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Abstract—The paper introduces a methodical approach which 

can be used to identify the optimum charging strategy for a fleet 

of electrical-powered buses. The methodical approach allows 

minimizing the energy consumption, the peak load demand and 

ageing of the batteries. This method uses optimisation algorithms 

to search for optimal plans taking into account technical 

constraints. 
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I. INTRODUCTION  

The transport sector in Europe is the fastest growing 
consumer of energy and producer of greenhouse gases GHG. 
The emissions from road transport are the main source of GHG 
emissions [1]. In Europe, EU has committed to cut its emissions 
of greenhouse gases GHG to 20% below 1990 levels by 2020, 
40 % by 2030 and 80% for 2050 by using plug-in hybrid and 
electric cars that will allow for steeper emissions reductions [2]. 

Therefore, electrification of the road transport is a key aspect to 
achieve these objectives and a way to reduce the EU’s 
dependency on fossil energy sources. However, the large-scale 
deployment of EVs is not an easy task. This transition will have 
a great impact on the electric system, generating network 
congestion problems and requiring more electricity generation 
to cover the peak demand [3].  

In order to optimise the charging schedules and reduce the peak 
demand, an optimisation methodology for energy management 
for electric bus fleet has been developed. The capability of 
controlling the driving cycle, scheduling the recharge operations 
and communicating with the grid, EVs and charging stations, 
allows then adopting smart strategies in order to reduce energy 

consumption, peak load demand and battery ageing with regard 
to technical constraints. 

This paper is organised as follows. In the first section, we 
introduce and discuss our proposed approach for smart charging 
of electric vehicles. In the next section, we show the simulation 
setup used for a case study applied to existing bus line. Then, we 
present and discuss our results. In the last section, we draw some 
conclusions and present some future work.  

II. PROPOSED APPROACH 

A. Methodology 

An optimisation methodology for energy management for 
electric bus fleet is proposed in (Fig. 1) in Matlab/Simulink 
environment. The main idea of the approach is that an electric 
bus model and a battery model were first developed based on an 
electric model on VEHLIB software [4]. VEHLIB is a systemic 
vehicle simulation software, developed by IFSTTAR-LTE to 
cope with the energetic and dynamic performances evaluation of 
conventional, electric and hybrid vehicles. 

Thus, we proposed different optimisation algorithms and 
methods already tested in the literature [5] that are the most 
suitable for solving nonlinear problems.  

The optimisation methodology consists of the interaction of 
several sub-models, which are managed by an optimisation tool. 
The optimisation tool exchanges data with sub-models receiving 
back the state of charge, temperature and the ageing of the 
battery and assigning the optimal charging schedules. 

In this case, the optimisation tool for the management of electric 
bus fleet charging is divided on two parts. The first part is about 
the battery discharging process during the bus operation.  The 
second part is about the battery charging process once the bus 
arrived in the bus depot. 

The different sub-models that occur during the discharge of the 
battery are presented in (Fig. 1) below:  

Bus line descriptions: Bus lines characteristics are defined by: 
number of stops, distance, altitude, weight data …   

Electric Bus model: Calculate the vehicle energy consumption, 
the studied electric bus is modelled and simulated using the 
Matlab-Simulink based VEHLIB software. 



 

 

 

 

 

 

 

 

 

 

 

 

As the other simulation tools, the software requires the definition 
of a vehicle architecture through the choice of an appropriate 
combination of components models in a library (internal 
combustion engine, electrical machines, battery, transmission, 
control unit, etc.). Then a specific speed profile is defined, such 
as standard driving cycles for buses (SORT), or a real driving 
schedule (RATP AQA21).  

The different sub-models that occur during the charge of the 
battery are presented below: 

Optimisation algorithm: represent the main model for the 
optimisation tool. Hu and Morais [5] compared several 
algorithms for smart charging of electric vehicles through an 
extensive literature review. Existing works on the optimisation 
of the charging of electric vehicle fleets have suggested different 
solutions. Galván-López and Curran [6] used a stochastic 
optimisation evolutionary algorithm for a multi-objective 
problem, Alonso and Amaris [7] used heuristic smart charging 
algorithms. The choice of the optimisation algorithm strongly 
depends on the objective functions, the required quality of 
solutions, the computing time, the problem’s constraints, etc... 
Some deterministic algorithms can be very fast but in many 
cases they can only be applied for small size problems, they are 
more efficient where only a single objective function is required 
and the number of constraints is reduced. In this paper, regarding 
to the complex, large-scale (EBs fleet) optimisation problems 
with high number of constraints, Evolutionary algorithms (EA) 
have been selected for dealing with non-linear and non-convex 
problems and because they offer great flexibility to consider 
multi-objective functions and ability to work with several 
constraints. 

Battery model: The Battery model illustrated in (Fig. 2) contains 
a previously developed electric model based on VEHLIB, a 
simple thermal model of a large prismatic Li-ion battery 
(LiFePO4/graphite) based on an equivalent electrical circuit [8] 
and an Eyring acceleration model for predicting calendar ageing 
of lithium-ion batteries [9].  

In order to simplify the thermal model, we supposed that the 
temperature at the core and terminals of a battery cell is the same 
and cell temperatures in the battery pack are homogeneous. The 
studied one node thermal model contains one heat capacity that  

 

 

 

 

 

 

 

 

 

 

 

 

represents heat accumulation and a thermal resistance that 
represents heat transfers with ambient air. There is no cooling 
system. The parameter values of the thermal model were 
determined from [8]. 

The ageing model takes into account the calendar ageing of 
lithium-ion LFP/C cells, which seems to be predominant in 
batteries used in applications such as electric vehicle. The 
cycling ageing could also be important in some cases but not 
during the charging time particularly in this case, when the 
battery is charged with a C-rate of C/6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a first approach, the calendar ageing is represented by Eq. (1):                        

                                       𝑄𝑙 = 𝐴. 𝑒(
−𝐸𝑎
𝑘.𝑇

+𝐵.𝑄𝑎)𝑡                           

with 𝑄𝑙 the capacity fade (p.u.), A the pre-exponential factor 
(p.u./day), Ea the activation energy for the reaction (eV), k the 
Boltzmann constant (eV/K), T the absolute temperature (K), B 
the quantity of charge factor (no units), Qa available quantity of 
charge (p.u.), t time (day). The charging period is divided into 
30 minutes time slot and we supposed that 𝑄𝑎 and 𝑇 are constant 
during this slot. The calendar ageing could be modelled by the 

Fig. 2. Battery model of the studied electric bus 

Fig. 1. Optimisation tool for the management of electric bus fleet charging 



variation of capacity fade as function of time obtained by 
deriving Eq. (1). 

                                
𝑑𝑄𝑙

𝑑𝑡
= 𝐴. 𝑒(

−𝐸𝑎
𝑘.𝑇

+𝐵.𝑄𝑎)
                                             

All the constants will be determined from literature [9]. 

B. Multi-objective optimisation problem description 

 
Multi-objective Evolutionary algorithm  

Evolutionary algorithm (EA) is a subset of evolutionary 
computation, a generic population-based metaheuristic 
optimisation algorithm. An EA uses mechanisms inspired by 
biological evolution, such as reproduction, mutation, 
recombination, and selection. Candidate solutions to the 
optimisation problem play the role of individuals in a 
population, and the fitness function determines the quality of the 
solutions [10]. A significant portion of research and application 
in the field of optimisation considers a single objective, although 
most real problems involve more than one objective. With the 
presence of multiple conflicting objective (such as 
simultaneously minimizing the electricity cost and maximizing 
the battery lifetime), EA resorts to a number of trade-off optimal 
solutions (Pareto Front). Besides, EAs do not require any 
specific knowledge of the fitness function. They work even 
when it is not possible to define a gradient on the fitness 
function.  

Genetic algorithm (GA) is the most popular type of EA. GA 
seeks the solution of a problem in the form of strings of numbers, 
by applying operators such as recombination and mutation 
(sometimes one, sometimes both). This type of EA is often used 
in optimisation problems. 

Non-dominated Sorting Approach 

Non-Dominated Sorting Genetic Algorithm (NSGA-II) is a 
genetic algorithm given to solve the Multi-Objective 
Optimisation problems. It was proposed by Deb et.al in 2002 
[11]. The NSGA varies from simple genetic algorithm only in 
the way the selection operator works. The idea behind the 
NSGA-II is that before the selection is performed, the population 
is sorted according to two attributes: the non-domination rank 
and the crowding distance. That is, between two individuals with 
differing non-domination ranks, we prefer the solution with the 
lower (better) rank. Otherwise, if both solutions belong to the 
same front, then we prefer the solution that is located in a lesser 
crowded region. 

Initially, a random parent population 𝑃0  size N is created at 
generation 𝐺𝐸𝑁= 0. At each generation (g), every individual 
within the population 𝑃𝑔  is evaluated and sorted based on the 

non-domination sort (rank + crowding distance) corresponding 
to their position in the front they belong. Then, a selection 
mechanism by tournament takes place to stochastically pick the 
fittest individuals from the population. The selected individuals 
are modified by genetic operators (crossover, mutation) and are 
used to create an offspring population 𝑄𝑔 of size N. The current 

population composed of parent and offspring population 𝑃𝑔 +
𝑄𝑔 is in turn evaluated and sorted based on non-domination sort, 

then is replaced by current population individuals based on rank 

and crowding distance until the population size N is reached. 
This new population of size N represents the new population 
 𝑃𝑔+1  at generation  𝐺𝐸𝑁 + 1 . The process stops until the 

number of generation is satisfied. The flow chart is presented in 
(Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design optimisation variables 

In this work, we use a variable charging power𝑃1  in a row 
vector, where each column indicates the charging power of the 
EB during a particular time period (30 min). 

In our work, the time-slots are of length 30min, starting at 𝑇𝑖  and 
running to 𝑇𝑓. Therefore, the charging power schedule can be 

represented by a matrix: 

                           𝑃1 = [𝑃1
𝑇𝑖 , 𝑃1

𝑇𝑖+30, … . , 𝑃1
𝑇𝑓]                               

In Eq. (3), the index 1 refers to one electric bus, the index 𝑇 
refers to a time-slot of 30 min. The individual 𝑃1 represents the 
charging behavior of a single EB over the full period and each 
column represents the charging behavior at a single time-slot. 

Objective functions 

We are interested in this work in looking for optimal 
charging schedules in order to reduce the charging costs and 
battery ageing. 

Thus, we aim to minimise 𝑓𝑐𝑜𝑠𝑡  

                       𝑓𝑐𝑜𝑠𝑡 = ∑ 𝑃1
𝑖 × 𝑡 × 𝐸𝑐𝑜𝑠𝑡𝑠

𝑖𝑇𝑓

𝑖=𝑇𝑖
                         

Where 𝑃1
𝑖 represents the charging power of a single EB (kW), 𝑡 

represents the time-slot (h), and 𝐸𝑐𝑜𝑠𝑡𝑠
𝑖 the electricity costs of a 

given scheduling (€/kWh). 

Fig. 3. The flow chart of NSGA-II 



We consider the second objective, which is the battery ageing. 
As indicated previously, during the charging phase, the battery 
is charged with a low current so we use a fitness function from 
Eq. (2) that calculates the variation of capacity fade in case of 

calendar ageing We aim to minimise 𝑓𝑎𝑔𝑖𝑛𝑔

𝑉𝑖 =  𝐴. 𝑒
(

−𝐸𝑎

𝑘.𝑇𝑖 +𝐵.𝑄𝑎
𝑖)

             

                         𝑓𝑎𝑔𝑖𝑛𝑔 = ∑ 𝑉𝑖 × 𝑡
𝑇𝑓

𝑖=𝑇𝑖
                                      

Where 𝑉𝑖  represents the capacity fade (p.u./min) of a given 
scheduling and t represents the time-slot (min). 

Constraints and Variable Bounds  

Here we considered a constant charging power ranged from 0 to 
60 kW. The charging power variables 𝑃1could take the value of 
0 or 30 or 60kW during a time period of 30 minutes. 

𝑃1
𝑖 =  {

0
30
60

                     0 ≤ 𝑃1
𝑖 ≤ 60             𝑖 =  𝑇𝑖  𝑡𝑜 𝑇𝑓       

At the end of the charging time, we have to get the battery fully 
charged which means that the capacity passed during charge to 
the battery plus the capacity present initially in the battery must 
be equal to the total battery capacity. 

Eq. (8) summarises the constraint equation: 

 

        ∑
𝑃1

𝑖×𝑡×𝜂

𝑉

𝑇𝑓

𝑖=𝑇𝑖
=

(𝑆𝑜𝐶100%−𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ×𝐵𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

100
           

Where 𝑃1
𝑖 represents the charging power of a single EB (W), 𝑡 

the time-slot (h), η the battery and inverter efficiency(%), V the 
nominal battery voltage (Volt) and 𝐵𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  represents the 

total battery capacity (Ah). Here we supposed that the battery 
system voltage is constant. 

III. STUDY CASE 

A. Electric bus model 

 The electric bus is modelled with VEHLIB using a forward 
approach. This approach includes a driver model, which 
considers the required speed and the present speed to develop 
appropriate throttle and brake commands through a 
proportional–integral (PI) controller. The throttle command is 
then translated into a torque provided by the motor and an energy 
use rate. The computed torque is passed forward through the 
drivetrain, in the direction of the physical power flow in the 
vehicle, until it results in a tractive force. The battery cell and 
bus specifications are shown in Table I and II respectively. 

 

 

B. Charging scenario 

 

The electric buses are charged only at the depot from 18:00 

to 7:30. As indicated previously, the charging time-slot is 30 

min. This scenario is quite the same as [6] with some 

modifications. 

Because of the large time range during charging (more than 12 

hours), we chose a 30 min slot which gives for the individual a 

vector length of 27, which results in a reasonable search space. 

 
In our considered scenario, as a first step, we run the 
optimisation for one electric bus. In a first approach, until we 
develop a bus line model, we used a real driving cycle for our 
bus in operation as an input for the electric bus model.  

The simulation of the electric bus model for a day of operation 

gives a final state of charge SoC=10%, a battery temperature of 

T=25°C and a battery ageing A=0%. These data correspond to 

the input of our optimisation model. Table III summarises the 

parameters used in our scenario. 

 

 

Parameters Value 

Number of Buses 1 

Number of simulated days 1 

Charging Time From 18:00 to 7:30 

Charging Slot 30 min 

Number of charging Slots 27 

Initial State Of Charge  10 % 

Initial Battery Temperature 25 °C 

Initial Battery Ageing 

Fixed Outside Temperature 

Electricity costs 

0 % 

25°C 

18:00 – 20:00  

06:30 – 07:30 
0,036 €/kWh 

20:00 – 21:30  
00:30 – 06:30 

0,049 €/kWh 

21:30 – 00:30 0,043 €/kWh 

Parameters Value 

Battery Type LFP 

Nominal Energy / capacity 64 Wh / 20 Ah 

Nominal Voltage 3.2 V 

Max Charging/Discharging current 

(10s) 

10 C (200 A) 

TABLE I.  BATTERY CELL SPECIFICATIONS 

Parameters Value 

Bus Type Standard 

Length 12 m 

Passenger capacity  >  90 persons 

Weight Empty/ Full load 13000 kg / 19500 kg 

Motor type AC Induction Motor 

Torque Max / Braking Torque 3000 Nm / -2000 Nm 

Nominal / Peak Power 110 kW / 220 kW 

Battery type Lithium iron phosphate 

Charge Method Quick charge (Combo CCS2) 

Charging Power 30 kW / 60 kW 

Battery Energy / Capacity 311 kWh / 540 Ah 

Battery - inverter efficiency 90% - 92% 

Number of packs 13 

Battery Weight  2200 kg 

TABLE II.  ELECTRIC BUS SPECIFICATIONS 

TABLE III.  SIMULATION PARAMETERS 
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Electricity costs

Parameters Value 

Population size 50 

Number of generations 20  

Mutation rate 0.5 

Crossover rate 0.5 

Mutation operator Boundary mutation 

Crossover operator Modified order crossover  

 

0

20

40

60

80

100

18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00

So
C

  %

Time

5.a - State of charge of the battery 

SoC Battery

0

20

40

60

80

18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00

C
h

ar
ge

 P
o

w
er

 k
W

Time
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We chose variable electricity costs in order to see the behavior 

of our optimisation algorithm towards this dynamic scenario. 

The cost peak time is from 20:00 until 21:30, and takes up again 

from 00:30 to 06:30, whereas the off-peak time is from 18:00 

to 20:00 and 6:30 to 7:30. An average electricity cost has been 

chosen from 21:30 to 00:30. 

 

We will provide a simple method of setting charging schedules 

as baseline against which to compare NSGA-II performance. 

The baseline represents one typical behavior by charging the 

EB with an average power of 30 kW at 18:00, ignoring cost and 

battery ageing, until it is fully charged.  This approach can be 

represented in the NSGA-II framework by a vector where each 

row is of the form:                                              

  𝑃1 = [30, 30, 30, 30, 30, 30, 30,30, 30, 30, 30, 30, 0,0 … . , 0], 
where the transition from charging to non-charging is 

determined by the initial SoC and battery capacity. 

 

The optimisation was conducted using NSGA-II, with some 

modifications on genetic operators. The parameters used are 

shown in Table IV. Those parameters were tested and 

determined before in order to increase the algorithm 

performance while respecting constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. RESULTS AND ANALYSIS 

In this paper, we are interested in minimizing the electricity 

costs while at the same time minimizing the battery ageing by 

assigning the optimal charging power with regard to technical 

constraints. Thus, as a first step, we focus on mono-objective 

optimisation by minimising the electricity costs, and then 

minimizing the battery ageing. To this end, the second fitness 

function was fixed. 

 

The results of mono-objective optimisation for minimizing 

electricity costs in (Fig. 4) regardless of the battery ageing show 

that the optimal charging power agrees perfectly with the 

variation of the electricity costs. We start to charge with the 

maximum allowed power during the off-peak times and also 

when the electricity cost is low from 21:30 to 00:30. 

 

The results of mono-objective optimisation for minimizing 

battery ageing in (Fig. 5) regardless of the electricity costs, 

show that the optimal charging power tends to charge the EB as 

late as possible. That is totally logical regarding to the ageing 

fitness function defined in Eq. (6). The calendar ageing ensures 

that the battery is ageing more rapidly for high SoC values. 

 

We can observe that when the SoC is low (10<SoC<20), the 

optimal solution prefer to decrease the charging power (to 30 

kW) between 1:00 and 2:00. This result could be explained by 

the fact that during low SoC values, the temperature of the 

battery is the major factor in the ageing variations. Fig. 5.c 

supports this supposition by comparing the variations of 

temperature and ageing of the battery for our optimal solution 

with another solution called Maximal charging that charges the 

EB as late as possible at the maximum allowed power. We can 

notice that between SoC 10% and 18%, the charging power at 

30kW is capable of achieving lower battery ageing and 

temperature values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV.  OPTIMISATION PARAMETERS 

Fig. 4. Optimal charging schedules to minimise electricity costs Fig. 5. Optimal charging schedules to minimise battery aging 
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Thereafter, we focus on multi-objective optimisation by 

minimizing both the electricity costs and the battery ageing.  

The result of NSGA-II optimisation are summarised in (Fig. 6), 

showing the total evaluations performed and the Pareto front. 

 

The Pareto front express the trade-off between these two 

competing objectives and proposes different solutions that have 

different cost and battery ageing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During this part, we chose a random solution from the Pareto 

front against which to compare the baseline charging Method 

defined previously. 

 

 

The optimal charging power chosen from the Pareto front 

use to charge not only during the off-peak times to minimise the 

electricity cost but also during the latest peak times in order to 

find a proper balance between the two objectives. We can also 

notice in (Fig.7) that the optimal charging power gives 

sometimes an average charging power to extend battery 

lifetime. The results of the comparison between two types of 

charging present a clear decrease in cost as well as the battery 

ageing. The optimised price for one day's charge is about 15 

euros per bus instead of 16,48 euros for the baseline method.  

The optimised ageing for one day's charge is 3,3. 10−5 % per 

bus instead of 3,6. 10−5 % for the baseline method.  

 

V. CONCLUSION 

This paper introduces an intelligent charging method for 
electric buses. A case study has been analysed and the 
implemented NSGA-II achieves good results after only 20 
generations with consuming about two minutes of computing 
time. We have tested this approach on one electric bus with 
different electricity price scenario in order to better understand 
and validate the behavior of the algorithm for a small problem. 

In future work, the purpose is to deal with a larger problem 
with different sizes of bus fleets over a long period of time and 
to see how the algorithm performs. Particular attention will be 
paid to alleviate the stress in power grid and reduce peak 
demand. It would be wise to compare variants of evolutionary 
algorithms in terms of performance and reducing computing 
time. An appropriate changes will be made in sub-models, in 
particular the battery model so that our approach would take 
account of any type of battery. 
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