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Abstract

Identifiability is the property that a mathematical modelstrgatisfy to guarantee an unambiguous mapping betweearasgters
and the output trajectories. Itis of prime importance wharameters must be estimated from experimental data repigéput-
output behavior and clearly when parameter estimationed @sr fault detection and identification. Definitions of idiéiability
and methods for checking this property for linear and naaimsystems are now well established and, interestingiyeszarce
works ([8, 16]) have provided identifiability definitionsé&numerical tests in a bounded-error context. This papemes and
better formalizes the two complementary definitions ofreetnbership identifiability and-set-membership identifiability of [16]
and presents a method applicable to nonlinear systems éokizty them. This method is based on differential algebchraakes
use of relations linking the observations, the inputs aedutiknown parameters of the system. Using these resultsthedtor
fault detection and identification is proposed. The refatimentioned above are used to estimate the uncertain pararméthe
model. By building the parameter estimation scheme on thlysis of identifiability, the solution set is guaranteeddduce to one
connected set, avoiding this way the pessimism of class&amnembership estimation methods. Fault detection amifatation
are performed at once by checking the estimated valuessighiparameter nominal ranges. The method is illustratédam
example describing the capacity of a macrophage mannosptog¢o endocytose a specific soluble macromolecule.

This work is a extended version of a conference paper wittsémae title, that appeared in the proceedings of the 8th IFAC
Symposium SAFEPROCESS, August 29-31, 2012.

Keywords: Fault detection and identification; Identifiability; Untain dynamic systems; Nonlinear models; Bounded
disturbances; Bounded noise; Parameter estimation

1. Introduction estimation is used for fault detection and identification.
If the model is not identifiable, it may as well be that
Fault detection and identification via parameter es- faulty parameters and non faulty parameters are not dis-
timation relies on the principle that possible faults in criminable through the estimation scheme.
the monitored system can be associated with specific Parameter estimation methods are generally cast in a
parameters of the mathematical model of the system stochastic framework in which uncertainty is taken into

given in the form of an input-output relatiof(t) = account through appropriate assumptions about noise
g(u(t),e(t),0,z(t)), wherey(t) represents the output and model error probability distributions. However,
vector, u(t) the input vector, and:(¢) the state vari-  some sources of uncertainty are not well-suited to the

ables which are partially measurablé represents the  stochastic uncertainty assumption and are better mod-
non measurable parameters which are likely to changeeled as bounded uncertainty. This is typically the case
on the occurrence of a fault, aa¢¥) the modeling error ~ for modeling tolerances on the parameter values, for
and/or noise terms affecting the process. which the manufacturer provides low and high bounds
Identifiability is the property that the mathematical corresponding to the inherent variability of technologi-

model must satisfy to guarantee an unambiguous map-cal processes. Set-membership (SM) models naturally
ping between its parametefisand the output trajecto- ~ cope with this type of uncertainties and with model er-
riesy(t). It is of prime importance when parameters rors and noises assumed to be bounded but otherwise
are to be estimated from experimental data represent-unknown.

ing input-output behavior and clearly when parameter SM methods have been the focus of a growing inter-
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estinthe last decade and they have been applied to manyhavior may be reduced to some extent, hence the con-
tasks ([3, 18, 20]). The literature on this topic shows in- traction, and still retain the same property. If the set
teresting progress, for example, [34]. It confirms that can be contracted as small as desirg®&M identifia-

SM estimation is an interesting alternative to stochas- bility meets classical identifiability. Otherwise comes
tic estimation methods. Advantageously, SM parameter the concept 0£-SM identifiability.

estimation methods are able to squarely reject models Besides, a differential algebra based method for
that are not consistent with data and error bounds. SM checking SM identifiability and:-SM identifiability is
estimation can be based on interval analysis that was in-proposed. This method makes use of relations linking
troduced by [30] and several algorithms have been pro- the observations, the inputs and the unknown parame-
posed, like in [17, 18, 21, 35]. Other approaches dedi- ters of the system. Building on this method, fault detec-
cated to linear models include ellipsoid shaped methodstion and identification are achieved via parameter esti-

[15, 24, 29], parallelotopes and zonotopes [2].
Surprisingly, the interest for SM estimation methods

has not been underpinned by investigations about iden-

tifiability and only two works can be mentioned. The pi-

oneering paper by [8] outlines that interval based meth-

mation. The relations mentioned above are used to es-
timate the parameters of the model in a set-membership
framework, through an analytic solution. The estimated
value sets are then checked against the parameter nom-
inal ranges. The identification of the fault(s) comes as a

ods and interval constraint propagation can be used tobyproduct of this detection test.

test for a new definition of global identifiability. In
contrast to structural global identifiability [32], the new
property no longer allows for the existence of atypi-
cal regions in the domain of interest. This is actually
a byproduct of using interval methods for testing it. But
in this work, what is really an interpretation of identifi-
ability in the SM context is only presented as a prac-
tical condition. Indeed, instead of imposing parame-
ters corresponding to a given input-output trajectory to
be strictly different, they are allowed to be distant by a
givene, which provides a stopping condition to the nu-
merical method. It is only recently — ten years later —
that [16] formalized both the above property and test by
introducing two complementary definitions for the iden-
tifiability of error-bounded uncertain models, namely
set-membership identifiabilitySM identifiability and
u-set-membership identifiabilitfy:-SM identifiability).

The paper is organized as follows. Section 2 provides
the formal description of the systems that are analyzed
and of the problem. Section 3 presents the two defi-
nitions of SM identifiability. The differential algebra
based method to analyze SM identifiability is given in
Section 4. It is taken as a basis for parameter estima-
tion in Section 5, and the approach is illustrated with an
example describing the capacity of a macrophage man-
nose receptor to endocytose a specific soluble macro-
molecule. Finally, some conclusions are outlined in
Section 6.

2. Problem formulation

The problem considered in this paper is the one of de-
tecting and identifying faults that may occur on a (con-
trolled or uncontrolled) system with bounded uncertain

The first one is Conceptual whereas an instance of the parameters represented by a SM model of the fo||owing

second, called-SM identifiability can be put in cor-

respondence with interval based parameter estimation
methods and the specified stopping condition precision

thresholck.
One of the benefits of SM identifiability is that it by-
passes standard identifiability and allows one to give

(set) estimates of parameters that are unidentifiable in
the classical sense (see [40] for a good survey of clas-

sical definitions). SM identifiability indeed guarantees

that there exists a mapping of the parameter space into

form:

i(t,p) = f(x(t,p),u(t),p),
(t,p) = h(x(t,p),p),
(to,p) = w0 € Xo,
ePCclUp, to<t<T,

Y

1)

xr
_ Yy
xr
b
where:

* z(t,p) € R™ andy(t,p) € R™ denote the state
variables and the outputs at timeespectively,

connected subsets so that every subset can be associated

with a distinguishable output behavior.

In this paper, a more formal characterization than the
one in [16] is proposed for-SM identifiability, based
on the topological concept of contraction mapping [31].
This definition nicely captures the intuition that a pa-

rameter set that is associated with distinguishable be-

2

* u(t) € R" is the input vector at time,

« the initial conditionsz, if any, are supposed to
belong to a bounded sé&f,,

« the functionsf andh are real and analytic o/ (in
particular, they are infinitely differentiable), where



M is an open set dR™ such thate(¢,p) € M for In the following definition, the seP* is supposed to
everyt € [to, T]andp € P. T is afinite or infinite be a bounded connected set ani$ a contraction from
time bound, P* to P*.

« the vector of parametegsbelongs to a connected Definition 3.2. The nonempty bounded connected set
set of parameterB. P is supposed to belong tép P* C Up is globally u-SM identifiable if, for all con-
wherelfp is an a priori known set of admissible tractionsy from P* to P*, u(P*) is globally SM iden-
parameterd{p is either included ifR? or equal to tifiable.

RP.
Under the conditions of definition (3.2), we may

In this paper, fault detection is approached via pa- equivalently say that the modg{” given by (1) is glob-
rameter estimation and relies on the identifiability as- ally u-SM identifiable with respect t&*.
sessment of the system as defined in section 3. It uses Definition 3.2 differs from definition 3.1 in the sense
some relations obtained during the identifiability analy- that the setP* may be reduced as small as desired by
sis process presented in section 4.2. the contraction while still retaining the property of SM
identifiability. This is true by Banach fixed-point theo-
rem, which implies that the diameter pf P*) tends to
zero [31]. In this casgy-SM identifiability meets classi-

This section proposes a formulation of the SM iden- cal identifiability and, interestingly, it means that class
tifiability problem for the class of systems formalized cal identifiability holds for any € P*. In the opposite
by (1). It resumes the definitions proposed in [16] and case, i.e. if the diameter gf( P*) cannot be lower than
proposes a more formal characterization than the one in¢ Without eventually loosing SM identifiability, we refer

3. Set-membership identifiability

[16] for 1u-SM identifiability. to e-SM identifiability This definition will be shown to
have practical importance in section 3.3.
3.1. Definitions The definition of 4x-SM identifiability hence sub-

sumes classical identifiability, while leading to the con-
cept ofe-SM identifiability, which is an extension to the
SM framework.

To account for possible singularities iy, p-SM
identifiability can be generically extended instruc-
tural u-SM identifiability which means that the model
setI'l” is u-SM identifiable with respect té* C Up
except for a subset of points of zero measurgin Let
us notice that defining the structural counterpart of SM
identifiability, as given by definition 3.1, is not relevant
because in this definitiol* cannot be of zero measure.
The same is true far-SM identifiability as explained in
Definition 3.1. The nonempty bounded connected set [8].

P* C Up is globally SM identifiable if there exists an
inputwu such thaty’ (P*,u) # () and
Y(P*,u)NY (P,u) #0, PCUp = P*NP+#0.

Two definitions of global SM identifiability are pro-
vided, as well as their local counterpart. The first one
is a conceptual definition, whereas the second one, rely-
ing on the definition of a contraction mappipgcan be
put in correspondence with operational set-membership
estimation methods. In these definitions( P, u) (re-
spectivelyY (P)) denotes the set of output trajectories,
solution of I'Y” with the inputu (resp. wheru = 0).

The two following definitions apply to controlled sys-
tems, but they can be stated similarly for uncontrolled
systems.

Proposition 3.1. Global ;-SM identifiability with re-
spect toP* implies global SM identifiability with re-
spect toP* but the inverse is not true.

Under the conditions of definition (3.1), we may

ivalentl that th de{’ given by (1) is glob- . : :
equivalently say that the mode{’ given by (1) is glo inverse implication is not true is proved with a counter-

ally SM identifiable with respect t&*. : : .

Let us now consider a nonempty bounded connected .exam.ple. L.et us consider the following uncertain model
setll of R? andd a classical metric o [7], [31]. in whichw is an unknown parameter allowed to take an
On the metric spacél, d), let u be a continuous map interval value:
from II to II. p is a contraction if there is a non- &=+ tcos(w), :
negative numbek < 1 such that for allry, o in { z(0) = zo € Xo. ()

0, d(u(m), u(me)) < kd(m,m) [31]. Let us also
define the diameter dfl by the least upper bound of Its solutionisz(t) = zget + (=1 — t + et) cos(w).
{d(my, m2), w1, 7m0 € IT}. An admissible set fow is taken ad/p = [0,27x]. If

Proof — The implication is obvious. The fact that the



m 37 Moreover, once the parameter vector precision is given,

w € P* = |-, —|, the model is globally SM identi- : ! : :

. 272 ] - . the time point for which the distance between two tra-
fiable but notu-SM identifiable. Indeed, no trajectory jectories, inP* and its complementary set, is abave
arising from the systems whose parameteis in P* can be determined.

is identical to a trajectory arising from the complemen-
tary set of P* in Up, hence SM identifiability ofP*.
However, if the diameter of* is smaller, there may
exist two disjoint subsets aP*, namely P;" and Py,

which result in common trajectories. This is the case,  This section first provides some concepts related to
™ 3w the manipulation of sets, then discusses interval based

. 3 . _
for example, ofPy” = [, 7] andpy = [5’ I]' Con-. set inversion, exemplified by the algorithm SIVIA (Set
sequentlyP* cannot be contracted as small as desired, |nversion Via Interval Analysis), as a framework in

3.3. Correspondence with operational interval based
parameter estimation

and is not hencg-SM identifiable.L] which the parameter estimation problem can be cast
Local definitions of (i-)SM identifiability can be  [18]. An interpretation of:-SM identifiability is then
given by considering an open neighborhddf P* in exhibited and shown to be a formalization of the inter-
whichT'{” is globally (u-)SM identifiable with respectto  yal based test proposed in [8] in the framework of Inter-
P with Up restricted tol. val Constraint Propagation (ICR:.SM identifiability is
If the model (1) is neither globally.£)SM identifi- then shown to generalize classical identifiability to sets
able nor locally i-)SM identifiable, it is saichon (u- whose dimension can be controlled.

)SM identifiable
In the case of uncontrolled models, similar definitions
can be considered without input.

3.3.1. Interval set inversion
When manipulating sets of values, it is important to
be able to check whether one set is included in another
set or not. Given two subsefy andS, of R”, one
Parameter estimation algorithms consist in most of wants to test whethe$; is included inS; or not. This
the cases in comparing the observed signal with the sys-test, known as thclusiontest is used to prove that all
tem output obtained with candidate (interval) parame- points in a given set satisfy a given property or to prove
ter vectors. The observed signal is generally uncertain that none of them does.
and can be defined within bounds distant from a given  Conversely, if two sets intersect, their intersection in-
A. The parameters whose trajectories fall within these herits the properties of the two sets. It is hence often
bounds are admissible, whereas the others aremot.  desirable to reduce a set to its intersection with respect
SM identifiability with respect toP* implies that the to another set, which is obtained througbntraction
trajectories arising from the two sets, namély and The contractiort of S; with respect taS, is a smaller
its complementary set, are not identical. But this is not sets such tha; N'Ss = s N Ss. If Sy is the feasibility
enough to guaranty that, if the trajectories arising from set of a problem and turns out to be empty, then the
P* fall within the bounds, none of the trajectories of the setS; does not contain the solution.
complementary set does. Interval analysis makes use of specific sets, also
Using Gronwall lemma and assuming that the func- known asboxes A real interval is a closed and con-
tions f andh defining model (1) are Lipschitz, it has nected subset & denotedz, 7] = {z € R, |z <z <
been proved in [39] thaj(¢, p) is M-Lipschitz with re- Z}. A box is an interval vectofX, X|, that is a vector
spect to the second variable, i.e. the parameter vector.with interval components.

3.2. u-SM-identifiability and parameter estimation

The constanfl/ has been defined explicitly so that the In SIVIA, inclusion and contraction are used to test

conditions under which the output trajectorigq, p) if a box can or cannot be removed from the solution

are distant by a givei can be determined. set. When no conclusion can be drawn, the box is bi-
This condition together withu-SM identifiability sected and each of the sub-boxes can be tested in turn in

with respect toP* not only imply that the trajectories  a branch-and-boundnanner. The same principles are

arising from a sef’* and its complementary set are dif- used in ICP.

ferent but also that there exist at least a time point for

which they are distant by more than n — ' _

In other words, one can determine the minimal dis- __ Although the intuition behindontractionas used here arabn-

L traction as used in section 3.1 is similar, the two concepts are not the

t"?‘nce bet\’_\/e_en tV_VO parame.ter vectors fO.I’ Wh'c_h ILIS POS- same. We use the same term because it is used as so by thalinterv

sible to distinguish numerically the trajectories By analysis community.
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Consider the problem of determining the solution set and consists in contracting the domain of the CSP by
for the unknown quantity. defined by: taking into account iteratively each constraint of the set
{C1,...,C}.
S={uelU]|d) ey} 3)
= Y[y))nUT, 3.3.2. Interpretation of-SM identifiability
SM identifiability does not provide the means to con-
trol the set of interesP*, i.e. the parameter solution set.
This points out the practical interest @fSM identifia-
bility which is defined through a contraction mapping
u(.) that allows one to control the diameter Bf. In
particular,e-SM identifiability means that the diameter
of P* cannot be lower thaa without eventually loos-
ing SM identifiability. The diameter aP* can hence be
SCcScCQ . 4) put in correspondance with the user-specified precision
T threshold of SIVIA. Consequently; SM identifiability
The inner enclosur§ is composed of the boxes that  provides the means to guarantee that the estimate pro-
have been proved feasible. To prove that a hax vided by the set inversion algorithm when the precision
is feasible it is sufficient to prove thak([u]) C [y]. threshold is taken equal toconsists of a connected set.
Reversely, if it can be proved that([u]) N [y] = 0, ¢-SM identifiability is actually a formalization of the
then the boxu) is unfeasible. Otherwise, no conclusion ICP numerical test proposed by [8] to check global iden-
can be reached and the b@y is said undetermined. ftifiability in a domain. Instead of imposing parameters
The latter is then bisected in two sub-boxes that are corresponding to a given input-output trajectory to be
tested until their size reaches a user-specified precisionstrictly different, [8] allows them to be distant by a given
threshold= > 0. Such a termination criterion ensures ¢, which provides a stopping condition to the ICP nu-
thatSIVIAterminates after a finite number of iterations. merical method.
Ultimately, 4-SM identifiability subsumes classical
In the above solving schema, the number of bisec- identifiability and SM identifiability as it provides the
tions to be performed is generally prohibitive. Hence, means to control the sgt* thanks to the contraction
recent algorithms take advantage of constraint propaga-mappings(.). When the diameter oP* tends to0,
tion techniques to reduce the width of the boxes to be 1-SM identifiability comes back to classical identifia-
tested [12], [13], [42]. In this context, the inclusion re- bility. Interestingly, -SM identifiability with respect
lations and the model equations can be interpreted asto P* means that classical identifiability holds for any

where[y] is known a priori,U is an a priori search set
for « and® a nonlinear function not necessarily invert-
ible in the classical sense. (3) involves computing the
reciprocal image ofb. This can be solved using the al-
gorithmSIVIA which recursively explores all the search
space without loosing any solution. SIVIA delivers a
guaranteed enclosure of the solution.Sets follows:

constraints. A Constraint Satisfaction ProblefhS(P) p € P*, which provides a way to test classical identi-
can be formulated as below. fiability for a set of parameters as a whole as shown in

A Constraint Satisfaction Problefd = (X,D,C) is section 4. When this diameter is necessarily higher or
defined by: equal toe, it results ine-SM identifiability.

« asetofvariable = {1, ...,z,},
) 4. Analysis of set-membership identifiability
+ a set of nonempty domair® = {Ds,...,D,}
whereD; is the domain associated to the variable | the Jiterature, different approaches have been pro-
Lis posed for studying global identifiability of nonlinear
« a set of constraint€ = {C1, ..., G}, S0 that the systems, for example, the revisited Taylor Series ap-

associated variables to each constraint are definedProach of [33], those based on the local state isomor-
in v phism theorem, [10], [11], [19], [41], or those based on

differential algebra, [4], [28], [36], [38]. Most of them
Given aC'SP and an initial boXS; (which may result can be adapted in order to test global)SM identifi-
from a bisection operation as explained above), differ- ability. In [39], the authors propose two methods for
ent types of so-calledontractorscan be used [17][9] testing the globali-)SM identifiability: the first one is
to contractS; into a sets that satisfies the constraints. based on the Taylor Series approach, the second one on
Among the most well-known is the forward-backward differential algebra. The latter is used in this paper be-
contractor [5] which is based on constraint propagation cause, as it will be seen in section 5, it permits to deduce
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a numerical procedure for SM fault detection. The no-
tion of partial injectivity of [23] is needed and is recalled
in the first subsection.

4.1. Partial injectivity

Definition 4.1. Consider a functionf : A — B and
any set4; C A. The functionf is said to be a par-
tial injection of 4; over A, noted(A4,, 4)-injective, if
Ya; € .Al, Ya € A,

a #a= far) # f(a).
f is said to beA-injective if it is (A, A)-injective.

In [23], an algorithm based on interval analysis for
testing the injectivity of a given differentiable func-
tion is presented and a solver called ITVIA (Injectivity
Test Via Interval Analysis) implemented in C++ is men-
tioned.

4.2. Testing global-)SM identifiability by Differential
Algebra

The proposed approach is an extension of [16] and
is based on [38]. [14] has proved that, choosing the ap-
propriate elimination ordefp} < {y,u} < {z} (which
consists in eliminating unobservable state variables), th
differential algebra approach [22] allows one to obtain
relations between inputs, outputs and parameters. Thes
relations can be expressed as:

06(y, )
+ 3 h

where(6)1<x<n, are rational inp, 6%, # 6 (u # v),
(m(y,u))1<k<n, are differential polynomials with re-
spect toy andu andd} # 0.

The size of the system is the number of observations.
For simplicity, we assume that= 1, i.e. there is only
one output variable and = ny, my(y, u) = mj.(y, u),

6, = 6;. The higher order derivative gfin (5) is noted
L.

The following theorem provides necessary and suffi-
cient conditions for global SM identifiability ofi-SM
identifiability.

Ri(y,u,p) =
0. (p)mi.(y,u), i =1,.
(5)

Theorem 1. Assume that the functional determinant
AR(y,u) = det(mg(y,u), k = 1,...,n), is notin
the ideaIIg obtained after eliminating state variables.
ConsiderP* a subset ot/p for which the functionp
defined by

(01(p),...,0
Y=V (s, p)

¢:p=(p1,....pp) — (p), y(t3 . p),

)

verifies:

Vp* € P*,Vp & P*, ¢(p*) # &(p)- (6)
Then the moddl'?” is globally SM identifiable with re-
spect toP*.

If the modell'?” is globally SM identifiable with respect
to P* and ¢ is (P*,Up)-injective then the model is-
SM identifiable with respect tB*.

In the two cases, if the coefficient@f) in (5) is not
equal to 0 at,y, then the reciprocal is valid.

Proof — SufficiencyConsider P* verifying the hy-
pothesis of the theorem. Suppose there exists an input
u* such thatY (P*,u*) # 0 andy* € Y (P* u*) N
Y (P,u*) for a cartesian product of intervald € Up.
Thus, there existp* € P*, p € P such thaty*
y(.,p*) = y(.,p) andR(y", u* ,p ) = R(y*,u*,p).
DenOteQ(y*7U*) = R(y*7U*7p*) - R(y*7U*7ﬁ)
Since

det(Q)(y*, u*) = det(mp(y*,u*), k=0,...,n) =
AR(y*,u*) is not equal to zerof(p*) = Hk(f))
k =1,...,n. Furthermore, recall tha{.,p*) = y(., )

in particulary ) (to, p*) =y (tg, p)forj = 0,...,1—
1. Since the functiow is supposed to verify condition
(6), one getp € P* thatisP* N P # ().

If ¢ is (P*,Up)-injective then,¢ is in partlcular in-
jective on P* and we always have* = p, that is

“NP#0.

NecessityLet's prove the contrapositive.
pose there exists®?, P* N P ¢ containing p
such thato(p*) = ¢(p) for a certainp® € P*.
Since the coefficient ofy") in (5) is not equal to
0 att, and the differential polynomialémy)i=1,...»
have a degree 1 i ([14]), any time derivative
yM(t$,p*), » > 1 can be rewritten as a function
of y D (tE ), oo, ylts,p*), 007, ..., Bu(p").
According to the hypothe5|s the coefficientsydf, p*)
in the Taylor expansion are the same as thosg o).
Thus,y* := y(t,p*) = y(t,p) andy* € Y(P*,u) N
Y (P,u). Consequently, the model is not globally SM
identifiable forP*. O

Example:Consider the uncertain model:

Sup-

i1 =23 + (1 — pa)xa,
&9 = sin(py)x1,

71(0) = (p1 + 2(1 — p2) cos(p1)), (7)
$2(0) = 0,
Yy =1,

where(py,p2) € P* =[—1,4] x [0,1/10].

We want to know whether the model is globallySM
identifiable with respect t&*. By settinge; = sin(p1)



and with the elimination ordefci,p2} < {y} < Then, the following system whose interval vector
{z1,x2}, the package diffalg of Maple gives the fol- (0©x(P))1<k<n IS unknown can be deduced:
lowing input-output polynomial:

Vi=0,..., M,

R(y,u) =i — 29y — (1 — p2)cry. 0 € mo(yj,us) + Xp=y Ok(P)mu(y;, uj). ®

In that case, the functional determinant is reduced to Notice that (8) is linear with respect to
AR(y,u) = y and in using the functiobelong_to of {©1(P),...,0,(P)}. Solving the previous system
the package diffalg of Maple [6], we verify that it is not comes back to solving € [A][x] — [b] or [A][z] = [b]

in Z0. where[A]; = ([mk(yj,uj)]) k=1, .. n is thej*" line of
In order to consider the initial condition, the functign the interval matriXA] and[b]; = —[mo(y;,u;)] is the
(p1,p2) = (1 —p2)sin(p1), (p1 +2(1 — p2) cos(p1))) 4 line of the interval vectofb].

has to be studied. Notice that the coefficienjan (5)

is not equal to 0 at 0. The solver ITVIA ([23]) allows
one to obtain the partition of the ba®* on which the
function® is partially injective andb can be proved to
be not injective oveP*. Thus the model is nqt-SM
identifiable with respect t@*.

Finding a solution for (8) requires an evaluation of a
finite number of measurement derivatives. In this work,
these derivatives are estimated by using Higher Order
Sliding Mode (HOSM) differentiators developped in
[25], [27].

5.2. Derivative estimation

5. Fault detection and identification In the works [25], [26], [27] concerning HOSM dif-
ferentiators, the input signglt) to be derivated is con-
5.1. Problem setting sidered as a function defined ¢@, +oo[. The sig-

naly(t) is supposed to consist of a bounded Lebesgue-

SM fault detection may use state estimation or pa- measyrable noise (bounded by a positive constant
rameters estimation. When the model is nonlinear like \yith unknown features and an unknown base signal

(1), the sets to be characterized (state or parameter val-yo(t> with them?" derivative having a known Lipschitz
ues) may be nonconvex and may even consist of Sev-congianic’ > 0. The successive derivatives of a signal

erz_il disconnected sets. _In the latter case, interval anal-y(t> are estimated byo(t), z1(£), ..., zm(t) as described
ysis encloses such sets in the convex hull and the usualpg|ow:

drawback is to obtain very conservative interval solution

vectors, which result in missing alarms. Recent meth- Zo= o, o
ods such as [1] or the one proposed in this paper should vo = —Xolz0 —y|"HD sign(z0 — y) + 21,
provide significant improvements in this direction. Z1= v, 1)

In this work, the same analysis is used for identifiabil- vi = —Ar]z1 —wo| ™ SigN(z1 —vo) + 22,

ity checking and for estimating the parameters. Advan-
tageously, after analyzing identifiability, we can guaran-

: Zm—1= Um—1,
tee that the solution set for the system (1) reduces to one ' ' 1
connected set Um-1 = —Am-1[2m-1— Um-2|? SigN(2m-1 — Vm-2)
. .. . +Zm7
In this section, a numerical method deduced from Zm = —Am SIGNZm — Vm—1),
section 4.2 is proposed to estimate the unknown con-
stant parameters of a non linear system like (1). where); € R, j = 0,...,m represent the differentia-

The outputy is supposed to be disturbed by a tor parameters. Generally, these parameters are chosen
bounded additive noisg 7(t) € [n(t)] and the parame-  experimentally (for more details, see [25], [26]).
ter vectorp belongs toP whereP is an interval vector.  Ithas been proved in [26] that the best estimate accuracy
The polynom (5) can be used to estimate the interval of thek®" derivative is proportional to:
vector P. Consider©; the associated expressionaf R
defined in the polynom (5), whegeis substituted byP. accy = pupCm+ia =+t | k=0,1,2,..m
O (P) is a connected set for all connectédsince it
involves sum, difference and product of connected sets. Wherey, > 1 depends only on\; (j = 0,...,m). In
Suppose that the observations are done at discrete timeshis paper, we compute an interval containing the exact
t;,0 < j < M and they are noteg, = y(¢;). k" derivative ofy. We notey,()k) the estimate of the



kt" exact derivative ofj, then this computed interval is
given by:

[y — accr, Y + acex],
with y$¥ = 2, [37].

5.3. Case study
The following example taken from [38] is consid-

=" (1) (14 y(t))?]

yz()l)(tj) andyff)(t]—) are obtained by using HOSM dif-
ferentiators presented in subsection 5.2. The parame-
ters of the HOSM differentiators are given by = 3,

A1 =0.2andXe =0.1.

Solving this system can be cast into the set inversion
framework for which we used the SIVIA algorithm
complented by the forward-backward propagation to
contract the initial parameter box. The problem solved

ered. In [38], the proposed model is cast in a stochastic here is to find[z] such that0 € [A][z] — [b], given
framework in which uncertainty is taken into account initial intervals for~;, v2 and~s; obtained from prior
through appropriate assumptions about noise and modelknowledge.

error probability distributions.

This model allows one to explore the capacity of the

Case of nominal behaviour By using initial in-

macrophage mannose receptor to endocytose solubleervals given byy; = [0, 0.04], 72 = [0, 0.003],
macromolecule and to quantify the different aspects of 3 = [0, 0.2] and the bisection precision = 0.001,

such a process:

Vmibl
14z

1 =oq(ze — 1) —
Zo = ag(x1 — 23),

21(0) € [0.62, 0.63], 22(0) = 0, (9)

we obtain in 14.18 secondsa;; = [0, 0.0401], ay =
[0, 0.0437] andV,,, = [0.06875, 0.13203],

by using the equations:V,, = 73, a =
Y2/Vim, a1 = v1 — aa. All these intervals contain the
normal values, confirming normal behavior.

y=2, Then, by usingy, = [0, 0.04], 7o =
wherez; (resp.z.) is the enzyme concentration outside [0, 0.003], 3 = [0, 0.2] and the bisection pre-
(resp. inside) the macrophage apd= (a1, V,y,, as) cision ¢ = 0.0001, we obtain in 177.55 seconds
are the unknown parameters which have to be identi-: a1 = [0, 0.0329], az = [0.0071, 0.0317] and

fied. The parameter; is the rate constant of the trans-

V,, = [0.094824, 0.10527).

fer from Compartment 1 (or the central compartment), All these intervals contain the normal values.

practically plasma, to Compartment 2 (or the peripheral
compartment), which represents the part of the extravas-

cular extracellular fluid accessible. Furthermaxe,is

Case of a fault on parameteras: In this simulation,
we assume a fault omy, = 2, which means that the rate

the rate constant of the transfer from Compartment 2 to of the transfer from Compartment 2 to Compartment 1

Compartment 1.
This model can be easily proved to be globallsM
identifiable with respect tGR)3. The numerical study

has been conducted in simulation in Matlab using Int- [0.0000, 0.5050], e = [1.1200, 10.4435] andV/,,

is high.
After 25.15 minutes, by using; = [0, 3], 72 =
[0, 1], v = [0, 0.2], we obtain: «a; =

lab. The simulated outputs are disturbed by a truncated [0.0242, 0.1790].

gaussian noise such thatn(t) € [-0.001, 0.001].
Thus,y(t) = y(t) + n(t) wherey is the exact output
corresponding to the exact value of parameters:=
0.011, ap = 0.02 andV,,, = 0.1. The observations
are supposed to be done at discrete tirfte;—1,.. n
on the interval0, 60] with a sampling period equal to 1.
The polynomR(y, ) is given by:

R(y,u) = §(1+y)* + 791 +y)*+v2y(1+y) + 739,

with Y1 = a1 + Qo, Yo = .V and'y3 = V.

If we denoteyz()l)(t]—) (resp. y}f)(t]—)) the estimate of
y(t;) (resp. §(t;)), the obtained system which has to
be solved i§A][z] = [b] where[A]; = ([y5" (t;)(1 +
vt )+ y(t))], v (t;)) and p]; =

The real faulty value ofas is contained in the
estimated interval fotvo, which allows us to detect and
localize the fault. Moreover, there is no intersection
between the estimated interval far, and the one
obtained for normal behaviour.

Case of a fault on parameteras at t = 15s
Consider now the case of an abrupt change in the value
of as during the test and let us assume a faylt= 1
at timet = 15s. This fault is detected ih= 0.05s after
its occurence.

After the detection of this fault, by using = [0, 1.05],
v = [0, 0.12], v3 = [0, 0.12], we obtain in 22.6
secondsa; = [0, 0.0238], az = [0.0738, 1.0500]
andV;, = [0, 0.1200]. These intervals on; andV,,



contain the normal values whereas the one obtained for [4]
a2 contains the faulty value.

Case of a fault on parameterV,,,: In this simulation, 2
we assume a fault oWi,,, = 0.2 att = 27s. This fault
is detected it = 0.02s after its occurence. Once the
fault is detected, the estimation algorithm is initialized
with v; = [0, 0.04], 72 = [0, 0.007], v3 = [0, 0.3],
and we obtain in 33.43s the intervals = [0, 0.0150],
ag = [0, 0.0248] andV;,, = [0.0242, 0.3].
The intervals omy; and o, contain the normal values
whereas the one fdr;,, contains the faulty value, hence
confirming the fault.

(6]

[7]
(8]

El

6. Conclusion (10]

This paper proposes a fault detection and identifica- [11]
tion method for bounded uncertainty nonlinear models
relying on an original parameter identifiability scheme.
It takes benefit of a differential algebra based method for
checking SM identifiability and its operational counter-
part u-SM identifiability. These notions provide a way
to study different aspects of identifiability for uncer-
tain bounded-error systems, in particular systems that
represent an infinite family of nonlinear systems. By
building the parameter estimation scheme on the anal-[15]
ysis of identifiability, we guarantee that the solution set 16]
reduces to one connected set, avoiding this way the pes-
simism of SM methods. Identifiability is closely re-
lated to diagnosability as it provides the guaranty that 7
two situations corresponding to different parameterized
settings are distinguishable. The proposed method has
been applied to an example describing the capacity of a[18]
macrophage mannose receptor to endocytose a specific
soluble macromolecule. Different normal and faulty |;q,
scenarios have been considered. For every scenario, the
parameters have been estimated correctly with reason-
able precision. 20]

[12]
[13]

[14]

]
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