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Abstract

Identifiability is the property that a mathematical model must satisfy to guarantee an unambiguous mapping between its parameters
and the output trajectories. It is of prime importance when parameters must be estimated from experimental data representing input-
output behavior and clearly when parameter estimation is used for fault detection and identification. Definitions of identifiability
and methods for checking this property for linear and nonlinear systems are now well established and, interestingly, some scarce
works ([8, 16]) have provided identifiability definitions and numerical tests in a bounded-error context. This paper resumes and
better formalizes the two complementary definitions of set-membership identifiability andµ-set-membership identifiability of [16]
and presents a method applicable to nonlinear systems for checking them. This method is based on differential algebra and makes
use of relations linking the observations, the inputs and the unknown parameters of the system. Using these results, a method for
fault detection and identification is proposed. The relations mentioned above are used to estimate the uncertain parameters of the
model. By building the parameter estimation scheme on the analysis of identifiability, the solution set is guaranteed toreduce to one
connected set, avoiding this way the pessimism of classicalset-membership estimation methods. Fault detection and identification
are performed at once by checking the estimated values against the parameter nominal ranges. The method is illustrated with an
example describing the capacity of a macrophage mannose receptor to endocytose a specific soluble macromolecule.

This work is a extended version of a conference paper with thesame title, that appeared in the proceedings of the 8th IFAC
Symposium SAFEPROCESS, August 29-31, 2012.

Keywords: Fault detection and identification; Identifiability; Uncertain dynamic systems; Nonlinear models; Bounded
disturbances; Bounded noise; Parameter estimation

1. Introduction

Fault detection and identification via parameter es-
timation relies on the principle that possible faults in
the monitored system can be associated with specific
parameters of the mathematical model of the system
given in the form of an input-output relationy(t) =
g(u(t), e(t), θ, x(t)), wherey(t) represents the output
vector,u(t) the input vector, andx(t) the state vari-
ables which are partially measurable.θ represents the
non measurable parameters which are likely to change
on the occurrence of a fault, ande(t) the modeling error
and/or noise terms affecting the process.

Identifiability is the property that the mathematical
model must satisfy to guarantee an unambiguous map-
ping between its parametersθ and the output trajecto-
ries y(t). It is of prime importance when parameters
are to be estimated from experimental data represent-
ing input-output behavior and clearly when parameter

estimation is used for fault detection and identification.
If the model is not identifiable, it may as well be that
faulty parameters and non faulty parameters are not dis-
criminable through the estimation scheme.

Parameter estimation methods are generally cast in a
stochastic framework in which uncertainty is taken into
account through appropriate assumptions about noise
and model error probability distributions. However,
some sources of uncertainty are not well-suited to the
stochastic uncertainty assumption and are better mod-
eled as bounded uncertainty. This is typically the case
for modeling tolerances on the parameter values, for
which the manufacturer provides low and high bounds
corresponding to the inherent variability of technologi-
cal processes. Set-membership (SM) models naturally
cope with this type of uncertainties and with model er-
rors and noises assumed to be bounded but otherwise
unknown.

SM methods have been the focus of a growing inter-
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est in the last decade and they have been applied to many
tasks ([3, 18, 20]). The literature on this topic shows in-
teresting progress, for example, [34]. It confirms that
SM estimation is an interesting alternative to stochas-
tic estimation methods. Advantageously, SM parameter
estimation methods are able to squarely reject models
that are not consistent with data and error bounds. SM
estimation can be based on interval analysis that was in-
troduced by [30] and several algorithms have been pro-
posed, like in [17, 18, 21, 35]. Other approaches dedi-
cated to linear models include ellipsoid shaped methods
[15, 24, 29], parallelotopes and zonotopes [2].

Surprisingly, the interest for SM estimation methods
has not been underpinned by investigations about iden-
tifiability and only two works can be mentioned. The pi-
oneering paper by [8] outlines that interval based meth-
ods and interval constraint propagation can be used to
test for a new definition of global identifiability. In
contrast to structural global identifiability [32], the new
property no longer allows for the existence of atypi-
cal regions in the domain of interest. This is actually
a byproduct of using interval methods for testing it. But
in this work, what is really an interpretation of identifi-
ability in the SM context is only presented as a prac-
tical condition. Indeed, instead of imposing parame-
ters corresponding to a given input-output trajectory to
be strictly different, they are allowed to be distant by a
givenε, which provides a stopping condition to the nu-
merical method. It is only recently – ten years later –
that [16] formalized both the above property and test by
introducing two complementary definitions for the iden-
tifiability of error-bounded uncertain models, namely
set-membership identifiability(SM identifiability) and
µ-set-membership identifiability(µ-SM identifiability).
The first one is conceptual whereas an instance of the
second, calledε-SM identifiability, can be put in cor-
respondence with interval based parameter estimation
methods and the specified stopping condition precision
thresholdε.

One of the benefits of SM identifiability is that it by-
passes standard identifiability and allows one to give
(set) estimates of parameters that are unidentifiable in
the classical sense (see [40] for a good survey of clas-
sical definitions). SM identifiability indeed guarantees
that there exists a mapping of the parameter space into
connected subsets so that every subset can be associated
with a distinguishable output behavior.

In this paper, a more formal characterization than the
one in [16] is proposed forµ-SM identifiability, based
on the topological concept of contraction mapping [31].
This definition nicely captures the intuition that a pa-
rameter set that is associated with distinguishable be-

havior may be reduced to some extent, hence the con-
traction, and still retain the same property. If the set
can be contracted as small as desired,µ-SM identifia-
bility meets classical identifiability. Otherwise comes
the concept ofε-SM identifiability.

Besides, a differential algebra based method for
checking SM identifiability andµ-SM identifiability is
proposed. This method makes use of relations linking
the observations, the inputs and the unknown parame-
ters of the system. Building on this method, fault detec-
tion and identification are achieved via parameter esti-
mation. The relations mentioned above are used to es-
timate the parameters of the model in a set-membership
framework, through an analytic solution. The estimated
value sets are then checked against the parameter nom-
inal ranges. The identification of the fault(s) comes as a
byproduct of this detection test.

The paper is organized as follows. Section 2 provides
the formal description of the systems that are analyzed
and of the problem. Section 3 presents the two defi-
nitions of SM identifiability. The differential algebra
based method to analyze SM identifiability is given in
Section 4. It is taken as a basis for parameter estima-
tion in Section 5, and the approach is illustrated with an
example describing the capacity of a macrophage man-
nose receptor to endocytose a specific soluble macro-
molecule. Finally, some conclusions are outlined in
Section 6.

2. Problem formulation

The problem considered in this paper is the one of de-
tecting and identifying faults that may occur on a (con-
trolled or uncontrolled) system with bounded uncertain
parameters represented by a SM model of the following
form:

ΓP
1 =















ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = h(x(t, p), p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP , t0 ≤ t ≤ T,

(1)

where:

• x(t, p) ∈ R
n andy(t, p) ∈ R

m denote the state
variables and the outputs at timet respectively,

• u(t) ∈ R
r is the input vector at timet,

• the initial conditionsx0, if any, are supposed to
belong to a bounded setX0,

• the functionsf andh are real and analytic onM (in
particular, they are infinitely differentiable), where
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M is an open set ofRn such thatx(t, p) ∈ M for
everyt ∈ [t0, T ] andp ∈ P . T is a finite or infinite
time bound,

• the vector of parametersp belongs to a connected
set of parametersP . P is supposed to belong toUP

whereUP is an a priori known set of admissible
parameters,UP is either included inRp or equal to
R

p.

In this paper, fault detection is approached via pa-
rameter estimation and relies on the identifiability as-
sessment of the system as defined in section 3. It uses
some relations obtained during the identifiability analy-
sis process presented in section 4.2.

3. Set-membership identifiability

This section proposes a formulation of the SM iden-
tifiability problem for the class of systems formalized
by (1). It resumes the definitions proposed in [16] and
proposes a more formal characterization than the one in
[16] for µ-SM identifiability.

3.1. Definitions

Two definitions of global SM identifiability are pro-
vided, as well as their local counterpart. The first one
is a conceptual definition, whereas the second one, rely-
ing on the definition of a contraction mappingµ, can be
put in correspondence with operational set-membership
estimation methods. In these definitions,Y (P, u) (re-
spectivelyY (P )) denotes the set of output trajectories,
solution ofΓP

1 with the inputu (resp. whenu = 0).
The two following definitions apply to controlled sys-
tems, but they can be stated similarly for uncontrolled
systems.

Definition 3.1. The nonempty bounded connected set
P ∗ ⊆ UP is globally SM identifiable if there exists an
inputu such thatY (P ∗, u) 6= ∅ and
Y (P ∗, u) ∩ Y (P̄ , u) 6= ∅, P̄ ⊆ UP =⇒ P ∗ ∩ P̄ 6= ∅.

Under the conditions of definition (3.1), we may
equivalently say that the modelΓP

1 given by (1) is glob-
ally SM identifiable with respect toP ∗.

Let us now consider a nonempty bounded connected
setΠ of Rp andd a classical metric onRp [7], [31].
On the metric space(Π, d), let µ be a continuous map
from Π to Π. µ is a contraction if there is a non-
negative numberk < 1 such that for allπ1, π2 in
Π, d(µ(π1), µ(π2)) < kd(π1, π2) [31]. Let us also
define the diameter ofΠ by the least upper bound of
{d(π1, π2), π1, π2 ∈ Π}.

In the following definition, the setP ∗ is supposed to
be a bounded connected set andµ is a contraction from
P ∗ toP ∗.

Definition 3.2. The nonempty bounded connected set
P ∗ ⊆ UP is globallyµ-SM identifiable if, for all con-
tractionsµ fromP ∗ to P ∗, µ(P ∗) is globally SM iden-
tifiable.

Under the conditions of definition (3.2), we may
equivalently say that the modelΓP

1 given by (1) is glob-
ally µ-SM identifiable with respect toP ∗.

Definition 3.2 differs from definition 3.1 in the sense
that the setP ∗ may be reduced as small as desired by
the contractionµwhile still retaining the property of SM
identifiability. This is true by Banach fixed-point theo-
rem, which implies that the diameter ofµ(P ∗) tends to
zero [31]. In this case,µ-SM identifiability meets classi-
cal identifiability and, interestingly, it means that classi-
cal identifiability holds for anyp ∈ P ∗. In the opposite
case, i.e. if the diameter ofµ(P ∗) cannot be lower than
ε without eventually loosing SM identifiability, we refer
to ε-SM identifiability. This definition will be shown to
have practical importance in section 3.3.

The definition ofµ-SM identifiability hence sub-
sumes classical identifiability, while leading to the con-
cept ofε-SM identifiability, which is an extension to the
SM framework.

To account for possible singularities inUP , µ-SM
identifiability can be generically extended intostruc-
tural µ-SM identifiability, which means that the model
setΓP

1 is µ-SM identifiable with respect toP ∗ ⊂ UP

except for a subset of points of zero measure inUP . Let
us notice that defining the structural counterpart of SM
identifiability, as given by definition 3.1, is not relevant
because in this definition,P ∗ cannot be of zero measure.
The same is true forε-SM identifiability as explained in
[8].

Proposition 3.1. Global µ-SM identifiability with re-
spect toP ∗ implies global SM identifiability with re-
spect toP ∗ but the inverse is not true.

Proof – The implication is obvious. The fact that the
inverse implication is not true is proved with a counter-
example. Let us consider the following uncertain model
in whichω is an unknown parameter allowed to take an
interval value:

{

ẋ = x+ t cos(ω),
x(0) = x0 ∈ X0.

(2)

Its solution isx(t) = x0e
t + (−1− t+ et) cos(ω).

An admissible set forω is taken asUP = [0, 2π]. If
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ω ∈ P ∗ =

[

π

2
,
3π

2

]

, the model is globally SM identi-

fiable but notµ-SM identifiable. Indeed, no trajectory
arising from the systems whose parameterω is in P ∗

is identical to a trajectory arising from the complemen-
tary set ofP ∗ in UP , hence SM identifiability ofP ∗.
However, if the diameter ofP ∗ is smaller, there may
exist two disjoint subsets ofP ∗, namelyP ∗

1 andP ∗
2 ,

which result in common trajectories. This is the case,

for example, ofP ∗
1 = [π,

3π

2
] andP ∗

2 = [
π

2
,
3π

4
]. Con-

sequently,P ∗ cannot be contracted as small as desired,
and is not henceµ-SM identifiable.�

Local definitions of (µ-)SM identifiability can be
given by considering an open neighborhoodW of P ∗ in
whichΓP

1 is globally (µ-)SM identifiable with respect to
P ∗ with UP restricted toW .

If the model (1) is neither globally (µ-)SM identifi-
able nor locally (µ-)SM identifiable, it is saidnon (µ-
)SM identifiable.

In the case of uncontrolled models, similar definitions
can be considered without input.

3.2. µ-SM-identifiability and parameter estimation

Parameter estimation algorithms consist in most of
the cases in comparing the observed signal with the sys-
tem output obtained with candidate (interval) parame-
ter vectors. The observed signal is generally uncertain
and can be defined within bounds distant from a given
λ. The parameters whose trajectories fall within these
bounds are admissible, whereas the others are not.µ-
SM identifiability with respect toP ∗ implies that the
trajectories arising from the two sets, namelyP ∗ and
its complementary set, are not identical. But this is not
enough to guaranty that, if the trajectories arising from
P ∗ fall within the bounds, none of the trajectories of the
complementary set does.

Using Gronwall lemma and assuming that the func-
tions f andh defining model (1) are Lipschitz, it has
been proved in [39] thaty(t, p) is M -Lipschitz with re-
spect to the second variable, i.e. the parameter vector.
The constantM has been defined explicitly so that the
conditions under which the output trajectoriesy(t, p)
are distant by a givenλ can be determined.

This condition together withµ-SM identifiability
with respect toP ∗ not only imply that the trajectories
arising from a setP ∗ and its complementary set are dif-
ferent but also that there exist at least a time point for
which they are distant by more thanλ.

In other words, one can determine the minimal dis-
tance between two parameter vectors for which it is pos-
sible to distinguish numerically the trajectories byλ.

Moreover, once the parameter vector precision is given,
the time point for which the distance between two tra-
jectories, inP ∗ and its complementary set, is aboveλ
can be determined.

3.3. Correspondence with operational interval based
parameter estimation

This section first provides some concepts related to
the manipulation of sets, then discusses interval based
set inversion, exemplified by the algorithm SIVIA (Set
Inversion Via Interval Analysis), as a framework in
which the parameter estimation problem can be cast
[18]. An interpretation ofε-SM identifiability is then
exhibited and shown to be a formalization of the inter-
val based test proposed in [8] in the framework of Inter-
val Constraint Propagation (ICP).ε-SM identifiability is
then shown to generalize classical identifiability to sets
whose dimension can be controlled.

3.3.1. Interval set inversion
When manipulating sets of values, it is important to

be able to check whether one set is included in another
set or not. Given two subsetsS1 and S2 of Rn, one
wants to test whetherS1 is included inS2 or not. This
test, known as theinclusiontest is used to prove that all
points in a given set satisfy a given property or to prove
that none of them does.

Conversely, if two sets intersect, their intersection in-
herits the properties of the two sets. It is hence often
desirable to reduce a set to its intersection with respect
to another set, which is obtained throughcontraction.
The contraction1 of S1 with respect toS2 is a smaller
sets such thatS1 ∩ S2 = s ∩ S2. If S2 is the feasibility
set of a problem ands turns out to be empty, then the
setS1 does not contain the solution.

Interval analysis makes use of specific sets, also
known asboxes. A real interval is a closed and con-
nected subset ofR denoted[x, x] = {x ∈ R, |x ≤ x ≤
x}. A box is an interval vector[X,X], that is a vector
with interval components.

In SIVIA, inclusion and contraction are used to test
if a box can or cannot be removed from the solution
set. When no conclusion can be drawn, the box is bi-
sected and each of the sub-boxes can be tested in turn in
a branch-and-boundmanner. The same principles are
used in ICP.

1Although the intuition behindcontractionas used here andcon-
traction as used in section 3.1 is similar, the two concepts are not the
same. We use the same term because it is used as so by the interval
analysis community.
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Consider the problem of determining the solution set
for the unknown quantityu defined by:

S = {u ∈ U | Φ(u) ∈ [y]},

= Φ−1([y]) ∩ U,
(3)

where[y] is known a priori,U is an a priori search set
for u andΦ a nonlinear function not necessarily invert-
ible in the classical sense. (3) involves computing the
reciprocal image ofΦ. This can be solved using the al-
gorithmSIVIA, which recursively explores all the search
space without loosing any solution. SIVIA delivers a
guaranteed enclosure of the solution setS as follows:

S ⊆ S ⊆ S. (4)

The inner enclosureS is composed of the boxes that
have been proved feasible. To prove that a box[u]
is feasible it is sufficient to prove thatΦ([u]) ⊆ [y].
Reversely, if it can be proved thatΦ([u]) ∩ [y] = ∅,
then the box[u] is unfeasible. Otherwise, no conclusion
can be reached and the box[u] is said undetermined.
The latter is then bisected in two sub-boxes that are
tested until their size reaches a user-specified precision
thresholdε > 0. Such a termination criterion ensures
thatSIVIAterminates after a finite number of iterations.

In the above solving schema, the number of bisec-
tions to be performed is generally prohibitive. Hence,
recent algorithms take advantage of constraint propaga-
tion techniques to reduce the width of the boxes to be
tested [12], [13], [42]. In this context, the inclusion re-
lations and the model equations can be interpreted as
constraints. A Constraint Satisfaction Problem (CSP )
can be formulated as below.

A Constraint Satisfaction ProblemH = (X ,D, C) is
defined by:

• a set of variablesX = {x1, ..., xn},

• a set of nonempty domainsD = {D1, ..., Dn}
whereDi is the domain associated to the variable
xi,

• a set of constraintsC = {C1, ..., Cm}, so that the
associated variables to each constraint are defined
in X .

Given aCSP and an initial boxS1 (which may result
from a bisection operation as explained above), differ-
ent types of so-calledcontractorscan be used [17][9]
to contractS1 into a sets that satisfies the constraints.
Among the most well-known is the forward-backward
contractor [5] which is based on constraint propagation

and consists in contracting the domain of the CSP by
taking into account iteratively each constraint of the set
{C1, ..., Cm}.

3.3.2. Interpretation ofε-SM identifiability
SM identifiability does not provide the means to con-

trol the set of interestP ∗, i.e. the parameter solution set.
This points out the practical interest ofµ-SM identifia-
bility which is defined through a contraction mapping
µ(.) that allows one to control the diameter ofP ∗. In
particular,ε-SM identifiability means that the diameter
of P ∗ cannot be lower thanε without eventually loos-
ing SM identifiability. The diameter ofP ∗ can hence be
put in correspondance with the user-specified precision
threshold of SIVIA. Consequently,ε-SM identifiability
provides the means to guarantee that the estimate pro-
vided by the set inversion algorithm when the precision
threshold is taken equal toε consists of a connected set.
ε-SM identifiability is actually a formalization of the

ICP numerical test proposed by [8] to check global iden-
tifiability in a domain. Instead of imposing parameters
corresponding to a given input-output trajectory to be
strictly different, [8] allows them to be distant by a given
ε, which provides a stopping condition to the ICP nu-
merical method.

Ultimately, µ-SM identifiability subsumes classical
identifiability and SM identifiability as it provides the
means to control the setP ∗ thanks to the contraction
mappingµ(.). When the diameter ofP ∗ tends to0,
µ-SM identifiability comes back to classical identifia-
bility. Interestingly,µ-SM identifiability with respect
to P ∗ means that classical identifiability holds for any
p ∈ P ∗, which provides a way to test classical identi-
fiability for a set of parameters as a whole as shown in
section 4. When this diameter is necessarily higher or
equal toε, it results inε-SM identifiability.

4. Analysis of set-membership identifiability

In the literature, different approaches have been pro-
posed for studying global identifiability of nonlinear
systems, for example, the revisited Taylor Series ap-
proach of [33], those based on the local state isomor-
phism theorem, [10], [11], [19], [41], or those based on
differential algebra, [4], [28], [36], [38]. Most of them
can be adapted in order to test global (µ-)SM identifi-
ability. In [39], the authors propose two methods for
testing the global (µ-)SM identifiability: the first one is
based on the Taylor Series approach, the second one on
differential algebra. The latter is used in this paper be-
cause, as it will be seen in section 5, it permits to deduce
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a numerical procedure for SM fault detection. The no-
tion of partial injectivity of [23] is needed and is recalled
in the first subsection.

4.1. Partial injectivity

Definition 4.1. Consider a functionf : A → B and
any setA1 ⊆ A. The functionf is said to be a par-
tial injection ofA1 overA, noted(A1,A)-injective, if
∀a1 ∈ A1, ∀a ∈ A,

a1 6= a ⇒ f(a1) 6= f(a).

f is said to beA-injective if it is(A,A)-injective.

In [23], an algorithm based on interval analysis for
testing the injectivity of a given differentiable func-
tion is presented and a solver called ITVIA (Injectivity
Test Via Interval Analysis) implemented in C++ is men-
tioned.

4.2. Testing global (µ-)SM identifiability by Differential
Algebra

The proposed approach is an extension of [16] and
is based on [38]. [14] has proved that, choosing the ap-
propriate elimination order{p} < {y, u} < {x} (which
consists in eliminating unobservable state variables), the
differential algebra approach [22] allows one to obtain
relations between inputs, outputs and parameters. These
relations can be expressed as:

Ri(y, u, p) = θi0(y, u)
+
∑ni

k=1 θ
i
k(p)m

i
k(y, u), i = 1, . . . ,m,

(5)
where(θik)1≤k≤ni

are rational inp, θiu 6= θiv (u 6= v),
(mi

k(y, u))1≤k≤ni
are differential polynomials with re-

spect toy andu andθi0 6= 0.
The size of the system is the number of observations.

For simplicity, we assume thati = 1, i.e. there is only
one output variable andn = n1, mk(y, u) = m1

k(y, u),
θk = θ1k. The higher order derivative ofy in (5) is noted
l.

The following theorem provides necessary and suffi-
cient conditions for global SM identifiability orµ-SM
identifiability.

Theorem 1. Assume that the functional determinant
△R(y, u) = det(mk(y, u), k = 1, . . . , n), is not in
the idealI0

p obtained after eliminating state variables.
ConsiderP ∗ a subset ofUP for which the functionφ
defined by

φ : p = (p1, . . . , pp) 7→ (θ1(p), . . . , θn(p), y(t
+
0 , p),

. . . , y(l−1)(t+0 , p))

verifies:

∀p∗ ∈ P ∗, ∀p̄ 6∈ P ∗, φ(p∗) 6= φ(p̄). (6)

Then the modelΓP
1 is globally SM identifiable with re-

spect toP ∗.
If the modelΓP

1 is globally SM identifiable with respect
to P ∗ andφ is (P ∗,UP)-injective then the model isµ-
SM identifiable with respect toP ∗.
In the two cases, if the coefficient ofy(l) in (5) is not
equal to 0 att0, then the reciprocal is valid.

Proof – SufficiencyConsiderP ∗ verifying the hy-
pothesis of the theorem. Suppose there exists an input
u∗ such thatY (P ∗, u∗) 6= ∅ andy∗ ∈ Y (P ∗, u∗) ∩
Y (P̄ , u∗) for a cartesian product of intervals̄P ∈ UP .
Thus, there existsp∗ ∈ P ∗, p̄ ∈ P̄ such thaty∗ =
y(., p∗) = y(., p̄) andR(y∗, u∗, p∗) = R(y∗, u∗, p̄).
Denote Q(y∗, u∗) = R(y∗, u∗, p∗) − R(y∗, u∗, p̄).
Since
det(Q)(y∗, u∗) = det(mk(y

∗, u∗), k = 0, . . . , n) =
△R(y∗, u∗) is not equal to zero,θk(p∗) = θk(p̄) for
k = 1, . . . , n. Furthermore, recall thaty(., p∗) = y(., p̄)
in particulary(j)(t0, p∗) = y(j)(t0, p̄) for j = 0, . . . , l−
1. Since the functionφ is supposed to verify condition
(6), one gets̄p ∈ P ∗ that isP ∗ ∩ P̄ 6= ∅.
If φ is (P ∗,UP)-injective then,φ is in particular in-
jective onP ∗ and we always havep∗ = p̄, that is
P ∗ ∩ P̄ 6= ∅.

NecessityLet’s prove the contrapositive. Sup-
pose there exists̄P , P ∗ ∩ P̄ = ∅ containing p̄
such thatφ(p∗) = φ(p̄) for a certainp∗ ∈ P ∗.
Since the coefficient ofy(l) in (5) is not equal to
0 at t0 and the differential polynomials(mk)k=1,...,n

have a degree 1 iny(l) ([14]), any time derivative
y(r)(t+0 , p

∗), r ≥ l can be rewritten as a function
of y(l−1)(t+0 , p

∗), . . . , y(t+0 , p
∗), θ1(p

∗), . . . , θn(p
∗).

According to the hypothesis, the coefficients ofy(t, p∗)
in the Taylor expansion are the same as those ofy(t, p̄).
Thus,y∗ := y(t, p∗) = y(t, p̄) andy∗ ∈ Y (P ∗, u) ∩
Y (P̄ , u). Consequently, the model is not globally SM
identifiable forP ∗. �

Example:Consider the uncertain model:






















ẋ1 = x2
1 + (1− p2)x2,

ẋ2 = sin(p1)x1,
x1(0) = (p1 + 2(1− p2) cos(p1)),
x2(0) = 0,
y = x1,

(7)

where(p1, p2) ∈ P ∗ = [−1, 4]× [0, 1/10].
We want to know whether the model is globallyµ-SM
identifiable with respect toP ∗. By settingc1 = sin(p1)
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and with the elimination order{c1, p2} < {y} <
{x1, x2}, the package diffalg of Maple gives the fol-
lowing input-output polynomial:

R(y, u) = ÿ − 2ẏy − (1− p2)c1y.

In that case, the functional determinant is reduced to
△R(y, u) = y and in using the functionbelong_to of
the package diffalg of Maple [6], we verify that it is not
in I0

p .
In order to consider the initial condition, the functionφ :
(p1, p2) → ((1− p2) sin(p1), (p1+2(1− p2) cos(p1)))
has to be studied. Notice that the coefficient ofÿ in (5)
is not equal to 0 at 0. The solver ITVIA ([23]) allows
one to obtain the partition of the boxP ∗ on which the
functionΦ is partially injective andΦ can be proved to
be not injective overP ∗. Thus the model is notµ-SM
identifiable with respect toP ∗.

5. Fault detection and identification

5.1. Problem setting

SM fault detection may use state estimation or pa-
rameters estimation. When the model is nonlinear like
(1), the sets to be characterized (state or parameter val-
ues) may be nonconvex and may even consist of sev-
eral disconnected sets. In the latter case, interval anal-
ysis encloses such sets in the convex hull and the usual
drawback is to obtain very conservative interval solution
vectors, which result in missing alarms. Recent meth-
ods such as [1] or the one proposed in this paper should
provide significant improvements in this direction.

In this work, the same analysis is used for identifiabil-
ity checking and for estimating the parameters. Advan-
tageously, after analyzing identifiability, we can guaran-
tee that the solution set for the system (1) reduces to one
connected set.

In this section, a numerical method deduced from
section 4.2 is proposed to estimate the unknown con-
stant parameters of a non linear system like (1).

The output y is supposed to be disturbed by a
bounded additive noiseη, η(t) ∈ [η(t)] and the parame-
ter vectorp belongs toP whereP is an interval vector.
The polynom (5) can be used to estimate the interval
vectorP . ConsiderΘk the associated expression ofθk
defined in the polynom (5), wherep is substituted byP .
Θk(P ) is a connected set for all connectedP since it
involves sum, difference and product of connected sets.
Suppose that the observations are done at discrete times
tj , 0 ≤ j ≤ M and they are notedyj = y(tj).

Then, the following system whose interval vector
(Θk(P ))1≤k≤n is unknown can be deduced:

∀j = 0, . . . ,M,
0 ∈ m0(yj , uj) +

∑n

k=1 Θk(P )mk(yj , uj).
(8)

Notice that (8) is linear with respect to
{Θ1(P ), . . . ,Θn(P )}. Solving the previous system
comes back to solving0 ∈ [A][x] − [b] or [A][x] = [b]
where[A]j = ([mk(yj , uj)])k=1,...,n is thejth line of
the interval matrix[A] and[b]j = −[m0(yj , uj)] is the
jth line of the interval vector[b].

Finding a solution for (8) requires an evaluation of a
finite number of measurement derivatives. In this work,
these derivatives are estimated by using Higher Order
Sliding Mode (HOSM) differentiators developped in
[25], [27].

5.2. Derivative estimation

In the works [25], [26], [27] concerning HOSM dif-
ferentiators, the input signaly(t) to be derivated is con-
sidered as a function defined on[0, +∞[. The sig-
nal y(t) is supposed to consist of a bounded Lebesgue-
measurable noise (bounded by a positive constantα)
with unknown features and an unknown base signal
y0(t) with themth derivative having a known Lipschitz
constantC > 0. The successive derivatives of a signal
y(t) are estimated byz0(t), z1(t), ..., zm(t) as described
below:



































































ż0 = v0,

v0 = −λ0 |z0 − y|
m

(m+1) sign(z0 − y) + z1,

ż1 = v1,

v1 = −λ1 |z1 − v0|
(m−1)

m sign(z1 − v0) + z2,

...
˙zm−1 = vm−1,

vm−1 = −λm−1 |zm−1 − vm−2|
1
2 sign(zm−1 − vm−2)

+zm,

˙zm = −λm sign(zm − vm−1),

whereλj ∈ R, j = 0, . . . ,m represent the differentia-
tor parameters. Generally, these parameters are chosen
experimentally (for more details, see [25], [26]).
It has been proved in [26] that the best estimate accuracy
of thekth derivative is proportional to:

acck = µkC
k

m+1α
m+1−k

m+1 , k = 0, 1, 2, ...m

whereµk ≥ 1 depends only onλj (j = 0, . . . ,m). In
this paper, we compute an interval containing the exact
kth derivative ofy. We notey(k)p the estimate of the
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kth exact derivative ofy, then this computed interval is
given by:

[y(k)p − acck, y
(k)
p + acck],

with y
(k)
p = zk [37].

5.3. Case study

The following example taken from [38] is consid-
ered. In [38], the proposed model is cast in a stochastic
framework in which uncertainty is taken into account
through appropriate assumptions about noise and model
error probability distributions.
This model allows one to explore the capacity of the
macrophage mannose receptor to endocytose soluble
macromolecule and to quantify the different aspects of
such a process:















ẋ1 = α1(x2 − x1)−
Vmx1

1+x1
,

ẋ2 = α2(x1 − x2),
x1(0) ∈ [0.62, 0.63], x2(0) = 0,
y = x1,

(9)

wherex1 (resp.x2) is the enzyme concentration outside
(resp. inside) the macrophage andp = (α1, Vm, α2)
are the unknown parameters which have to be identi-
fied. The parameterα1 is the rate constant of the trans-
fer from Compartment 1 (or the central compartment),
practically plasma, to Compartment 2 (or the peripheral
compartment), which represents the part of the extravas-
cular extracellular fluid accessible. Furthermore,α2 is
the rate constant of the transfer from Compartment 2 to
Compartment 1.

This model can be easily proved to be globallyµ-SM
identifiable with respect to(R+)3. The numerical study
has been conducted in simulation in Matlab using Int-
lab. The simulated outputs are disturbed by a truncated
gaussian noiseη such thatη(t) ∈ [−0.001, 0.001].
Thus,y(t) = ȳ(t) + η(t) whereȳ is the exact output
corresponding to the exact value of parameters:α1 =
0.011, α2 = 0.02 andVm = 0.1. The observations
are supposed to be done at discrete times(tj)j=1,...,N

on the interval[0, 60] with a sampling period equal to 1.
The polynomR(y, u) is given by:

R(y, u) = ÿ(1+y)2+γ1ẏ(1+y)2+γ2y(1+y)+γ3ẏ,

with γ1 = α1 + α2, γ2 = α2.Vm andγ3 = Vm.
If we denotey(1)p (tj) (resp. y(2)p (tj)) the estimate of
ẏ(tj) (resp. ÿ(tj)), the obtained system which has to

be solved is[A][x] = [b] where[A]j = ([y
(1)
p (tj)(1 +

y(tj))
2], [y(tj)(1 + y(tj))], [y

(1)
p (tj)]) and [b]j =

[−y
(2)
p (tj)(1 + y(tj))

2].

y
(1)
p (tj) andy(2)p (tj) are obtained by using HOSM dif-

ferentiators presented in subsection 5.2. The parame-
ters of the HOSM differentiators are given byλ0 = 3,
λ1 = 0.2 andλ2 = 0.1.

Solving this system can be cast into the set inversion
framework for which we used the SIVIA algorithm
complented by the forward-backward propagation to
contract the initial parameter box. The problem solved
here is to find[x] such that0 ∈ [A][x] − [b], given
initial intervals forγ1, γ2 andγ3 obtained from prior
knowledge.

Case of nominal behaviour: By using initial in-
tervals given byγ1 = [0, 0.04], γ2 = [0, 0.003],
γ3 = [0, 0.2] and the bisection precisionε = 0.001,
we obtain in 14.18 seconds :α1 = [0, 0.0401], α2 =
[0, 0.0437] andVm = [0.06875, 0.13203],

by using the equations:Vm = γ3, α2 =
γ2/Vm, α1 = γ1 − α2. All these intervals contain the
normal values, confirming normal behavior.

Then, by using γ1 = [0, 0.04], γ2 =
[0, 0.003], γ3 = [0, 0.2] and the bisection pre-
cision ε = 0.0001, we obtain in 177.55 seconds
: α1 = [0, 0.0329], α2 = [0.0071, 0.0317] and
Vm = [0.094824, 0.10527].
All these intervals contain the normal values.

Case of a fault on parameterα2: In this simulation,
we assume a fault onα2 = 2, which means that the rate
of the transfer from Compartment 2 to Compartment 1
is high.
After 25.15 minutes, by usingγ1 = [0, 3], γ2 =
[0, 1], γ3 = [0, 0.2], we obtain: α1 =
[0.0000, 0.5050], α2 = [1.1200, 10.4435] andVm =
[0.0242, 0.1790].

The real faulty value ofα2 is contained in the
estimated interval forα2, which allows us to detect and
localize the fault. Moreover, there is no intersection
between the estimated interval forα2 and the one
obtained for normal behaviour.

Case of a fault on parameterα2 at t = 15s:
Consider now the case of an abrupt change in the value
of α2 during the test and let us assume a faultα2 = 1
at timet = 15s. This fault is detected int = 0.05s after
its occurence.
After the detection of this fault, by usingγ1 = [0, 1.05],
γ2 = [0, 0.12], γ3 = [0, 0.12], we obtain in 22.6
secondsα1 = [0, 0.0238], α2 = [0.0738, 1.0500]
andVm = [0, 0.1200]. These intervals onα1 andVm
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contain the normal values whereas the one obtained for
α2 contains the faulty value.

Case of a fault on parameterVm: In this simulation,
we assume a fault onVm = 0.2 at t = 27s. This fault
is detected int = 0.02s after its occurence. Once the
fault is detected, the estimation algorithm is initialized
with γ1 = [0, 0.04], γ2 = [0, 0.007], γ3 = [0, 0.3],
and we obtain in 33.43s the intervalsα1 = [0, 0.0150],
α2 = [0, 0.0248] andVm = [0.0242, 0.3].
The intervals onα1 andα2 contain the normal values
whereas the one forVm contains the faulty value, hence
confirming the fault.

6. Conclusion

This paper proposes a fault detection and identifica-
tion method for bounded uncertainty nonlinear models
relying on an original parameter identifiability scheme.
It takes benefit of a differential algebra based method for
checking SM identifiability and its operational counter-
partµ-SM identifiability. These notions provide a way
to study different aspects of identifiability for uncer-
tain bounded-error systems, in particular systems that
represent an infinite family of nonlinear systems. By
building the parameter estimation scheme on the anal-
ysis of identifiability, we guarantee that the solution set
reduces to one connected set, avoiding this way the pes-
simism of SM methods. Identifiability is closely re-
lated to diagnosability as it provides the guaranty that
two situations corresponding to different parameterized
settings are distinguishable. The proposed method has
been applied to an example describing the capacity of a
macrophage mannose receptor to endocytose a specific
soluble macromolecule. Different normal and faulty
scenarios have been considered. For every scenario, the
parameters have been estimated correctly with reason-
able precision.
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