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ABSTRACT
The ever increasing availability of in situ, remote sensing and
simulation data supports the development of data-driven al-
ternatives to classical model-driven methods for the interpo-
lation of sea surface geophysical fields from partial satellite-
derived observations. In this respect, we recently introduced
the Analog Data Assimilation (AnDA), which exploits patch-
based analog forecasting operators within a classic Kalman-
based data assimilation framework. In this work, we consider
the application of AnDA to the spatio-temporal interpolation
of SLA (Sea Level Anomalies) from two types of satellite al-
timetry data, namely from along-track nadir data [1] and data
from the upcoming wide-swath SWOT mission [2]. We re-
port a sensitivity analysis w.r.t. the main parameters of the
proposed AnDA scheme. Overall, the reported benchmark-
ing analysis supports the relevance of the proposed AnDA
scheme for an improved reconstruction of mescoscale struc-
tures for horizontal scales ranging from ∼20km to ∼100km,
with an gain of 42% (12%) in terms of SLA RMSE (correla-
tion) with respect to Optimal Interpolation (OI) [3]. Results
suggest an additional potential improvement from the joint
assimilation of SWOT and along-track nadir observations.

Index Terms— Altimetry data, Sea Level Anomaly,
Spatio-temporal interpolation, Data-driven model, Data as-
similation, Western Mediterranean Sea, SWOT

1. INTRODUCTION

In recent years, developments in remote sensing, in situ
measurements and numerical models have led to great ad-
vancements in our understanding of ocean dynamics and
ocean-atmosphere interactions. In this context, great amounts
of data issued from a wide variety of sources are gathered
every day. The fusion and processing of such datasets, which
usually involve irregular sampling patterns and missing data
(due to cloud occlusion, satellite sampling patterns, etc), into
high-resolution regularly-gridded gap-free L4 data products
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is of the utmost importance for operational oceanography
and meteorology. The interpolation of gridded fields from
irregularly-sampled data belongs to the family of inverse
problems, for which multiple model-driven strategies have
been proposed [3,4]. Optimal interpolation (OI) [3], a model-
driven strategy based on modeling the spatio-temporal covari-
ance of the field of interest, is one of the most commonly used
interpolation methods. Given the variety of high-resolution
simulation datasets, data-driven strategies have recently been
explored as a powerful, computationally-efficient alternative
to model-based approaches [5, 6].
In [6], we demonstrated the relevance of the data-driven ana-
log data assimilation (AnDA) framework, introduced in [7],
for the interpolation of high-dimensional geophysical fields.
Here, we develop an application of AnDA to the reconstruc-
tion of SLA fields in in the Western Mediterranean Sea from
satellite altimetry data. The Western Mediterranean Sea is
characterized by relatively small Rosby radii, which makes
the reconstruction of mesoscale sea surface dynamics from
satellite data particularly challenging. We report a sensi-
tivity analysis of the AnDA framework with respect to its
main parameters. Importantly, we explore two different spa-
tial sampling patterns: the one associated with along-track
nadir missions [1] and the one from the upcoming wide-
swath SWOT mission [2]. Our experiments exploit an OSSE
(Observing System Simulation Experiment) with real spatio-
temporal sampling patterns. This OSSE results in ground-
truthed datasets to benchmark the proposed AnDA scheme
w.r.t. state-of-the-art interpolation approaches. Overall, the
reported benchmarking analysis supports the relevance of
the proposed AnDA scheme for an improved reconstruction
of mesoscale structures for horizontal scales ranging from
∼20km to ∼100km, with considerable gains with respect to
Optimal Interpolation (OI) [3].
This paper is organized as follows. In Section 2 we briefly
introduce the AnDA framework, the concepts behind it and
its implementation. Section 4 presents a sensitivity analysis
w.r.t. key AnDA parameters. In Section 5, we report inter-
polation performance for the two types of satellite data and
benchmark the proposed AnDA framework w.r.t. state-of-art



schemes. We present our concluding remarks and future work
perspectives in Section 6.

2. ANALOG DATA ASSIMILATION FRAMEWORK

The analog data assimilation [7] is a fully data-driven data as-
similation framework for dynamical systems. It relies on the
assumption that a dynamical model can be built directly from
a catalog of realistic simulations of system state dynamics.
The general idea is that a forecast can be made by exploiting
the similarity between the current state and simulated states
within the catalog.
Formally, we use a state-space formulation [4]:{

x(t) = M (x(t− δt))
y(t) = H (x(t),Ω(t)) + η

(1)

where t is a discrete time index, x is the hidden state sequence
to be reconstructed and y is the observed data sequence.M is
a dynamical model relating the current state x(t) to the pre-
vious state x(t − δt). H is an observation operator, where
Ω(t) is a mask accounting for missing data at time t and η is
a random noise process accounting for uncertainties.
In practice, at each time step, M is linearly approximated
using the K nearest neighbours, referred as the analogs, of
the current state x(t) within the catalog. The future states of
these analogs are used to produce a forecast, thus replacing
the classic model-based forecasting step of data assimilation
with a data-driven approach. The resulting analog forecasting
operator can be used as a plug-in on a classic stochastic assim-
ilation models. Here, we consider an Ensemble Kalman fil-
ter/smoother (EnKFS) to assimilate partial observations sam-
pled at a δt time steps. It is important to notice that the assim-
ilated observations can be directly the observations at times
t0, t0 + δt,. . . or, alternatively, pseudo-observations built by
accumulating observations on a time window t0 ±D.
It should also be noted that, given the high-dimensional na-
ture of the data to be interpolated, the application of a dimen-
sionality reduction technique is required prior to the nearest-
neighbour search for similar states within the catalog. In this
respect, following [6], the proposed AnDA scheme involves
a patch-based representation [5]. The field to be interpolated
is decomposed into overlapping Wp × Wp patches P(s, t),
at location s and time t, and an EOF-based decomposition is
applied for each patch: P(s, t) =

∑NEOF

k=1 αk(s, t)Bk, where
Bk are the EOFs and αk(s, t) are the coefficients of the de-
composition of patch P(s, t) onto its EOFs. The interpola-
tion of field x comes to the independent assimilation of each
patch. Overall, the final reconstruction of field x comes to
spatially average overlapping patches.

3. CASE-STUDY AND OSSE

As case-study, we consider a region in the Western Mediter-
ranean Sea (36.5◦N to 40◦N , 1.5◦E to 8.5◦E). We use
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Fig. 1: AnDA sensitivity to patch size Wp

as realistic high-resolution reference daily ROMS numerical
simulations [8] from 2010 to 2013 with a 1/20◦ resolution.
We implement Observing System Simulation Experiments
(OSSE) to generate synthetic observations of satellite altime-
ter data. For along-track nadir data, we use real satellite track
spatio-temporal locations from a four-altimeter sampling con-
figuration in 2014. A Gaussian white noise of variance σ2

n is
added to simulate an acquisition noise.
We proceed similarly for the upcoming SWOT mission, us-
ing SWOT simulator [9]. In this OSSE, the observation noise
embeds different simulated noise processes [9, 10].

4. PARAMETER SENSITIVITY ANALYSIS

We apply the analog data assimilation to SLA anomaly fields
w.r.t OI with a δt = 1 days assimilation lag, using data from
2010-2012 as our catalog, and we evaluate the performance of
the assimilation framework on data from 2013. We study the
interpolation performance in terms of root mean squared er-
ror (RMSE) and correlation coefficient for both the predicted
SLA field and the gradient of the predicted field∇SLA.
All the reported experiments use the following default param-
eters: Wp = 35, K = 100, σ2

n = 0, δt = 1, D = 0,
NEOF = 9. Our sensitivity analysis focuses on the impact
of the patch size Wp, the number of neighbours K and the
pseudo-observation half-window size D.

4.1. Patch size

Figure 1 presents SLA and ∇SLA RMSE and correlation co-
efficient as a function of patch size Wp. The optimal patch
size appears to be between 125 and 200km (i.e., 25-40 pix-
els), which matches the smallest horizontal scales resolved
by OI. This is in agreement with the expected gain of AnDA
to improve the reconstruction of mesoscale structures for hor-
izontal scales ranging from ∼10-15 km to ∼100 km.

4.2. Number of neighbours

Figure 2 presents SLA and ∇SLA RMSE and correlation co-
efficient as a function of the number of nearest neighbours
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Fig. 2: AnDA sensitivity to number of neighbours K
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Fig. 3: AnDA sensitivity to observation half-window size D

K used in the analog forecasting step. Interestingly, K =
25 neighbours seems enough to obtain a good reconstruc-
tion, and using more neighbours seems to have a negative im-
pact on interpolation performance. The lesser the neighbours,
the more local the description of the dynamics in the state
space. Conversely, considering additional neighbours results
in a more global reconstruction, thus hindering performance.

4.3. Pseudo-observations half-window size

Figure 3 presents SLA and ∇SLA RMSE and correlation co-
efficient as a function of the pseudo-observation half-window
size D. The optimal half-window size appears to be D = 5,
which is in agreement with the temporal correlation scales of
smaller mesoscale features.

5. ALONG-TRACK NADIR VS. SWOT DATA

To evaluate the effect of considering different observation
sampling patterns, we generate additional pseudo-SWOT
wide-swath observations from the simulated high-resolution
SLA fields using the SWOT simulator [9]. The experimental
procedure and performance metrics considered are identical
to those in Section 4. The default parameters considered
are: Wp = 30 (since our experiments demonstrate this pro-
duces the best results for SWOT data), K = 25, σ2

n = 0,
δt = 1, D = 0, NEOF = 9. We include the reconstruc-

tion performance of OI [3], and of a data-driven locally-
adapted convolution-based non-negative decomposition ap-
proach (NNLD), introduced in [11] for the interpolation of
irregularly-sampled geophysical fields, as reference.
According to the SWOT mission error budget, SWOT will
present both correlated noise (eg. roll, phase and baseline di-
lation errors) and uncorrelated noise (e.g. KaRIN noise) [10].
In Table 1, we present SLA and ∇SLA RMSE and corre-
lation when pseudo-SWOT observations are used without
noise, with an uncorrelated (KaRIN) noise only and with
both correlated and uncorrelated noise. Correlated noise
has a strong impact on interpolation performance, whereas
the AnDA scheme seems relatively robust to KaRIN noise.
AnDA uses an EnFKS, which works best when noise is un-
correlated, and is unable to handle correlated noise properly
without the use of additional techniques [12]. Our results also
indicate that both effects seem to be enhanced when data is
accumulated over several days (not shown here).
Table 2 presents SLA and ∇SLA RMSE and correlation
results obtained when considering along-track nadir data,
SWOT data and a combination of both along-track nadir and
SWOT data without noise, for current observations only and
for observations accumulated on a time window t0 ±D, with
D = 5 days. We can conclude that, even though the best
results in terms of SLA reconstruction performance are ob-
tained when considering along-track nadir data accumulated
over 5 days, adding SWOT data seems to improve results in
terms of ∇SLA reconstruction. However, it should also be
noted that accumulating SWOT observations seems to have a
negative effect on SLA reconstruction, as wide-swath obser-
vations probably increase the sensitivity of AnDA to changes
occurring in the SLA field during the days over which ob-
servations are accumulated. In this respect, there seems to
be a compromise between accumulating data over multiple
days, which improves SLA reconstruction performance, and
considering SWOT data, which improves results in terms of
∇SLA reconstruction, but is prone to problems arising from
inconsistencies between accumulated observations.
Finally, it is worth noting that both accumulating along-
track nadir observations over several days and considering
wide-swath SWOT observations (alone or combined with
along-track nadir observations) seem to be effective strate-
gies to outperform both OI and NNLD. Indeed, compared
to OI (NNLD), AnDA presents better (similar) RMSE levels
while having higher correlation coefficients, which can be
interpreted as mesoscale structures being better recovered.

6. CONCLUSION

We developed an application of the Analog Data Assimilation
(AnDA) to the reconstruction of SLA fields in the Western
Mediterranean Sea from satellite altimetry data, namely satel-
lite along-track nadir data and wide-swath SWOT data. The
AnDA framework can be regarded as a means to exploit



Table 1: RMSE (Correlation) for AnDA using SWOT ob-
servations with different noise settings. Best result in bold.
Result for OI [3] and NNLD [11] given as reference.

Setting SLA ∇SLA

No noise 0.02156 (0.9388) 0.004515 (0.7726)
KaRIN noise 0.02166 (0.9383) 0.004530 (0.7724)
All noise sources 0.03926 (0.8042) 0.005999 (0.5736)

OI [3] 0.03389 (0.8447) 0.006661 (0.6050)
NNLD [11] 0.02127 (0.6957) 0.004513 (0.5892)

Table 2: RMSE (Correlation) for AnDA combining SWOT
and AT observations. Best result in bold. Result for OI [3]
and NNLD [11] given as reference.

Setting SLA ∇SLA

AT (D = 0) 0.02397 (0.9197) 0.005524 (0.7023)
AT (D = 5) 0.01966 (0.9464) 0.004687 (0.7679)

SWOT (D = 0) 0.02156 (0.9388) 0.004515 (0.7726)
SWOT (D = 5) 0.02523 (0.9200) 0.004474 (0.7678)

Both (D = 0) 0.02043 (0.9445) 0.004448 (0.7805)
Both (D = 5) 0.02428 (0.9254) 0.004424 (0.7745)

OI [3] 0.03389 (0.8447) 0.006661 (0.6050)
NNLD [11] 0.02127 (0.6957) 0.004513 (0.5892)

high-resolution numerical simulation datasets for the recon-
struction of SLA fields from partial satellite observations.
The reported OSSE support the relevance of AnDA with re-
spect to state-of-the-art aproches (OI [1, 3] and NNLD [11]).
For instance, we report a clear improvement of 42% (12%) in
terms of SLA RMSE (correlation) and 30% (27%) in terms
of ∇SLA RMSE (correlation) with respect to OI when con-
sidering along-track nadir data. Our experiments also suggest
an additional potential improvement from the joint assimila-
tion of SWOT and along-track nadir observations. However,
additional preprocessing should be carried out to filter out the
correlated noise in SWOT data [12].
Future work will focus on combining such preprocessing
strategies with the AnDA framework in order to develop use-
ful tools to process real observations from the future SWOT
altimetry mission. Other interesting research avenues include
the combination of the different sources of altimetry data as
well as considering additional ocean dynamical tracers (e.g.
sea surface temperature, sea surface salinity, ocean color,
etc.). The exploitation of structural information present in
wide-swath observations, for example by means of numer-
ically resolved SLA gradients and/or finite size Liapunov
exponents (FSLE), is also an appealing research direction.
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