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Set-Membership functional diagnosability: definitions and
analysis

Carine Jauberthie1 and Nathalie Verdière2 and Louise Travé-Massuyès1

Abstract— This paper introduces the concept of func-
tional diagnosability for nonlinear dynamical uncer-
tain models. Set-membership functional diagnosability
is based on the notion of functional signature intro-
duced in [11] extended to the set-membership frame-
work. The link between functional diagnosability and
set-membership functional diagnosability is established.
Contrary to classical definitions, the study of functional
diagnosability highlights some of the residual properties
related to the fault acting on the system in time.
Set-membership functional diagnosability extends this
concept to bounded faults, i.e. faults whose magnitude is
unknown but belongs to a bounded set. Numerical sim-
ulations for a system based on water tanks illustrate the
potential of set-membership functional diagnosability.

I. INTRODUCTION

Providing models representing physical systems is
a common concern spread over all scientific and
engineering communities. Complex systems are often
subjected to uncertainties that make the modeling
task awkward. It is particularly difficult to get an
accurate model of the disturbances and noises acting
on the system. This may turn the usual stochastic
framework inappropriate and this is why stochastic
models are sometimes disregarded to the benefit of set-
membership (SM) models. SM models naturally cope
with uncertainties that are assumed to be bounded but
otherwise unknown. This kind of uncertainties can be
taken into account by parameters and faults taking set
values instead of real values. Hence diagnosis based on
SM methods is relevant in many practical situations.
Before a system is put into operation and eventually
diagnosed, diagnosability analysis is an important
stage. Diagnosability is the property that guarantees
that the sensored values delivered by the available in-
strumentation can be processed into an appropriate set
of symptoms discriminating different faulty situations.
Thus, diagnosability can be checked at design phase so
that one knows before hand which faults the diagnoser
will be able to discriminate during operation with the
specified instrumentation. From another perspective,

1 Carine Jauberthie and Louise Travé-Massuyès are with LAAS-
CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France,
cjaubert,louise@laas.fr

2 Nathalie Verdière is with the University of Le Havre, Nor-
mandie Univ, France; ULH, LMAH, F-76600 Le Havre; FR
CNRS 3335, 25 rue Philippe Lebon 76600 Le Havre, France,
nathalie.verdiere@univ-lehavre.fr

this property provides the means to identify the set of
– additional – sensors that are required to achieve a
given degree of diagnosability.

In this work, a fault is an unpermitted deviation of
one parameter of the system from the acceptable stan-
dard condition. Hence, faults correspond to parameter
variations. In this context, the problem of diagnosabil-
ity has been shown to be closely related to the problem
of univocally inferring the value of the parameters
from the measurements. This problem is close to the
one of parameter identifiability that ensures that two
distinct parameters generate two distinct trajectories
for a model. In this work, links between identifiability
and diagnosability are recalled through the concept of
functional diagnosability introduced in [11].

In most situations, it is not important to distinguish
faults by their precise values but one would like to
distinguish classes of faults. For example, assessing
whether a hole in a pipe has a diameter of 11mm or
12mm is of no interest. Nevertheless, the order of mag-
nitude is important and one would like to distinguish
a 10mm diameter hole from a 50mm diameter hole.
In addition, nominal conditions are generally known
with uncertainty i.e. the parameter values are given
with some tolerances. We show that this problem can
be solved by proposing diagnosability definitions in
an SM framework, in particular defining the concepts
of strong and weak SM-functional diagnosability.

This paper is organized as follows. In Section II, the
core problem is stated and SM-functional diagnosabil-
ity is presented as an extension of functional diagnos-
ability. The link between functional diagnosability and
SM-functional diagnosability is also established. Sec-
tion III provides an application and numerical results
on a water tanks example. The last section concludes
the paper and outlines future research directions.

II. SET-MEMBERSHIP DIAGNOSABILITY

A. The models

We are concerned with diagnosability analysis of
controlled or uncontrolled SM models of the form
described below in which faults and disturbances have



been explicitly introduced:

Γ
P


ẋ(t,θ) = g(x(t,θ),u(t), f , p),
y(t, p) = h(x(t, p),u(t), f , p),
x(t0, p) = x0 ∈ X0,
p ∈ P⊂UP ,
t0 ≤ t ≤ T,

(1)

where x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state
variables and the outputs respectively. u(t) is the
control vector assumed to account for some random
noise considered bounded but otherwise unknown.
The function g is real and analytic on M, where
M is an open set of Rn such that x(t, p) ∈ M for
every t ∈ [t0, T ] and p denotes the parameter vector
belonging to a connected set P∈UP , where UP is an
open set of Rp. The fault vector f ∈ Re belongs to a
connected set F ⊆FSY S, where FSY S is the exhaustive
set defining the fault domain. f = 0 means no fault.
Y (P,F,u) (resp. Y (P,F)) denotes the set of outputs,
solution of ΓP with the input u (resp. when u = 0),
the parameter vector P and the fault vector F .
In this work, a fault f j is defined as a variation of one
parameter and Fj ⊆FSY S is a connected set describing
a faulty situation characterized by:

-the occurence of Fj introduces disturbances that
are assumed to be bounded,
-the magnitude of the fault is assumed to belong
to a bounded set.

Fj is called a “bounded fault”.
Using elimination theory, some differential polyno-

mials or analytical redundancy relations (ARR) linking
system inputs, outputs and their derivatives can be
obtained. In the last decade, algorithms for obtaining
such ARRs have been developed and implemented in
softwares like Maple [1]. They are based on differen-
tial algebra [7] and consist in eliminating unobservable
state variables in order to obtain the relations. The use
of ARRs makes possible to detect [6], isolate, and
estimate the severity of a fault acting on the system.

Several definitions of diagnosability have been
formed around the use of ARRs. The classical di-
agnosability definition consists in comparing fault
signatures [2]. The fault signature is a function which
associates to a fault the set of indicators, also called
residuals, obtained from the ARRs fed by measured
variables. Typically, the fault signature of f j is the m-
vector formed of zeros and ones: when the fault f j acts
on the residual ρi formed from an ARR, the number
1 is put in the ith component of the f j’s signature
otherwise it is 0. The authors of [3] consider that a
system is diagnosable if each fault can be written as
the solution of a polynomial equation in f j and a finite
number of time derivatives of inputs and outputs. This
definition is close to the one of identifiability proposed
by [10]. However, the definition of diagnosability
proposed in [3] is based on the obtention of particular

differential polynomials which may require a lot of
manipulations of the model equations. In case of
complex models, it is often impossible to obtain such
polynomials even using dedicated symbolic softwares.
Furthermore, the order of derivatives is so high that
they are hardly suitable for fault detection.
In [11], the authors propose to relax the constraints
of [3] and to use ARRs involving one or more faults
for studying diagnosability and detecting faults, the
advantage being to easier the obtention of ARRs with
derivatives of lower order. The obtention of such
ARRs is based on the work of [4]. From these partic-
ular ARRs, the definition of functional diagnosability
was proposed in [11]. The authors showed that if the
model is identifiable with respect to the faults, then
the residuals of these ARRs forming the functional
signature have distinct trajectories. Furthermore, sin-
gle faults can be easily detected.

As explained in the introduction, one may be inter-
ested in distinguishing only classes of faults, hence
the notion of SM diagnosability that we introduce
in this paper. SM diagnosability comes through the
notion of functional signature which is extended to
the stochastic context.

In the following subsections, the obtention through
variable elimination of ARRs expressions is presented
in the stochastic framework.

B. Obtention of ARRs

In [11], the authors propose to use specific ARRs
for defining functional diagnosability and achieving
fault detection in algebraic dynamic systems. These
ARRs are obtained from the Rosenfeld-Groebner algo-
rithm implemented in Maple [1]. An ARR is a relation
deduced from the model of the system that links
the system inputs and outputs and their derivatives.
Provided that derivatives can be estimated, an ARR
is hence a testable relation in the sense that it can
be evaluated with the measurements and this is why
it is useful for fault detection and isolation. For any
vector ϑ , let us define ϑ̄ to stand for ϑ and its time
derivatives up to some (unspecified) order. Then ARRs
can be put in the following form:

wi(ȳ, ū, f , p) = m0,i(ȳ, ū, p)−∑
ni
k=1 γ i

k( f , p)mk,i(ȳ, ū)
= w0,i(ȳ, ū, p)−w1,i(ȳ, ū, f , p)

(2)
where (γ i

k( f , p))1≤k≤ni are rational in f and p, γ i
v 6= γ i

w
(v 6= w) and (mk,i(y,u))1≤k≤ni are differential polyno-
mials with respect to ȳ and ū. w0,i(ȳ, ū, p) is equal
to m0,i(ȳ, ū, p), hence the first part of the polynomial
is not identically equal to zero and does not contain
components of f . It corresponds to the residual com-
putation form whereas w1,i(ȳ, ū, f , p) is known as the
residual internal form. The polynomials wi are called
input-output polynomials.
We can notice that in the classical diagnosability



framework, if two faults act on the same residuals,
their fault signatures are the same. Thus, theoretically,
it is not possible to distinguish them. With functional
diagnosability, the residuals can have different behav-
iors depending on how the faults are involved in their
expressions.

C. Functional diagnosability

The functional signature of a fault f j is given by the
vector formed by the internal form of the m residuals
by considering that only the fault f j is acting on the
system. In other words, it is given by the vector whose
ith component is w1,i(ȳ, ū, f j, p), that is the polynomial
obtained from w1,i(ȳ, ū, f , p) by considering all the
components of f equal to zero but the jth component
equal to f j. The following definition of functional fault
signature proposed in [11] is recalled.

Definition 2.1: The functional fault signature is a
function FSig which associates to a fault f j, the vector
(w1,i(ȳ, ū, f j, p))i=1,...,m.
We denote by FSig(i)( f j) = w1,i(ȳ, ū, f j, p) the ith
component of FSig( f j).

FSig( f j) is a vector of functions whose components
constitute each a trajectory. The following definitions
propose to link the functional signature and the notions
of discriminality and diagnosability. The first one is
true for all inputs, whereas the second one is verified
only for one input.

Definition 2.2: Two different faults f j and fl
are input-strongly functionally discriminable if
FSig( f j) 6= FSig( fl) in the sense that for all
input u, there exists at least one index i∗ and a
time interval [t1, t2] such that for all t ∈ [t1, t2],
FSig(i

∗)( f j) 6= FSig(i
∗)( fl).

When all the faults are input-strongly functionally
discriminable, the model is said input-strongly
functionally diagnosable.

Definition 2.3: Two different faults f j and fl are
input-weakly functionally discriminable if FSig( f j) 6=
FSig( fl) in the sense that there exits at least one
input u for which there exists at least one index i∗

and a time interval [t1, t2] such that for all t ∈ [t1, t2],
FSig(i

∗)( f j) 6= FSig(i
∗)( fl).

When all the faults are input-weakly functionally
discriminable, the model is said input-weakly func-
tionally diagnosable.

When the model is uncontrolled, we have the fol-
lowing definition:

Definition 2.4: Two different faults f j and fl are
functionally discriminable if FSig( f j) 6= FSig( fl) in
the sense that there exists at least one index i∗,
a time interval [t1, t2] such that for all t ∈ [t1, t2],
FSig(i

∗)( f j) 6= FSig(i
∗)( fl).

When all the faults are functionally discriminable, the
model is said functionally diagnosable.

Remark– Signatures of faults can be collected in a
table for which the component intersecting the ith line
and jth column contains the ith residual for the fault f j,
that is w1,i(ȳ, ū, f j, p). An example is proposed below:

Example 2.1: We consider the following model:
ẋ1 = (p1 + f1)(p2 + f2)x2

1 + x1x2,
ẋ2 = (p2 + f2)(p3 + f3)x2

2 + x2x3,
ẋ3 = (p1 + f1)(p3 + f3)x2

3 + x1x3,
y1 = x1, y2 = x2, y3 = x3.

(3)

It is easy to verify that:

w0,1(ȳ, ū, p) = ẏ1− y1y2− p1 p2y2
1,

w0,2(ȳ, ū, p) = ẏ2− y2y3− p2 p3y2
2,

w0,3(ȳ, ū, p) = ẏ3− y1y3− p1 p3y2
3.

(4)

w1,1(ȳ, ū, f , p) = (p1 f2 + p2 f1 + f1 f2)y2
1,

w1,2(ȳ, ū, f , p) = (p2 f3 + p3 f2 + f2 f3)y2
2,

w1,3(ȳ, ū, f , p) = (p1 f3 + p3 f1 + f1 f3)y2
3.

(5)

The functional signatures of the faults f1, f2 and f3
are given by:
FSig( f1) = (p2 f1y2

1,0, p3 f1y2
3)

T ,
FSig( f2) = (p1 f2y2

1, p3 f2y2
2,0)

T ,
FSig( f3) = (0, p2 f3y2

2, p1 f3y2
3)

T .
Functional diagnosability can be analysed with the
following table:

FSig( f ) / f f1 f2 f3

FSig(1)( f ) p2 f1y2
1 p1 f2y2

1 0
FSig(2)( f ) 0 p3 f2y2

2 p2 f3y2
2

FSig(3)( f ) p3 f1y2
3 0 p1 f3y2

3
Clearly, for j, l = 1,2,3, j 6= l, FSig( f j) 6= FSig( fl)
and the model is functionally diagnosable.

Let us notice that the functional signatures are of
the form:

FSig( fi) =

(
ni

∑
k=1

γ
i
k( fi, p)mk,i(ȳ, ū)

)
i=1,...,m

.

D. Extension to the set-membership framework

Considering a vector of faults F ⊆FSY S, let us de-
note by Fj the vector derived from F by setting all the
components equal to zero except the jth component.
Notice that Fj is a bounded fault given by a connected
set.

Definition 2.5: The SM-functional signature is a
function FSigSM which associates to the connected set
Fj the interval vector (w1,i(Ȳ (P,u), ū,Fj,P))i=1,...,m.
FSig(i)SM(Fj) denotes the ith component of FSigSM(Fj)

and corresponds to an interval function. FSig(i)SM(Fj)
consists of a set of trajectories generated in the pres-
ence of Fj and can be viewed as a tube of trajectories
on the time interval [t0,T ].

The aim is now to give definitions for distinguishing
the set of trajectories generated by F1 and F2 and
more precisely for distinguishing the two tubes of tra-
jectories generated by these bounded faults. The first



definition refers to weak SM-functional diagnosability
and permits an intersection of the two tubes on a time
interval. The second refers to strong SM-functional
diagnosability and requires the two tubes .

Definition 2.6: Two bounded faults F1 and F2 are
weakly SM-functionally discriminable if FSigSM(F1)
and FSigSM(F2) are distinct in the sense that there
exists at least one index i∗ and a time interval [t1, t2]
such that for all t ∈ [t1, t2], FSig(i

∗)
SM (F1) 6⊆ FSig(i

∗)
SM (F2)

or FSig(i
∗)

SM (F2) 6⊆ FSig(i
∗)

SM (F1) and FSig(i∗)SM (F1) ∩
FSig(i∗)SM (F2) 6= /0.

Definition 2.7: Two bounded faults F1 and F2 are
strongly SM-functionally discriminable if there exists
an index i∗ ∈ {1, ...,m} and a time interval [t1, t2] such
that for all t ∈ [t1, t2], FSig(i

∗)
SM (F1)∩FSig(i

∗)
SM (F2) = /0.

Definition 2.8: The model ΓP given by (1) is
weakly SM-functionally diagnosable for FSY S if any
two bounded faults F1, F2 ⊆ FSY S are weakly SM-
functionally discriminable.

Definition 2.9: The model ΓP given by (1) is
strongly SM-functionally diagnosable for FSY S if
all pair F1, F2 ⊆ FSY S of faults are strongly SM-
functionally discriminable.

The above definitions are given for uncontrolled
systems and "weak" and "strong" refer to properties of
the tube of trajectories. If the system is controlled and
the input u(t) is not equal to zero then the definitions
are also available in their input-weak and input-strong
form simarly to definitions 2.3 and 2.3.

E. Links between functional diagnosability and SM-
functional diagnosability

The following proposition shows that strong SM-
functional diagnosability can be inferred from func-
tional diagnosability.

Proposition 2.1: In the case of single faults, if the
model ΓP is functionally diagnosable for any p ∈ P
then the model is strongly SM-functionally diagnos-
able.
Proof – For two distinct faults f j ∈ Fj and fl ∈ Fl
and for any parameter p ∈ P, by assumption, the
trajectories generated by FSig( f j) and FSig( fl) are
distinct on an interval [t1, t2], thus the two tubes of
trajectories FSigSM(Fj) and FSigSM(Fl) have an empty
intersection on [t1, t2]. �

F. Link between identifiability, functional diagnosabil-
ity and SM-functional diagnosability

In [11], a link has been established between func-
tional diagnosability and identifiability. Identifiability
establishes an unambiguous mapping between the
parameters and the output trajectories. The following
proposition gives a necessary and sufficient condition
to verify identifiability of a model.

Proposition 2.1: Assume that there exists an in-
dex set I0 ⊆ {1, . . . ,m} such that for all i ∈

I0, the functional determinants 4w1,i(ȳ, ū, f , p) =
det(mk,i(ȳ, ū, f , p), k = 1, . . . ,ni) are not identically
equal to zero 1. The model (1) is globally identifiable
with respect to the faults if and only if the function φ

defined by :
φ : f = ( f1, . . . , fp) 7→

(
γ i

1( f , p), . . . ,γ i
ni
( f , p)

)
i∈I0

is
injective.

The following proposition gives the link between
functional diagnosability and identifiability of the
model with respect to the faults.

Proposition 2.2: Assume that there exists an in-
dex set I0 ⊆ {1, . . . ,m} such that for all i ∈
I0, the functional determinants 4w1,i(ȳ, ū, f , p) =
det(mk,i(ȳ, ū, f , p), k = 1, . . . ,ni) are not identically
equal to zero. If the model is globally identifiable with
respect to the faults then the model is (input-strongly)
functionally diagnosable. The reciprocal is not true.

Thus, using Proposition 2.2 and Proposition 2.1, it
comes that for verifying strong SM-functional diag-
nosability, it is sufficient to verify that:

1) the functional determinants 4w1,i(ȳ, ū, f , p) =
det(mk,i(ȳ, ū, f , p), k = 1, . . . ,ni) are not identi-
cally equal to zero for a set of indexes I0

2) the function φ is injective.

III. EXAMPLE: WATER-TANKS

Consider the two coupled water tanks modeled by:
ẋ1(t, p) = a1 u(t)−a2

√
x1(t, p),

ẋ2(t, p) = a3
√

x1(t, p)−a4
√

x2(t, p),
y1(t, p) = a5

√
x1(t, p),

y2(t, p) = a6
√

x2(t, p),

(7)

where p = (ai)i=1,...,6,ai 6= 0, is the parameter vector,
x = (x1,x2)

T represents the state vector and corre-
sponds to the level in each tank, and u 6≡ 0 is the input
vector. The water level in the tanks can vary between
0 and 10.

Let f1 denote an unknown additive fault on the
actuator signal, f2 and f3 are additive faults refering
to the two sensors on the output of each of the water
tanks, and f4 is a clogging fault. We assume that the
faults are bounded such that fi ∈ [0,1], i=1, . . . , 4.
f4 = 1 represents a fully clogged pipe and 0 < f4 < 1
represents partial clogging. In the faulty scenarios, the
faults are introduced at time t = 20s.

1This assumption consists in verifying the linear independence
of the mk,i(ȳ, ū, f , p), k = 1, . . . ,ni, by checking that the functional
determinant given by the Wronskian [5]

4w1,i(ȳ, ū, f , p)=

∣∣∣∣∣∣∣∣∣


m1,i(ȳ, ū, f , p) . . . mni ,i(ȳ, ū, f , p)

m1,i(ȳ, ū, f , p)(1) . . . mni ,i(ȳ, ū)
(1)

. . .
m1,i(ȳ, ū, f , p)(ni−1) . . . mni ,i(ȳ, ū, f , p)(ni−1)


∣∣∣∣∣∣∣∣∣

(6)
is not identically equal to zero. If there exists a time point at
which the Wronskian is non-zero, then the monomials are linearly
independent.



In order to use the Rosenfeld-Groebner algo-
rithm implemented in Maple 16, auxiliary variables
z1(t, p) =

√
x1(t, p) and z2(t, p) =

√
x2(t, p) are in-

troduced and the model, including the representation
of the four faults, is rewritten as:

ẋ1(t, p) = a1 (u(t)+ f1)−a2 (1− f4)z1(t, p),
ẋ2(t, p) = a3 (1− f4)z1(t)−a4 z2(t, p),
z1(t, p)2 = x1(t, p),
z2(t, p)2 = x2(t, p),
y1(t, p) = a5 (1− f4)z1(t, p)+ f2,
y2(t, p) = a6 z2(t, p)+ f3,
ḟi = 0.

(8)
According to the Rosenfeld-Groebner algorithm, the
two ARRs are:

w1(ȳ, ū, f , p) = w0,1(ȳ, ū, p)−w1,1(ȳ, ū, f , p)
w2(ȳ, ū, f , p) = w0,2(ȳ, ū, p)−w1,2(ȳ, ū, f , p) (9)

where:

w0,1 =−ua1a2
5 +(a2a5 +2ẏ1)y1,

w1,1 = 2 ẏ1 f2− ( f 2
4 a2 a5 −2 f4 a2 a5)y1

−(− f 2
4 a1 a2

5 +2 f4 a1 a2
5)u

+ f 2
4 f2 a2 a5 + f 2

4 f1 a1 a2
5−2 f4 f2 a2 a5

−2 f4 f1 a1 a2
5 + f2 a2 a5 + f1 a1 a2

5,
w0,2 = 2a5ẏ2y2−a3a2

6y1 +a4a5a6y2,
w1,2 = 2 ẏ2 f3 a5 + f3 a4 a5 a6− f2 a3 a2

6.

(10)

Hence,

FSig( f1) = (− f1 a1 a2
5,0)

T

FSig( f2) = (−2 ẏ1 f2− f2 a2 a5, f2 a3 a2
6)

T

FSig( f3) = (0,−2 ẏ2 f3 a5− f3 a4 a5 a6)
T

FSig( f4) = (y1 f 2
4 a2 a5−2y1 f4 a2 a5
−u f 2

4 a1 a2
5 +2u f4 a1 a2

5,0)
T .

(11)
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Fig. 1. Residual ρ1 when fault f1 is introduced at t = 20s

The functional determinants ∆w1,1(ȳ, ū) =

det(1,u,y1, ẏ1) = u̇(ÿ1y(4)1 − y(3)1
2
) − ü(ẏ1y(4)1 −

y(3)1 ÿ1) + u(3)(ẏ1y(3)1 − ÿ2
1) and ∆w1,2(y,u) =

det(ẏ2,1) =−ÿ2 are not identically equal to zero if u

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
second residual

time (s)

s
e
c
o
n
d
 r

e
s
id

u
a
l

Fig. 2. Residual ρ2 when fault f1 is introduced at t = 20s
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Fig. 3. Residual ρ1 when fault f4 is introduced at t = 20s
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Fig. 4. Residual ρ2 when fault f4 is introduced at t = 20s

is not identically equal to a constant. The function

φ( f ) = (−2 f2, f 2
4 a2a5−2 f4a2a5,

− f 2
4 a1a2

5 +2 f4a1a2
5,

− f 2
4 f2a2a5− f 2

4 f1a1a2
5 +2 f4 f2a2a5+

2 f4 f1a1a2
5− f2a2a5− f1a1a2

5,
−2 f3a5,− f3a4a5a6 + f2a3a2

6)

(12)

is clearly injective for f4 ∈]0,1[. Thus the model
is globally identifiable at f with respect to ]0,1[4.
According to Proposition 2.2, the model is hence
strongly SM-functionally diagnosable. Interestingly,
we can notice that this model is not diagnosable in



the classical sense.
In the simulations, a simple controller is used to
control the water level in the upper tank to follow a
square reference signal. The two sensors are disturbed
by a truncated Gaussian noise so that the relative
error has a maximal value of 0.1. The parameters
of the model are equal to a1 = a2 = a3 = a4 = 0.3,
a5 = a6 = 1.
The residuals in their computation form ρ1 =
−ua1a2

5+(a1a5+2ẏ1)y1 and ρ2 = 2a5ẏ2y2−a3a2
6y1+

a4a5a6y2, deduced from (9), are used for detecting the
faults. The initial conditions x1(0), x2(0) are assumed
to belong to the bounded intervals [0.55,0.65] and
[0.9,1.1] respectively. We present the two scenarios in
which the faults f1 and f4 are introduced at time t =
20s, respectively. f1 and f4 are assumed to belong to
the interval [0.45,0.55]. The derivatives are estimated
using an HOSM differentiator ([8], [9]). Figures 1 –
4 represent the residuals ρ1 and ρ2 when these two
faults act on the system, the blue line corresponds to
the lower bound of the residuals and the green line to
the upper bound.
Comparing the residuals ρ1 in Figures 1 and 3, we
can notice that the two tubes of trajectories generated
by the faults f1 and f4 have an empty intersection
on the interval [t1, t2] = [20,30] and this illustrates
the fact that the model is strongly SM-functionally
diagnosable.

IV. CONCLUSION

In this paper, a complete procedure to test the new
concept of SM-functional diagnosability is proposed.
This test is based on the links between identifiability,
functional diagnosability and SM-functional diagnos-
ability. A numerical example based on water-tanks is
used to illustrate the approach and confirm the rele-
vancy of the new concept. Future work will consider
the link between SM-identifiability proposed in [6]
and SM-functional diagnosability.
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