′

π′

��

f ′

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

X

S

ϕ∗σ′
i

EE

ϕ
// S ′

σ′
i

YY
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Notice that the condition (1), (2) a,d (3) are stable by pull-back.

Remark 2.1.1. Let explain the stability condition (3) in more concrete terms (See [CK99,

§7.1.1 p. 169]). Denote by Cs,i the irreducible components of Cs and by fs,i : Cs,i → X

the restrictions of the morphism. Denote by βi = (fs,i)∗[Cs,i] ∈ H2(X,Z) the degree

of fs on each irreducible component Cs,i. On the irreducible component Cs,i, a point

is called special if it is a nodal point or a marked point. The stability condition (3) is

equivalent to the following condition on each irreducible component : if βi = 0 and the

genus of Cs,i is 0 (resp. 1) then Cs,i should have at least 3 (resp. 1) special points. So

for example if βi 6= 0 or the genus is greater than 2 there is no condition on Cs,i.

In this text, we will never use the coarse moduli space of Mg,n(X, β), so all the

morphisms that we will use are morphisms of stacks.

Example 2.1.2. Let us give an example in genus 0 (see Figure 1). Consider the following

stable map in M0,5(X, β). All the Ci are isomorphic to P1. The stability condition on

this stable map imposes only that β2 6= 0 because C2 has only 2 special points.

C1, β1

C2, β2 6= 0

C3, β3

f
X

x1

x2

x3

x4

x5

Figure 1. Example of a stable map

In particular, the moduli space of stable curve, denoted by Mg,n is Mg,n(pt, β = 0).

Notice that for (g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)} the moduli space Mg,n is empty.

Remark 2.1.3. There are two kinds of natural morphisms of stacks from the moduli

space of stable maps.

(1) For any i ∈ {1, . . . , n}, the evaluation morphism ei : Mg,n(X, β) → X is the eval-

uation at the i-th marked point i.e., it sends the geometric point (C, x1, . . . , xn, f)

to f(xi).

(2) When Mg,n is not empty, we define the morphism of stacks p : Mg,n(X, β) →

Mg,n that forgets the map and stabilises the curve that is it sends (C, x1, . . . , xn, f)



6 ETIENNE MANN AND MARCO ROBALO

to (CStab, x1, . . . , xn) where CStab is obtained from C by contracting all the un-

stable components (see [Knu83] for the techniques). On the stable map of the

example 2.1.2, forgetting the map f , the irreducible component C2 become un-

stable (because it has only 2 special points). So the image by p is the following

stable curve (see Figure 2).

C1

C3

x1

x2

x3

x4

x5

Figure 2. The stabilisation of the stable maps of Figure 1

Theorem 2.1.4 (Deligne-Mumford [DM69], Kontsevich-Manin [KM96], Behrend-Fan-

techi [BF97]).

(1) The moduli space Mg,n is a proper smooth Deligne-Mumford stack of dimension

3g − 3 + n.

(2) The moduli space Mg,n(X, β) is a proper (not smooth in general) Deligne-Mumford

stack. It has an expected dimension (see remark below for the meaning) which

is ∫

β
c1(TX) + (1 − g) dimX + 3g − 3 + n

(3) There exists a class, denoted by [Mg,n(X, β)]vir, in the Chow ring A∗(Mg,n(X, β))

of degree equal to the expected dimension of Mg,n(X, β) which satisfies some

functorial properties.

Remark 2.1.5. (1) To use standard tools of intersection on the moduli space of sta-

ble maps we need this moduli space to be proper and smooth. The smoothness

would give us the existence of a well-defined fundamental class. Nevertheless,

the moduli space of stable maps Mg,n(X, β), which is not smooth in general,

could have different irreducible components of different dimensions with some

very bad singularities. So the problem is to define an ersatz of a fundamental

class. This was done by Behrend-Fantechi in [BF97] where they defined the

virtual fundamental class (see § 5.6).

(2) In some very specific case the moduli space of maps is smooth : for example

only in genus 0 for homogeneous variety like Pn, grassmannian or flag varieties.

In these cases, the virtual dimension is the actual dimension and the virtual

fundamental class is the fundamental class.
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(3) The computation of the expected dimension comes from deformation theory.

Namely, a deformation of a stable maps turns to be a deformation of the under-

lying curve plus a deformation of the map. As Mg,n is smooth, the deformation

functor of the curve has no obstruction and the tangent space has the dimension

of Mg,n which is 3g−3+n. For the maps, the deformation functor has a non zero

obstruction. More precisely, at a point (C, x, f) ∈ Mg,n(X, β), the tangent space

is H0(C, f ∗TX) and an obstruction is H1(C, f ∗TX). Making this in family, one

gets two quasi coherent sheaves that are not vector bundles. Nevertheless the

Euler characteristic can be computed via the Hirzebruch-Riemann-Roch theo-

rem:

χ(C, f ∗TX) = dimH0(C, f ∗TX) − dimH1(C, f ∗TX) =
∫

C
Td(TC) ch(f ∗TX)

is constant and equals to
∫
β c1(TX) + (1 − g) dimX.

We will now introduce another moduli space which was introduce by Costello [Cos06]

and which will play a crucial role latter. Let NE(X) be the subset of H2(X,Z) of classes

given by the image of a curve i.e. the subset of all f∗[C] for any morphism f : C → X.

Let define Mg,nβ as the moduli space of nodal curve of genus g with n marked smooth

points where each irreducible component Ci has a labelled βi (notice that this βi is not

the degree of a map because there is no map from C → X, it is just a labbeled. At

the end of the day, it will be related to the degree of a map but not here) such that

•
∑
i βi = β

• if βi = 0 then Ci is stable i.e., if Ci is of genus 0 then it has at least 3 special

points and if the genus is 1 then it has at least 1 special point.

We have a natural morphism of stacks p : Mg,n+1,β → Mg,n,β which forgets the

(n+ 1) − th marked point and contracts the irreducible components that are not stable.

Theorem 2.1.6 ([Cos06]). (1) The stack Mg,n,β is a smooth Artin stack.

(2) The morphism p : Mg,n+1,β → Mg,n,β is the universal curve.

Remark 2.1.7. (1) Notice that forgetting the last marked point and contracting

the unstable component gives a morphism Mg,n+1 → Mg,n which is also the

universal curve (See [Knu83]).

(2) The Artin stack of prestable3 curves, denoted by M
pre
g,n also have a universal

curve which is not M
pre
g,n+1. As there is no stability condition on the moduli

space of prestable curves, forgetting a marked point never contract a rational

curve. So forgetting a marked point M
pre
g,n+1 → M

pre
g,n is not the universal curve.

Let us explain the meaning of being an universal curve of Mg,n,β. Let C be a curve

of genus g with 4 marked points with a label β. This is equivalent by definition to

3where we do not ask any stability condition on irreducible components see [CK99, p.179].
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a morphism pt → Mg,4,β. Being a universal curve means that we have the C =

Mg,5,β ×Mg,4,β
pt that is the following diagram

C
ϕ
//

��

Mg,5,β

��
pt // Mg,4,β

is cartesian. Let explain the morphism ϕ. To a smooth point y ∈ C \{x1, . . . , x4}, f(y)

is the curve C where y is now x5. If y = xi, then ϕ(y) is the curve C where we attach

a P1 at xi (let’s say at 0 of this P1) with β = 0 and you marked xi and x5 at 1 and ∞.

If y is a node which is the intersection with Ci and Cj, then we replace the node by a

P1 with degree 0 which meet Ci at 0, Cj at ∞ and we marked the point 1 by x5 on

this P1.

Here is a picture that we hope makes this clearer (see Figure 3). Forgetting the last

point makes the component (P1, β = 0) unstable so one should contract it and we get

back C.

x1

x2

x3

x4 y

y

C, β
f

Mg,5,β

f(y) =

x1

x2

x3

x4

y = x5

if y is not a marked point

f(y) =
x1

x2

x3

x4 y = x5

C, β

P1, β = 0

if y is the marked point x4

Figure 3. Universal curve
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2.2. Gromov-Witten classes and cohomological field theory. We first define

the Gromov-Witten classes. Let α1, . . . , αn ∈ H∗(X). Let β ∈ H2(X,Z). We define

the following morphism

ϕg,n,β : H∗(X) × · · · ×H∗(X) −→ H∗(Mg,n)

(α1, . . . , αn) 7−→ p∗

(
n∏

i=1

e∗
iαi ∩ [Mg,n(X, β)]vir

)

Theorem 2.2.1 (Kontsevich-Manin [KM96]). All these maps {ϕg,n,β}g,n∈N,β∈H2(X,Z)

together form a cohomological field theory.

Remark 2.2.2. (1) We refer to [KM96] for a complete definition of a cohomological

field theory.

(2) Unwindy the definition, is the so-called splitting property. Let g1, g2, n1, n2 ∈ N.

Denote by g = g1 +g2 and n = n1 +n2. Consider the gluing morphism of stacks

g : Mg1,n1+1 × Mg2,n2+1 → Mg,n(2.2.3)

(C1, C2) 7−→ C1 ◦ C2

that identifies the n2 + 1-th marked point of C2 with the first marked point

of C1. Notice that the gluing morphism above is given by the pushout. More

precisely, let (C1 → S, σ) in Mg1,n1+1(S) and (C2 → S, σ) in Mg2,n2+1(S) then

C1 ◦ C2 is the pushout4 C1
∐
S C2 given by the two closed immersion given by

the marking σ1 : S → C1 and σn2+1 : S → C2.

This corresponds to the following picture

C1
x4

x3

x2
x1

C2

x3

x2

x1

g

x5

x4

x3

x2

x1

C1 ◦ C2

Figure 4. Gluing curves: the output of C2, that is x3, with the first

input of C1

4Notice that pushouts do not exist for any morphisms of schemes in the category of schemes but

pushout along closed immersion does exist.
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The splitting formula is the following

g∗ϕg,n,β(α1, . . . , αn) =
∑

g1+g2=g

β1+β2=β

s∑

a=0

ϕg1,n1+1,β1(α1, . . . , αn1 , Ta)ϕg2,n2+1,β2(T
a, αn1+1, . . . , αn)

(2.2.4)

where (Ta)a∈{0,...,s} is a basis of H∗(X) and (T a) is its Poincaré dual basis.

Beyond this formula, the idea is that we can control the behaviour of the virtual

fondamental class when we glue curves. We will see this again later.

Restricting to genus 0, we can reformulate this equality (2.2.4) by the following

statement.

Corollary 2.2.5. We have a morphism of operads in vector spaces

ψn,β : H∗(M0,n+1) → End(H∗(X))[n] := Hom(H∗(X)⊗n, H∗(X))

given by

ψ0,n,β(γ)(α1, . . . , αn) = (en+1)∗

(
p∗γ ∪

n∏

i=1

e∗
iαi ∩ [M0,n(X, β)]vir

)

Another way of expressing exactly the same statement is to say that the cohomology

H∗(X) is an {H∗(M0,n+1)}n≥2-algebra. The goal of this survey is to explain how to

remove the (co)homology from this corollary and doing this at the geometrical level.

2.3. Reviewed on operads. We add this section for completeness as operads are not

so well known to algebraic geometer5.

An operad is the following data :

(1) A family of objects in a category (vector spaces, schemes or Deligne-Mumford

stacks) O(n) for all n ∈ N. The example that one should have in mind for this

note is O(n) = M0,n+1. We should think that O(n) as a collection of operations,

each with n inputs and one output. In the case of M0,n+1, the marked points

x1, . . . , xn can be thought as the inputs and the last marked points, xn+1, is

thought as the output.

(2) A collection of operations: putting the output of O(b) with the i-th input of

O(a). Let a, b ∈ N, for any i ∈ {1, . . . , a}, we have

◦i : O(a) × O(b) → O(a + b− 1)(2.3.1)

satisfying some relations like associativity of the compositions.

Example 2.3.2. We give three examples of operads that we will use in the next sections.

5The first author did not know this notion before the working seminar in Montpellier where these

ideas were first discussed.
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(1) The example O(n) = M0,n+1 is an operads in DM stacks where the composition

C1 ◦i C2 is obtained by gluing the last marked point of C2 to the i-th marked

point of C1 (see (2.2.3) and Figure 4 for an example of ◦1 with stable curves).

Notice that here O(0) and O(1) are empty. A standard way of completing this

is to put O(0) = O(1) = pt so that O(1) is the unit.

(2) Another example of operads that we will use is Oβ(n) = M0,n+1,β. This is a

graded operad that is in the composition (2.3.1), we sum the grading :

◦i : Oβ(a) × Oβ′(b) → Oβ+β′(a+ b− 1)

The composition morphism for this operad is by gluing the curves as in the

previous example.

(3) Let V a vector space. Put O(n) = End(V )[n] := Hom(V × · · · × V, V ). This is

called the endomorphism operad in vector spaces. The composition is given by

(f ◦i g)(v1, . . . , va+b−1) = f(v1, . . . , vi−1, g(vi, . . . , vi+b−1), vi+b . . . , va+b−1)

Let O := {O(n)}n∈N and E := {E(n)}n∈N be two operads. A morphism of operads

from f : O → E is a family of morphism fn : O(n) → E(n) such that the following

diagram is commutative

O(a) × O(b)
fa,fb //

◦i

��

E(a) × E(b)

◦i

��
O(a + b− 1)

fa+b−1// E(a+ b− 1)

(2.3.3)

3. Lax algebra structure on X

In Corollary 2.2.5, we have a collection of morphisms H∗(M0,n+1) → End(H∗(X))[n]

that form a morphism of operads. The idea is to remove the (co)homology from this

statement, that is, to construct in a purely geometrical way, a collection morphisms

M0,n+1 → End(X)[n] in an appropriate category and then to see if these morphisms

form a morphism of operads. The correct category is the (∞, 1)-category of derived

stacks and the morphism is only a lax morphism of ∞-operads (see Theorem 3.1.2).

3.1. Main result. Denote by RM0,n+1(X, β) the derived enhancement of M0,n+1(X, β)

(see subsection 3.3). From the two natural morphisms of Remark 2.1.3, we get the

following diagram

∐
β RM0,n+1(X, β)

p,e1,...,en

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧
p,en+1

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

M0,n+1 ×Xn M0,n+1 ×X

(3.1.1)

We prefer to state our theorem and then give explanations about it.
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Theorem 3.1.2. Let X be a smooth projective variety. The diagram (3.1.1) give a

family of morphisms

ϕn : M0,n+1 → Endcor(X)[n] := Homcor(Xn, X)

that forms a lax morphism of ∞-operads in the category of derived stacks.

Remark 3.1.3. In more conceptual terms, X is lax {M0,n+1}n-algebra in the category

of correspondence in derived stack.

In the next sections, we will explain the contents of this theorem, namely

• In §3.2, we define the notion of correspondances in a cateogry.

• In §3.3, we define the natural derived enhancement of the moduli space of stable

maps Mg,n(X, β) and in 3.3.2, we explain the underlying notation Homcor(Xn, X).

• In §3.4, we explain what is a lax morphism between ∞-operads.

• Th notion of ∞-operads is a bit delicat and it is explain in In §4.1.1.

3.2. Category of correspondances. Let dStC be the ∞-category of derived stacks.

We denote dStcor
C

the (∞, 2)-category of correspondences in derived stack which is

defined informally as follows (See §10 in [DK12]). To have a formal definition, we refer

to the notion of span in the website nLab.

(1) Object of dStcor
C

are objects of dStC.

(2) The 1-morphism of dStcor
C

between X and Y , denoted by X 99K Y , is a diagram

U
g

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ f

��❅
❅❅

❅❅
❅❅

❅

X Y

There is no condition on f or g. The composition is given by fiber product

U ×Y V

$$❍
❍❍

❍❍
❍❍

❍❍

{{✈✈
✈✈
✈✈
✈✈
✈

U

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

$$❍
❍❍

❍❍
❍❍

❍❍
❍ V

��❅
❅❅

❅❅
❅❅

❅

zz✈✈
✈✈
✈✈
✈✈
✈✈

X Y Z

Notice that a morphism from X to Y is also a morphism from Y to X but the

composition is not the identity which is

X
id

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ id

  ❆
❆❆

❆❆
❆❆

❆

X X

Hence a morphism of scheme f : X → Y induces a morphism X 99K Y in

correspondances given by idX : X → X and f : X → Y . This morphism
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X 99K Y is an isomorphism if and only if we have X = X ×Y X i.e., f is a

monomorphism.

(3) The 2-morphisms are not necessarily isomorphisms, they are α : U → V that

make the diagram commutative.

U

α

��

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

��❅
❅❅

❅❅
❅❅

❅

X Y

V

??⑦⑦⑦⑦⑦⑦⑦⑦

``❅❅❅❅❅❅❅❅

The diagram

RM0,n+1(X, β)
e1,...,en

xxqqq
qq
qq
qq
qq en+1

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

Xn X

(3.2.1)

is by definition a morphism in dStcor
C

between Xn
99K X. Notice that the object that

makes the correspondence is a derived stack so we need to be in the category of dStcor
C

and not in the category of correspondence in schemes (or Deligne-Mumford stacks).

3.3. Derived enhancement.

3.3.1. Derived enhancement of RM0,n+1(X, β). Here we follow the idea of Schürg-Toën-

Vezzosi [STV15] with a small modification. Let g, n ∈ N and β ∈ H2(X, β). Recall

the definition of Mg,n,β the moduli space defined before Theorem 2.1.6. We denote the

relative internal hom in derived stacks by

RHomdstk/Mg,n,β
(Mg,n+1,β, X × Mg,n,β)(3.3.1)

As Mg,n+1,β → Mg,n,β is the universal curve, a point in RHomdstk/Mg,n,β
(Mg,n+1,β, X ×

Mg,n,β) is by definition a morphism from f : C → X where [C] ∈ Mg,n,β. Notice that

the degree f is not related for the moment to β. The truncation of (3.3.1) is

Homdstk/Mg,n,β
(Mg,n+1,β, X × Mg,n,β)

and inside it, we have an immersion

Mg,n(X, β) →֒ Homdstk/Mg,n,β
(Mg,n+1,β, X × Mg,n,β)(3.3.2)

given by stable maps (C, σ, f : C → X) such that the degree of f on each irreducible

component Ci of C, the degree of f |Ci
is βi i.e., we have the equality (f |Ci

)∗[Ci] = βi.

This immersion is open because the degree is discrete.

Using the following result of Schur̈g-Toën-Vezzosi, we have
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Proposition 3.3.3 (Proposition 2.1 in [STV15]). Let X be in dStC and an open

immersion of Y →֒ t0(X) where t0(X) is the truncation of X. Then there exists a

unique derived enhancement of Y , denoted by Ŷ , such that the following diagram is

cartesian

Y � �
open/

� _

closed
�

t0(X)
� _

closed
�

Ŷ � �
open

/ X

Taking Y = Mg,n(X, β) and the open immersion (3.3.2), we get a derived enhance-

ment, which we denote by RMg,n(X, β).

Remark 3.3.4. To define the derived enhancement of the moduli space of stable maps

Mg,n(X, β), Schürg-Toën-Vezzosi (see [STV15]) used the moduli space of prestable

curve denoted by M
pre
g,n instead of the moduli space of Costello Mg,n,β in (3.3.1). So

they use the universal curve of Mpre
g,n in (3.3.1) instead of Mg,n+1,β. As we will see in

the proof (see section 4), the fact that Mg,n+1,β is the universal curve is fundamental,

that is the reason why we made this little change.

Notice that their derived enhancement is the same as ours as the morphism Mg,n,β →

Mg,n is étale (See [Cos06]).

3.3.2. Definition of Homcor(Xn, X). The underling notation means the internal hom

Homcor(Xn, X). To be more precise, it is the sheaf

Homcor(Xn, X)(U) := Homcor(Xn × U,X × U)

It turns out that this is a derived stack because Homcor(Xn × U,X × U) is the same

as the category of derived stack over Xn+1 × U .

By Yoneda’s lemma, the morphism ϕn of Theorem 3.1.2 is exactly given by an object

in Homcor(Xn × M0,n+1, X × M0,n+1) which is the diagram (3.1.1).

3.4. Lax morphism. Recall that a classical morphism of operad is a commutative

diagram (2.3.3). A lax morphism is given by a collection of 2-morphisms (αa,b)a,b∈N

which are not an isomorphism.

O(a) × O(b)
(fa,fb)

//

◦i

��

E(a) × E(b)
αa,b

rz ♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

◦i

��
O(a + b− 1)

fa+b−1// E(a+ b− 1)

In the following, we will explain why the Theorem 3.1.2 is lax in geometrical term .

Let σ ∈ M0,a+1 and τ ∈ M0,b+1. Denote by RM
σ

0,a+1(X, β) (resp. RM
τ

0,a+1(X, β) ) the

inverse image of p−1(σ) (resp. p−1(τ)).
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The composition is fa+b−1 ◦ ◦i given by

∐
β RM0,a+b+1(X, β)

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

Xa+b X

(3.4.1)

The second composition morphism ◦1 ◦ (fa, fb) is given by the following fibered

product. Let β ′, β ′′ such that β ′ + β ′′ = β.

∐
β RM

σ

0,a+1(X, β) ×X
∐
β RM

τ

0,b+1(X, β)

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲

ss❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

❣

∐
β RM

σ

0,a+1(X, β) ×Xb

ea+1,idXb

++❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳

e1,...,ea,idXa

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

∐
β RM

τ

0,a+1(X, β)
eb+1

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆e1,...,eb

ss❣❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣

Xa ×Xb X ×Xb X

(3.4.2)

Let fix β. Finally, the 2-morphism α is given by the gluing morphism

α :
∐

β′,β′′

β′+β′′=β

RM
σ

0,a+1(X, β
′) ×X RM

τ

0,b+1(X, β ′′) → RM
σ◦τ

0,a+b+1(X, β)(3.4.3)

Notice that we can glue the stable maps denoted by (C, x1, . . . , xa+1, f) and (C̃, x̃1, . . . , x̃b+1, f̃)

because the fiber product is over X which means that f(xa+1) = f̃(x̃1). This morphism

α is surjective but not injective on points. To see the non injectivity, consider Figure

3.4, then the gluing curves are the same. Notice that by stability condition, we have

β2 6= 0. The two couple of curves (C1 ◦ C2, C3) and (C1, C2 ◦ C3) are in two different

connected components of
∐

β′,β′′

β′+β′′=β

RM
σ

0,a+1(X, β ′) ×X RM
τ

0,b+1(X, β
′′).

4. Proof of our main result

4.1. Brane action. In this section, we explain the main theorem of [Toë13]. This

theorem has a lot of prerequisites (like ∞-operads, unital and coherent operads) that

are too complicated for this survey. We refer to the definition of ∞-operads by Lurie

[Lur14, Definition 2.1.1.8] and to the Definition 3.3.1.4 for the notion of coherent ∞-

operad.

Theorem 4.1.1 (see Theorem [Toë13]). Let O⊗ be an ∞-operad in the ∞-category of

spaces such that

(1) O⊗(0) = O⊗(1) are contractible.

(2) the operad is unital and coherent

Then O(2) is a O⊗-algebra in the ∞-category of co-correspondence.



16 ETIENNE MANN AND MARCO ROBALO

C1, β1

C2, β2

C3, β3

C1, β1

C2, β2

C3, β3

Figure 5. Geometric reason of the lax action

Example 4.1.2. We will illustrate the hypothesis and the conclusion of this theorem for

the operad O(n) := M0,n+1. We choose this example because it is a well-known operad

and it is easier to explain. Notice that to prove (see §4.2.1) our main theorem, we need

to apply to an other operad which is
∐
βM0,n+1,β but the main ideas are the same.

Notice that we set M0,1 = M0,2 := pt (with the usual definition they are empty). By

definition, we impose that O(1) is the unit. For the operad O, the following diagram

is cartesian (See below for an explanation).

O(n) × O(m+ 1)
∐

O(2)×O(n)×O(m) O(n + 1) × O(m) //

q

��

O(n +m)

p

��
O(n) × O(m)

◦ // O(n +m− 1)

This property was called of “configuration type” in [Toë13]. Notice that in the context

of [Lur14, Definition 3.3.1.4], this notion was called “coherent”. As p is flat, we need

to prove that it is a cartesian diagram in the stack category. Let (C1, x1, . . . , xn+1) be

in O(n) and (C2, y1, . . . , ym+1) be in O(m). As O(n+ 1) → O(n) is the universal curve,

we deduce that q−1(C1, C2) = C1
∐

pt C2 which is exactly C1 ◦C2. This implies that the

diagram above is cartesian.

Let us explain now the conclusion of this theorem. Notice that O(2) = M0,3 is a

point. The statement means that we have a morphism of ∞-operad that is a family of
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morphisms

ϕn : O(n) → HomCoCorr(
n∐

i=1

O(2),O(2))

where the morphism (ϕn) are compatible with the composition law. The Hom is the

same meaning that in §3.3.2. The category of co-correspondances is in the same spirit

as correspondance (See §3.2) but with the arrows in the other directions. The morphism

ϕn is given by the following diagram

O(n) ×
∐n
i=1 O(2)

◦ //

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
O(n + 1)

��

O(2) × O(n)
◦′

oo

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

O(n)

(4.1.3)

Let explain this diagram with O(n) = M0,n+1. We have

(1) The morphism O(n + 1) → O(n) is to forget the last marked point.

(2) The map ◦ : O(n) ×
∐n
i=1 O(2) → O(n + 1) is given by the n possible gluings

of the third marked point of O(2) = M0,3 with one of the marked points xi for

i ∈ {1, . . . , n} in O(n).

(3) The ◦′ is the gluing of last marked point xn+1 of O(n) with the third of O(2).

4.2. Sketch of proof of Theorem 3.1.2. In this section, we explain how to apply

Theorem 4.1.1 to get our main theorem.

Here we take O(n) =
∐
β M0,n+1,β. This is an operad in algebraic stack. One can

check that all we said before in the previous section for M0,n+1 works as well for
∐
βM0,n+1,β.

Let X be a smooth projective variety. We apply the functor RHom/M0,n+1,β
(−, X ×

M0,n+1,β) to Theorem 4.1.1. As the source curve of a stable map may not be a stable

curve, we need to use Theorem 4.1.1 with an other operad than M0,n+1. That’s why

we use
∐
β M0,n+1,β. We deduce the following result.

Theorem 4.2.1. The variety X is an M
⊗-algebra in the category of correspondances

in derived stacks. The algebra structure is given by the

RM0,n+1(X, β)

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

Xn × M0,n+1,β X × M0,n+1,β

Remark 4.2.2. To apply Theorem 4.1.1, we need to do several modifications

(1) Notice that in this statement, the action is strong that means that the lax mor-

phisms are equivalences (See §3.4). The geometrical reason is the following. We

can repeat the construction of §3.4 replacing M0,n+1 by M0,n,β. The difference

is that the forgetting morphism q : M0,n+1(X, β) → M0,n+1,β does not contract
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any component of the curve. More precisely, let σ ∈ M0,a+1,β and τ ∈ M0,b+1,β′.

Denote by

RM
σ

0,a+1(X, β
′) = q−1(σ).

Take care that in §3.4, we use RM
σ

0,a+1(X, β ′) = p−1(σ) where p : M0,n+1(X, β) →

M0,n+1. Writing the same kind of diagram as (3.4.2) we get the corresponding

α given by

α̃ : RM
σ

0,a+1(X, β ′) ×X RM
τ

0,b+1(X, β
′′) → RM

σ◦τ

0,a+b+1(X, β)(4.2.3)

which is now an isomorphism because from the glued curve, there is a unique

possibility to cut it with respect to σ and τ .

(2) First, Theorem 4.1.1 apply only to operads in spaces and here we have oper-

ads in derived stacks. This can be done using non-planar rooted trees and

dendroidal sets. More precisely, one can enrich ∞-operads using Segal functor

from the nerve of Ωop to derived stacks. Thanks to the work of [CHH16] and

[HHM13] these two definitions coincide on topological spaces.

(3) Second, the condition O(0) = O(1) = pt is not satisfied by M0,n,β. So we impose

that for any β 6= 0, Mfake
0,1,β = M

fake
0,2,β = ∅ and that M

fake
0,1,0 = M

fake
0,2,0 = pt is with

M
fake
0,2,0 being the neutral element.

(4) An other issue is that M0,n,β is not a coherent operad because the inclusion of

schemes in derived stacks does not commute with pushouts even along closed

immersion. We only have a canonical morphism

θ : C1

dst∐

pt

C2 → C1

sch∐

pt

C2

Nevertheless, most of the proof of Theorem 4.1.1 is still valid and we know that

the functor RHom(−, X) will see θ as an equivalence.

The next step in order to prove Theorem 3.1.2 is to understand the morphism of

operads
∐

β

M0,n+1,β → M0,n+1.

Embedding this morphism in the ∞-operads, it turns out that this morphism is a lax

morphism of operads. This is the reason why the final action in Theorem 3.1.2 is lax.

5. Comparison with other definition

5.1. Quantum product in cohomology and in G0-theory. In this section, we re-

view the definition of the quantum product in cohomology and inG0-theory. Recall that

X is a smooth projective variety. Givental-Lee defined in [Lee04] the Gromov-Witten

invariants in G0-theory. For that they defined a virtual structure sheaf, denoted by

Ovir
Mg,n(X,β)

, on the moduli space of stable maps. Recall the morphism ei : Mg,n(X, β) →
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X are the evaluation morphism at the i-th marked point. For any E1, . . . , En ∈ G0(X),

the Gromov-Witten invariants in G0-theory are

〈E1, . . . , En〉G0
0,n,β := χ

(
n⊗

i=1

e∗
iEi ⊗ Ovir

M0,n(X,β)

)
∈ Z

where χ(.) is the Euler characteristic.

Let NE(X) be the Neron-Severi group of X that is the subset of H2(X,Z) generated

by image of curves in X.

Definition 5.1.1. Let γ1, γ2 ∈ H∗(X). The quantum product in H∗(X) is defined by

γ1 •H
∗

γ2 =
∑

β∈NE(X)

Qβev3∗

(
ev∗

1 γ1 ∪ ev∗
2 γ2 ∩ [M0,3(X, β)]vir

)
.(5.1.2)

One can see this product as a formal power series in Q. Hence, the quantum product

lies in H∗(X) ⊗ Λ where Λ is the Novikov ring i.e., it is the algebra generated by Qβ

for β ∈ NE(X).

We will recall the definition of the virtual class
[
M0,n(X, β)

]vir
(defined by Behrend-

Fantechi) and the virtual sheaf Ovir
Mg,n(X,β)

(defined by Lee [Lee04]) in §5.4 and §5.5.

In G0-theory, we define the quantum product with the following formula.

Definition 5.1.3. Let F1, F2 ∈ G0(X). The quantum product in G0-theory is defined

to be the element in G0(X) ⊗ Λ

F1 •G0 F2 =
∑

β∈NE(X)

Qβev3∗


ev∗

1 F1 ⊗ ev∗
2 F2 ⊗

∑

r∈N

∑

(β0,...,βr)|∑
βi=β

(−1)rOvir
M0,3(X,β0)

⊗ Ovir
M0,2(X,β1)

· · · ⊗ Ovir
M0,2(X,βr)




The term r = 0 in the formula in Definition 5.1.3 is of the same shape (5.1.2). One

has to understand the other terms, i.e. r > 0, are “corrections terms”.

5.2. About the associativity. The most important property of these two products

is the associativity. It is proved by Kontsevich-Manin [KM96] (See also [FP97]) that

the quantum product in cohomology is associative. Notice that the key formula for the

associativity is given in Theorem 5.3.4 which states that virtual classes behave with

respect to the morphisms α’s and the gluing morphisms. Recall that the morphisms

α’s are the one that appear in the lax action (3.4.3).

Later, when Givental and Lee (See [Lee04]) try to define a quantum product in G0-

theory they want an associative product. If one put the same kind of formula as in

(5.1.2), the product is not associative. Hence the key observation of Givental and Lee

is Theorem 5.3.9 which is the analogue of Theorem 5.3.4 in G0-theory that is how the

virtual sheaves behave with respect to the morphisms α’s and the gluing morphisms.

Our contribution to this question is Theorem 5.3.11 which is the geometric explana-

tion that explains the two Theorems 5.3.9 and 5.3.9.
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Notice that Givental-Lee packed the complicated formula of 5.1.3 in a very clever

way. Notice that M0,2(X, β) = M0,2 × X is empty if β = 0. As before put M0,2 = pt.

Then we put

Ovir
M0,2

:= OX +
∑

β∈NE(X)

β 6=0

QβOvir
M0,2(X,β)

∈ G0(X) ⊗ Λ(5.2.1)

Let invert the Formula above formally in G0(X) ⊗ Λ. The terms in front of Qβ is

∑

r∈N

∑

(β0,...,βr)|∑
βi=β

(−1)rOvir
M0,2(X,β0)

⊗ Ovir
M0,2(X,β1)

· · · ⊗ Ovir
M0,2(X,βr)

(5.2.2)

The Formula (5.2.1) and (5.2.2) are the reason of the “metric” (See Formula (16) in

[Lee04] for more details) because one can express in a compact form the Formula (5.1.3)

using the inverse of the metric.

5.3. Key diagram. Let us consider the following homotopical fiber product. Let

n1, n2 ∈ N≥2. Put n = n1 + n2.

Zβ //

��

RM0,n(X, β)

p

��

M0,n1+1 × M0,n2+1

g
// M0,n

(5.3.1)

The fiber over a point (σ, τ) is denoted by M
σ◦τ

(X, β) in § 3.4 that is stable maps

where the curve stabilise to σ ◦ τ . In Figure 6, we have an example of a fiber over σ ◦ τ

where we have a tree of P1 in the middle.

Using the universal property of the fiber product we get the morphism (see (3.4.3))

α :
∐

β′+β′′=β

RM0,n1+1(X, β
′) ×X RM0,n2+1(X, β ′′) → Zβ(5.3.2)

where the left hand side is defined by the following homotopical fiber product

RM0,n1+1(X, β ′) ×X RM0,n2+1(X, β
′′) //

��

RM0,n1+1(X, β ′) × RM0,n2+1(X, β ′′)

e1,en2+1

��
X

∆ // X ×X

(5.3.3)

The heart of the associativity of the quantum products in cohomology (see Theorem

5.3.9 for G0-theory) is the following statement.
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σ, β0

C1, β1

C2, β2

C3, β3

τ, β4

p

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

σ ◦ τ ∈ M0,5

Figure 6. Example of a stable map above σ ◦ τ with a tree of P1 in the

middle. The tree C1 ◦ C2 ◦ C3 is contracting by p to the node of σ ◦ τ .

Theorem 5.3.4 (Theorem 5.2 [LT98]). We have the following equality in the Chow

ring of the truncation of Zβ.

α∗


 ∑

β′+β′′=β

∆!
(
[M0,n1+1(X, β

′)]vir ⊗ [M0,n2+1(X, β
′′)]vir)

)

 = g![M0,n(X, β)]vir

(5.3.5)

Remark 5.3.6. In [Beh97], Behrend proves that the virtual class satisfies five properties,

called orientation (see §7 in [BM96b]), namely: mapping to a point, products, cutting

edges, forgetting tails and isogenies. The formula (5.3.5) is a combination of cutting

tails and isogenies.

The analogue statement in G0-theory need a bit more of notations. We denote

RMg,n(X, β) := RXg,n,β.

Let r, n1, n2 be in N with n1 + n2 = n and let β be in NE(X). Let β = (β0, . . . , βr) be

a partition of β. Notice that there is only a finite number of partition.

We denote by

RX0,n1,n2,β := RX0,n1+1,β0 ×X RX0,2,β1 ×X · · · ×X RX0,2,βr−1 ×X RX0,n2+1,βr
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We generalize the situation of (5.3.5) by the following homotopical cartesian diagram

RX0,n1,n2,β
//

��

RX0,n1+1,β0 ×
(∏r−1

k=1 RX0,2,βi

)
× RX0,n2+1,βr

��
Xr ∆r

// (X ×X)r

(5.3.7)

Gluing all the stable maps and using the universal property of Zβ, we have a mor-

phism

αr :
∐

β=
∑r

i=0
βi

RX0,n1,n2,β → Zβ(5.3.8)

Notice that α1 is the α of (3.4.3)

Finally, we can state the analogue of Theorem 5.3.4 in G0-theory.

Theorem 5.3.9 (Proposition 11 in [Lee04]). We have the following equality in the

G0-group of the truncation of Zβ.

∑

r∈N

(−1)rαr∗




∑
∑r

i=0
βi=β

(∆r)!
(
O

vir
X0,n1+1β0

⊗ O
vir
X0,2,β1

⊗ · · · ⊗ O
vir
X0,2,βr−1

⊗ O
vir
X0,n2+1,βr

)

 = g!

O
vir
X0,n,β

Remark 5.3.10. (1) Comparing Theorem 5.3.4 with Theorem 5.3.9, we see that the

formulas are more complicated in G0-theory. We see that moduli spaces of the

kind M0,2(X, β) appears in G0-theory. This corresponds to stable curve with

tree of P1 in the middle (see Figure 6). Notice that this is the same reason why

the action of the main Theorem 3.1.2 is lax.

(2) Also in G0-theory, there are 5 axioms, called orientation (see Remark 5.3.6), for

the virtual sheaf Ovir
Mg,n(X,β)

. They are proved by Lee in [Lee04].

Denote by

Xr,β :=
∐

∑
βi=β

RX0,n1+1,β0 ×X RX0,2,β1 ×X · · · ×X RX0,2,βr−1 ×X RX0,n2+1,βr

We deduce a semi-simplicial object in the category of derived stacks where the r + 1-

morphisms from Xr+1,β → Xr,β are given by gluing two stable maps together. We

have

X0,β X1,β X2,β · · ·

Moreover, for any r we have a morphism of gluing all stable maps from Xr,β → Zβ
hence a morphism colimX•,β → Zβ.

The following theorem was not proved in [MR15]. We will prove it in the appendix.

Theorem 5.3.11. We have that colimX•,β = Zβ.
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5.4. Virtual object from derived algebraic geometry. In this section, we explain

how derived algebraic geometry will provide a sheaf in G0(Mg,n(X, β)) that we will

compare to the virtual sheaf of Lee.

Lemma 5.4.1 (See for example [Toë14] p.192-193). Let X be a derived algebraic stack.

Denote by t0(X) its truncation. Denote by ι : t0(X) →֒ X be the closed embedding.

The morphism ι∗ : G0(t0(X)) → G0(X) is an isomorphism. Moreover we have that

(ι∗)−1[F] =
∑

i

(−1)i[πi(F)]

Applying this lemma to the situation where X = RMg,n(X, β), we put
[
O

vir,DAG

Mg,n(X,β)

]
:= ι−1

∗ [ORMg,n(X,β)].

where the DAG means Derived Algebraic Geometry. Notice that the sheaf Ovir,DAG

Mg,n(X,β)

depends on the derived structure that we put on the moduli space of stable maps.

The following theorem was not stated in [MR15].

Theorem 5.4.2. The DAG-virtual sheaf Ovir,DAG

Mg,n(X,β)
satisfies the orientation axiom in

G0-theory. That is

(1) Mapping to a point. Let β = 0, we have

O
vir,DAG

Mg,n(X,0)
=
∑

i

(−1)i ∧i (R1π∗OC ⊠ TX)∨

where C is the universal curve of Mg,n and π : C → Mg,n.

(2) Product. We have

O
vir,DAG

Mg1,n1 (X,β1)×Mg2,n2 (X,β2)
= O

vir,DAG

Mg1,n1 (X,β1)
⊠ O

vir,DAG

Mg2,n2 (X,β2)

(3) Cutting edges. With the notation of Diagram (5.3.3), we have

O
vir,DAG

Mg1,n1 (X,β1)×XMg2,n2 (X,β2)
= ∆!O

vir,DAG

Mg1,n1 (X,β1)×Mg2,n2 (X,β2)

(4) Forgetting tails. Forgetting the last marked point marked points, we get a mor-

phism π : Mg,n+1(X, β) → Mg,n(X, β). We have the following equality.

π∗O
vir,DAG

Mg,n(X,β)
= O

vir,DAG

Mg,n+1(X,β)
.

(5) Isogenies. The are two formulas. The morphism π above induces a morphism

ψ : Mg,n+1(X, β) → Mg,n+1×
Mg,n

Mg,n(X, β). With notation of Diagram (5.3.1),

we have

ψ∗O
vir,DAG

Mg,n+1(X,β)
= g!O

vir,DAG

Mg,n(X,β)
.

The second formula is
∑

r∈N

(−1)rαr∗

∑
∑r

i=0
βi=β

O
vir,DAG
X0,n1+1(X,β0)×XX0,2(X,β1)×X ···×XX0,2(X,βr−1)×XX0,n2+1(X,βr) = g!O

vir,DAG
X0,n(X,β)

where g is defined in the key diagram (5.3.1).
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Before proving this theorem, we need a preliminary result. Consider a homotopical

cartesian morphisms of schemes

X ′ := X ×Y Y
′

ι

((PP
PPP

PPP
PPP

P

  

--

X ×h
Y Y

′
f̃

//

g

��

Y ′

��
X

f
// Y

Denote by X ×h
Y Y

′ the homotopical pullback so that we have the closed immersion

ι : X ′ → X ×h
Y Y

′. Assume that f is a regular closed immersion. We have a rafined

Gysin morphism (see [Lee04, p.4], [Ful98, ex.18.3.16] or chapter 6 in [FL85]) which

turns to be

f ! : G(Y ′) → G(X ′)(5.4.3)

[FY ′ ] 7→ (ι∗)−1 ◦ f̃ ∗[FY ′ ].

Proof of Theorem 5.4.2. (1). Strangely this proof is not easy and we postpone to the

Appendix B. (2). This follows from the Künneth formula.

(3). We have the following diagram.

Xg1,n1,β1 ×X Xg2,n2,β2

k
��

h

  
Xg1,n1,β1 ×h

X Xg2,n2,β2

j

��

g
// Xg1,n1,β1 ×Xg2,n2,β2

i
��

RXg1,n1,β1 ×X RXg2,n2,β2

��

f
// RXg1,n1,β1 × RXg2,n2,β2

ei,ej

��
X

∆ // X ×X

We deduce the following equalities

∆!O
vir,DAG
Xg1,n1,β1

×Xg2,n2,β2
= ∆!(i∗)−1ORXg1,n1,β1

×RXg2,n2,β2

= (k∗)
−1g∗(i∗)−1ORXg1,n1,β1

×RXg2,n2,β2
by definition of rafined Gysin morphism

= (k∗)
−1(j∗)

−1f ∗ORXg1,n1,β1
×RXg2,n2,β2

by derived base change

= (k∗)
−1(j∗)

−1ORXg1,n1,β1
×XRXg2,n2,β2

= O
vir,DAG
Xg1,n1,β1

×XXg2,n2,β2

(4). As π̃ : RMg,n+1(X, β) → RMg,n(X, β) is the universal curve (hence, it is flat)

and π is the truncation of π̃. The derived base change formula implies the equality.
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(5). We have the following diagram

Mg,n+1(X, β)
ψ

//

k

��

Mg,n ×
Mg,n

Mg,n(X, β)
a //

j

��

Mg,n(X, β)

i

��

RMg,n+1(X, β)
ϕ

//

11

Mg,n+1 ×
Mg,n

RMg,n(X, β)
b //

��

RMg,n(X, β)

��

Mg,n+1
c // Mg,n

Notice that as c is flat, the upper right square is also h-cartesian. We have

c!O
vir,DAG

Mg,n(X,β)
= c!(i∗)−1ORMg,n(X,β)

= a∗(i∗)−1ORMg,n(X,β)

= (j∗)−1b∗ORMg,n(X,β) by derived base change

= (j∗)−1O
Mg,n+1×

Mg,n
RMg,n(X,β)

On the other hand, we have

ψ∗O
vir,DAG

Mg,n(X,β)
= ψ∗(k∗)−1ORMg,n+1(X,β)

= (j∗)
−1ϕ∗ORMg,n+1(X,β)

The formula follows from the equality below which is a consequence of the proof of

Proposition 9 in [Lee04].

ϕ∗ORMg,n+1(X,β) = O
Mg,n×

Mg,n
RMg,n(X,β)

To prove the second formula of (5), we use the key Diagram (5.3.1)) with Theorem

5.3.11. Let g1, g2, n1, n2 be integers. Put g = g1 + g2 and n = n1 + n2 and denote

Mi := Mgi,ni+1.

t0(Zβ)

k
��

a

��(
M1 × M2

)
×h Mg,n(X, β)

b //

j

��

Mg,n(X, β)

i

��

Zβ
c //

��

RMg,n(X, β)

��

M1 × M2

g
// Mg,n



26 ETIENNE MANN AND MARCO ROBALO

We have

g!O
vir,DAG

Mg,n(X,β)
= g!(i∗)

−1ORMg,n(X,β)

= (k∗)
−1b∗(i∗)

−1ORMg,n(X,β)

= (k−1
∗ )(j∗)−1c∗ORMg,n(X,β) by derived base change

= (j ◦ k)−1
∗ OZβ

We deduce the formula by observing that Zβ is the colimit of X•,β (see Theorem 5.3.11)

and that the structure sheaf of a co-limit is the alternating sum of OXr,β
.

�

The last formula of Theorem 5.4.2 and the third one implies the following corollary.

Corollary 5.4.4. We have the following equality in G0(t0(Zβ)).

∑

r∈N

(−1)rαr∗




∑
∑r

i=0
βi=β

(∆r)!
(
O

vir,DAG
X0,n1+1(X,β0) ⊗ O

vir,DAG
X0,2(X,β1) ⊗ · · · ⊗ O

vir,DAG
X0,2(X,βr−1) ⊗ O

vir,DAG
X0,n2+1(X,βr)

)

 = g!O

vir,DAG
X0,n(X,β)

5.5. Virtual object from perfect obstruction theory. Here we follow the ap-

proach of Behrend-Fantechi [BF97] to construct virtual object.

In the following, we denote by M a Deligne-Mumford stack. The reader can think

of M being M0,n(X, β) as an example.

Definition 5.5.1. Let M be a Deligne-Mumford stack. An element E• in the derived

category D(M) in degree (−1, 0) is a perfect obstruction theory for M if we have a

morphism ϕ : E• → LM that satisfies

(1) h0(ϕ) is an isomorphism,

(2) h−1(ϕ) is surjective.

Let E• be a perfect obstruction theory. Following [BF97], we have the following

morphisms.

(1) The morphism a : CM → h1/h0(E∨
• ), where CM is the intrinsic normal cone and

h1/h0(E∨
• ) is the quotient stack [E∨

−1/E
∨
0 ]. To understand how to construct

this morphism, let us simplify the situation. Assume that M is embedded in

something smooth, i.e f : M →֒ Y is a closed embedding with ideal sheaf

I. Then the intrinsic normal cone is the quotient stack CM = [CMY/f
∗TY ]

where CMY := Spec ⊕n≥0I
n/In+1 is the normal cone of f . In this case, the

intrinsic normal sheaf is NM = [NMY/f
∗TY ] = h1/h0(L∨

M) where NMY :=

Spec Sym I/I2. As we have a morphism from the normal cone to the normal

sheaf CMY → NMY , we deduce a morphism from the intrinsic normal cone to

the intrinsic normal sheaf i.e., a morphism

(5.5.2) CM → NM
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Now the morphism of the perfect obstruction theory ϕ : E• → LM induces a

morphism from

(5.5.3) NM → [E∨
−1/E

∨
0 ]

The morphism a is the composition of the two morphisms (5.5.2) and (5.5.3).

(2) We also have a natural morphism b : M → h1/h0(E∨
• ) given by the zero section.

From these two morphisms, we can perform the homotopical fiber product

M ×h
h1/h0(E∨

• ) CM
//

r

��

CM

��

M // h1/h0(E∨
• )

(5.5.4)

As the standard fiber product is M, we have that M×h
h1/h0(E∨

• )CM is a derived enhance-

ment of M with j̃ : M → M ×h
h1/h0(E∨

• ) CM the canonical closed embedding. Notice

that in the case M = Mg,n(X, β), we get a derived enhancement which is different from

RMg,n(X, β) (see Remark 5.6.3). We will compare these two structures in § 5.6. Hence

we can apply the Lemma 5.4.1 and we denote

[Ovir,POT
M ] := j̃−1

∗ [OM×h
h1/h0(E∨

• )
CM

] ∈ G0(M)(5.5.5)

where POT means Perfect Obstruction Theory. The definition of Lee for the virtual

sheaf turns to be exactly this one. Indeed, Lee consider the following (not homotopical)

la cartesian diagram

M ×E∨
−1
C1

//

r

��

C1
//

��

CM

��

M // E∨
−1

// h1/h0(E∨
• )

(5.5.6)

In [Lee04, p.8], Lee takes as a definition for the virtual sheaf

Ovir
M :=

∑

i

(−1)iTor
h1/h0

i (OM,OC1) = OM ⊗L
h1/h0 OC1 = O

vir,POT
M

where the last equality follows from Lemma 5.4.1.

5.6. Comparison theorem of the two approachs. Let M := M0,n(X, β). In this

section, we want to compare O
vir,DAG
M with O

vir,POT
M . The first question is : what is the

perfect obstruction theory we are choosing ?

This is given by the following result.

Proposition 5.6.1 ([STV11]). Let RM be a derived Deligne-Mumford stack. Denote

by M its truncation and its truncation morphism by j : M →֒ RM. Then j∗LRM → LM

is a perfect obstruction theory.

Now the original question makes perfectly sense and we have the following result

that says that they are the same sheaves.
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Theorem 5.6.2 (See Proposition 4.3.2 in [MR15]). In G0(M), we have

[Ovir,DAG
M ] = [Ovir,POT

M ]

Remark 5.6.3. Notice that the two enhancements RM or M ×h
h1/h0(E∨

• ) CM are not

the same. Indeed, the second one has a retract r : M ×h
h1/h0(E∨

• ) CM → M given in

the diagram (5.5.4) that is r ◦ j̃ = idM where j̃ is the closed immersion from M to

M×h
h1/h0(E∨

• )CM. From this we get the following exact triangle of cotangent complexes

L
j̃
[−1] → j̃∗LM×h

h1/h0(E∨
• )
CM

→ LM(5.6.4)

r∗LM → LM×h
h1/h0(E∨

• )
CM

→ Lr(5.6.5)

Applying j̃∗ to the second line, we get

LM → j̃∗LM×h
h1/h0(E∨

• )
CM

→ j̃∗Lr

This means that (5.6.4) has a splitting that is

j̃∗LM×h
h1/h0(E∨

• )
CM

= L
j̃
[−1] ⊕ LM(5.6.6)

Comparing to the cotangent complex of RM that has no reason to split, we get a priori

two different derived enhancement of M.

Notice that in the work of Fantechi-Göttsche [FG10, Lemma 3.5] (see also Roy

Joshua [Jos10]), they prove that for a scheme X with a perfect obstruction theory

E• := [E−1 → E0], we have

τX(Ovir,POT
X ) = Td(TXvir) ∩ [Xvir,POT](5.6.7)

where TXvir ∈ G0(X) is the class of [E0] − [E1] where [E0 → E1] is the dual complex

of E• and τX : G0(X) → A∗(X)Q.

Notice that the Formula (5.6.7) with Theorem 5.6.2 implies that

[Mg,n(X, β)]vir,POT = τ(ORMg,n(X,β)) Td(TRMg,n(X,β))
−1

Appendix A. Proof of theorem 5.3.11

Theorem A.0.1. The map

f : colimDM X•,β → Zβ

of [MR15, (4.2.9)] is an equivalence of derived Deligne-Mumford stacks.

Proof. It follows from the discussion in the proof of [MR15, Prop. 4.2.1] that

Perf(Zβ)
f∗

//

h ''PP
PPP

PPP
PPP

P
Perf(colimDM X•,β)

guu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦

lim∆ Perf(X•,β)
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commutes with the morphism h being an equivalence after h-descent for perfect com-

plexes [HLP14, 4.12] and the morphism g being fully faithful after the result of gluing

along closed immersions [Lur17, 16.2.0.1]. This immediately implies that the map f ∗

is an equivalence of categories because we have g ◦ f ∗ = h and g is conservative as it is

fully faithful.

As both source and target of f are perfect stacks (the first being a colimit of perfect

stacks along closed immersions and second being pullback of perfect stacks), f ∗ induces

an equivalence

Qcoh(Zβ)
f∗

// Qcoh(colimDM X•,β)

We conclude that f is an equivalence using Tannakian duality [Lur17, 9.2.0.2 ].

�

Appendix B. Proof of Theorem 5.4.2.(1)

Let X be a derived stack. We will use the linear derived stacks V(E) (See [Toë14,

p.200] ) where E is a complex of quasi-coherent sheaf on X. We have a morphism

V(E) → X and a zero section s : X → V(E). One should understand that V(E) as a

vector bundle where the fibers are E.

It is a derived generalisation of Spec SymE for a coherent sheaf E. If E is a two

terms complex with cohomology in degree 0 and 1, then we have that t0(V(E∨[−1])) =

[h1/h0(E)] (See §2 in [BF97] for the definition of the quotient stacks).

Let recall some notation of §5.5 and §5.6. Let g, n ∈ N and β ∈ H2(X,Z). Denote

by j the closed immersion Mg,n(X, β) → RMg,n(X, β). To simplify the notation, put

M = Mg,n(X, β) and RM = RMg,n(X, β).

From the exact triangle

j∗LRM → LM → Lj

We deduce that following cartesian diagram

V(Lj [−1]) //

��

V(LM[−1])

��
M // V(j∗LRM[−1])

(B.0.1)

Recall that j∗LRMg,n(X,β) is a two terms complex in degree −1 and 0 but in general

it is not the case for Lj and L
Mg,n(X,β). Comparing with Behrend-Fantechi, we have

t0(V(LM[−1])) is the intrinsic normal sheaf NM (See §5.5) and we have the following

cartesian diagram
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M ×h
V(j∗LRM[−1]) CM

//

��

CM

��
V(Lj [−1]) //

��

V(LM[−1])

��
M // V(j∗LRM[−1])

(B.0.2)

Proposition B.0.3. Let g, n ∈ N and β ∈ H2(X,Z). Denote by j the closed immersion

Mg,n(X, β) → RMg,n(X, β) and by s : Mg,n(X, β) → V(Lj [−1]) be the zero section. We

have the following equality in G0(Mg,n(X, β))

O
vir,DAG

Mg,n(X,β)
:= j−1

∗ ORMg,n(X,β) = s−1
∗ (OV(Lj )[−1])

Proof. From Gaitsgory (see Proposition 2.3.6 p 18 Chapter IV.5 [Gai17]), we can con-

struct an derived stack Yscaled such that the following diagram has two homotopical

fiber products

RM
h // Yscaled V(Lj[−1])

voo

M × {0}
i0 //

j

OO

M × A1

σ

OO

M × {1}
i1oo

s

OO

We have

(s∗)−1OV(Lj [−1]) = (s∗)
−1v∗OYscaled

= i∗1(σ∗)−1OYscaled

= i∗0(σ∗)−1OYscaled

The last equality follows from the A1- invariance of the G-theory. That is, we have

that G0(M × A1) → G0(M) and i∗0 = (π∗)−1 = i∗1 where π is the projection. Applying

the same computation as above with the other homotopical fiber product, we get

Formula. �

Remark B.0.4. This statement is a first step in proving Theorem 5.6.2. The last step

is to prove that the inclusion CM → NM induces an equality of the structure sheaf in

G0-theory.

Corollary B.0.5. For stable maps of degree 0, we have that

O
vir,DAG

Mg,n(X,0)
=
∑

i

(−1)i ∧i (TX ⊠ R1π∗OC)
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Remark B.0.6. Notice that in the case of β = 0, we have that Mg,n(X, β = 0) =

Mg,n × X which is smooth. Nevertheless, it has a derived enhancement, given by the

RMap which has a retract given by the projection and the evaluation. For β 6= 0, this

retract does not exist.

Proof. For β = 0, the smoothness of M implies that the intrinsic normal cone is the

intrinsic normal sheaf that is we have the CM = V(LM[−1]) in the diagram (B.0.2).

The second thing which is different is that j : M → RM has a retract. This implies

that Lj [−1] ≃ LM[−1] ⊕ j∗LRM. Hence the Proposition B.0.3, implies that we need to

compput s−1
∗ OV(Lj [−1]) which is by standard computation

∑
i(−1)i ∧i (TX ⊠ R1π∗OC)

where C is the universal curve of Mg,n.

�

From the proof, we see that the RHS of the formula is the structure sheaf of

V(Lj [−1]). In fact, we think that RMg,n(X, 0) is isomorphic to V(Lj [−1]). This should

follow from a general argument that we will detail in the next section for the affine

case.

Appendix C. Alternative proof of Corollary B.0.5 in the affine case.

Proposition C.0.1. Let F = SpecA be an affine quasi-smooth algebraic derived stack.

Let F0 = Spec π0(A) its truncation and denote j : F0 → F its closed immersion.

Assume that F0 is smooth and that F admit a retract r : F → F0. Then F = V(Lj [−1]).

This proposition is a way of proving Corollary B.0.5 in the affine case without us-

ing the deformation argument of Gaitsgory. We believe that we can drop the affine

assumption in the previous proposition.

Notice that we can drop the existence of the retract in the hypothesis because when

F0 is smooth, there always exists a retract (see the Remark C.0.6).

Lemma C.0.2. With the previous hypothesis, we have

π0(Lj) = π1(Lj) = 0

π2(Lj) = π1(j
∗LF ) = π2(Lπ0(A)/τ≤1A) = π1(A)

Lj [−1] ≃ π1(A)[1]

Proof. We have the triangle

j∗LF → LF0 → Lj .

Applying the hypothesis, we get

(1) As F is quasi-smooth, we have that π2(j∗LF ) = 0.

(2) As F0 is smooth, we have that π2(LF0) = π1(LF0) = 0.

(3) As j∗LF → LF0 is a perfect obstruction theory, we deduce π0(j
∗LF ) ≃ π0(LF0)

and π1(j∗LF ) → π1(LF0) is onto.

Applying the three properties above to the associated long exact sequence, we get
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(1) As F is quasi-smooth, we have that π2(j∗LF ) = 0.

(2) As F0 is smooth, we have that π2(LF0) = π1(LF0) = 0.

(3) As j∗LF → LF0 is a perfect obstruction theory, we deduce π0(j
∗LF ) ≃ π0(LF0)

and π1(j∗LF ) → π1(LF0) is onto.

0 0 π2(Lj)

π1(j∗LF ) 0 0

π0(j∗LF ) π0(LF0) 0

We conclude that

(1) π2(Lj) = π1(j∗LF )

(2) Lj is 2-connective.

To prove the second equality of the lemma, we use the Postnikov tower that is we

consider the closed immersion j1 : F0 → F1 and j2 : F1 → F where F1 is Spec τ≤1A.

We deduce the exact triangle

j∗
1Lj2 → Lj → Lj1

As we have j and j1 are 1-connected and j2 is 2-connected, we deduce from connective

estimates that Lj and Lj1 are 2-connective and Lj2 is 3-connective (See Corollary 5.5

in [PV13]). We deduce from the long exact sequence that π2(Lj) = π2(Lj1). How we

apply Lemma 2.2.2.8 in [TV08] that implies that π2(Lj1) = π1(A).

As we have that πk(Lj) = 0 for all k 6= 2 and π2(Lj) = π1(A), we deduce that

Lj [−1] ≃ π1(A)[1]. �

Proof of Proposition C.0.1. To prove the proposition, we will show that

B := Symπ0(A)(π1(A)[1]) ≃ A(C.0.3)

First, we will construct a morphism f : B → A. Notice that π1(A) is a free π0(A)

module by the last statement of Lemma C.0.2. Then we get an inclusion π1(A)[1] → A

of π0(A)-modules which induces f : B → A. Moreover f is an equivalence on π0 and

π1 that is τ≤1B ≃ τ≤1A.

Then we construct an inverse from A → B using the Postnikov tower. We have

ϕ : A → τ≤1A ≃ τ≤1B. As B is the colimit of its Postnikov tower, we will proceed by

induction on the Postnikov tower. First, we want to lift the morphism ϕ : A → τ≤1B

to A → τ≤2B. We use the following cartesian diagram (See Remark 4.3 in [PV13])

τ≤2B //

��

τ≤1B

d
��

τ≤1B
id,0

// τ≤1B ⊕ π2(B)[3]

(C.0.4)
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Hence, we need to construct a commutative diagram

A
ϕ

//

ϕ

��

τ≤1B

d
��

τ≤1B
id,0

// τ≤1B ⊕ π2(B)[3]

(C.0.5)

As LA has a tor-amplitude in [−1, 0], we have that

π0(Map(LA, π2(B)[3])) = 0

π1(Map(LA, π2(B)[3])) = 0

Hence we deduce a morphism from ψ : A → A ⊕d◦ϕ π2(B)[3]. Hence we get the

morphism from A → Bτ≤2
.

A

,,

��

ψ

&&
A⊕d◦ϕ π2(B)[3]

��

//

''◆◆
◆◆◆

◆◆◆
◆◆◆

◆
A

d◦ϕ

��

ϕ
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠

Bτ≤2
//

��

Bτ≤1

d
��

Bτ≤1

0 // Bτ≤1
⊕ π2(B)[3]

A
0 //

ϕ

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣
A⊕ π2(B)[3]

ϕ,id

hh◗◗◗◗◗◗◗◗◗◗◗◗

Hence by induction, we get a morphism from g : A → B. The composition g ◦ f :

B → A → B is the identity on π1(B) and by the universal property of Sym, we deduce

that g ◦ f = idB. This implies that πi(B) = ∧iπ1(A) → πi(A) is injective. To finish

the proof, we will prove that these morphisms are surjective.

For this purpose we use another characterization of afffine quasi-smooth derived

scheme. Let us fix generators of π0(A). This choice is determined a surjective map

of commutative k-algebras k[x1, .., xn] → π0(A). As the polynomial ring is smooth,

we proceed by induction on the Postnikov tower of A to construct a morphism from

k[x1, . . . , xn] → τ≤nA. We use the same idea as above for constructing the morphism

A → B. We get a map of cdga’s k[x1, .., xn] → A which remains a closed immersion.

Moreover, one can now choose generators for the kernel I of k[x1, . . . , xn] → π0(A), say,

f1, .., fm whose image in I/I2 form a basis. The fact that k[y1, .., ym] is smooth allows

us to extend the zero composition map

k[y1, ..., ym] → k[x1, .., xm] → π0(A)
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to map

k[y1, ..., ym] → k[x1, .., xm] → A

together with a null-homotopy. This puts A in a commutative square of cdga’s

k[y1, . . . , ym] //

��

k[x1, . . . , xn]

��
k // A

which we is a pushout square. Indeed, it suffices to show that the canonical map

k ⊗L
k[y1,..,ym] k[x1, ..., xn] → A

induces an isomorphism between the cotangent complexes. But as Spec(A) is quasi-

smooth, its cotangent complex is perfect in tor-amplitudes −1, 0, meaning that it can

be written as

Am → An

and this identifies with the standard description of the cotangent complex of the derived

tensor product k⊗L
k[y1,..,ym] k[x1, ..., xn]. This implies that surjectivity of the morphisms

πi(B) → πi(A). �

Remark C.0.6. As F = SpecA is a derived scheme (not necessarily quasi-smooth) and

its truncation is F0 is smooth, we have that F0 → F admits a retract. We proceed by

induction on the Postnikov tower of A to construct a lift

A

��
π0(A)

id //

::✉✉✉✉✉✉✉✉✉✉
π0(A)

We use the same kind of diagrams as (C.0.4) and (C.0.5) Indeed, as LF0 is concentrated

in degree 0, all the groups

π0(Map(LF0, πn(A)[n+ 1])) = π1(Map(LF0 , πn(A)[n+ 1])) = 0

vanish for n ≥ 1 saying that the liftings exist at each level of the Postnikov tower the

space of choices of such liftings is connected.
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